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Abstract001

Multi-agent collaborative tasks exhibit excep-002
tional capabilities in natural language applica-003
tions and generation. By prompting agents to004
assign clear roles, it is possible to facilitate005
cooperation and achieve complementary ca-006
pabilities among LLMs. A common idea is007
to adopt a relatively general role assignment008
mechanism, such as adding a “judge” or a sum-009
mary role, but such methods cannot customize010
the task-specific role assignment mechanism011
according to the characteristics of the task. An-012
other idea is to decompose the task according013
to domain knowledge and task characteristics,014
and then assign appropriate roles to LLMs ac-015
cording to their strengths, such as programmers016
and testers. However, in some given tasks, it’s017
hard to obtain domain knowledge related to018
task characteristics and get the strengths of dif-019
ferent LLMs. To solve the above problems,020
we propose a Multi-LLM Cooperation (MLC)021
method with automatic role assignment capabil-022
ities. The main idea of MCL is to randomly ini-023
tialize role assignments first, and then let role024
embeddings learn together with downstream025
tasks. To record the state changes of multiple026
LLMs when they take turns speaking, the role027
embedding is sequence-aware. At the same028
time, to avoid role convergence, the role differ-029
entiation module of MCL encourages behav-030
ioral differences between LLMs while ensuring031
the consistency of the LLM team, guiding dif-032
ferent LLMs to achieve complementary advan-033
tages from the optimization level. Our experi-034
ments on seven datasets show that our approach035
significantly improves debate collaboration and036
expertise to collaboratively solve multi-agent037
debate tasks1.038

1 Introduction039

Multiple agents collaborate through debate, which040

can give full play to the capabilities of multi-041

ple agents and use collective intelligence to solve042

1Our code is available at https://anonymous.4open.
science/r/MLCan-D102/.

more complex tasks. The multi-agent debate has 043

a wide range of applications in Artificial Intelli- 044

gence (AI), such as coding (Qian et al., 2023), 045

teamwork projects, negotiation (Fu et al., 2023), 046

and mathematics reasoning tasks. Methods for 047

multi-agent debate contain two types of approaches. 048

One type of approach utilizes a general role as- 049

signment mechanism. Some researchers explore 050

the use of multiple LLMs with 7B ∼ 13B (e.g. 051

Llama2-7b) to solve mathematical reasoning aim- 052

ing at handling lightweight scenarios and consider 053

the reasoning paths in various perspectives (Ma 054

et al., 2024). The classic method involves multi- 055

ple LLMs taking turns to generate responses, with 056

each answer updated based on the responses of the 057

other LLMs, such as Multi-agent Debate (Du et al., 058

2023). The MAD framework (Liang et al., 2023) 059

is proposed to be a multi-agent debate framework, 060

with multiple debaters engaging in sequential de- 061

bate, with a judge making the final decision. The 062

concept of AI feedback (Fu et al., 2023) involves 063

two LLM agents debate, a third LLM provides feed- 064

back for improvement, facilitating the negotiation 065

process to reach an agreement. ChatEval (Chan 066

et al., 2023) manually assigns roles to different 067

agents, thereby making full use of the differenti- 068

ated skills and expertise of LLMs, and introduces 069

three communication strategies to enhance the re- 070

liability of the multi-agent framework in solving 071

tasks. Papers on this type of approach fail to cus- 072

tomize task-specific role assignment mechanisms 073

based on task characteristics, limiting the ability to 074

fully leverage the strengths of each agent’s role. 075

Another approach involves designing special- 076

ized LLMs for specific tasks, achieving collabo- 077

ration by presetting fine-grained agent roles and 078

fully utilizing the distinct characteristics of each 079

agent. Among these directions, some researchers 080

encourage the multiple LLMs to cooperate while 081

assigning each LLM a specific role via prompt 082

learning (Chen et al., 2024b). Those methods are 083
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easy to implement and feasible to various kinds of084

instructions, including the instructions to execute085

reasoning (i.e. CoT (Wei et al., 2022) and GoT086

(Besta et al., 2023)) and the instructions to incor-087

porate examples via ICL (Li et al., 2024). Since088

the roles and behaviors of the intelligent agents089

must be predefined, it requires sufficient domain090

knowledge and a thorough understanding of the091

unique features of the LLMs, leading to limited092

scalability. Additionally, with model parameters093

fixed, the LLMs cannot learn to deeply adapt to094

their assigned roles (tasks) (Du et al., 2023; Chen095

et al., 2023). Therefore, some recent works have096

begun exploring supervised fine-tuning of LLMs to097

enable them to better master the given tasks (Schul-098

man et al., 2017; Chen et al., 2024a; Song et al.,099

2024; Wang et al., 2023). To achieve collaboration,100

these methods integrate the generated responses101

into the training trajectory and use reinforcement102

learning (RL) techniques to fine-tune the LLMs.103

However, current multi-LLM collaboration meth-104

ods do not account for role differentiation during105

the collaborative tuning process, nor do they design106

a framework that leverages the complementary ad-107

vantages of each model.108

In this paper, we argue that the role assignments109

to each LLM are crucial for multiple LLM cooper-110

ation (Sumedh, 2024; Tang et al., 2023; Pang et al.,111

2024; Li et al., 2023). We note that prompting ap-112

proaches and separate fine-tuning approaches result113

in LLM’s role being fixed and cannot be dynami-114

cally adjusted according to the real status during115

learning. We should consider the overall learning116

goal and unify the joint learning of all LLMs to en-117

able learners to adjust to the role. To avoid manual118

setting and better align with task requirements in119

the role setting of collaborative tasks, we propose a120

Multi-LLM Cooperation (MLC) framework for au-121

tomatic role assignment in mathematical reasoning122

tasks. Specifically, we developed a MARL-based123

training framework for multiple LLMs, enabling124

collaborative optimization under a unified optimiza-125

tion objective. We then introduced time-sensitive126

role encoding for each LLM, combining this encod-127

ing with a mixing network to facilitate role differ-128

entiation during collaboration. Finally, to prevent129

role convergence, we implemented a role differen-130

tiation module that models the state of each LLM,131

capturing the unique characteristics of each. This132

approach enhances behavioral differentiation while133

ensuring that each LLM contributes positively to134

the overall environment.135

The experiments show our method enhances 136

the effectiveness of LLM cooperation and obtains 137

some strong baselines in 7 datasets. Our contribu- 138

tions are as follows: 139

• We propose a Multi-LLM Cooperation (MLC) 140

framework with role differentiation, enabling 141

cooperation between LLMs through reinforce- 142

ment learning. 143

• We introduce the role differentiation mecha- 144

nism and fine-tune large models with a global 145

optimization objective, promoting multiple 146

LLM to achieve a more efficient division of la- 147

bor and cooperative relationships at the model 148

parameter level. 149

• The experiments demonstrate the proposed 150

method’s effectiveness and scalability across 151

seven standard datasets that encompass multi- 152

ple ranges of mathematical reasoning tasks. 153

2 Related work 154

2.1 Cooperation on Multiple LLMs 155

To surpass the ability of the single model, re- 156

searchers explore methods to leverage the mul- 157

tiple large language models (LLMs) to collabo- 158

rate to solve challenging tasks. Such studies have 159

conducted various explorations into how multiple 160

LLMs can engage in debates or information ex- 161

changes. The Multi-Agent Debate (MAD) frame- 162

work (Liang et al., 2023) is proposed to address 163

the Degeneration-of-Thought (DoT) problem. In 164

Multi-Agent (Debate), multiple debaters engage in 165

sequential debate, with a judge making the final 166

decision. Du et al. (Du et al., 2023) achieve multi- 167

angle analysis of problems through debates and 168

information sharing among models. Building upon 169

this, ChatEval (Chan et al., 2023) and ReConcile 170

(Chen et al., 2023) have improved the information 171

exchange strategies within the multi-agent debate 172

framework. The above work does not involve re- 173

training, it primarily explores, rather than improves, 174

the problem-solving ability of LLM itself. 175

Furthermore, some recent works have started to 176

explore the simultaneous adjustment of the supervi- 177

sion function across multiple LLMs to enable them 178

to better master a given task (Schulman et al., 2017; 179

Chen et al., 2024a; Song et al., 2024; Wang et al., 180

2023). Chen et al. (Chen et al., 2024a) proposed 181

an Action-based Contrastive Self-Training (ACT) 182

method, which is an online preference optimization 183
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algorithm based on Direct Preference Optimization184

(DPO). Song et al. (Song et al., 2024) introduced an185

Exploration-based Trajectory Optimization (ETO)186

method, which utilizes LLMs to collect data and187

update their strategies using contrastive learning188

methods like DPO. LTC introduced a novel learn-189

ing method called Learning through Communica-190

tion (LTC), which utilizes the agent’s message his-191

tory as a training dataset to fine-tune large language192

models. However, they do not consider role differ-193

entiation during the collaborative tuning process,194

limiting the potential for the models to complement195

each other effectively.196

2.2 Role Differentiation in LLMs’197

Cooperation198

Regarding cooperation among multi-LLM, some199

research endeavors to enhance performance by as-200

signing distinct roles to LLM agents, and leverag-201

ing and integrating the unique characteristics of202

different agents. One type of approach utilizes a203

general role assignment mechanism. MedAgent204

(Tang et al., 2023) utilizes LLM-based agents to205

take on roles in the medical domain and engage206

in multi-round collaborative discussions. MAD207

proposed a multi-agent debate (MAD) framework,208

where multiple debaters debate in sequence, and209

a judge makes the final decision. The concept of210

AI feedback (Fu et al., 2023) involves two LLM211

agents engaging in a bargaining game, assuming212

the roles of seller and buyer. A third LLM, acting213

as an AI critic, provides feedback to facilitate the214

negotiation process to reach an agreement. Chat-215

Eval (Chan et al., 2023) manually assigns roles to216

different agents and encourages consistency among217

agents. However, The simplicity of the role design,218

typically limited to only two or three categories, is219

relatively general and constrains the full utilization220

of each agent’s strengths.221

Another category of approaches is to assign del-222

icately designed roles to different LLMs. Gen-223

erative Agents (Park et al., 2023) build a sand-224

box environment with 25 agents, each assigned225

different roles, such as artists and authors. Chat-226

Dev (Qian et al., 2023) is a virtual chat-powered227

software development company that established a228

waterfall model. It assigns specific roles to each229

agent in a role-playing process. In the software230

development task, the skills of each agent and231

their interactions must be precisely defined. Critic232

(Gou et al., 2023) works by mimicking the pro-233

cess of humans utilizing external tools to modify234

answers. LLM As DBA (Zhou et al., 2023) intro- 235

duces D-Bot, a LLM-based database administrator. 236

It leverages collaborative diagnosis among multi- 237

ple LLMs, each addressing specific sub-domain 238

issues. MetaGPT (Hong et al., 2023) leverages a 239

pipeline paradigm to assign different roles to differ- 240

ent agents, effectively decomposing complex tasks 241

into subtasks. These approaches pre-define the col- 242

laboration mode based on the characteristics of the 243

target task, which results in limited scalability. To 244

address this and avoid manual role assignment, this 245

paper proposes a method for automatic role assign- 246

ment. By jointly training multiple language models, 247

the models can autonomously determine their roles 248

in the collaborative task, based on their individual 249

characteristics and expertise. 250

3 Method 251

3.1 Overview 252

Our task is to use multiple LLMs to collaboratively 253

solve a given question through debate, and the total 254

number of LLMs is N . 255

Step 1: The question is input to each LLM. In the 256

first round, each LLM generates a response based 257

on the question and the corresponding prompt. 258

Step 2: In the next round, each LLM updates its 259

answer by integrating the responses from all other 260

LLMs and the role prompts. 261

Step 3: This process continues iteratively, with 262

each LLM refining its answer based on the evolving 263

dialogue and prompts in each round. The debate 264

continues until round M . 265

We introduce a Multi-LLM Cooperation (MLC) 266

framework in Figure 1, which incorporates multi- 267

agent reinforcement learning (MARL) into multi- 268

LLM cooperation, conducts the collaboration, and 269

trains between multiple LLMs to promote role 270

differentiation to enable adaptive shared learning 271

among LLMs. Each LLM is treated as an agent 272

and multiple LLMs collaborate as multi-agent co- 273

operation, the responses generated by LLMs serve 274

as actions, multi-round debates as environments. 275

To encourage different LLMs to make different 276

contributions to the collaboration, we add a role 277

differentiation module and a latent variable loss to 278

assist training. We will introduce the design of each 279

single LLM in subsection 3.2, the mixing mecha- 280

nism of multiple LLMs in subsection 3.3, and the 281

training algorithm of whole systems in subsection 282

3.4. The details of the debate process are shown in 283

Figure 2. 284
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Figure 1: Components of the MLC. The blue dashed box represents the Role-aware Single LLM. The green dashed
box represents the Multiple LLMs Mixing Module. The red dashed box represents the Role Differentiation Module.

3.2 Role-aware Single LLM285

3.2.1 Definition under RL Framework286

For a certain LLM i at round t, we define the follow-287

ing notations under the RL framework and present288

an example in Figure 2:289

Action ati. ati stands for multiple utterances from290

LLM i, where the utterances at round t of LLM i291

is noted as uti.292

Observation oti. oti consists of the utterances293

from all LLMs at the previous round, where294

oti = {u1, u2, . . . , ut−1}. Each ut includes all295

the utterances of LLM at round t, which is ut =296

{ut1, ut2, . . . , utN}.297

State st. st is shared among all the LLMs and298

includes the given question Q, the prompt P for299

LLMs, and all the chatting histories, which is for-300

mulated as st = {Q,P, {u1, u2, . . . , ut}}.301

Policy πi. The policy πi dictates action that the302

LLM i generates given the state.303

Reward r. The reward is determined by the similar-304

ity between the generated response and the correct305

answer. Specifically, cosine similarity is used to306

quantify this similarity, producing a score within307

the interval [−1,1]. A higher similarity indicates a308

closer match to the correct answer, thus warranting309

a higher reward.310

3.2.2 Role-aware Policy Framework311

The policy framework of a single LLM consists312

of the LLM’s policy and the role-aware network313

RNN. It allows each LLM to generate responses314

that are tailored to its specific role, thereby facili-315

tating nuanced interactions in a multi-LLM setting.316

To assign unique roles to each LLM, we first use317

prompts to stimulate the properties of the LLM and318

fine-tune the LLM policy itself. Then, the role-319

aware policy network RNN takes the prompt as320

Figure 2: The example of our task is to use multiple
LLMs to collaboratively solve a given question through
debate, with a total of 3 LLMs and 2 rounds.

input to differentiate each LLM from an optimiza- 321

tion perspective. 322

For each LLM, the prompts as shown in Figure 323

2 include: “Use the opinions of other agents as 324

additional advice”, “Please stick to your point of 325

view for the debate”, and “Focus on the answers 326

from other agents as a reference”. These prompts 327

activate the diverse roles of LLMs, fostering ef- 328

fective synergy within the group under the current 329

environment. 330

The role-aware policy framework for each LLM 331

is a composite network with role guidance that en- 332

hances role differentiation. The role-aware policy 333

network processes prompts and transforms them 334

into role embeddings {e1, e2, . . . , eN}. These role 335

embeddings enhance the distinct characteristics as- 336

sociated with each role. For the specific time step t 337
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for LLM i, which represents the rounds of dialogue.338

Specifically, the role embedding information of339

multiple LLMs and the state space information of340

the corresponding current time step are input into341

the role perception network in the corresponding342

LLM. To model the time sequence of continuous343

actions of LLM, we use RNN as the network for344

generating action space information:345

ati = RNN(st, πi(ei)) (1)346

at time step i, ai represents the action space infor-347

mation of LLM i, while si denotes its state space348

information. The role embedding ri encodes the349

role-specific characteristics of LLM i. Each LLM350

has a unique, non-shared RNN, and πi represents351

the policy function within its role perception net-352

work. The role embedding ri influences the policy353

πi, shaping the decision-making process. The re-354

ward is computed by measuring the similarity be-355

tween the generated action and the correct answer356

text, providing feedback to refine the LLM’s policy357

and improve alignment with expected outcomes.358

In this way, each LLM adaptively learns how to359

generate optimal actions that align with its desig-360

nated role and the evolving state within the multi-361

agent environment. Every role-aware policy net-362

work fine-tunes the corresponding LLM to perform363

effectively within the constraints of their desig-364

nated role, ensuring that each LLM operates with a365

specialized focus.366

3.3 LLMs’ Cooperation with Role367

Differentiation368

Our goal is to maintain the uniqueness of a single369

LLM in cooperation while ensuring the effective370

coordination of multiple LLMs. After fine-tuning371

the role-aware policy of a single LLM, the LLM372

group is processed collaboratively. The collabora-373

tion consists of a multiple LLMs mixing module374

and a role differentiation module. The multiple375

LLMs mixing module ensures team consistency376

across different roles, while the role differentia-377

tion module enhances behavioral diversity among378

LLMs and operates independently of other mod-379

ules.380

3.3.1 Multiple LLMs Mixing Module381

To facilitate effective cooperation among LLMs,382

our method employs a mixing network to integrate383

single role-aware network of each LLM. Mixing384

network also ensures consistency between the in-385

dividual LLMs and the overall group.Specifically,386

the mixing network takes the individual Q-values 387

{Q1, Q2, . . . , QN} from each LLM as input and 388

outputs a global Q-value Qtot. This network is im- 389

plemented by fully connected layers, which include 390

a set of hypernetworks, generating the weights and 391

biases for the mixing network, conditioning it on 392

the global state si of LLM i. These hypernetworks 393

ensure that each LLM’s Q-value Qi is proportional 394

to the global Q-value Qtot, thereby constraining the 395

relationship between the group’s Qtot and each Qi 396

as ∂Qtot
∂Qi

≥ 0. 397

3.3.2 Role Differentiation Module 398

To strengthen the respective expertise of each LLM, 399

we introduce a role differentiation module for MLC. 400

It constructs a latent variable by sampling the obser- 401

vations of each LLM to represent the unique char- 402

acteristics of each LLM and enhances the diversity 403

between LLMs by setting optimization objectives 404

to differentiate them from each other. The final op- 405

timization objective, together with the optimization 406

objective of the mixing network, works together in 407

the entire training process. 408

Formally, We use a latent variable zi to represent 409

the feature of LLM i to calculate the similarity 410

among LLMs. Each zi is sampled from a Gaussian 411

distribution with those parameters, since using a 412

hidden variable instead of a fixed vector enhances 413

the robustness and uncertainty of the reasoning 414

task. The distribution of these latent variables is 415

estimated through a network f , which consists of 416

two fully connected layers. f is LLM-specific, and 417

it takes with observation oi as the input and latent 418

variable zi as the output: 419

Ni(µzi , σzi) = f(oi) (2) 420

zi ∼ Ni(µzi , σzi) (3) 421

where Ni represents Gaussian distribution. The 422

optimization objective of the role differentiation 423

module consists of four terms: 424

Ldis =

N∑
i=1

(wMI · MI(zi, ai) (4) 425

− wKL · KL(Ni ∥ p(zi|oi))) 426

+
∑
i ̸=j

wDI ·Dϕ(i, j) + wH ·H(Z) (5) 427

The first two ensure the consistency between the 428

latent variable and the current state of LLMs. The 429

last is to encourage different LLMS to be as dis- 430

similar as possible through implicit variables. 431
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Specifically, the first one is the Mutual infor-432

mation between the latent variables of the LLM’s433

latent variable zi and its action ai, since we expect434

a high coexistence between these two. The sec-435

ond term is the KL divergence (Kullback-Leibler436

divergence) between the latent variable zi and its437

conditional probability distribution p(zi|oi), which438

is used to reinforce the association between the la-439

tent variable distribution and the observation. The440

third term is the sum of dissimilarity value Dϕ(i, j)441

between any pair ( LLM i and LLM j) in the group442

to boost different behaviors among LLMs. To ob-443

tain the dissimilarity Dϕ(i, j), we calculate the444

KL divergence and mutual information between445

the corresponding latent variables. KL divergence446

quantifies the difference between two probability447

distributions. Mutual Information between LLMs448

is calculated to assess the degree of cooperation,449

reflecting their interdependence and influence. So450

Dϕ(i, j) is obtained as follows,451

Dϕ(i, j) = α ·KL(Ni ∥ Nj)− β ·MI(zi, zj) (6)452

where α and β are used to balance the two items.453

The last term is the entropy loss, which promotes454

the diversity among latent variables.455

The optimization objectives of the differentiation456

module are combined with the overall one in the457

next section.458

3.4 Model Training459

The training of the model framework is divided460

into two stages. First, a single LLM is trained, and461

then multiple LLM groups are co-trained. The sin-462

gle LLM training part is the role-aware network463

and the differentiation module, the LLMs’ group464

training part is the mixing network. The two stages465

in the framework are trained together, and the fi-466

nal training goal corresponds to two optimization467

targets.468

One of the optimization targets is the standard469

loss of the role-aware network and the mixing net-470

work to promote the collaborative process. The471

parameters in the framework are updated using472

the gradient caused by the standard TD loss of re-473

inforcement learning Our approach incorporates474

an optimization objective that enhances behavioral475

differentiation among LLMs. Simultaneously, all476

framework parameters are updated using gradients477

derived from the standard temporal difference(TD)478

loss LTD in reinforcement learning. The mixing479

network’s output, when combined with the dissim-480

ilarity loss Ldis, constitutes the training objective.481

This objective is utilized to compute the global 482

loss for centralized training. In multi-agent system 483

training, we combine the role differentiation loss 484

Ldis with the traditional policy loss LTD to form 485

the total loss Ltot:Ltot = Ldis + LTD. 486

In this way, the training process not only focuses 487

on maximizing each agent’s individual Q value or 488

policy utility but also emphasizes the behavioral 489

differentiation among agents. 490

4 Experiments 491

4.1 Experimental Settings 492

4.1.1 Dataset 493

To evaluate the effectiveness of our approach, we 494

conducted experiments using seven mathematical 495

and reasoning datasets: AddSub (Hosseini et al., 496

2014), SingleEQ (Koncel-Kedziorski et al., 2015), 497

MultiArith (Roy and Roth, 2016), GSM8k (Cobbe 498

et al., 2021), ASDiv (Miao et al., 2021), SVAMP 499

(Patel et al., 2021), and MATH (Hendrycks et al., 500

2021). Detailed descriptions of these datasets are 501

provided in the appendix A.1. 502

4.2 Implementation Details 503

4.2.1 Base Models 504

We use Llama2-7b-chat, Llama2-13b, Llama2-13b- 505

chat, Llama3-8b, Llama3-8b-Instruct, Llama3.1- 506

8b-Instruct, Mistral-7b-Instruct-v0.2 as the base 507

model, since they are widely used and the latest 508

open-source LLMs with strong ability in chatting. 509

Detailed descriptions of these base models are pro- 510

vided in the appendix A.2. 511

4.2.2 Training Details 512

For training processing, each epoch was trained on 513

NVIDIA 4*A100 for about 2 hours. We trained all 514

models with Float16 numerical format and temper- 515

ature was set to 0.35, top-p was set to 0.9, with all 516

other parameters set to their default values. 517

4.3 Evaluation Metrics 518

Each question in the mathematical reasoning 519

datasets used in this experiment has a standard cor- 520

rect answer, allowing for a straightforward compar- 521

ison that enables accurate score calculation across 522

different models, we report the average accuracy 523

(ACC) of predictions. We instruct LLMs to present 524

the final answer in a specific format through a 525

prompt, simplifying its extraction. Following pre- 526

vious works (Liang et al., 2023), each dataset ran- 527

domly selects 100 questions, with the number of 528
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model
dataset(%) GSM MATH ASDiv SVAMP MultiArith SingleEQ AddSub

Llama-2

7b-chat 24.64 5 55.02 42.91 66.53 62.98 55.05

LLM Agora 16 4 45.16 34 62 53 41.08

Multi-Agent (Debate) 28 4 48 50 68 64 54

MLC 33 5 56 54 73 66 59

13b 24.3 6.3 45.18 41.6 56.83 58.46 58.99

LLM Agora 27 5 43 37 62.2 58 44

Multi-Agent (Debate) 31 7 49 43.1 69 61 53

MLC 32 12 61 49 73.77 68 61.49

13b-chat 42 10 45 52 75 65.06 60

LLM Agora 16 4 21 31.89 66 54.51 44

Multi-Agent (Debate) 41 10 55 56 79 72 62

MLC 45 11 63 62 88 74 68

Llama-3

8b 57.2 33 67 71 89.91 68 74.44

LLM Agora 36 12 47 56 88.65 40 69

Multi-Agent (Debate) 57 16.6 74 75.8 94 77 72

MLC 63 19 80 83 93.55 78.2 85

8B-Instruct 42 29.10 64 77 82.73 66.93 62

LLM Agora 42 25 58 88 75 60.42 56

Multi-Agent (Debate) 52 27 72 80 89 72 77

MLC 57 49 76 81 90 73 84

Llama-3.1

8B-Instruct 84.5 51.9 71 81 92 76 87

LLM Agora 58 37 44 50.94 73 54 66

Multi-Agent (Debate) 72 50 85 86 95 85 89

MLC 83.63 54 88 90 97 88 91

Mistral

7b-Instruct-v0.2 38 12.2 63.33 59.42 69.6 72 79.85

Multi-Agent (Debate) 50.67 21 63 67 72 79 80

MLC 69 16 69 69 79 75 82

Table 1: Performance comparison with single LLM method and multiple LLMs debate method. The bold numbers
refer to the best performance among all the models.

correct answers recorded. For multi-model experi-529

ments, we use a majority voting approach, where530

the most frequent response among generated an-531

swers was selected for comparison with the stan-532

dard correct answer.533

4.4 Competing Methods534

To validate the efficacy of our proposed method, we535

compared it with the Multi-Agent (Debate) method,536

the LLM Agora method, and the MALT method.537

The Multi-Agent (Debate) method utilizes multi-538

ple LLMs to engage in iterative conversational dis-539

cussions and debates. The LLM Agora method540

follows the overall framework of the LLM multi-541

agent debate and adds additional summarization.542

The MALT method employs a sequential multi-543

agent setup with heterogeneous LLMs assigned544

specialized roles: a generator, verifier, and refine-545

ment model iteratively solving problems. Due to546

limitations in the number of Llama input tokens,547

LLMs were set up to conduct two rounds of debate,548

with the historical conversation from the previous549

round provided as input. The multiple LLMs per-550

formance is shown in Table 1. 551

4.5 Overall Performance 552

The MLC uses 6 base models from the Llama 553

series and a Mistral-7b-Instruct-v0.2, augmented 554

with a basic Chain-of-Thought (CoT) prompt- 555

ing technique. The single LLM method perfor- 556

mance is shown in Table 1, and Our analysis 557

is in appendix A.4. Compared with the Multi- 558

Agent (Debate) method, MLC has the largest 559

performance improvement on the 7 base models: 560

Llama2-13b improves by 6.31%, Llama2-7b-chat 561

improves by 4.29%, Llama2-13b-chat improves by 562

5.14%, Llama3-8b improves by 5.05%, Llama3-8b- 563

Instruct improves by 5.86%, Llama3.1-8b-Instruct 564

improves by 4.23% and Mistral-7b-Instruct-v0.2 565

improves by 18.33%. 566

In summary, the proposed method (MLC) per- 567

forms better than the Multi-Agent (Debate) meth- 568

ods on these data in most cases. The Multi-Agent 569

(Debate) performance is shown in Table 1. In 570

49 scenarios consisting of 7 datasets and 7 base 571

models, our method is much higher in 44 scenar- 572
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model
dataset(%) GSM MATH ASDiv SVAMP MultiArith SingleEQ AddSub

MLC 33 5 56 54 73 66 59
−role prompt 31 9 50.75 52 72 63.28 57.78
−mixing network 25 11 53.74 50 69 65 56
−dissimilarity model 27 5 52.44 46.67 69 64.71 58

Table 2: The ablation studies of our method on Llama2-7b-chat
.

Method Base Model Round dataset(%): gsm

our llama2-7b-chat
2 33

3 26

LLM Agora llama2-7b-chat
2 16

3 18

Table 3: Analysis experiment performance at 3 rounds.

ios and has the same performance in 1 scenario.573

Through negotiation, debate, and information shar-574

ing among models, multi-view analysis of prob-575

lems can be achieved, thereby enhancing the accu-576

racy and reliability of model reasoning.577

4.6 Ablation study578

We conducted experiments to assess the contribu-579

tions of various modules in the MLC method, using580

Llama2-7b-chat as the base model shown in Table 2.581

Ablation studies of the other five base models will582

be provided in appendix A.3. Although perfor-583

mance on the math dataset was suboptimal, it is584

likely due to the complexity of math and Llama’s585

limitations in instruction execution. Specifically,586

we evaluate the effectiveness of the role prompt,587

mixing network, and dissimilarity module. Remov-588

ing the role prompt caused a slight performance589

decrease, while omitting the mixing network led to590

a substantial drop, underscoring the importance of591

cooperation in multi-agent systems. The dissimilar-592

ity module also proved to be critical by enhancing593

differentiation among LLM behaviors. Overall,594

the MLC significantly improves multi-agent perfor-595

mance in collaborative tasks.596

4.7 Analysis on Different Size Base Models for597

Multiple LLMs598

The goal of this experiment is to analyze the im-599

pact of using different base model sizes for multiple600

large language models (LLMs) collaborative debate601

in a multi-agent system. Specifically, we explore602

how models with different capacities (Llama2-7b-603

chat, Llama2-13b-chat, and Llama3-8b-Instruct),604

influence the role differentiation among agents in605

collaborative tasks. Different role-specific prompts606

are given to each LLM based on their size. On 607

the GSM dataset, the accuracy is 57.97%, slightly 608

exceeding the performance of three base models 609

that are Llama3-8b Instruction. We also observe 610

that the agents’ outputs are more divergent when 611

they are given appropriate role prompts, thus val- 612

idating our hypothesis that different base models 613

necessitate distinct role-specific prompts. This divi- 614

sion of labor can potentially optimize the system’s 615

efficiency and overall task performance. 616

4.8 Analysis on Different Rounds 617

We studied the experiment of changing the rounds 618

setting to 3. The results are shown in Table 3. On 619

the LLM Agora method, as the number of rounds 620

increased, the accuracy improved. However, in 621

our approach, we observed that setting the number 622

of debate rounds to three resulted in worse perfor- 623

mance compared to just two rounds. This indicates 624

that our method can obtain the final answer more 625

efficiently, which to some extent confirms that fully 626

utilizing the strengths of each LLM can improve 627

collaboration efficiency. We also speculate that 628

more rounds introduce additional complexity in 629

coordinating the debate, leading to potential com- 630

munication breakdowns or misalignment between 631

agents, which can hinder overall performance. 632

5 Conclusion 633

In this paper, we propose a Multi-LLM Coop- 634

eration(MLC) method that incorporates multiple 635

LLMs with various roles to accomplish a reason- 636

ing task. We design an RL-based joint learning 637

method that can adapt to the real role of each LLM 638

according to the learning status. We equip the joint 639

learning with latent variables to model each LLM’s 640

characteristics and also increase the generation di- 641

versity. Our framework also uses a mixing network 642

and a hypernetwork to control each LLM’s contri- 643

bution and achieve co-training. Experiments indi- 644

cate our method with lightweight models excels in 645

baselines over 7 benchmarks. 646
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6 Limitations647

For mathematical reasoning datasets, many works648

have achieved good results in single-agent problem-649

solving using methods such as CoT and self-650

reflection. However, this paper does not focus651

on fine-tuning single-agent problem-solving tech-652

niques but primarily proposes an innovative col-653

laboration method. In the future, the effective-654

ness of this collaboration framework can be further655

validated in a more refined single-agent problem-656

solving setting. Additionally, the increased number657

of models and reliance on natural language process-658

ing can lead to significant computational resource659

and time consumption, making the exploration of660

communication efficiency in multi-LLM coopera-661

tion a valuable area of study.662
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A Appendix 803

A.1 Datasets 804

AddSub (Hosseini et al., 2014) focuses on sim- 805

ple addition and subtraction problems, which help 806

evaluate the model’s accuracy and efficiency in 807

basic arithmetic operations. SingleEQ (Koncel- 808

Kedziorski et al., 2015) provides structured math- 809

ematical problems centered on the single equa- 810

tion, aimed at assessing the model’s ability to 811

solve straightforward yet foundational mathemat- 812

ical tasks. Both datasets contain relatively simple 813

problems that do not require multi-step calculations. 814

MultiArith (Roy and Roth, 2016) addresses multi- 815

step arithmetic problems, challenging the model’s 816

capacity to handle more complex tasks. GSM8K 817

(Cobbe et al., 2021) is designed for tasks that re- 818

quire multi-step reasoning to solve basic mathe- 819

matical problems, typically involving 2-8 steps, 820

thereby effectively evaluating the model’s math- 821

ematical and logical reasoning abilities. ASDiv 822

(Miao et al., 2021) offers a collection of diverse 823

mathematical application problems, including alge- 824

bra, geometry, and probability, to provide a com- 825

prehensive assessment of our model. SVAMP (Pa- 826

tel et al., 2021) is intended to thoroughly evaluate 827

the performance of automatic math word problem 828

(MWP) solvers, focusing on aspects such as prob- 829

lem sensitivity and reasoning reliability. MATH 830

(Hendrycks et al., 2021) contains 12,500 math com- 831

petition problems ranging from basic to advanced 832

levels. It assesses the model’s ability to tackle 833

complex math problems. Among the datasets, the 834

MATH dataset poses the most difficult challenges. 835

A.2 Base Models 836

The Llama series of large language models rep- 837

resents a significant advancement in natural lan- 838

guage processing (NLP) in recent years, gaining 839

widespread attention for their powerful text gen- 840

eration, understanding, and reasoning capabilities. 841

This series includes various versions, ranging from 842

the basic model to those specifically optimized for 843

tasks such as dialogue and instruction-following, 844

providing robust support for different NLP tasks. 845

We trained and evaluated our approach on the fol- 846

lowing seven models in the Llama series. Llama2- 847

7b-chat, the dialogue (chat) version of Llama-2, 848

with 7 billion parameters, demonstrates strong text 849

generation and comprehension capabilities. Com- 850

pared to the 7B version, Llama2-13b increases the 851

parameter count to 13 billion, further enhancing the 852

10



model
dataset GSM(%) MATH(%) ASDiv(%) SVAMP(%) MultiArith(%) SingleEQ(%) AddSub(%)

MLC(Llama2-13b) 32 12 61 49 73.77 68 61.49
−role prompt 30 10 50.4 42 60 66 60
−mixing network 26 7 56 48 65 64 61
−dissimilarity model 29 10 55.77 44 61.05 63 60.2

MLC(Llama2-13b-chat) 45 11 63 62 88 74 68
−role prompt 44.02 10 61 53.87 84 66 64
−mixing network 41 7 55.7 60 76 72.39 61
−dissimilarity model 42 11 45 58 77 68.45 63

MLC(Llama3-8b) 63 19 81 83 93.55 78.2 85
−role prompt 60.81 25 80 76.19 90 78 84
−mixing network 59 26 74.74 81 92.38 77 75.9
−dissimilarity model 58.11 28 78 78.49 91 74 78.57

MLC(Llama3-8b-Instruct) 57 49 76 81 90 73 84
−role prompt 50 40.67 70 77 83 70 75
−mixing network 53 45 66 78 88 68 76
−dissimilarity model 44 30.84 66.92 77.2 85 69 71

MLC(Llama3.1-8b-Instruct) 83.63 54 88 90 97 88 91
−role prompt 79.1 53.1 85 84.43 93.33 77 90.11
−mixing network 80 52 80 85 95 85.36 88.6
−dissimilarity model 78.51 52.76 82 86 94.21 79 90

Table 4: The ablation studies of our method.
.

model’s representational capacity and generaliza-853

tion performance. The larger model size enables it854

to excel in handling complex language phenomena855

and generating high-quality text. Llama2-13b-chat,856

based on Llama2-13b, is specifically optimized for857

dialogue scenarios, allowing it to better understand858

and respond to dialogue structure and contextual859

information in human language. Another variant,860

Llama3-8b, introduces 8 billion parameters and861

emphasizes flexibility and scalability in its design.862

Llama3-8b-Instruct builds on Llama3-8b, incorpo-863

rating a human-in-the-loop feedback mechanism to864

optimize instruction-following, enabling the model865

to more accurately understand and execute human-866

given instructions. Finally, the latest member of867

the Llama series, LLama3.1-8b-Instruct, maintains868

the 8 billion parameter size while introducing ad-869

vanced training strategies and datasets to further870

enhance the model’s instruction-following capabil-871

ities and the quality of the generated text.872

A.3 Ablation study873

We conducted experiments to assess the contribu-874

tions of various modules in the MLC method. Ab-875

lation studies of the other five base models will be876

provided in Table 4.877

A.4 Single LLM Comparison Analysis878

To conduct an extensive analysis to gain a deeper879

understanding of our MLC, we conduct experi-880

ments to analyze the single LLM method on all881

base models and datasets. The single LLM per- 882

formance is shown in Table 1. In 42 scenarios 883

consisting of 7 datasets and 7 base models, our 884

method is much higher in 39 scenarios, tied in 1 885

scenario, and slightly lower than 0.87% in 1 sce- 886

nario, the only exception is that the accuracy is 887

low in one scenario. MLC achieves an average 888

accuracy of 9.41% higher on these datasets. The 889

performance of all single LLMs is relatively low 890

on all datasets. Though they use CoT for reasoning, 891

they are susceptible to issues such as model bias 892

and degradation of thinking during the reasoning 893

process, and they are unable to engage in reflective 894

learning 895

A.5 Potential Risks 896

The multiple LLMs cooperation framework is de- 897

signed to solve mathematic problems but it has a 898

possibility to be also applied to other illegal or im- 899

moral applications, including reasoning the private 900

information or sensitive information from the pub- 901

lic reports or news. We should carefully apply our 902

proposed methods to a limited set of applications. 903

In the future, we plan to design some rules into our 904

method to avoid being used in illegal or immoral 905

applications. 906

A.6 Discussion on use of license (terms for 907

use) and distribution of any artifacts 908

The datasets we used in this paper come from the 909

public released dataset that allows for the use of 910
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research (with the corresponddng licences). We did911

not use any artifacts in this paper.912
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