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Abstract

Recent advances in the video question answering (i.e., VideoQA) task have
achieved strong success by following the paradigm of fine-tuning each clip-text pair
independently on the pretrained transformer-based model via supervised learning.
Intuitively, multiple samples (i.e., clips) should be interdependent to capture similar
visual and key semantic information in the same video. To consider the interdepen-
dent knowledge between contextual clips into the network inference, we propose
a Siamese Sampling and Reasoning (SiaSamRea) approach, which consists of a
siamese sampling mechanism to generate sparse and similar clips (i.e., siamese
clips) from the same video, and a novel reasoning strategy for integrating the inter-
dependent knowledge between contextual clips into the network. The reasoning
strategy contains two modules: (1) siamese knowledge generation to learn the
inter-relationship among clips; (2) siamese knowledge reasoning to produce the
refined soft label by propagating the weights of inter-relationship to the predicted
candidates of all clips. Finally, our SiaSamRea can endow the current multimodal
reasoning paradigm with the ability of learning from inside via the guidance of
soft labels. Extensive experiments demonstrate our SiaSamRea achieves state-of-
the-art performance on five VideoQA benchmarks, e.g., a significant +2.1% gain
on MSRVTT-QA, +2.9% on MSVD-QA, +1.0% on ActivityNet-QA, +1.8% on
How2QA and +4.3% (action) on TGIF-QA.

1 Introduction

Dense Clip Siamese ClipsSparse Clip

(a) Dense Sampling (b) Sparse Sampling (c) Siamese Sampling

Figure 1: Different sampling mechanisms for
video frames. (a) Traditional methods use dense
clip features from full-length videos. (b) A re-
cent approach [22] suggests sparsely sampled
clips for end-to-end learning. (c) Our siamese
sampling to generate similar semantic clips .

By inferring the correct answers for video-based
questions, video question answering (VideoQA)
has attracted increasing research attention due
to its huge application potential, as a fundamen-
tal technique for vision-to-language reasoning.
The task involves acquisition and manipulation
of spatio-temporal visual representations guided
by the compositional semantics of the linguistic
clues [32, 15, 21, 34]. Existing works can roughly
be divided into two aspects. One aspect is to ex-
plore a powerful multimodal transformer-based net-
work [22, 2, 34, 45] trained on large-scale datasets
(e.g., COCO Captions [3] and HowTo100M [29]).
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Figure 2: (a) Traditional multimodal learning uses dense sampling for video frames and extracts
individual clip-text features via offline encoders. (b) Sparse based multimodal learning benefits from
sparsely sampled clips (independent) and raw text tokens for end-to-end modeling. (c) Self-driven
based multimodal learning utilizes cross-relationship between anchor clip (vanchor) and siamese
clips (v1,v2,v3) as knowledge to lead the model to create soft labels for self-supervised learning.
Note that the modules in (c) using same color mean the weights are shared.

The other aspect aims at exploring the structure reasoning for semantic alignment between vision and
language (e.g., Hierarchical Reasoning [21], Heterogeneous Graph Alignment [15, 46]and Object
Relation Reasoning [16]). Both of them solely consider each clip-text pair separately and ignore the
correlation between contextual clips in the same video.

By further analyzing the existing multimodal learning paradigm and showing their difference in
Figure 2, we observe that current methods suffer from a key drawback: every clip-text pair is regarded
as individual and independent during the training. Such drawback overlooks the rich interaction of
contextual clips from the same video2. We believe that the internal interaction information from same
videos can be helpful for further enhancing the network learning. Hence, to provide a remedy to
this dilemma, we present a self-driven Siamese Sampling and Reasoning (SiaSamRea) framework
learning from inside, by using the internal contextual semantics of interdependent video-aware data
(e.g., clips) from the same video in the training process.

First of all, our SiaSamRea (in Figure 3) consists of two key parts: (1) a siamese sampling shown in
Figure 1 (c) to extract multiple similar clips from the same video, which is motivated by ClipBert [22];
(2) a reasoning strategy named self-driven based multimodal learning as shown in Figure 2 (c). The
strategy contains two modules: (i) a siamese knowledge generation module to calculate the correlation
matrix between the anchor clip-text pair (e.g., fanchor) and siamese clip-text pairs (e.g., f1, f2, f3); (ii)
a siamese knowledge reasoning module to produce soft labels for self-supervised refinement during
the training. Finally, the labels are applied as auxiliary training supervision to enhance the network.

Compared with previous sampling mechanism, our siamese sampling as shown in Figure 1 (c)
not only is sparse but also is able to generate multiple similar clips for constructing their internal
relationships. Specifically, our siamese sampling captures clips at different start frames with same
interval time in the same video, which can constrain the global semantic of each clip to be similar
(i.e., each clip can represent the consistent video content from a global perspective).

Furthermore, to fully utilize the siamese clips, we explore a new reasoning strategy namely self-driven
based multimodal learning as shown in Figure 2 (c). There are three steps in the strategy for using the
interaction of internal clips from the same video into the training. At the 1st step, the anchor clip and
siamese clips are obtained by using sparse sampling and siamese sampling, respectively. Then the two
types of clips individually cooperated with the text are fed into the model to extract clip-text features,
including anchor clip-text feature (e.g., vanchor) and siamese clip-text features (e.g., v1,v2,v3). At
the 2nd step, the internal contextual interaction3 between the anchor clip-text feature and siamese

2We call the contextual clips from the same video as internal clips containing anchor and siamese clips
3The internal contextual interaction is regarded as siamese knowledge in our paper.
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clip-text features is calculated via our siamese knowledge generation module. At the 3rd step, a
siamese knowledge reasoning module is proposed to use the siamese knowledge applying to several
predicted candidates (e.g., panchor,p1,p2,p3) for adaptively reasoning out the refined soft label.
Here, the siamese knowledge is applied for adaptively reasoning. Because it is hard to distinguish
which candidate is critical to the accuracy from several predictions during the training. Finally, we
use the refined soft label to further distill our model for high-quality representation generation.

Our contributions are three-fold: (i) We propose a novel end-to-end framework named SiaSamRea for
learning from inside on VideoQA task, by using siamese sampling and reasoning to integrate the
interdependent semantics of clips from the same video into the training process. (ii) A novel reasoning
strategy is carefully designed for building the soft guidance from the interdependent knowledge
between internal clips, which consists of a siamese knowledge generation module and a siamese
knowledge reasoning module. (iii) Experiments on five commonly-used VideoQA benchmarks show
the superior ability of our SiaSamRea and demonstrate the effectiveness of our proposed components.
Not that our method only teaches the network with interdependent knowledge during the training,
which does not bring any extra burden (e.g., computation, memory and parameters) in the inference.

2 Related Work

Visual Content Modeling on VideoQA. Video Question Answering is a task aiming to answer the
given question concerning video content. Some current works extract generic visual appearance and
motion features to represent video contents and design different attention mechanisms to integrate
these features, like question-routed attention [38, 14] and co-attention [9, 49]. These methods mainly
focus on the holistic understanding of video contents, which easily neglect the meaningful details of
local clips. Some research pays attention to structure reasoning for semantic alignment [15, 16, 11,
17, 21]. Jiang et al. [15] proposed to build the correlation between the inter- and intra-modalities for
cross-modal learning via a heterogeneous graph alignment framework. Huang et al. [11] presented
a novel location-aware graph convolution network to mine the structural representation between
the location and relation among visual objects. Le et al. [21] demonstrated the effectiveness of
hierarchical video features for VideoQA by developing a general-purpose neural reasoning unit.
These works aim to handle fine-grained visual entity (e.g., object) and multimodal hierarchy but
ignore the correlation between contextual clips in the same video.

Pretrained-finetuning Paradigm on VideoQA. Recently, the paradigm of pretrained to fine-tuning
has made significant progress in many multimodal tasks, such as text-video retrieval [33], visual
question answering [1], image captioning [44], video captioning [39] and video question answer-
ing [23]. Thanks to the strong success of transformer-based [37] language pretraining [6, 27, 41]
and image-text pretraining [36, 4, 5, 12, 31], the video-text pretraining [24, 29, 51, 35] has shown
promising improvement on the video-language tasks, especially on VideoQA task. For example,
Zhang et al. [50] proposed to enhance the visual representation based on the OSCAR [26] by in-
corporating more visual data during the training. Lei et al. [22] solved the offline encoder in the
pretrained-finetuning pipeline by adopting a sparse training and dense inference. To promote the
development of large-scale multimodal learning, Seo et al. [34] proposed a new dataset and task for
future utterance prediction based on the video-text inputs. The multimodal model trained on their
new dataset also performed well on the VideoQA task. It can further prove the transfer ability of
the pretrained-finetuning paradigm. All approaches as mentioned-above on VideoQA are benefited
from the powerful pretrained backbone with large-scale clip-text pairs, while each clip-text pair is
independently encoded into the network rather than mining their contextual knowledge in the same
video. In this paper, we argue that the rich contextual information among clips should be valuable
and can well enhance the network. Hence, we propose a siamese sampling and reasoning method
for learning from internal clips in the same video as well as bringing no additional burden in the
inference, which consists of a siamese sampling mechanism and a reasoning strategy.

3 Methodology

Our Siamese Sampling and Reasoning (SiaSamRea) method is shown in Figure 3. The SiaSamRea can
be roughly divided into three parts based on the learning pipeline: (1) Clip Sampling; (2) Feature
Extraction; (3) Reasoning Strategy. The clip sampling aims to get the anchor clip and siamese clips
by sparse sampling and siamese sampling, respectively. The feature extraction is composed of a video
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Figure 3: Overview of our Siamese Sampling and Reasoning (SiaSamRea) applied to VideoQA. Given
the dense video frames, the anchor clip and siamese clips first to be extracted by sparse sampling and
siamese sampling. Then a video/text encoder and a multimodal transformer are utilized to generate
multimodal features (fanchor, f1, f2, f3). Next, a siamese knowledge generation module is proposed to
produce contextual relationship between anchor clip and siamese clips from the same video. Finally,
the soft label used for distilling the whole network, can be obtained via siamese knowledge reasoning
module by inferring the siamese knowledge on several candidates (panchor,p1,p2,p3). Note that
we only need the network fed with anchor clip for inference.

encoder, a text encoder and a multimodal transformer, which encodes the multiple clip-text pairs as
semantic representations. The goal of the reasoning strategy is to generate refined labels for distilling
the model learning, which can be achieved by using the siamese knowledge reasoning module to
propagate the siamese knowledge (i.e., interdependent relationship among pairs) from the siamese
knowledge generation module into the predictions of multiple clip-text pairs. Our contribution mainly
focuses on the design of reasoning strategy in a single framework, the siamese sampling mechanism
and innovative modules (e.g., siamese knowledge generation and siamese knowledge reasoning),
which are unveiled and discussed in details in the following sub-sections.

3.1 Preliminary

To simplify our method, we unify some symbolic notations in this section. Given the dense video
frames F, we seek to construct the anchor clip canchor and siamese clip set Csiamese = {ci}N−1

i=1 ,
where the N means all clips number. Each clip c is uniformly sampled B frames and obtains B
feature maps by using the video encoder to encode the clip. The encoded features of anchor clip and
the siamese clip set are denoted as vanchor and Vsiamese = {vi}N−1

i=1 , correspondingly. Taking the
encoded text representation from the text encoder concatenated with the clip representation from the
video encoder as input, a multimodal transformer is applied to produce the clip-text feature. Each
anchor clip-text feature is indicated as fanchor and the associated siamese clip-text feature set indicates
Fsiamese = {f}N−1

i=1 . Similarly, their predictions are defined as panchor and Psiamese = {pi}N−1
i=1 ,

respectively. The p is a vector with K dimension according to the classification number.

3.2 Siamese Sampling

In this section, we introduce our siamese sampling as shown in Figure 1 (c), which is inspired by
the spare sampling in ClipBert [22]. First, we get an anchor clip canchor by sparsely and uniformly
sampling B frames from dense video frames F. The length of F is typically much larger than B.
We randomly decide the starting sampling index of the anchor clip. Then our siamese sampling
captures siamese clips at different starting indexes but nearby the index of the anchor clip in the same
video. We use the same interval frame for all clips. There are some constraints for selecting the
starting sampling index of the anchor clip. It should be in the first third of the video to guarantee the
equilibrium of sampling. The “nearby” means the index of the Siamese clip should be next to the
index of the anchor clip. The pace of sampling is consecutive before or after the anchor index. After
siamese sampling, we can obtain some siamese clips, which have similar global video semantics
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including the anchor clip. Then we feed these clips into the video encoder sequentially as shown in
Figure 3 to get the visual feature. The video encoder and text encoder are similar with the encoders
in the ClipBert [22].

3.3 Reasoning Strategy

Different from previous methods [42, 22, 51, 43] that directly utilized the clip-text features f from
multimodal transformer to predict the final results, we propose a novel reasoning strategy named
self-driven multimodal learning by exploring how to integrate knowledge between different clips
(i.e., siamese clips) in the same video with a single network, which consists of a siamese knowledge
generation module and a siamese knowledge reasoning module.

3.3.1 Siamese Knowledge Generation
Intuitively, clips with high visual similarities are expected to have more consistent predictions on
their predicted class probabilities, regardless of their ground-truth labels. In our solution, similar
clips’ knowledge is systematically aggregated and integrated to provide better soft labels.

We propose to propagate and integrate knowledge among clip-text pairs on-the-fly in terms of their
multimodal feature similarities. Given a set of N clip-text pairs4 from the same video and a feature
extractor F under training, we first estimate the samples’ pairwise similarities by the dot product
of their encoded representations with the current network. Such similarities can be stored in an
interdependent matrix A ∈ RN×N as

A(i, j) = σ(F (fi))
>σ(F (fj)), (1)

where i, j are the indices of samples in a video and σ denotes the `2-norm function. N is the number
of samples. To avoid reasoning in the self-loop reinforcement, we discard the diagonal entries
from A by A = A� (1− I), where I is an identity matrix and � denotes the Hadamard product.
Subsequently, we normalize each row of the interdependent matrix A so that

∑N
j=1 Â(i, j) = 1 for

all i, while keeping the diagonal all zeros, i.e., Â(i, i) = 0. The normalization can be formulated as a
softmax function over each row of the matrix A

Â(i, j) =
exp(A(i, j))∑
j 6=i exp(A(i, j))

, ∀i ∈ {1, . . . , N}, (2)

where the Â(i, j) indicates the normalized interdependent knowledge between the i-th sample and
j-th sample in the same video. The whole interdependent knowledge of all sampling clips denoted as
Â is also called as siamese knowledge in this paper. Due to the knowledge is mainly calculated by
our siamese samples.

3.3.2 Siamese Knowledge Reasoning
We denote the predicted probabilities of samples within a video as P = [p1, . . . ,pN ]> ∈ RN×K ,
which satisfy

∑K
k=1 P (i, k) = 1,∀i. For the i-th sample in the video, there are K-class candidates.

We would like to adaptively propagate and merge the other samples’ predictions to create a better
soft label for it based on the inter-sample affinities, which can be formulated as

p̂i =
∑
j 6=i

Â(i, j)p = Â(i)P, (3)

where p̂i is the propagated probability vector for the i-th sample and can serve as the refined soft
labels. Intuitively, if the i-th sample and the j-th sample are similar with a high interdependent value
Â(i, j), the prediction pj would have a larger weight to be propagated to p̂i. Motivated by the graph
convolutional network [18], our module adaptively propagate the predictions between all the samples
(i.e., clip set) in a video in parallel, which can be formulated as

P̂ = WÂP, (4)

where the W ∈ R1×N is learnable matrix and P̂ ∈ RK is our soft label. To avoid propagating and
integrating noisy and unexpected predictions too much, we produce the soft learning targets Q as a

4To simplify the expression, the “clip-text pair” denotes “sample” in Sec. 3.3
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weighted sum of the initial probability matrix P and the propagated one ÂP,

Q = ωW1ÂP + (1− ω)W2P, (5)

where ω ∈ [0, 1] is the weighting factor and
∑K
k=1 Q(k) = 1, Q ∈ RK . The W1 and W2 are

trainable weights. With the above formulations, the knowledge between samples within the same
video can be propagated to each other and integrated for one iteration.

3.4 Optimization

Open-ended VideoQA Setting. Open-ended question setting is to choose one correct answer from a
predefined answer set Ω, which can be seen as a multi-label classification task and trained with the
cross-entropy loss function. We feed the visual representation v and question representation q into
our framework denoted as φθ to compute prediction probabilities:

p = φθ(v,q),p ∈ R|Ω|. (6)

Multiple-choice VideoQA Setting. Multiple-choice question setting is to choose one correct answer
from M candidates. In this case, we first formulate the answer representation of the m-th candidate
as am. Then, we feed the visual representation, question representation and answer representation
into our model to ouput the m-th answer score, which is formulated as

sm = φθ(v,q,am), 1 ≤ m ≤M, (7)

where the score of the correct candidate is the positive score sp, and the rest scores are negative
scores denoted as (sn1 , ..., s

n
M−1). During training, we utilize the summed pairwise hinge loss∑M−1

i=1 max(0, 1− (sp − sni )) between the positive score and each negative score to train our model.

Objective Function. There are two terms for our final objective function L. One term denoted as
Lsiamese comes from the loss between our soft label and the prediction result panchor from the
anchor clip-text pair. We utilize the cross-entropy loss function to compute the loss Lsiamese. The
other term is to optimize the training process between predictions and the ground-truth, which is
commonly-used in the previous works. Note that the last term may be different depended on the task
setting, we uniformly formulate the loss function associated with the ground-truth as Lgt. Finally,
our model can be finally optimized by

L = αLsiamese + Lgt, (8)

where α is a hyper-parameter term to adjust the balance of the two losses.

4 Experiment
In this section, we first introduce the data that we use in Sec. 4.1 and details of our experiments
in Sec. 4.2. Then we validate the effectiveness of our proposed components in Sec. 4.3, which is
followed by the comparison with other methods in Sec. 4.4. Finally, in Sec. 4.5, some visualization
results are shown to qualitatively analyze the benefits of our siamese clips.

4.1 Evaluation and Datasets
We evaluate our proposed VideoQA method and compare it with other state-of-the-art methods on
five VideoQA datasets, which are widely used and accepted for academic video question answering,
including the open-ended setting and multiple-choice setting. We follow the previous evaluation
protocols for open-ended settings [21, 48] and utilize a fixed vocabulary of training answers. For the
multiple-choice evaluation setting, we follow the previous methods [21] to use the same dataset split
setting. Excepting for the repetition count task in the TGIF-QA [13] where the Mean Squre Error
(MSE) is excavated, we use top-1 accuracy to be the evaluation metric for all experiments.

We carry out our SiaSamRea on three open-ended VideoQA datasets, including MSRVTT-QA [38],
MSVD-QA [38] and ActivityNet-QA [48]. The MSRVTT-QA has 10K videos and 244K question-
answer pairs. The size of the predefined answer set is 1000. Compared with the MSRVTT-QA, the
MSVD-QA is smaller, which has 2K videos with nearly 51K question-answer pairs. The MSRVTT-
QA and MSVD-QA contain five question types like what, who, how, when and where. ActivityNet-
QA has 5.8K videos and 58K questions, which is repurposed from ActivityNet Captions [19].
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Furthermore, we validate our method on a multiple-choice VideoQA datasets, such as How2QA [24].
The How2QA has 9K videos tailed with 44K question numbers, where each question is associated with
one correct and three incorrect answers. Besides, we train and test our model on the TGIF-QA [13],
which is a large-scale VideoQA dataset containing 72K animated GIFs and 165K question-answer
pairs. There are four tasks defined on this dataset: (i) Repetition Count is an open-ended QA task to
count the number of the repetitions of an action; (ii) Repeating Action is similar to the repetition
count task but following the multiple-choice setting; (iii) State Transition is multiple choice task
for identifying the transition between two states; (iv) Frame QA is open-ended to find the sufficient
frame to answer the questions.

4.2 Implementation Details
We implement our proposed SiaSamRea via PyTorch [30], a well-known open-source deep learning
framework. For being fairly comparable with other methods, we conduct the following training and
testing settings. Unless otherwise noted, settings are the same for all experiments.

Training. We use the pretrained model trained on the COCO Captions [3] and Visual Genome
Captions [20] from ClipBert [22] as our initial weights of our SiaSamRea. To obtain more VideoQA-
related pretrained weights, we present to train task-related data during the pretraining. Based on the
initial weights from the ClipBert, we perform the clip-text pretraining on TGIF-QA [13] optimized
by adaptively using aforementioned objection function (i.e., Eq. 8) according to different task settings
(i.e., open-ended and multiple-choice tasks). There is a total of 71739 videos in the TGIF-QA dataset.
Because our proposed method aims to model the long-range contextualized knowledge via Siamese
samples. The videos with less than 40 frames do not meet our requirements in the training. We filter
out less than 40 frames of video during the pre-training to remain long-range temporal videos. In the
TGIF-QA dataset, the percentage of videos with less than 40 frames is 56% (40333/71739). Hence,
we use the remaining 31406 TGIF videos for our pre-training, which is less than the ClipBERT. The
ClipBERT uses a total of 71739 TGIF-QA videos to finetune the four tasks, which is different from
our pre-training on the TGIF-QA dataset. Because the video length is various, we set the number
of frames in each clip from 5 to 16 according to the video length. We set the batch size to be 1 per
GPU and use AdamW [28] optimizer with initial learning rate 0.0005. The learning rate warm-up
strategy is adopted over the first 10% training steps followed by linear decay to zero. We terminate
the pretraining when it reaches minimal learning rate (i.e., 0.00001) and its validation performance
stabilizes (i.e., reaches convergence). The balance term is α=1.0, the integrating weight is ω=0.5. We
conduct all experiments using 16 NVIDIA V100 GPU cards.

For the downstream fine-tuning, we apply the same training and optimizer configurations as
mentioned-above. Since the downstream datasets are various and in multiple domains, we use
dataset-specific learning rates, training epochs and clip numbers based on validation performance.
Note that we do not need to excavate additional fine-tuning on the TGIF-QA dataset.

Testing. We strictly follow the test split setup in each dataset and validate the learning outcomes after
each learning epoch. Then we report the best metrics (top-1 accuracy) as our results.

4.3 Ablation Studies

Table 1: Ablation studies on How2QA and MSVD-
QA datasets. The SKG and SKR separately indi-
cate siamese knowledge generation and siamese
knowledge reasoning.

Methods How2QA MSVD-QA
baseline 79.1 39.4
w/ SKR 83.0 44.7
w/ SKG + SKR 84.1 45.5

We conduct comprehensive ablation studies con-
cerning various aspects of our SiaSamRea’s de-
sign in this section. In Table 1, we set the
network training without using the Lsiamese
as our baseline. Compared with the baseline,
our method only using the siamese knowledge
reasoning module (w/ SKR) by replacing the
siamese knowledge generation with average op-
eration, can apparently boost the accuracy by
more than 4% from baseline on How2QA and
MSVD-QA. It can demonstrate the effectiveness of our siamese knowledge reasoning. It also validates
our assumption that multiple clips from same videos can really bring some strong knowledge to en-
hance the network ability. When we add the siamese knowledge generation module (w/ SKG+SKR),
our method can reach a higher performance to 84.1% and 45.5%, which can demonstrate the ef-
fectiveness of building the interdependent knowledge (i.e., siamese knowledge) for integrating the
samples. It can also prove the adaptively reasoning by our siamese knowledge is better than the purely
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average operation. We think that the siamese knowledge not only serves as the knowledge-routed
representation, but also implicitly constrains the semantic consistency of clips in the space of clip-text
features.

Table 2: The effect of the number of sampling
siamese clips on How2QA and MSVD-QA.

Methods 1 2 4 8 12
How2QA 79.6 80.5 81.9 84.1 84.4
MSVD-QA 39.9 41.3 42.7 45.5 45.7

To explore the effect of the number of siamese
clips, we compare our method with various
number of siamese clips, which results can be
shown in Table 2. Note that our siamese sam-
ples are serving for the interdependent knowl-
edge extraction. Intuitively, more samples can
aggregate richer knowledge. When adding the
number of siamese samples from 1 to 12, our method promotes the accuracy from 79.6% to 84.4%
on How2QA and 39.9%→45.7% on MSVD-QA. Such improvement can demonstrate our intuition
that more siamese samples can bring richer knowledge, which makes our network benefited from it.
Although the accuracy is increasing with the number of siamese clips, we observe that the improve-
ment from the number 8 to 12 is slight. We think the reason is the saturation of knowledge, i.e., the
model has enough knowledge to learn the task on the two datasets. Hence, it is almost meaningless
to purely increase the siamese samples. To balance the training time and accuracy, we select the 8
siamese samples in our final version.

The effect for W1 and W2 in Eq. 5. We have conducted experiments on the MSVD-QA dataset to
analyze the effect of these learnable weights (W1 and W2). Our SiaSamRea without W1 performs
44.9% on MSVD-QA, which heavily drops 0.6% performance compared with our whole SiaSamRea
(45.5%). One possible reason is that the W1 can make the propagated prediction matrix learnable and
adaptively propagate the predictions between all the samples. When performing our model without
W2, it achieves 45.2%. The performance without W2 is slightly decreasing ( 0.3%). When it comes to
our method without using W1 and W2, it gets 44.5%. As we can see, the W1 and W2 both can bright
improvement. Hence, it can further demonstrate the importance and necessity for the generation of
expected soft labels by correctly merging several predicted candidates.

Table 3: Comparison with state of the art on
MSRVTT-QA and MSVD-QA (top-1 accuracy).

Methods MSRVTT-QA MSVD-QA
E-SA [38] 29.3 27.6
ST-TP [13] 30.9 31.3
AMU [38] 32.5 32.0
Co-mem [9] 32.0 31.7
HME [7] 33.0 33.7
LAGCN [11] — 34.3
HGA [15] 35.5 34.7
QueST [14] 34.6 36.1
MiNOR [16] 35.4 35.0
TSN [40] 35.4 36.7
HCRN [21] 35.6 36.1
Clip-BERT [22] 37.4 —
SSML [2] 35.1 35.1
CoMVT [34] 39.5 42.6
SiaSamRea (Ours) 41.6 45.5

The effect for multiple copies of anchor clip. We
replace our Siamese clips with multiple copies of
anchor clips to analyze the effect of SKG. Since
we used 8 siamese clips in our paper, we replaced
the siamese clips with 8 copies of anchor clips
during the training. We execute this ablation study
on the MSVD-QA dataset. This ablation study
achieves 41.3%. It promotes the baseline (39.4%)
with 1.9% performance. It can validate the power
of the ensemble way. But only using the anchor
clips for ensemble can’t bring visually contextual-
ized knowledge. We skillfully exploit the visually
contextualized knowledge via the siamese clips,
which obtains 45.5% accuracy. Hence, the im-
provement of our method mainly comes from the
SKR and SKG by using Siamese clips rather than
the simple ensemble.

4.4 Comparisons with State-of-the-Arts

Comparisons on MSRVTT-QA and MSVD-
QA. Table 3 reports the comparison with previous methods on MSRVTT-QA and MSVD-QA
datasets. Our SiaSamRea achieves the best performance on both datasets. Specifically, compared
with the methods using large-scale pretrained data (i.e., Clip-BERT, SSML and CoMVT), our method
consistently and considerably outperforms them by 2.1% and 2.9% top-1 accuracy on MSRVTT-QA
and MSVD-QA when compared with CoMVT, which was previously the best performer. When it
comes to other methods (e.g., HCRN, TSN etc.) without using additional pretrained data, our model
can significantly boost the accuracy by around 6% accuracy on MSRVTT-QA and a large gain of
9.4% on MSVD-QA compared with HCRN. These promising results can validate the effectiveness
of using pretrained data. It also supports the feasibility of distilling the interdependence of multiple
clips with our reasoning strategy on the open-ended VideoQA task.
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Comparisons on ActivityNet-QA and How2QA. We now move to the evaluation on ActivityNet-
QA and How2QA, which results are reported in Table 4. In particular, our method improves

Table 4: Comparison with state of the art
on ActivityNet-QA and the public val set of
How2QA (top-1 accuracy).

Methods ActivityNet-QA How2QA
E-SA [48] 31.8 —
MAR-VQA [52] 34.6 —
HERO [24] — 74.1
CoMVT [34] 38.8 82.3
SiaSamRea (Ours) 39.8 84.1

over the recent CoMVT approach that has been
pretrained on HowTo100M [29] dataset. It can
effectively demonstrate the advantages of apply-
ing related-data (e.g., TGIF-QA) on the pretrain-
ing, which can perform well to transfer to related
tasks. The ActivityNet-QA is so challenging due
to the complex events and backgrounds in the
videos. Our SiaSamRea still achieves a new state-
of-the-art performance (39.8%) on ActivityNet-
QA by learning from internal clips. These strong
results show the importance and powerful ability
of our proposed learning strategy. In other words,
our SiaSamRea can provide another way to handle the complex situation by mining the intrinsic
information like internal relationship to parse the various temporal scenes from multiple samples. On
the multiple-choice task, the ability of our method gets great scores (84.1%) on How2QA dataset as
validating the availability of transferring our method to the other video question answering settings.

Table 5: Comparison with the state-of-the-art methods on TGIF-
QA dataset. For count, the lower the better.

Methods Action Trans. Frame Count
VIS+LSTM (agg) [32] 46.8 56.9 34.6 5.09
VIS+LSTM (avg) [32] 48.8 34.8 35.0 4.80
VQA-MCB (agg) [8] 58.9 24.3 25.7 5.17
VQA-MCB (avg) [8] 29.1 33.0 15.5 5.54
CT-SAN [47] 56.1 64.0 39.6 5.13
ST-TP [13] 62.9 69.4 49.5 4.32
GR-ATT [38] 68.8 73.9 53.0 4.32
Co-mem [9] 68.2 74.3 51.5 4.10
PSAC [25] 70.4 76.9 55.7 4.27
STA [10] 72.3 79.0 56.6 4.25
MiNOR [16] 72.7 80.9 57.1 4.17
HME [7] 73.9 77.8 53.8 4.02
HCRN [21] 75.0 81.4 55.9 3.82
ClipBERT*[22] 75.1 80.8 56.3 4.07
HGA [15] 75.4 81.0 55.1 4.09
SiaSamRea (Ours) 79.7 85.3 60.2 3.61

Comparisons on TGIF-QA. To
further demonstrate the advantage
of SiaSamRea to infer more vari-
ous and difficult scenarios, we es-
timate it on the TGIF-QA dataset.
The experimental results are sum-
marized in Table 5. It is clear that
our SiaSamRea consistently out-
performs state-of-the-art models
on four reasoning tasks. The four
tasks are requiring the strong tem-
poral reasoning especially for the
action and transition task. Hence,
they really require the model to
consider the contextual depen-
dence of clips. Particularly, our
method increases overall accuracy
on the publicly test set by 4.3%
(75.4%→79.7%) compared with
the best result on repeating ac-
tion task, 3.9% (81.4%→85.3%)

on state transition task, 3.1% (57.1%→60.2%) on FrameQA task and decreases error by 0.21
(3.82→3.61) on repetition count task. Thanks to the siamese sampling and reasoning, our method
can effectively capture the consistent video content from a global perspective. Because our SiaSam-
Rea can distinguish the global semantic of a video by multiple views (i.e., siamese clips), which can
bring abundant information from inside that may be absent in other clips to help the network learning
the contextual relationship.

To fairly compare the effect of ClipBERT with our proposed method, we conduct extra experiments
to finetune the ClipBERT on the filtered data and test it on the four tasks. We mark the ClipBERT
finetuned on our filtered data as ClipBERT*. The ClipBERT* gets 75.1% on Action, 80.8% on Trans.,
56.3% on Frame and 4.07 on Count. As we can see, the ClipBERT* can achieve comparable results
compared with other SOTA methods. It can prove the effectiveness of the pre-trained weights from
COCO Captions and Visual Genome Captions. However, our proposed method still outperforms the
ClipBERT* on four tasks based on the same filtered data (79.7% on Action, 85.3% on Trans., 60.2%
on Frame and 3.61 on Count). It can further demonstrate the superior ability of our idea by using the
Siamese clips during the training. Our proposed method achieves better performance with less data.
It also validates the huge potential of inside data once there is a suitable way to explore them.
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Anchor
Clip

Siamese
Clips

Q: What perched on a branch of tree bit a tail of another animal?      A: Bird

Figure 4: The examples to show the benefits from the siamese clips. It is hard to discriminate the
visual content “bird” from ambiguous parts (red circle) in anchor clip. It is much easier to distinguish
“bird” by the assistance of siamese clips that contains more complete visual content (green circle).

4.5 Visualization
In Figure 4, we show a training example to qualitatively analyze what kind of knowledge does the
siamese clips bring to the anchor clip. It is unavoidable to lose some visual contents when sparsely
sampling from the video. For example, the visual content “bird” in anchor clip is almost absent.
However, we can obtain the absent content from the siamemse clips due to different sampling indices
and duration. Hence, our siamese samples can help the model to correctly and stably train on the
sparse samples as well as avoiding confusing predictions due to the incomplete visual information.

5 Conclusion and Boarder Impact

In this paper, we propose to endow the current multimodal reasoning paradigm with the ability of
learning from inside on the VideoQA task via Siamese Sampling and Reasoning (SiaSamRea), which
contains two key parts: (1) a siamese sampling to produce some sparse clips with similar semantics
in the same video; (2) a reasoning strategy to distill the interdependent knowledge between clips into
the network. The reasoning strategy is composed of two modules: (i) siamese knowledge generation
to implicitly aggregate the inter-relationship of clips from the same video; (ii) siamese knowledge
reasoning to infer soft label by using the predicted candidates of all clips and their inter-relationship.
Our proposed SiaSamRea finally can be jointly evolved by the soft label guidance and ground truth,
which is evaluated on five VideoQA datasets demonstrating state-of-the-art performance.

This work analyzes an interesting problem of how to learn from inside on the video question
answering. Different from current methods mainly look for insights from outside data and powerful
pretrained models. Our work proposes a totally different insight called learning from inside. In this
paper, we observe the potential power of clips in the same video. Intuitively, the multiple clips should
contain rich interdependent knowledge which is ignored by current advanced methods. To the best of
our knowledge, we are the first one to present learning from inside by using the knowledge between
internal clips to assist in evolving the network training. Moreover, our method only teaches the
network with interdependent knowledge during the training, which does not bring any extra burden
(e.g., computation, memory and parameters) in the inference. Hence, it is a light way to easily equip
our method with other suitable networks on different multimodal tasks. We hope that our work will
increase interest in the exciting field of learning from visually contextualized knowledge.
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