Under review as a conference paper at ICLR 2024

MINIGPT-5: INTERLEAVED VISION-AND-LANGUAGE
GENERATION VIA GENERATIVE VOKENS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have garnered significant attention for their ad-
vancements in natural language processing, demonstrating unparalleled prowess
in text comprehension and generation. Yet, the simultaneous generation of im-
ages with coherent textual narratives remains an evolving frontier. In response, we
introduce an innovative interleaved vision-and-language generation technique an-
chored by the concept of “generative vokens,” acting as the bridge for harmonized
image-text outputs. Our approach is characterized by a distinctive two-staged
training strategy focusing on description-free multimodal generation, where the
training requires no comprehensive descriptions of images. To bolster model in-
tegrity, classifier-free guidance is incorporated, enhancing the effectiveness of vo-
kens on image generation. Our model, MiniGPT-5, exhibits substantial improve-
ment over the baseline Divter model on the MMDialog dataset and consistently
delivers superior or comparable multimodal outputs in human evaluations on the
VIST dataset, highlighting its efficacy across diverse benchmarks.

1 INTRODUCTION

In the recent development of larger-scale vision-and-language models, multi-modal feature integra-
tion is not just a passing trend but a critical advancement shaping a wide array of applications, from
multimodal dialogue agents to cutting-edge content creation tools. With the surge in research and
development, vision-and-language models such as (Wu et al., [2023; [Zhu et al., [2023) are on the
brink of an era where they’re expected to comprehend and generate both text and image content
seamlessly. This multi-faceted ability is crucial, as it fosters enhanced interactions across various
domains like virtual reality, media, and e-commerce. Essentially, the task is to enable models to
coherently synthesize, recognize, and respond using both visual and textual modalities, harmoniz-
ing the information flow and creating cohesive narratives. However, as we tread the path towards
blending textual and visual modalities and achieving the envisioned interleaved vision-and-language
generation, as illustrated in [T} we recognize that it’s driven by the pressing need for more integrated
and fluid multimodal interactions in today’s large language models. Yet, this journey is riddled with
obstacles.

The challenges posed by multimodal generation are manifold. For starters, there exists a dichotomy
between state-of-the-art Large Language Models (LLMs) (OpenAl, [2023;; |Chiang et al., |2023) ca-
pabilities. While they excel in understanding text and processing text-image pairs, they falter in the
nuanced art of generating images. This limitation becomes even more glaring when the data itself
lacks comprehensive descriptions. Moving away from conventional tasks that benefited from ex-
haustive image descriptions, the emerging interleaved vision-and-language tasks (Wang et al.}2020;
Sharma et al.| 2018]) lean heavily on topic-centric data, often skimping on thorough image descrip-
tors (Huang et al.,|2016). Then there’s the intrinsic challenge associated with end-to-end models like
BLIP-2 (Li et al., [2023b) and MiniGPT-4 (Zhu et al., 2023). Even after being trained on massive
datasets, aligning generated text with corresponding images is an intricate puzzle. Lastly, as we push
the boundaries with LLMs, the towering memory requirements beckon us to devise more efficient
strategies, especially in downstream tasks.

Addressing these nuanced challenges, our proposed methodology charts a promising trajectory. By
amalgamating the Stable Diffusion mechanism with LLMs through special visual tokens (Tan &
Bansal, 2020) — “generative vokens”, we herald a new pattern for proficient multimodal genera-
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Figure 1: MiniGPT-5 is a unified model for interleaved vision-and-language comprehension and
generation. Besides the original multimodal comprehension and text generation abilities, MiniGPT-
5 can provide appropriate, coherent multimodal outputs.

tion. Our pioneering two-stage training methodology underlines the importance of a description-
free foundational phase, prepping the model to thrive even in data-scarce scenarios. Our generic
stages, free from domain-specific annotations, make our solution distinct from the existing body of
work. To ensure that the generated text and images are in harmony, our dual-loss strategy comes into
play, further enhanced by our innovative generative voken approach and classifier-free guidance. To
round off, our parameter-optimized fine-tuning approach grapples with memory constraints, opti-
mizing training efficiency.

Building on these techniques, our work signifies a transformative approach. As shown in Figure[2]
using ViT (Vision Transformer) and Qformer (Li et al.,[2023b) along with the large language models,
we transmute multimodal inputs into generative vokens, seamlessly pairing with the high-resolution
Stable Diffusion 2 model (Rombach et al.||2021) for context-aware image generation. Incorporating
images as auxiliary input with instruction tuning approaches and pioneering both the text and image
generation loss, we amplify the synergy between text and visuals. Our proposed MiniGPT-5, set
against models like CLIP’s constraints (Rombach et al., 2021), masterfully fuses diffusion models
with MiniGPT-4, delivering unmatched multi-modal results without domain-specific annotation de-
pendence. Crucially, our strategy can capitalize on advancements in multimodal vision-language
foundational models, holding promising prospects for enhanced multimodal generative prowess.

Our contribution are three folds:

* We propose to use multimodal encoders representing a novel and generic technique that
has proved more efficient than LLM and also inversion to generative vokens, and combine
it with Stable DIffusion to generate interleaved vision-and-language outputs. [multimodal
language model that can do multimodal generation]

* We highlight a new two-staged training strategy for the description-free multimodal gener-
ation. The unimodal alignment stage harvests the high-quality text-aligned visual features
from large text-image pairs. The multimodal learning stage includes a novel training task
prompted context generation, ensuring the visuals and text prompt can well coordinate for
generation. The inclusion of classifier-free guidance during the training phase further re-
fines generation quality.

* Compared with other multimodal generation models, we achieved state-of-the-art perfor-
mance on the CC3M dataset. We also established unprecedented benchmarks on prominent
datasets, including VIST and MMDialog.
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Figure 2: The overview structure of MiniGPT-5 pipeline. We leverage the pretrained multimodal
large language model (MiniGPT-4) and text-to-image generation model (Stable Duffision 2) to create
a unified multimodal generation pipeline. The input image encoder includes a ViT, Qformer, and
linear layer, pretrained by MiniGPT-4. The orange blocks include learnable parameters, while the
blue blocks are fixed during training. More details can be find in Section

2  METHOD

In order to endow large language models with multimodal generation capabilities, we introduce a
structured framework that integrates pretrained multimodal large language models and text-to-image
generation models. To address the discrepancies across model domains, we introduce special visual
tokens—termed generative vokens—that are able to direct training on raw images. Moreover, we
advance a two-stage training methodology, coupled with a classifier-free guidance strategy, to further
enhance the quality of generation. Subsequent sections will provide a detailed exploration of these
elements.

2.1 MULTIMODAL INPUT PROCESS

Recent advancements in multimodal large language models, such as MiniGPT-4, have primarily
concentrated on multimodal comprehension, enabling the processing of images as sequential input.
To expand their capabilities to multimodal generation, we introduce generative vokens designed for
outputting visual features. Additionally, we employ cutting-edge, parameter-efficient fine-tuning
techniques within the Large Language Model (LLM) framework for multimodal output learning. A
more detailed introduction to these developments will be provided in the following paragraphs.

Multimodal Encoding: Each text token is embedded into a vector e, € R?, while the pretrained
visual encoder transforms each input image into the feature e, € R32%4, These embeddings are
concatenated to create the input prompt features.

Adding Vokens in LLM: Since the original LLM’s V' vocabulary only includes the textual tokens,
we need to construct a bridge between the LLM and the generative model. Therefore, we introduce
a set of special tokens Vin, = {[IMG1], [IMG2], ..., [IMGn]} (default n = 8) as generative vokens
into the LLM’s vocabulary V. The LLM’s output hidden state for these vokens is harnessed for
subsequent image generation, and the positions of these vokens can represent the insertion of the in-
terleaved images. With all pretrained weights Opreirained in MiniGPT-4 fixed, the trainable parameters
include extra input embedding yoken_input and output embedding Oyoken_output-

Parameter-Efficient Fine-Tuning (PEFT): Parameter-efficient fine-tuning (PEFT) (Houlsby
et al., 2019) is critical in training large language models (LLMs) like ChatGPT (OpenAl, [2023).
Despite this, its application in multimodal settings remains largely unexplored. We use PEFT over
the MiniGPT-4 (Zhu et al.,[2023) encoder to train a model to understand instructions or prompts bet-
ter, enhancing its performance in novel and even zero-shot tasks. More specifically, we tried prefix
tuning (L1 & Liang, 2021) and LoRA over the entire language encoder — Vicuna (Chiang et al.,
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2023) used in MiniGPT-4. Combined with the instruction tuning, it notably amplifies multimodal
generation performance across various datasets, such as VIST and MMDialog.

2.2 MUTIMODAL OUPUT GENERATION

To accurately align the generative tokens with the generative model, we formulate a compact map-
ping module for dimension matching and incorporate several supervisory losses, including text space
loss and latent diffusion model loss. The text space loss assists the model in learning the correct po-
sitioning of tokens, while the latent diffusion loss directly aligns the tokens with the appropriate
visual features. Since the generative vokens’ features are directly guided by images, our method
does not need comprehensive descriptions of images, leading to description-free learning.

Text Space Generation: We first jointly generate both text and vokens in the text space by fol-
lowing the casual language modeling. During the training, we append the vokens to the positions
of ground truth images and train the model to estimate vokens within text generation. Specifically,
the generated tokens are represented as T' = {t1,ta,...,tmn}, where t; € V' U Vimg, and the causal
language modeling loss is defined as:

m

Ltext = § 10g p(tz ‘etexta €img; tl; o ati—l; opretrainedy ovoken,inputa gvoken,output)a where t; € VU‘/img
i=1

(D

Mapping Voken Features for Image Generation: Next, we align the output hidden state hyoken
with the text conditional feature space of the text-to-image generation model. To map the voken
feature hyoken to a feasible image generation conditional feature egex¢ encoder € RLxd (where L is the
maximum input length of text-to-image generation text encoder, and d is the dimension of encoder
output feature in text-to-image generation model), we construct a feature mapper module, includ-
ing a two-layer MLP model 6y p, a four-layer encoder-decoder transformer model eyc_gec, and a
learnable decoder feature sequence q. The mapping feature Pyoken is then given by:

Pyoken = Benc-dec (GMLP(hvoken) ,q) € RExd 2)

Image Generation with Latent Diffusion Model (LDM): To generate appropriate images, the
mapping feature izw,ken is used as a conditional input in the denoising process. Intuitively, ilvnken
should represent the corresponding text features that guide the diffusion model to generate the
ground truth image. We employ the loss of the latent diffusion model (LDM) for guidance. During
the training, the ground truth image is first converted to latent feature z( through the pretrained VAE.
Then, we obtain the noisy latent feature z; by adding noise € to zy. A pretrained Unet model ¢y is
used to calculate the conditional LDM loss as:

2

| ] 3

2

Lipm :=Eeon(o,1).t [HG — €9 (Zt, i hvoken)
This comprehensive approach ensures a coherent understanding and generation of both textual and
visual elements, leveraging the capabilities of pretrained models, specialized tokens, and innovative
training techniques.

2.3  TRAINING STRATEGY

Given the non-negligible domain shift between text and image domains, we observe that direct
training on a limited interleaved text-and-image dataset can result in misalignment and diminished
image quality. Consequently, we adopt two distinct training strategies to mitigate this issue. The first
strategy encompasses the incorporation of the classifier-free guidance technique, which amplifies the
effectiveness of the generative tokens throughout the diffusion process. The second strategy unfolds
in two stages: an initial pre-training stage focusing on coarse feature alignment, followed by a fine-
tuning stage dedicated to intricate feature learning.

Classifier-free Guidance (CFG): To enhance the coherence between the generated text and im-
ages, we first leverage the idea of Classifier-free Guidance for multimodal generation. Classifier-
free guidance is introduced in the text-to-image diffusion process. This method observes that the
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generation model P, can achieve improved conditional results by training on both conditional and
unconditional generation with conditioning dropout. In our context, since the generation model
is fixed, our objective is to accentuate the trainable condition hyee,. During training, we replace
hyoken With zero features hy € 07*? with a 10% probability, obtaining the unconditional feature
ho = BOenc-dec (OmLp(ho), q). During inference, ho serves as negative prompting, and the refined
denoising process is expressed as:

logf’\e (Gt | Zt+17ilvokena ilo) =log Py (Et | Zt-i-lv]:}’o) +

v (log Py (et | ze41, hvoken) —log Py (615 | Ze41s ilo)) 4)

Two-stage Training Strategy: Recognizing the non-trivial domain shift between pure-text gener-
ation and text-image generation, we propose a two-stage training strategy: Unimodal Alignment
Stage (UAS) and Multimodal Learning Stage (MLS). Initially, we align the voken feature with im-
age generation features in single text-image pair datasets, such as CC3M, where each data sample
only contains one text and one image and the text is usually the caption of the image. During this
stage, we utilize captions as LLM input, enabling LLM to generate vokens. Since these datasets in-
clude the image descriptive information, we also introduce an auxiliary loss to aid voken alignment,

minimizing the distance between the generative feature fzvoken and the caption feature from the text
encoder Ty in the text-to-image generation model:

Lcap = MSE(hvokena To (C)) )

The unimodal alignment stage loss is expressed as Lyas = A1 * Liext + A2 * Lipm + Az * Legp, With
selected values A\; = 0.01, Ay = 1, A3 = 0.1 to rescale the loss into a similar numerical range.

After the unimodal alignment stage, the model is capable of generating images for single text de-
scriptions but struggles with interleaved vision-and-language generation, which includes multiple
text-image pairs and requires complicated reasoning for both text and image generation. To ad-
dress this, in the multimodal learning stage, we further fine-tune our model with PEFT parameters
by interleaved vision-and-language datasets, such as VIST, where the data sample has several steps
with text-image and texts are sequentially relevant. During this stage, we construct three types of
tasks from the dataset, encompassing (1) text-only generation: given the next image, generating the
related text; (2) image-only generation: given the next text, generating the related image, and (3)
multimodal generation: generating text-image pair by given context. The multimodal learning stage
loss is given by Lyrs = A1 % Lgexe + A2 * Lipm. More implementation details can be found in

appendix [B]
3 EXPERIMENTS

To assess the efficacy of our model, we conducted a series of evaluations across multiple bench-
marks. These experiments aim to address several key questions: (1) Can our model generate plau-
sible images and reasonable texts? (2) How does our model’s performance stack up against other
state-of-the-art models in both single-turn and multi-turn interleaved vision-and-language genera-
tion tasks? (3) What impact does the design of each module have on overall performance? In the
subsequent subsections, we will delve into the datasets and experimental settings used for these
evaluations, followed by a comprehensive analysis of our model’s performance. More details about
datasets and data format can be found in appendix

3.1 EXPERIMENTAL SETTINGS

Baselines For a comprehensive evaluation of our performance in multimodal generation, we con-
ducted comparative analyses with several prominent baseline models: the Finetuned Unimodal Gen-
eration Model, GILL, and Divter.

* Finetuned Unimodal Generation Model: To facilitate fair comparisons in both image
and text generation, we fine-tuned two separate models, Stable Diffusion 2 and MiniGPT-
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Table 1: Performance metrics for different models with various prompt types on VIST final step
image generation. For ‘No Context’, only the current step’s text is provided. The ‘Text Context’
uses all history texts, the ‘Image Context’ employs all preceding images, and ‘Image-Text Context’
provides a combination of both past images and texts.

No Context Text Context Image Context Image-Text Context
Model CLIP-I(1) IS(M) FID() CLIP-I(?) IS(}) FID(}) CLIP-I() IS(1) FID() CLIP-I(D) IS(D) FID ()
Zero-shot SD 2 0.57 23.62 6126 0.59 2324 62.60 - - - - - -
Fine-tuned SD 2 0.59 23.28 58.29 0.61 23.47 57.45 - - - - - -
" MiniGPT-5 (Prefix) ~ ( 0.60 2319 6125  0.63 2506 6181  0.68 2427 5992 070 =~ 2510 6046
MiniGPT-5 (LoRA) 0.61 2230 6144 0.64 23.86 61.34 0.69 25.03  59.09 0.70 2438 5948
MiniGPT-5 (w/o UAS) 0.55 1632 73.02 0.57 1631 7397 0.58 16.70 7588 0.58 16.99  76.51

4, utilizing the VIST dataset. Within the Stable Diffusion 2 model, the Unet parameters
were unfrozen, and for MiniGPT-4’s LLM part, LoORA parameters were incorporated.

¢ GILL (Koh et al., 2023 GILL is a recent innovation that allows the LLM to generate
vokens using a pre-trained text-to-image generation model for single-image generation.
Unlike our method, which employs conditional generation loss guidance, GILL minimizes
the Mean Squared Error (MSE) loss between the text-to-image text encoding feature and
voken features, similar to L4, in our approach. Since their method requests image de-
scriptions for training, we compare with it just on the unimodal alignment stage.

* Divter (Sun et al., 2021)): Divter is a state-of-the-art conversational agent developed for
multimodal dialogue contexts. It introduces a customized transformer structure for gener-
ating multimodal responses. Divter’s methodology includes pretraining on a vast corpus of
text-only dialogues and text-image pairs, followed by finetuning on a select set of multi-
modal response data. The MMDialog dataset regards Divter’s method as the baseline.

Metrics To comprehensively assess model performance across image, text, and multimodal di-
mensions, we employ a diverse set of metrics. For evaluating the quality and diversity of generated
images, we utilize the Inception Score (IS) (Salimans et al.,|2016) and Fréchet Inception Distance
(FID) (Heusel et al.| 2017). Textual performance is gauged through metrics such as BLEU (Pa-
pineni et al., 2002), Rouge-L (Lin, 2004), METEOR (Banerjee & Lavie, 2005), and Sentence-
BERT (Reimers & Gurevych, 2019)) scores.

On the multimodal front, we leverage CLIP-based metrics (Rombach et al.| 2021)) to assess the
congruence between generated content and ground truth. CLIP-I evaluates the similarity between
generated and ground-truth images, while CLIP-T focuses on the congruence between generated
images and ground-truth text. To address potential misalignments in the multimodal generation, such
as when the ground truth is text-only, but the output is multimodal, we utilize MM-Relevance (Feng
et al., 2022)). This metric calculates the F1 score based on CLIP similarities, providing a nuanced
evaluation of multimodal coherence.

Recognizing that the generated multimodal output might be meaningful yet differ from the ground
truth, we also incorporate human evaluation to assess the model’s performance. We examine the
model’s effectiveness from three perspectives: (1) Language Continuity - assessing if the produced
text aligns seamlessly with the provided context, (2) Image Quality - evaluating the clarity and
relevance of the generated image, and (3) Multimodal Coherence - determining if the combined
text-image output is consistent with the initial context.

3.2 EXPERIMENTAL RESULTS

In this section, we will quantitatively analyze our model performance on different benchmarks for
different training stages. The qualitative examples can be found in Fig. [3]

'To ensure fair comparisons, given the variations in the valid data within the CC3M dataset and the original
use of Stable Diffusion 1.5 in GILL, we made adjustments. Specifically, we switched their text-to-image
generation model to Stable Diffusion 2 and retrained it on our specific CC3M data, following the guidelines in
their official implementation. (https://github.com/kohjingyu/gill)
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Table 2: VIST all steps image generation: CLIP Image-Image and FID Performance Metrics. In
zero-shot SD2, for ‘No Context’, only the current step’s text is provided. The ‘Text Context’ uses
all historical texts. FID scores evaluate the similarities between generated images and ground truth
images within each story sequence.

Model CLIP-I (1) FID (})

Zero-shot SD 2 (no/text context) 0.58/0.59  414.34/393.49
Fine-tuned SD 2 (no/text context)  0.60/0.61  397.05/390.25

MiniGPT-5 (Prefix) 0.65 381.55
MiniGPT-5 (LoRA) 0.66 366.62
MiniGPT-5 (w/o UAS) 0.57 420.79

Table 3: VIST all steps narration generation: Sbert, Rouge-L, and Meteor Performance Metrics.
We added LoRA fine-tuning for both MiniGPT-4 and MiniGPT-5. The results show that adding
generative vokens does not hurt the performance on the multimodal comprehension tasks.

Model Sbert (1) Rouge-L (1) Meteor (1)
Fine-tuned MiniGPT-4  0.6273 0.3401 0.3296
MiniGPT-5 0.6315 0.3373 0.3263

3.2.1 MULTIMODAL LEARNING STAGE

In this subsection, we present the performance of different models on the VIST (Huang et al.,[2016)
and MMDialg (Feng et al., [2022)) datasets. Our evaluations span both vision (image-related metrics)
and language (textual metrics) domains to showcase the versatility and robustness of the proposed
models.

VIST Final-Step Evaluation Our first set of experiments involves a single-step evaluation where,
given the last step’s prompt, the model aims to generate the corresponding image. Table [I|summa-
rizes the results for this setting. The MiniGPT-5 in all three settings can outperform the fine-tuned
SD 2, showing the benefits of the MiniGPT-5 pipeline. Notably, the MiniGPT-5 (LoRA) model con-
sistently surpasses other variants in terms of the CLIP Score across multiple prompt types, especially
when both image and text prompts are combined. On the other hand, the FID scores highlight the
MiniGPT-5 (prefix) model’s competitiveness, indicating a possible trade-off between image embed-
ding quality (reflected by the CLIP Score) and the diversity and realism of the images (captured by
the FID score). When compared to the model (MiniGPT-5 w/o UAS) that undergoes direct training
on the VIST without incorporating the unimodal alignment stage, it is evident that while the model
retains the capability to generate meaningful images, there is a notable decline in image quality and
coherence. This observation underscores the significance of our two-stage training strategies.

VIST Multi-Step Evaluation In a detailed and comprehensive evaluation, we systematically pro-
vided models with prior history context and subsequently assessed the generated images and narra-
tions at each following step. Tables[2]and [3|outline the results of these experiments, encapsulating
the performance in both image and language metrics, respectively. The findings demonstrate that
MiniGPT-5 is capable of generating coherent, high-quality images utilizing long-horizontal multi-
modal input prompts across all data, without compromising the original model’s ability for multi-
modal comprehension. This accentuates the efficacy of our model in diverse settings.

VIST Human Evaluation To assess the quality of multimodal generation, we tested both our
model and the baseline on the VIST validation set. For each task, given a preceding multimodal
sequence, models are tasked with producing the subsequent scenario. To ensure a fair comparison,
we employed the fine-tuned MiniGPT-4, which is exclusively trained to generate narrations without
any vokens. Subsequently, these narrations are incorporated directly into the Stable Diffusion 2 via
the text-to-image pipeline. We selected a random sample of 5,000 sequences, with each requiring
evaluation by two workers. These evaluators are tasked with determining the superior multimodal
output based on three criteria: Language Continuity, Image Quality, and Multimodal Coherence.
This assessment was facilitated using Amazon Mechanical Turk (Crowston, [2012), with a represen-
tative example (Fig. ) provided in the appendix. As depicted in Table 4} our model, MiniGPT-5,
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Table 4: VIST Human Evaluation on 5000 samples for multimodal generation from Language Con-
tinuity, Image Quality, and Multimodal Coherence aspects. The results indicate, in more than 70%
cases, the MiniGPT-5 is better or on par with the two-stage baseline.

Model MiniGPT-5 Fine-tuned MiniGPT-4 + SD2  Tie

Language Continuity (%) 57.18 28.51 14.31
Image Quality (%) 52.06 35.98 11.96
Multimodal Coherence (%) 57.62 23.24 19.14

Table 5: Multimodal generation results on MMDialog test set. In order to compare with their base-
line, we use the same metrics reported in Table 3 of MMDialog paper (Feng et al., 2022).

Model IS(1) BLEU-1(1) BLEU-2(f) Rouge-L () MM-Relevance (1)
Divter 20.53 0.0944 0.0745 0.1119 0.62
MiniGPT-5 19.63 0.2221 0.1546 0.1119 0.67

was found to generate more fitting text narrations in 57.18% of instances, deliver superior image
quality in 52.06% of cases, and produce more coherent multimodal outputs in 57.62% of the scenar-
i0s. This data distinctly showcases its enhanced multimodal generation capabilities when compared
to the two-stage baseline that employs narrations for text-to-image prompts without the inclusion of
vokens.

MMDialog Multi-Turn Evaluation We conducted an evaluation of our method on the MMDialog
dataset to determine the effectiveness of generating precise and appropriate multimodal information
in multi-turn conversational scenarios. The model is required to generate either unimodal or multi-
modal responses based on the previous turns during the conversations in this dataset. Our results, as
presented in Table [5] demonstrate that MiniGPT-5 outperforms the baseline model Divter in terms
of generating more accurate textual responses. While the image qualities of the generated responses
are similar, MiniGPT-5 excels in MM-Relevance compared to the baseline model. This indicates
that our model can better learn how to appropriately position image generation and produce highly
coherent multimodal responses.

3.2.2 UNIMODAL ALIGNMENT STAGE

Instead of evaluating on the datasets with multi-turn multimodal data, we also evaluate models in
the single-image dataset CC3M (Sharma et al.| [2018)), as displayed in Table @ The results indicate
that although our model can have better generation on multi-turn scenarios, the Stable Diffusion 2
model achieves the best outcomes across all metrics for single-image generation. Since our model
attempts to align with the pretrained text encoder of Stable Diffusion 2 in this stage, there is a
slight gap in performance due to the limitation of data amount. Compared with the observations
on the VIST dataset, we can conclude that MiniGPT-5 can correctly extract features from long-
horizontal multimodal information instead of single text input. This indicates the future directions
on how to align LLMs with generative models efficiently. On the other hand, our model outperforms
another state-of-the-art multimodal generation model, GILL, on all metrics. Our model generates
more coherent and high-quality images that closely resemble those produced by the pretrained stable
diffusion model. To further evaluate the effectiveness of our design, we conducted several ablation
studies, and more ablation studies about voken number and CFG scales can be found in appendix D!

Evaluation of Different Loss Guidance: We introduced an auxiliary loss, denoted as L.q, for
CC3M training. To assess the impact of this loss and determine if the single caption loss alone can
generate high-quality images like GILL, we trained our model without the caption loss L), and the
conditional latent diffusion loss L, pjs separately. The results, as shown in Table@, indicate that the
caption loss significantly aids in generating better images, and the conditional latent diffusion loss
further enhances performance in terms of coherence and image quality.

Evaluation of Classifier-Free Guidance (CFG): To assess the effectiveness of the CFG strat-
egy, we trained our model without CFG dropoff. During inference, the model utilized the original
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Table 6: Model performance on CC3M validation set for single-image generation. Due to the lim-
itations of data amount, we find there is still a gap for voken alignment with Stable Diffusion 2.
However, our model outperforms another state-of-the-art model, GILL, in all metrics.

Model CLIP-I (1) CLIP-T(1) IS(}) FID(])
Zero-shot SD 2 0.64 0.25 31.74  26.39
GILL 0.57 0.20 2276 37.97
MiniGPT-5 0.61 0.22 28.09  31.47
MiniGPT-5 (w/o CFG) 0.60 0.22 23.41 33.73
MiniGPT-5 (W/o Lqp) 0.54 0.16 21.27  40.24
MiniGPT-5 (w/o Ly pr) 0.58 0.20 2479  34.65
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Figure 3: Qualitative examples from MiniGPT-5 and baselines. From the comparisons, we can find
the MiniGPT-5 and SD 2 have similar results on single-image generation. When we evaluate with
multi-step multimodal prompts, MiniGPT-5 can produce more coherent and high-quality images.
More qualitative examples can be found in the appendix E

CFG denoising process, which utilized the empty caption feature from SD 2’s text encoder as neg-
ative prompt features. The results in Table [6] demonstrate that all metrics are worse without CFG,
indicating that the CFG training strategy improves image generation quality.

4 CONCLUSION

In this paper, we introduce a novel model structure, MiniGPT-5, designed to augment the capabilities
of LLMs for multimodal generation by aligning the LLM with a pre-trained text-to-image genera-
tion model. Our approach demonstrates substantial improvements, as evidenced by comprehensive
experiments. Through this work, we aspire to set a new benchmark in multimodal generative mod-
els, opening doors to applications previously deemed challenging due to the disjointed nature of
existing image and text synthesis paradigms.
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