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Abstract

Multi-agent collaborative tasks exhibit excep-
tional capabilities in natural language applica-
tions and generation. By prompting agents to
assign clear roles, it is possible to facilitate
cooperation and achieve complementary ca-
pabilities among LLMs. A common idea is
to adopt a relatively general role assignment
mechanism, such as adding a “judge” or a sum-
mary role, but such methods cannot customize
the task-specific role assignment mechanism
according to the characteristics of the task. An-
other idea is to decompose the task according
to domain knowledge and task characteristics,
and then assign appropriate roles to LLMs ac-
cording to their strengths, such as programmers
and testers. However, in some given tasks, it’s
hard to obtain domain knowledge related to
task characteristics and get the strengths of dif-
ferent LLMs. To solve the above problems,
we propose a Multi-LLM Cooperation (MLC)
method with automatic role assignment capabil-
ities. The main idea of MCL is to randomly ini-
tialize role assignments first, and then let role
embeddings learn together with downstream
tasks. To record the state changes of multiple
LLMs when they take turns speaking, the role
embedding is sequence-aware. At the same
time, to avoid role convergence, the role differ-
entiation module of MCL encourages behav-
ioral differences between LLMs while ensuring
the consistency of the LLM team, guiding dif-
ferent LLMs to achieve complementary advan-
tages from the optimization level. Our experi-
ments on seven datasets show that our approach
significantly improves debate collaboration and
expertise to collaboratively solve multi-agent
debate tasks'.

1 Introduction

Multiple agents collaborate through debate, which
can give full play to the capabilities of multi-
ple agents and use collective intelligence to solve

'0ur code is available at https://anonymous.4open.
science/r/MLCan-D102/.

more complex tasks. The multi-agent debate has
a wide range of applications in Artificial Intelli-
gence (Al), such as coding (Qian et al., 2023),
teamwork projects, negotiation (Fu et al., 2023),
and mathematics reasoning tasks. Methods for
multi-agent debate contain two types of approaches.
One type of approach utilizes a general role as-
signment mechanism. Some researchers explore
the use of multiple LLMs with 7B ~ 13B (e.g.
Llama2-7b) to solve mathematical reasoning aim-
ing at handling lightweight scenarios and consider
the reasoning paths in various perspectives (Ma
et al., 2024). The classic method involves multi-
ple LLMs taking turns to generate responses, with
each answer updated based on the responses of the
other LLMs, such as Multi-agent Debate (Du et al.,
2023). The MAD framework (Liang et al., 2023)
is proposed to be a multi-agent debate framework,
with multiple debaters engaging in sequential de-
bate, with a judge making the final decision. The
concept of Al feedback (Fu et al., 2023) involves
two LLM agents debate, a third LLM provides feed-
back for improvement, facilitating the negotiation
process to reach an agreement. ChatEval (Chan
et al., 2023) manually assigns roles to different
agents, thereby making full use of the differenti-
ated skills and expertise of LLMs, and introduces
three communication strategies to enhance the re-
liability of the multi-agent framework in solving
tasks. Papers on this type of approach fail to cus-
tomize task-specific role assignment mechanisms
based on task characteristics, limiting the ability to
fully leverage the strengths of each agent’s role.
Another approach involves designing special-
ized LLMs for specific tasks, achieving collabo-
ration by presetting fine-grained agent roles and
fully utilizing the distinct characteristics of each
agent. Among these directions, some researchers
encourage the multiple LLMs to cooperate while
assigning each LLM a specific role via prompt
learning (Chen et al., 2024b). Those methods are
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easy to implement and feasible to various kinds of
instructions, including the instructions to execute
reasoning (i.e. CoT (Wei et al., 2022) and GoT
(Besta et al., 2023)) and the instructions to incor-
porate examples via ICL (Li et al., 2024). Since
the roles and behaviors of the intelligent agents
must be predefined, it requires sufficient domain
knowledge and a thorough understanding of the
unique features of the LLMs, leading to limited
scalability. Additionally, with model parameters
fixed, the LLMs cannot learn to deeply adapt to
their assigned roles (tasks) (Du et al., 2023; Chen
et al., 2023). Therefore, some recent works have
begun exploring supervised fine-tuning of LLMs to
enable them to better master the given tasks (Schul-
man et al., 2017; Chen et al., 2024a; Song et al.,
2024; Wang et al., 2023). To achieve collaboration,
these methods integrate the generated responses
into the training trajectory and use reinforcement
learning (RL) techniques to fine-tune the LLMs.
However, current multi-LLM collaboration meth-
ods do not account for role differentiation during
the collaborative tuning process, nor do they design
a framework that leverages the complementary ad-
vantages of each model.

In this paper, we argue that the role assignments
to each LLM are crucial for multiple LLM cooper-
ation (Sumedh, 2024; Tang et al., 2023; Pang et al.,
2024; Li et al., 2023). We note that prompting ap-
proaches and separate fine-tuning approaches result
in LLM’s role being fixed and cannot be dynami-
cally adjusted according to the real status during
learning. We should consider the overall learning
goal and unify the joint learning of all LLMs to en-
able learners to adjust to the role. To avoid manual
setting and better align with task requirements in
the role setting of collaborative tasks, we propose a
Multi-LLM Cooperation (MLC) framework for au-
tomatic role assignment in mathematical reasoning
tasks. Specifically, we developed a MARL-based
training framework for multiple LLMs, enabling
collaborative optimization under a unified optimiza-
tion objective. We then introduced time-sensitive
role encoding for each LLM, combining this encod-
ing with a mixing network to facilitate role differ-
entiation during collaboration. Finally, to prevent
role convergence, we implemented a role differen-
tiation module that models the state of each LLM,
capturing the unique characteristics of each. This
approach enhances behavioral differentiation while
ensuring that each LLM contributes positively to
the overall environment.

The experiments show our method enhances
the effectiveness of LLM cooperation and obtains
some strong baselines in 7 datasets. Our contribu-
tions are as follows:

* We propose a Multi-LLM Cooperation (MLC)
framework with role differentiation, enabling
cooperation between LLMs through reinforce-
ment learning.

* We introduce the role differentiation mecha-
nism and fine-tune large models with a global
optimization objective, promoting multiple
LLM to achieve a more efficient division of la-
bor and cooperative relationships at the model
parameter level.

* The experiments demonstrate the proposed
method’s effectiveness and scalability across
seven standard datasets that encompass multi-
ple ranges of mathematical reasoning tasks.

2 Related work

2.1 Cooperation on Multiple LLMs

To surpass the ability of the single model, re-
searchers explore methods to leverage the mul-
tiple large language models (LLMs) to collabo-
rate to solve challenging tasks. Such studies have
conducted various explorations into how multiple
LLMs can engage in debates or information ex-
changes. The Multi-Agent Debate (MAD) frame-
work (Liang et al., 2023) is proposed to address
the Degeneration-of-Thought (DoT) problem. In
Multi-Agent (Debate), multiple debaters engage in
sequential debate, with a judge making the final
decision. Du et al. (Du et al., 2023) achieve multi-
angle analysis of problems through debates and
information sharing among models. Building upon
this, ChatEval (Chan et al., 2023) and ReConcile
(Chen et al., 2023) have improved the information
exchange strategies within the multi-agent debate
framework. The above work does not involve re-
training, it primarily explores, rather than improves,
the problem-solving ability of LLM itself.
Furthermore, some recent works have started to
explore the simultaneous adjustment of the supervi-
sion function across multiple LLMs to enable them
to better master a given task (Schulman et al., 2017;
Chen et al., 2024a; Song et al., 2024; Wang et al.,
2023). Chen et al. (Chen et al., 2024a) proposed
an Action-based Contrastive Self-Training (ACT)
method, which is an online preference optimization



algorithm based on Direct Preference Optimization
(DPO). Song et al. (Song et al., 2024) introduced an
Exploration-based Trajectory Optimization (ETO)
method, which utilizes LLMs to collect data and
update their strategies using contrastive learning
methods like DPO. LTC introduced a novel learn-
ing method called Learning through Communica-
tion (LTC), which utilizes the agent’s message his-
tory as a training dataset to fine-tune large language
models. However, they do not consider role differ-
entiation during the collaborative tuning process,
limiting the potential for the models to complement
each other effectively.

2.2 Role Differentiation in LLMs’
Cooperation

Regarding cooperation among multi-LL.M, some
research endeavors to enhance performance by as-
signing distinct roles to LLLM agents, and leverag-
ing and integrating the unique characteristics of
different agents. One type of approach utilizes a
general role assignment mechanism. MedAgent
(Tang et al., 2023) utilizes LLM-based agents to
take on roles in the medical domain and engage
in multi-round collaborative discussions. MAD
proposed a multi-agent debate (MAD) framework,
where multiple debaters debate in sequence, and
a judge makes the final decision. The concept of
Al feedback (Fu et al., 2023) involves two LLM
agents engaging in a bargaining game, assuming
the roles of seller and buyer. A third LLM, acting
as an Al critic, provides feedback to facilitate the
negotiation process to reach an agreement. Chat-
Eval (Chan et al., 2023) manually assigns roles to
different agents and encourages consistency among
agents. However, The simplicity of the role design,
typically limited to only two or three categories, is
relatively general and constrains the full utilization
of each agent’s strengths.

Another category of approaches is to assign del-
icately designed roles to different LLMs. Gen-
erative Agents (Park et al., 2023) build a sand-
box environment with 25 agents, each assigned
different roles, such as artists and authors. Chat-
Dev (Qian et al., 2023) is a virtual chat-powered
software development company that established a
waterfall model. It assigns specific roles to each
agent in a role-playing process. In the software
development task, the skills of each agent and
their interactions must be precisely defined. Critic
(Gou et al., 2023) works by mimicking the pro-
cess of humans utilizing external tools to modify

answers. LLM As DBA (Zhou et al., 2023) intro-
duces D-Bot, a LLM-based database administrator.
It leverages collaborative diagnosis among multi-
ple LLMs, each addressing specific sub-domain
issues. MetaGPT (Hong et al., 2023) leverages a
pipeline paradigm to assign different roles to differ-
ent agents, effectively decomposing complex tasks
into subtasks. These approaches pre-define the col-
laboration mode based on the characteristics of the
target task, which results in limited scalability. To
address this and avoid manual role assignment, this
paper proposes a method for automatic role assign-
ment. By jointly training multiple language models,
the models can autonomously determine their roles
in the collaborative task, based on their individual
characteristics and expertise.

3 Method

3.1 Overview

Our task is to use multiple LLMs to collaboratively
solve a given question through debate, and the total
number of LLMs is V.

Step 1: The question is input to each LLM. In the
first round, each LLM generates a response based
on the question and the corresponding prompt.
Step 2: In the next round, each LLM updates its
answer by integrating the responses from all other
LLMs and the role prompts.

Step 3: This process continues iteratively, with
each LLM refining its answer based on the evolving
dialogue and prompts in each round. The debate
continues until round M.

We introduce a Multi-LLM Cooperation (MLC)
framework in Figure 1, which incorporates multi-
agent reinforcement learning (MARL) into multi-
LLM cooperation, conducts the collaboration, and
trains between multiple LLMs to promote role
differentiation to enable adaptive shared learning
among LLMs. Each LLM is treated as an agent
and multiple LLMs collaborate as multi-agent co-
operation, the responses generated by LLMs serve
as actions, multi-round debates as environments.
To encourage different LLMs to make different
contributions to the collaboration, we add a role
differentiation module and a latent variable loss to
assist training. We will introduce the design of each
single LLLM in subsection 3.2, the mixing mecha-
nism of multiple LLMs in subsection 3.3, and the
training algorithm of whole systems in subsection
3.4. The details of the debate process are shown in
Figure 2.
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Figure 1: Components of the MLC. The blue dashed box represents the Role-aware Single LLM. The green dashed
box represents the Multiple LLMs Mixing Module. The red dashed box represents the Role Differentiation Module.

3.2 Role-aware Single LLM
3.2.1 Definition under RL Framework

For a certain LLM ¢ at round ¢, we define the follow-
ing notations under the RL framework and present
an example in Figure 2:

Action a!. a! stands for multiple utterances from
LLM i, where the utterances at round ¢ of LLM 4
is noted as u’’.
Observation o!. of consists of the utterances
from all LLMs at the previous round, where
of = {ul,u? ... u!"t}. Each u! includes all
the utterances of LLLM at round ¢, which is u! =
{ut ul?, .. utNY,

State s'. s’ is shared among all the LLMs and
includes the given question (), the prompt P for
LLMs, and all the chatting histories, which is for-
mulated as s' = {Q, P, {u',u?, ... ut}}.

Policy ;. The policy 7; dictates action that the
LLM ¢ generates given the state.

Reward r. The reward is determined by the similar-
ity between the generated response and the correct
answer. Specifically, cosine similarity is used to
quantify this similarity, producing a score within
the interval [-1,1]. A higher similarity indicates a
closer match to the correct answer, thus warranting
a higher reward.

3.2.2 Role-aware Policy Framework

The policy framework of a single LLM consists
of the LLM’s policy and the role-aware network
RNN. It allows each LLM to generate responses
that are tailored to its specific role, thereby facili-
tating nuanced interactions in a multi-LLM setting.
To assign unique roles to each LLM, we first use
prompts to stimulate the properties of the LLM and
fine-tune the LLM policy itself. Then, the role-
aware policy network RNN takes the prompt as

Question Q: Jessica had 8 quarters in her bank . Her sister borrowed 3 of her quarters . How
‘many quarters does Jessica have now ?

Round 1

‘ State s (Observation 0): Can you solve the following math problem? {Question} Explain your

reasoning. Your final answer should be a single numerical number, in the form \\boxed{{answer}},
at the end of your response.

LM3’ sAction a: Jessica
started with $8S quarters and
lost $38. So she has
$\boxed {8} S quarters
left.\n\nFinal Answer: The

Jessica |1 LLM2' sActiona: Jessica
started with $8$ quarters and started with $8$ quarters and
then gave away $3. So she has | | then lost $38, so she has

i
!
i
$iiboxed {5}$ quarters i1 Siiboxed{5}$ quarters
H
!
H
!

left.\n\nFinal Answer: The final left.\n\nFinal Answer: The final |
answer is 3. L hope it is answer is 5. I hope it is i1 final answer is 8. T hope it is

correct.<leot_id> (! correct.<|eot_id[> (~ correct.<|eot_id>
A oA ®.

Round 2

Role Prompt P : ['Using the opinion of other agents as additional advice.', 'Please stick to your
own point of view for debate.", 'Please focus on the answers from other agents as a reference.’|

State s (Observation 0): "These are the solutions to the problem from other agents: {LLMs"
response} Using the solutions from other agents as additional information, can you provide your
answer to the math problem?{Role Prompt P} \n The original math problem is {Question Q} .
Your final answer should be a single numerical number, in the form \\boxed{{answer}}, at the
end of your response." format(role_prompt_model, question)

LLM2" sActiona: LLM3' sActiona:

LLM3' sAction a; LLM3' s Action a; LM2' sAction a;
[/INST] Based onall the § | [INST] Certainly! [/INST] Based on the provided solutions
given answers, including Based on the from other agents, we see that all three
my own initial answer, we } | information provided, | | agents agree that Jessica starts with 8
conclude that Jessica has | I believe the answer quarters and loses/gives away 3 quarters.
Siboxed {5} quarters left § ! to the math problem Therefore, we can conclude that Jessica will
after giving away S35 is $\iboxed {5}S. have 8 - 3 = 5 quarters remaining after
quarters to her giving them away. Hence, our final answer
sister.<eot_id|> is'\n\nS\iboxed {5} $'nFinal Answer: The
final answer is 5. T hope it is
correct.<[eot_id|>

W @ @

Figure 2: The example of our task is to use multiple
LLMs to collaboratively solve a given question through
debate, with a total of 3 LLMs and 2 rounds.

input to differentiate each LLLM from an optimiza-
tion perspective.

For each LLM, the prompts as shown in Figure
2 include: “Use the opinions of other agents as
additional advice”, “Please stick to your point of
view for the debate”, and “Focus on the answers
from other agents as a reference”. These prompts
activate the diverse roles of LLMs, fostering ef-
fective synergy within the group under the current
environment.

The role-aware policy framework for each LLM
is a composite network with role guidance that en-
hances role differentiation. The role-aware policy
network processes prompts and transforms them
into role embeddings {ej, ea, ..., en}. These role
embeddings enhance the distinct characteristics as-
sociated with each role. For the specific time step ¢



for LLM 17, which represents the rounds of dialogue.
Specifically, the role embedding information of
multiple LLMs and the state space information of
the corresponding current time step are input into
the role perception network in the corresponding
LLM. To model the time sequence of continuous
actions of LLLM, we use RNN as the network for
generating action space information:

a = RNN(s', m;(e;)) (1)

at time step ¢, a; represents the action space infor-
mation of LLM 14, while s; denotes its state space
information. The role embedding r; encodes the
role-specific characteristics of LLM ¢. Each LLM
has a unique, non-shared RNN, and 7; represents
the policy function within its role perception net-
work. The role embedding r; influences the policy
m;, shaping the decision-making process. The re-
ward is computed by measuring the similarity be-
tween the generated action and the correct answer
text, providing feedback to refine the LLM’s policy
and improve alignment with expected outcomes.

In this way, each LLM adaptively learns how to
generate optimal actions that align with its desig-
nated role and the evolving state within the multi-
agent environment. Every role-aware policy net-
work fine-tunes the corresponding LLM to perform
effectively within the constraints of their desig-
nated role, ensuring that each LLM operates with a
specialized focus.

3.3 LLMs’ Cooperation with Role
Differentiation

Our goal is to maintain the uniqueness of a single
LLM in cooperation while ensuring the effective
coordination of multiple LLMs. After fine-tuning
the role-aware policy of a single LLM, the LLM
group is processed collaboratively. The collabora-
tion consists of a multiple LLMs mixing module
and a role differentiation module. The multiple
LLMs mixing module ensures team consistency
across different roles, while the role differentia-
tion module enhances behavioral diversity among
LLMs and operates independently of other mod-
ules.

3.3.1 Multiple LLMs Mixing Module

To facilitate effective cooperation among LLMs,
our method employs a mixing network to integrate
single role-aware network of each LLM. Mixing
network also ensures consistency between the in-
dividual LLMs and the overall group.Specifically,

the mixing network takes the individual Q-values
{Q1,Q2,...,Qn} from each LLM as input and
outputs a global Q-value Q. This network is im-
plemented by fully connected layers, which include
a set of hypernetworks, generating the weights and
biases for the mixing network, conditioning it on
the global state s; of LLM <. These hypernetworks
ensure that each LLM’s Q-value (); is proportional
to the global Q-value QQyo, thereby constraining the
relationship between the group’s Qi and each Q);
as % > 0.

3.3.2 Role Differentiation Module

To strengthen the respective expertise of each LLM,
we introduce a role differentiation module for MLC.
It constructs a latent variable by sampling the obser-
vations of each LLM to represent the unique char-
acteristics of each LLM and enhances the diversity
between LLMs by setting optimization objectives
to differentiate them from each other. The final op-
timization objective, together with the optimization
objective of the mixing network, works together in
the entire training process.

Formally, We use a latent variable z; to represent
the feature of LLM ¢ to calculate the similarity
among LLMs. Each z; is sampled from a Gaussian
distribution with those parameters, since using a
hidden variable instead of a fixed vector enhances
the robustness and uncertainty of the reasoning
task. The distribution of these latent variables is
estimated through a network f, which consists of
two fully connected layers. f is LLM-specific, and
it takes with observation o; as the input and latent
variable z; as the output:

-/\/'i(;uzia O-Zi) = f(ol) (2)
zq M(/‘in’ Jzi) (3)

where N; represents Gaussian distribution. The
optimization objective of the role differentiation
module consists of four terms:

N
Lais = Y _ (wwr - MI(2, ;) )
=1

— wiL - KLV || p(zil0:))

+ Y wpr - Dy(i,§) +wy - H(Z) (5)

i#j
The first two ensure the consistency between the
latent variable and the current state of LLMs. The

last is to encourage different LLMS to be as dis-
similar as possible through implicit variables.



Specifically, the first one is the Mutual infor-
mation between the latent variables of the LLM’s
latent variable z; and its action a;, since we expect
a high coexistence between these two. The sec-
ond term is the KL divergence (Kullback-Leibler
divergence) between the latent variable z; and its
conditional probability distribution p(z;|o;), which
is used to reinforce the association between the la-
tent variable distribution and the observation. The
third term is the sum of dissimilarity value Dy (i, j)
between any pair (LLM ¢ and LLM j) in the group
to boost different behaviors among LLMs. To ob-
tain the dissimilarity Dy(7,j), we calculate the
KL divergence and mutual information between
the corresponding latent variables. KL divergence
quantifies the difference between two probability
distributions. Mutual Information between LLMs
is calculated to assess the degree of cooperation,
reflecting their interdependence and influence. So
Dy (4, j) is obtained as follows,

Dy (i, j) = a-KLN; || Nj) = 8- MI(zi, 2;) (6)

where « and 3 are used to balance the two items.
The last term is the entropy loss, which promotes
the diversity among latent variables.

The optimization objectives of the differentiation
module are combined with the overall one in the
next section.

3.4 Model Training

The training of the model framework is divided
into two stages. First, a single LLM is trained, and
then multiple LLM groups are co-trained. The sin-
gle LLM training part is the role-aware network
and the differentiation module, the LLMs’ group
training part is the mixing network. The two stages
in the framework are trained together, and the fi-
nal training goal corresponds to two optimization
targets.

One of the optimization targets is the standard
loss of the role-aware network and the mixing net-
work to promote the collaborative process. The
parameters in the framework are updated using
the gradient caused by the standard TD loss of re-
inforcement learning Our approach incorporates
an optimization objective that enhances behavioral
differentiation among LLLMs. Simultaneously, all
framework parameters are updated using gradients
derived from the standard temporal difference(TD)
loss L7p in reinforcement learning. The mixing
network’s output, when combined with the dissim-
ilarity loss L;s, constitutes the training objective.

This objective is utilized to compute the global
loss for centralized training. In multi-agent system
training, we combine the role differentiation loss
Lg;s with the traditional policy loss Lrp to form
the total loss Lot: Liot = Lais + L1p.-

In this way, the training process not only focuses
on maximizing each agent’s individual () value or
policy utility but also emphasizes the behavioral
differentiation among agents.

4 Experiments

4.1 Experimental Settings
4.1.1 Dataset

To evaluate the effectiveness of our approach, we
conducted experiments using seven mathematical
and reasoning datasets: AddSub (Hosseini et al.,
2014), SingleEQ (Koncel-Kedziorski et al., 2015),
MultiArith (Roy and Roth, 2016), GSM8k (Cobbe
et al., 2021), ASDiv (Miao et al., 2021), SVAMP
(Patel et al., 2021), and MATH (Hendrycks et al.,
2021). Detailed descriptions of these datasets are
provided in the appendix A.1.

4.2 TImplementation Details

4.2.1 Base Models

We use Llama2-7b-chat, Llama2-13b, Llama2-13b-
chat, Llama3-8b, LLlama3-8b-Instruct, Llama3.1-
8b-Instruct, Mistral-7b-Instruct-v0.2 as the base
model, since they are widely used and the latest
open-source LLMs with strong ability in chatting.
Detailed descriptions of these base models are pro-
vided in the appendix A.2.

4.2.2 Training Details

For training processing, each epoch was trained on
NVIDIA 4*A100 for about 2 hours. We trained all
models with Float16 numerical format and temper-
ature was set to 0.35, top-p was set to 0.9, with all
other parameters set to their default values.

4.3 Evaluation Metrics

Each question in the mathematical reasoning
datasets used in this experiment has a standard cor-
rect answer, allowing for a straightforward compar-
ison that enables accurate score calculation across
different models, we report the average accuracy
(ACC) of predictions. We instruct LLMs to present
the final answer in a specific format through a
prompt, simplifying its extraction. Following pre-
vious works (Liang et al., 2023), each dataset ran-
domly selects 100 questions, with the number of



model dataset(%) | GSM | MATH | ASDiv | SVAMP | MultiArith | SingleEQ | AddSub
7b-chat 2464 | 5 55.02 | 42.91 66.53 62.98 55.05

Llama-2

Llama-3

Llama-3.1

Mistral

Table 1: Performance comparison with single LLM method and multiple LLMs debate method. The bold numbers

refer to the best performance among all the models.

correct answers recorded. For multi-model experi-
ments, we use a majority voting approach, where
the most frequent response among generated an-
swers was selected for comparison with the stan-
dard correct answer.

4.4 Competing Methods

To validate the efficacy of our proposed method, we
compared it with the Multi-Agent (Debate) method,
the LLM Agora method, and the MALT method.
The Multi-Agent (Debate) method utilizes multi-
ple LLMs to engage in iterative conversational dis-
cussions and debates. The LLM Agora method
follows the overall framework of the LLM multi-
agent debate and adds additional summarization.
The MALT method employs a sequential multi-
agent setup with heterogeneous LLMs assigned
specialized roles: a generator, verifier, and refine-
ment model iteratively solving problems. Due to
limitations in the number of Llama input tokens,
LLMs were set up to conduct two rounds of debate,
with the historical conversation from the previous
round provided as input. The multiple LLMs per-

formance is shown in Table 1.

4.5 Overall Performance

The MLC uses 6 base models from the Llama
series and a Mistral-7b-Instruct-v0.2, augmented
with a basic Chain-of-Thought (CoT) prompt-
ing technique. The single LLM method perfor-
mance is shown in Table 1, and Our analysis
is in appendix A.4. Compared with the Multi-
Agent (Debate) method, MLC has the largest
performance improvement on the 7 base models:
Llama2-13b improves by 6.31%, Llama2-7b-chat
improves by 4.29%, Llama2-13b-chat improves by
5.14%, Llama3-8b improves by 5.05%, Llama3-8b-
Instruct improves by 5.86%, Llama3.1-8b-Instruct
improves by 4.23% and Mistral-7b-Instruct-v0.2
improves by 18.33%.

In summary, the proposed method (MLC) per-
forms better than the Multi-Agent (Debate) meth-
ods on these data in most cases. The Multi-Agent
(Debate) performance is shown in Table 1. In
49 scenarios consisting of 7 datasets and 7 base
models, our method is much higher in 44 scenar-



odel dataset(%) | ovp | MATH | ASDiv | SVAMP | Multirith | SingleEQ | AddSub
MLC 33 5 56 54 73 66 59
—role prompt 31 9 50.75 52 72 63.28 57.78
—mizing network 25 11 53.74 50 69 65 56
—dissimilarity model 27 5 52.44 46.67 69 64.71 58
Table 2: The ablation studies of our method on Llama2-7b-chat
Method | BaseModel | Round | dataset(%): gsm are given to each LLM based on their size. On
2 33 . .
our | llama2-Tb-chat |- > the GSM dataset, the accuracy is 57.97%, slightly
5 I exceeding the performance of three base models
LLM A 11 2-7b-ch: .
gora | Hamaz-fo-ehat =3 18 that are Llama3-8b Instruction. We also observe

Table 3: Analysis experiment performance at 3 rounds.

ios and has the same performance in 1 scenario.
Through negotiation, debate, and information shar-
ing among models, multi-view analysis of prob-
lems can be achieved, thereby enhancing the accu-
racy and reliability of model reasoning.

4.6 Ablation study

We conducted experiments to assess the contribu-
tions of various modules in the MLC method, using
Llama2-7b-chat as the base model shown in Table 2.
Ablation studies of the other five base models will
be provided in appendix A.3. Although perfor-
mance on the math dataset was suboptimal, it is
likely due to the complexity of math and Llama’s
limitations in instruction execution. Specifically,
we evaluate the effectiveness of the role prompt,
mixing network, and dissimilarity module. Remov-
ing the role prompt caused a slight performance
decrease, while omitting the mixing network led to
a substantial drop, underscoring the importance of
cooperation in multi-agent systems. The dissimilar-
ity module also proved to be critical by enhancing
differentiation among LLM behaviors. Overall,
the MLC significantly improves multi-agent perfor-
mance in collaborative tasks.

4.7 Analysis on Different Size Base Models for
Multiple LLMs

The goal of this experiment is to analyze the im-
pact of using different base model sizes for multiple
large language models (LLMs) collaborative debate
in a multi-agent system. Specifically, we explore
how models with different capacities (Llama2-7b-
chat, Llama2-13b-chat, and Llama3-8b-Instruct),
influence the role differentiation among agents in
collaborative tasks. Different role-specific prompts

that the agents’ outputs are more divergent when
they are given appropriate role prompts, thus val-
idating our hypothesis that different base models
necessitate distinct role-specific prompts. This divi-
sion of labor can potentially optimize the system’s
efficiency and overall task performance.

4.8 Analysis on Different Rounds

We studied the experiment of changing the rounds
setting to 3. The results are shown in Table 3. On
the LLM Agora method, as the number of rounds
increased, the accuracy improved. However, in
our approach, we observed that setting the number
of debate rounds to three resulted in worse perfor-
mance compared to just two rounds. This indicates
that our method can obtain the final answer more
efficiently, which to some extent confirms that fully
utilizing the strengths of each LLM can improve
collaboration efficiency. We also speculate that
more rounds introduce additional complexity in
coordinating the debate, leading to potential com-
munication breakdowns or misalignment between
agents, which can hinder overall performance.

5 Conclusion

In this paper, we propose a Multi-LLM Coop-
eration(MLC) method that incorporates multiple
LLMs with various roles to accomplish a reason-
ing task. We design an RL-based joint learning
method that can adapt to the real role of each LLM
according to the learning status. We equip the joint
learning with latent variables to model each LLM’s
characteristics and also increase the generation di-
versity. Our framework also uses a mixing network
and a hypernetwork to control each LLLM’s contri-
bution and achieve co-training. Experiments indi-
cate our method with lightweight models excels in
baselines over 7 benchmarks.



6 Limitations

For mathematical reasoning datasets, many works
have achieved good results in single-agent problem-
solving using methods such as CoT and self-
reflection. However, this paper does not focus
on fine-tuning single-agent problem-solving tech-
niques but primarily proposes an innovative col-
laboration method. In the future, the effective-
ness of this collaboration framework can be further
validated in a more refined single-agent problem-
solving setting. Additionally, the increased number
of models and reliance on natural language process-
ing can lead to significant computational resource
and time consumption, making the exploration of
communication efficiency in multi-LL.M coopera-
tion a valuable area of study.
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A Appendix

A.1 Datasets

AddSub (Hosseini et al., 2014) focuses on sim-
ple addition and subtraction problems, which help
evaluate the model’s accuracy and efficiency in
basic arithmetic operations. SingleEQ (Koncel-
Kedziorski et al., 2015) provides structured math-
ematical problems centered on the single equa-
tion, aimed at assessing the model’s ability to
solve straightforward yet foundational mathemat-
ical tasks. Both datasets contain relatively simple
problems that do not require multi-step calculations.
MultiArith (Roy and Roth, 2016) addresses multi-
step arithmetic problems, challenging the model’s
capacity to handle more complex tasks. GSM8K
(Cobbe et al., 2021) is designed for tasks that re-
quire multi-step reasoning to solve basic mathe-
matical problems, typically involving 2-8 steps,
thereby effectively evaluating the model’s math-
ematical and logical reasoning abilities. ASDiv
(Miao et al., 2021) offers a collection of diverse
mathematical application problems, including alge-
bra, geometry, and probability, to provide a com-
prehensive assessment of our model. SVAMP (Pa-
tel et al., 2021) is intended to thoroughly evaluate
the performance of automatic math word problem
(MWP) solvers, focusing on aspects such as prob-
lem sensitivity and reasoning reliability. MATH
(Hendrycks et al., 2021) contains 12,500 math com-
petition problems ranging from basic to advanced
levels. It assesses the model’s ability to tackle
complex math problems. Among the datasets, the
MATH dataset poses the most difficult challenges.

A.2 Base Models

The Llama series of large language models rep-
resents a significant advancement in natural lan-
guage processing (NLP) in recent years, gaining
widespread attention for their powerful text gen-
eration, understanding, and reasoning capabilities.
This series includes various versions, ranging from
the basic model to those specifically optimized for
tasks such as dialogue and instruction-following,
providing robust support for different NLP tasks.
We trained and evaluated our approach on the fol-
lowing seven models in the Llama series. Llama?2-
7b-chat, the dialogue (chat) version of Llama-2,
with 7 billion parameters, demonstrates strong text
generation and comprehension capabilities. Com-
pared to the 7B version, Llama2-13b increases the
parameter count to 13 billion, further enhancing the



model dataset GSM(%) | MATH(%) | ASDiv(%) | SVAMP(%) | MultiArith(%) | SingleEQ(%) | AddSub(%)
MLC(Llama2-13b) 32 12 61 49 73.77 68 61.49
—role prompt 30 10 50.4 42 60 66 60
—mizing network 26 7 56 48 65 64 61
—dissimilarity model 29 10 55.77 44 61.05 63 60.2
MLC(Llama2-13b-chat) 45 11 63 62 88 74 68
—role prompt 44.02 10 61 53.87 84 66 64
—mizing network 41 7 55.7 60 76 72.39 61
—dissimilarity model 42 11 45 58 77 68.45 63
MLC(Llama3-8b) 63 19 81 83 93.55 78.2 85
—role prompt 60.81 25 80 76.19 90 78 84
—mixing network 59 26 74.74 81 92.38 77 75.9
—dissimilarity model 58.11 28 78 78.49 91 74 78.57
MLC(Llama3-8b-Instruct) 57 49 76 81 90 73 84
—role prompt 50 40.67 70 77 83 70 75
—mixing network 53 45 66 78 88 68 76
—dissimilarity model 44 30.84 66.92 77.2 85 69 71
MLC(Llama3.1-8b-Instruct) 83.63 54 88 90 97 88 91
—role prompt 79.1 53.1 85 84.43 93.33 77 90.11
—mizing network 80 52 80 85 95 85.36 88.6
—dissimilarity model 78.51 52.76 82 86 94.21 79 90

Table 4: The ablation studies of our method.

model’s representational capacity and generaliza-
tion performance. The larger model size enables it
to excel in handling complex language phenomena
and generating high-quality text. Llama2-13b-chat,
based on Llama2-13b, is specifically optimized for
dialogue scenarios, allowing it to better understand
and respond to dialogue structure and contextual
information in human language. Another variant,
Llama3-8b, introduces 8 billion parameters and
emphasizes flexibility and scalability in its design.
Llama3-8b-Instruct builds on Llama3-8b, incorpo-
rating a human-in-the-loop feedback mechanism to
optimize instruction-following, enabling the model
to more accurately understand and execute human-
given instructions. Finally, the latest member of
the Llama series, LLama3.1-8b-Instruct, maintains
the 8 billion parameter size while introducing ad-
vanced training strategies and datasets to further
enhance the model’s instruction-following capabil-
ities and the quality of the generated text.

A.3 Ablation study

We conducted experiments to assess the contribu-
tions of various modules in the MLC method. Ab-
lation studies of the other five base models will be
provided in Table 4.

A.4 Single LLM Comparison Analysis

To conduct an extensive analysis to gain a deeper
understanding of our MLC, we conduct experi-
ments to analyze the single LLM method on all
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base models and datasets. The single LLM per-
formance is shown in Table 1. In 42 scenarios
consisting of 7 datasets and 7 base models, our
method is much higher in 39 scenarios, tied in 1
scenario, and slightly lower than 0.87% in 1 sce-
nario, the only exception is that the accuracy is
low in one scenario. MLC achieves an average
accuracy of 9.41% higher on these datasets. The
performance of all single LLMs is relatively low
on all datasets. Though they use CoT for reasoning,
they are susceptible to issues such as model bias
and degradation of thinking during the reasoning
process, and they are unable to engage in reflective
learning

A.5 Potential Risks

The multiple LLMs cooperation framework is de-
signed to solve mathematic problems but it has a
possibility to be also applied to other illegal or im-
moral applications, including reasoning the private
information or sensitive information from the pub-
lic reports or news. We should carefully apply our
proposed methods to a limited set of applications.
In the future, we plan to design some rules into our
method to avoid being used in illegal or immoral
applications.

A.6 Discussion on use of license (terms for
use) and distribution of any artifacts

The datasets we used in this paper come from the
public released dataset that allows for the use of



research (with the corresponddng licences). We did
not use any artifacts in this paper.
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