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ABSTRACT

Associative memory models are content-addressable memory systems fundamen-
tal to biological intelligence and are notable for their high interpretability. How-
ever, existing models evaluate the quality of retrieval based on proximity, which
cannot guarantee that the retrieved pattern has the strongest association with the
query, failing correctness. We reframe this problem by proposing that a query
is a generative variant of a stored memory pattern, and define a variant distri-
bution to model this subtle context-dependent generative process. Consequently,
correct retrieval should return the memory pattern with the maximum a posteri-
ori probability of being the query’s origin. This perspective reveals that an ideal
similarity measure should approximate the likelihood of each stored pattern gen-
erating the query in accordance with variant distribution, which is impossible for
fixed and pre-defined similarities used by existing associative memories. To this
end, we develop adaptive similarity, a novel mechanism that learns to approximate
this insightful but unknown likelihood from samples drawn from context, aiming
for correct retrieval. We theoretically prove that our proposed adaptive similar-
ity achieves optimal correct retrieval under three canonical and widely applicable
types of variants: noisy, masked, and biased. We integrate this mechanism into
a novel adaptive Hopfield network (A-Hop), and empirical results show that it
achieves state-of-the-art performance across diverse tasks, including memory re-
trieval, tabular classification, image classification, and multiple instance learning.
Our code is publicly available here.

1 INTRODUCTION

Associative memory represents a fundamental paradigm in information storage and retrieval, func-
tioning as a content-addressable memory system that serves as a cornerstone of biological intelli-
gence (Miyashita, 1988; Pearce & Bouton, 2001), particularly in the hippocampus and neocortex
(Wang et al., 2014). Unlike conventional computer memory, which retrieves data based on a spe-
cific address, associative memory retrieves stored patterns by using a partial or noisy variant of the
pattern itself as a cue. This memory paradigm enables robust pattern completion, error correction,
and fault-tolerant information processing, making it a compelling model for both understanding
biological cognition and developing artificial intelligence systems.

The computational modeling of associative memory has evolved dramatically since its inception.
Hopfield (1982) pioneered this field by introducing a recurrent neural network, dubbed Hopfield
network, capable of storing and retrieving patterns through energy minimization. Subsequent work
(Krotov & Hopfield, 2016; Demircigil et al., 2017) extended memory capacity using a steeper energy
function. A pivotal breakthrough came with the establishment of a profound connection between
the modern Hopfield network and the attention mechanism (Vaswani et al., 2017), achieved by
using the softmax(-) function to further separate memories (Ramsauer et al., 2021). This insight not
only unified two previously disparate fields but also inspired further refinements that strengthened
associative memory’s performance from different perspectives (Millidge et al., 2022; Hu et al., 2023;
Wu et al., 2024a), and broadened applications to tasks like clustering (Saha et al., 2023), time series
prediction (Wu et al., 2024b), and more (Krotov et al., 2025).

Despite these significant advances, a critical and unaddressed limitation pervades the literature: the
absence of a rigorous framework for assessing retrieval accuracy. Current evaluations typically rely
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on proximity-based criteria, such as e-retrieval (Ramsauer et al., 2021; Hu et al., 2023; Wu et al.,
2024a; Hu et al., 2024; 2025), which deem retrieval successful if the retrieved pattern is sufficiently
close to a certain stored pattern. However, proximity does not establish correctness; ensuring the
retrieval is a valid memory provides no guarantee that it is the correct one, that is, the one that has the
strongest association with the query. This oversight leads to a universal reliance on fixed, pre-defined
similarity measures (e.g., inner product or Euclidean distance between two memory patterns). Such
one-size-fits-all metrics fail to capture the nuanced, context-dependent association, or similarity,
between the query and the stored memory patterns. For instance, the word click is semantically
similar to fap, phonetically similar to clique, and orthographically to clock — illustrating that an
appropriate notion of similarity is context and task dependent while fixed metrics cannot adapt to
such context, nor can they certify correctness.

Our central premise is that correctness is inherently generative: a query x emerges as a variant of
an unknown stored pattern . So, to properly define and achieve correct retrieval, we should model
the generative process that transforms a stored pattern &, into a query x. To this end, we encapsulate
the context-dependent and application-related subtleness into a probabilistic framework centered
on the concept of variant distribution V(&;...y), a joint distribution over stored patterns &£;...y and
memory variants x, where the likelihood py, (€1, x) captures how probable that we observe &, and it
coincidentally generates x for (€, x) ~ V(&;...). Under this view, a correct retrieval returns the
memory pattern £, maximizing the posterior py, (€x|x), that is, the likelihood of x originates from
&1 when observed x as query. With further decomposition, maximizing py, (€x|x) is equivalent to
maximizing py (x|&), i.e., given &k, how probable would it generates x as its variant. The correct
retrieval is therefore finding the pattern &, that is most likely to produce x by varianting itself. This
perspective yields an insight that optimal correct retrieval can be achieved by forcing the similarity
measure to mimic the behavior of py (x|&x).

However, it is not possible to derive the variant distribution V(x;...5) and the likelihood py (x|&x)
on most occasions. Thus, we need to reconstruct the unknown by mining deeply from what is
observable: the query x, stored patterns &;...y, and samples matching the context that vaguely
describe V. Building on these motivations, we introduce an adaptive similarity framework that learns
to approximate py (x|&y) from samples observed from the variant distribution, without assuming the
variant type is known a priori. Integrating this novel similarity measure into the Hopfield energy
yields an adaptive Hopfield network that strives for correct retrieval by capturing the underlying
variant distribution. Our key contributions are as follows:

* We introduce the variant distribution to model how queries emerge from stored patterns,
and formalize correct retrieval as a robust and meaningful criterion for evaluating the
theoretical accuracy of associative memories.

* We propose adaptive similarity derived from this framework and prove its optimality for
three canonical and widely applicable types of memory variants: noisy, masked, and biased.

* We build a novel adaptive Hopfield network (A-Hop) that incorporates learnable adaptive
similarity, achieving state-of-the-art performance among computational associative mem-
ories on tasks including memory retrieval, tabular classification, image classification, and
multiple instance learning.

2 BACKGROUND

We consider an associative memory that stores N memory patterns denoted by the memory matrix
E = [€1;&; - ;€En] € RPN, where each column vector &; € R? represents a memory pattern.

Given a memory variant (query) x € R?, the goal is to retrieve the stored memory that is most
associated with it. For simplicity, we denote [n] 2 {k € Z | 1 < k < n}, and £ € = means £ is one
of the column vectors of the memory matrix Z. Appendix A.l contains a collection of notations.

2.1 HOPFIELD NETWORKS

Hopfield network is a line of associative memory that retrieves the most relevant stored memory
through a similarity-based matching process. The original Hopfield network (Hopfield, 1982) uses
d binary neurons o € {—1,+1}% to represent the states of the memory system that is limited to



Under review as a conference paper at ICLR 2026

Table 1: Summary of all Hopfield network by components; Hop (Hopfield, 1982), D-Hop (Kro-
tov & Hopfield, 2016), E-Hop (Demircigil et al., 2017), M-Hop (Ramsauer et al., 2021), U-Hop
(Millidge et al., 2022), S-Hop (Hu et al., 2023), K—-Hop (Wu et al., 2024a), and A-Hop (Ours).

Model ‘ sim(&, x) ‘ sep(s) ‘ mod (&) ‘ E(x)

Hop (Original) £Tx s ¢ —ix"=E=E"x

D-Hop (Dense) £Tx sP ¢ —(1T=Tx)kH!

E-Hop (Exponential) £Tx exp(s) I3 —exp(1'Ex)

M-Hop (Modern) &Tx softmax(s) I3 x'x/2 — Ise(E 'x)
U-Hop (Universal) =& — x| arg max(s) ¢ /

S—Hop (Sparse) £Tx sparsemax(s) I3 x'x/2 — U3(BEx)
K-Hop (Kernelized) &Tx a—entmax(s) ' B¢ X @ Px/2 - VL (FEP Px)
A-Hop (Adaptive) w' Uq multiple £or ¢ —lse(s(E,x))

storage of binary values. For retrieving, the model sets the query as the initial state (i.e., o(®) = x),
and updates one or more neuron(s) iteratively through the following dynamics until convergence:

J N
U§t+1) = sgn ZTLJ’O';('” ) where T; ; = ka,i &k,
k=1

j=1
A vectorized retrieval dynamics exists when updating all neurons simultaneously in one iteration:
ot — sgn(E ETO'(t)) .

Years later, Krotov & Hopfield (2016) improves the memory capacity of Hopfield network from
O(d) to O(2%/2) when storing random samples. They adopted higher-order polynomial or expo-
nential function (Demircigil et al., 2017) to distinguish each stored memory to alleviate the fuzzy
memory problem: o+ = sgn(E(ETo®)k) or o+ = sgn(Eexp(E o ®)).

This concept has evolved significantly and was extended to memories with continuous value. Mod-
ern Hopfield networks abstract retrieval as a one-iteration update (Ramsauer et al., 2021), and their
retrieval dynamics 7 (x) can be unified under a three-step procedure (Millidge et al., 2022):

(1) Similarity [s = sim(Z, x)]: The query x is compared against all stored patterns &; ...y using the
similarity function sim(-, -), obtaining a vector of similarity scores s € RY, where s;, = sim (&, x).

(2) Separation [p = sep(s)]: The similarity scores (logits) s are transformed by a separation
function sep(-) into a probability distribution p. The separation function sharpens the scores and
emphasizes patterns with high similarity.

(3) Readout [y = Ep]: The final retrieved pattern y is computed as a weighted combination of
stored memory patterns, using the weights p provided by the separation function.

Combining each step gives the unified retrieval dynamics:
y = T(x) = Esep(sim(E, x)).

Concretely, Ramsauer et al. (2021) proposed using softmax(-) function as the separation function,
which further enlarges the memory capacity and draws a tight connection between associative mem-
ory and attention mechanism, with the retrieval dynamics being 7 (x) = E softmax (ETX). Later,
Hu et al. (2023) proposed sparse Hopfield network substituting softmax(-) with sparsemax(-), for
inducing sparse selection while retaining differentiability. More recently, Wu et al. (2024a) at-
tempted to store memory patterns in a kernel space with greater separation among patterns, giving
rise to adding a new modulation step to the existing three-step unified framework. For clarity, we
use the modulation function mod(+) to describes how memory patterns are stored or pre-trained for
better retrieval and larger capacity. So, it broadens the unified framework to:

y = Esep(sim(mod(E), x)).

The kernelized Hopfield network (Wu et al., 2024a) adopted mod(E) = & ® = for a learnable
matrix & € RP#*¢ _ that projects memory patterns into a kernel space with the retrieval dynamics
being T (x) = Esep((PE) " (®x)) = Esep((® ' ® E) " x). The kernel ® is trained to minimize
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a separation loss defined on =, so that the expected Euclidean distance between any two memory
patterns is maximized. A succeeding work (Hu et al., 2024) uses spherical codes to find the optimal
kernel = that maximizes the capacity of the kernelized Hopfield network.

Furthermore, the energy-based view is a defining feature of Hopfield networks: memory retrieval
can be viewed as descending on a energy landscape (a Lyapunov function) E(-) whose minima
coincide with stored patterns (or their modulated version). Formally, the retrieval dynamics 7 (x)
and the corresponding energy function E(x) are jointly and carefully designed such that each update
monotonically decreases the energy (i.e., F(7 (x)) < F(x)), and successful retrieval occurs when
being sufficiently close to a generalized fixed point near a specific memory pattern &, € Z (i.e.,
|7 (x) —&k|l2 < €). This principled linkage between dynamics and energy ensures convergence and
provides a powerful interpretable model of memory retrieving for Hopfield networks. Connecting
to the previous unified framework, the separation function decides the direction of the retrieval
dynamics 7 (-), and the modulation function reshapes the geometry of the energy landscape E(-),
and we organize all existing Hopfield networks’ components and energy function in Table 1.

However, across existing formulations, the energy and retrieval dynamics are anchored to a fixed,
task-agonistic similarity measure (typically the dot product). Apart from that, the energy and dy-
namics are solely determined by stored memories = that overlook the nature of the subtle, nuanced,
context-specific association between queries and memories required for “correct” retrieval. This
fundamental gap motivates our work: to refine the energy and retrieval dynamics around a learnable,
adaptive similarity measure while preserving the precious interpretability of Hopfield networks.

3 METHODS

In this section, we first establish a rigorous probabilistic framework to define correct retrieval, elim-
inating limitations of conventional proximity-based metrics (Section 3.1). To make this concept
practical, we develop the similarity footprint (Section 3.2), a multi-dimensional descriptor measur-
ing association between queries and memory patterns, and use it to learn an adaptive similarity in-
tegrated into an adaptive Hopfield network that achieves optimal correct retrieval for noisy, masked,
and biased types of variants (Section 3.3).

3.1 VARIANT DISTRIBUTION AND CORRECT RETRIEVAL

Conventional analyses of associative memory (Ramsauer et al., 2021; Hu et al., 2023; Wu et al.,
2024a; Hu et al., 2024) mostly focus on e-retrieval:

Definition 1: e-retrieval (Hu et al., 2023; Wu et al., 2024a; Hu et al., 2025)

Given a query x € R? and the retrieval result y € R? given by the memory system, a memory
pattern £ € E is said to be e-retrieved if ||y — £||2 < e.

While e-retrieval ensures the retrieval result y lies near a certain stored memory pattern &, € =,
it provides no guarantee that & is the most appropriate match for query x. The query x may
have stronger associations with a different pattern £; (j # k), denoting that £; could be the more
appropriate match for x. This identifies that proximity alone is an insufficient proxy for correctness.

To address this limitation, we use a probability distribution to model the generative process of the
query x. We posit that a query x is not an arbitrary vector but a variant of a specific stored mem-
ory pattern £ € E generated by a context-dependent process. We formalize this via the variant
distribution, which models the relation of memory patterns £ € Z and queries x € R? as variants:

Definition 2: Variant distribution

A variant distribution V() is a joint distribution over pair (§,x) € E x R? where £ € E is one
of the stored memory patterns and x € R? is an arbitrary query.

For (§,x) ~ V(E), the probability density function py, (=) (&, x) (or py,(§, x) when unambiguous)
measures the likelihood of observing £ and x at the same time.

Additionally, the posterior py, (&€|x) represents the likelihood that query x originates from memory
pattern x, and the likelihood py,(x|€) models how probable that £ generates x. This leads to a
rigorous definition of the context-dependent correct retrieval:
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Definition 3: Correct retrieval
A query x is said to be correctly retrieved under V(E), if the retrieval result y satisfies that:

argmin {|ly — &'[|2} = argmax {py(¢'[x)} . (1)
£'cE £'cE

In Equation 1, the left-hand side identifies the closest memory pattern to the retrieval result y (given
by the memory system), while the right-hand side is ground truth (the most probable origin of query

x given by variant distribution V(Z)). Thus, intuitively, correct retrieval requires that the closest
memory pattern coincides with ground truth. With further derivation,

arg max{py (£'|x)} = argmax {pv(x|£/) . V(é)} = argmax{py(x|¢') -py(&)}. ()
ge= fes pv(x) fes

This reformulation is necessary as modeling the likelihood py (x|€) is more tractable than directly
estimating the posterior py (€|x). The likelihood py,(x|€) is conditioned on a single, finite, known
memory &, while the posterior py (€|x) requires estimating a complex function that maps the entire
query space R? to a discrete distribution over =. Given that the prior py,(€) is typically uniform or
can be easily estimated from samples, the central challenge of achieving correct retrieval reduces to
accurately modeling py, (x|€), in other words, how probable does x generate £ under V(=)? With
this in hand, it is possible to model three canonical and common variant types rigorously:

Definition 4: Noisy variant
A query x is a noisy variant if it is generated by adding Gaussian noise to a certain memory
pattern £ € Z. Formally, (x — &) ~ N (0, diag(o)) holds for (£, x) ~ Vyoisy(E), where diag(v)
transform vector bv to a diagonal matrix. The likelihood of noisy variant is:

1
27)4/2|diag (o)
Noisy variants have been widely studied (Krotov & Hopfield, 2016; Hu et al., 2023; Wu et al.,,

2024a), and it occurs in scenarios such as sensor noise. Specially, under isotropy o = o1, the
respective likelihood reduces to: py,, (x|€) = (2m0) =%/ 2 exp(—||x — £13 / 20).

7 exp (~ 50— ) Tding(0) M (x-8))

PVrisy (X|€) = (

Definition 5: Masked variant
A masked variant of a memory pattern £ € = is obtained by changing values in each dimension
with probability pmasked to numbers generated by G. The likelihood of masked variant is:

d

d
PVages (X[€) = exp (lnpmked D [ —6(xi - siﬂ) x [ po ()t —00xi=40l,
=1

i=1

Masked variants arise in real-world scenarios such as information loss during transmission, the same
object appearing in different background, and more.

Definition 6: Biased variant
Adding a global bias to memory patterns gives the biased variant. Formally, x — & = d holds for
(&€,%) ~ Vhiased(E) and a constant vector d € R<. The likelihood of biased variant:

1 z=0
0 otherwise -

d
PViasea (X|€) =4 |fi - 25()(1 =& = dz)] ,  where 6(17) = {

Biased variants occur as a systematic difference, such as changes in light conditions or use of filters.

We visualize the conditional probability density function py,(x|€) in Fig. 1, providing intuition akin
to an electron cloud, with a memory pattern £ as the atom nucleus and its variants as orbiting elec-
trons. A direct observation is that py,(x|€) varies significantly across contexts, and may be analyti-
cally intractable. For instance, even though one can visualize the masked + noisy variant (Fig. 1d)
by composing these two operations, deriving its likelihood py (x|€) is analytically cumbersome.
Consequently, although V(E) is a principled tool to link queries with memory patterns, it poses two
challenges for correct retrieval: (1) the underlying variant type is generally unknown a priori; and
(2) the resulting variant distribution V(E) can be too complex to model explicitly.
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(a) noisy (b) masked (c) biased (d) masked + noisy

Figure 1: Visualization of probability density function py,(x|€) for noisy, masked, biased, and noisy
+ masked variants. Darker regions indicate larger py, (x|£), and the central dark point represents &.

3.2 SIMILARITY FOOTPRINT

In the last section, we established correct retrieval as selecting the pattern that maximizes py (x|€).
This suggests that py,(x|€) itself serves as an ideal similarity function for associative memory, as
it guides the memory system to return memory pattern chosen by arg maxgc={py(§|x)} (recall
Equation 2), meeting the requirement of correct retrieval (Definition 3). Because py (x|€) is often
unknown and intractable, we instead mine for richer evidence from observable quantities to mimic
the behavior of py, (x|£). We introduce similarity footprint, which extracts a multi-dimensional de-
scriptor of the relation between query x and memory patterns. The core insight is that different gen-
erative processes leave distinct multi-dimensional signatures between a query and its origin memory
pattern, suggesting replacing the scalar similarity measure with forming a convincing decision from
the rich evidence described by the structured descriptor.

We begin with a base similarity (e.g., dot product & " x or Euclidean distance —||& —x||2), and define
the k-optimal similarity between £ and x:

sim™ (€, x) £ Dg[%ﬁ%\:k {sim(ép,xp)}, where vp £ [Vp,,VD,, ,val]T
Here, vp is a sub-vector of v containing only the elements corresponding to indices in D. Intu-
itively, simy(&,x) quantifies the best agreement between x and & focusing only on their k£ most
similar dimensions. This allows the similarity measure to ignore potentially corrupted dimensions
and delve into the most informative dimensions. Base on this, we then define the similarity footprint
as the vector of these k-optimal similarity sim(® (+,-) across all possible dimensionalities:

ftptSim (6’ X) £ [Slm(d) (55 X)’ Sim(dil) (57 X)7 Ty Sim(l) (57 X)] '

This serves as the rich descriptor of the relation between x and &, providing more evidence for
measuring similarity. However, a naive computation of the footprint requires evaluating all 2¢ — 1
subspaces, which is impractical. Fortunately, for decomposable similarity functions (such as dot
product and Euclidean distance), whose results can be computed by aggregating similarity in each
dimension, the footprint ftpt;, (-, -) can be obtained efficiently in O(d log d) time by sorting. Let g
be the dimension-wise similarity vector, where q; = sim(&;,x;) for ¢ € [d], and let q be the vector
q sorted in ascending order. Then, the similarity footprint calculation is equivalent to:

ftptsim(ga X) = Uq (3)

where U is the upper-right triangle matrix of 144, (e, U; j =1if1 <i < j<d,and U; ; =0
otherwise). This operation literally calculates the cumulative sum of the sorted dimension-wise
similarities, as finding the k-optimal similarity is equivalent to aggregating the k largest dimension-
wise similarities for decomposable base similarity.

3.3 ADAPTIVE SIMILARITY AND ADAPTIVE HOPFIELD NETWORK

The similarity footprint provides a structured, multi-scale descriptor of the association between a
query x and a memory pattern . To leverage these crucial evidences and create a similarity measure
that adapts to the underlying variant distribution, we define a learnable adaptive similarity as a linear
function of the footprint: sgm(&,x) = W' ftpty,, (§,x) = w' Uq, for some learnable weight
vector w € R? and a base similarity sim(-,-). This formulation allows the model to learn the



Under review as a conference paper at ICLR 2026

relative importance of similarity across different subspaces and focus on the informative ones. For
instance, for masked variants, the model might assign higher weights to the last d — m terms in the
footprint, incorporating the uncorrupted information, whereas for noisy variants, it might distribute
weights to larger subspaces for a global view.

To further enhance the model’s expressiveness, we can combine footprints of multiple base similar-
ities and derive the final similarity function s(&, x) and its vectorized form s(§, x):

B
3(£7X) = Zﬂk 'sztptsimk(£7x) and S(E,X) = [5(61,)()7 S(&an)a ) S(€N7X)]T7
k=1
for some learnable scalars ;...5, and B different base similarities. In this work, we use two simple
and common measures as base similarities: the Euclidean distance dis(¢,x) = —||€ — x||3 and dot
product dot(&,x) = £ x. This adaptive similarity can be seamlessly integrated into the modern
unified Hopfield network framework (Ramsauer et al., 2021; Millidge et al., 2022) by incorporat-
ing a separation function sep(-, -), and we name the resulting model as adaptive Hopfield network
(A—Hop). When using softmax(-) as the separation function, the retrieval dynamics of A—Hop is:

y =T (x) = Esep(s(E, x)) = Esoftmax(f; - s4is(E, x) + B2 - Sdot (B, X)) 4)
The parameters w’s and [3’s are optimized using a sample set drawn from the variant distribution.
The learning objective is to minimize the discrepancy between the model’s predicted likelihood
py(x|€) = sep(s(E,x)) and the underlying ground-truth likelihood py (x|£). However, since
py(x|€&;) is unknown, we use 6(&; — &) for i € [N] (a one-hot vector) as an approximation, and
minimize the cross-entropy loss:

N
L(E,V)=Exe~veE) |~ Z 6(&i — &) log py(x[€) )
i=1

Furthermore, A-Hop achieves optimal correct retrieval (Definition 7) for noisy, masked, and biased
variants when weights w’s are decided ideally. Additionally, A-Hop guarantees a decreasing and
bounded energy when the retrieval process is iterative (more than one step). These are formalized in
the following theorems, with detailed proofs provided in Appendix A.2.

Definition 7: Optimal correct retrieval

We say a retrieval dynamics 7 (x) achieves optimal correct retrieval under V(E), if for any
(&,x) ~ V(E) it achieves correct retrieval for query x.

Theorem 1: A-Hop retrieval dynamics
The following retrieval dynamics adopted by A—-Hop achieves optimal correct retrieval for noisy,
masked, and biased variants, with a careful design of s(E, x):

y = T(x) = Esep(s(E, x))

Theorem 2: A-Hop energy landscape

Energy F(x) will be monotonically decreasing and its value could be bounded for isotropic noisy,
and biased variants, if the following energy is used:

E(x) = —lIse (s(B,x))

4 EXPERIMENTS

We assess the effectiveness of A—Hop on tasks including memory retrieval, tabular classification,
image classification, and multiple instance learning, demonstrating that A-Hop achieves state-of-
the-art performance on these tasks. A further ablation study validates our design choice of similarity
footprint. Due to space constraints, full descriptions of baselines, metrics, datasets, and implemen-
tation details are provided in Appendix A.4.

4.1 MEMORY RETRIEVAL

Prior work on Hopfield networks primarily assesses retrieval accuracy (Definition 9) under two set-
tings: (1) masking half of the dimensions (masked variant); and (2) adding Gaussian noise (noisy
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variant). To more comprehensively probe retrieval robustness, we introduce mixed variants param-
eterized by a triplet (dmask, dnoise; dbias) € [0, 1]° that controls the intensity (difficulty) of masking,
noise, and bias, respectively (see Appendix A.4.3 for formal definitions).

We evaluate A-Hop and baselines on 12 mixed-variant types (Fig. 2¢) with 64-dimensional random
memory patterns at scales of 2048 (Fig. 2a) and 4096 (Fig. 2b). We further assess high intensity of
masked, noisy, and biased combined settings on 2048 synthetic vectors and on 2048 samples from
MNIST as memory patterns (Table 2). While baseline models perform well in noisy settings, their
accuracy degrades sharply when faced with more complex variant settings. In contrast, A—Hop’s
adaptive similarity enables it to maintain high retrieval accuracy and low retrieval error across all
tested scenarios. This highlights its robustness and impressive adaptability to align similarity to the
underlying variant distribution through learning.

(a) 2048 patterns (Synthetic) (b) 4096 patterns (Synthetic) (c) plot settings
mask mask o w00 o
A-Hop B ) & 1.0 Y.
> 08 o
(_JK-Hop f. o6 »
M-Hop /[ [ N 04 g
U-Hop e 0.2 2
g @QJ g @QJ (90 S
2 N NI &
/.0_5 A )
Y 0ss O

Figure 2: Retrieval accuracy (1) for different variant settings

Table 2: Retrieval accuracy (1) and error (|) between models. Each cell contains the mean accuracy
or error with standard deviation in a smaller font. Results of the best-performing model are bolded.
Difficulty d means that variant setting (dmask, dnoises dbias) = (d, d, d) is used.

Dataset ‘ Synthetic ‘ MNIST
Difficulty | 0.4 0.5 0.6

0.7

Metrics ‘Accuracy Error ‘Accuracy Error ‘Accuracy Error ‘Accuracy Error

M—-Hop 520402 176+01 | .195+03  .300+01 | .875+01 .013+00 | .661+02 .068+.00
U-Hop 260+04 417402 | .059+01  S554+01 | 540+03 .143+01 | 176+02  347+o01
K-Hop A487+03  295+.02 | 17T7+02  764+02 | 764+02 .064+01 | 526+02 .164+.01
Ko-Hop' | .521+02 .176+01 | .195+02 .298+01 | .878+01 .013+00 | .660+01 .068=+o01
A-Hop 724+02  106+01 | 36002 .227+01 | 939+01  .005+00 | .849+01 .015+.01

4.2 TABULAR CLASSIFICATION

Table 3: Predictive performance (1) between models on tabular data. Each cell contains mean accu-
racy or AUC-ROC score with standard deviation in a smaller font. Results of the best-performing
associative memory are bolded, and the best other model is underlined.

Model ‘ Adult Bank Vaccine Purchase Heart
M-Hop .8080+.001 .9085+.003 L7975+ 001 .8822+ 001 .6325+.002
Ko—-Hop 8172+.003 9092+ 002 7971+.003 .8825+.002 .6473+ 002
A-Hop 8634+ 002 9139+ 002 8042+ 002 9007+ .001 7315+ 002
Extra Trees .8595+ 004 .9098+.003 7932+ 002 .8916+.002 7175+.003
Random Forest .8592+ 002 .9132+.003 7918+.003 9002+ 001 7254 + 002
AdaBoost .8597 +.003 9094 + 001 .8011+.002 .8865+.001 7294 + 001
XGBoost .8640+.002 9152+ .003 .8034+ 002 9032+ .003 .7370+.003

'Ke-Hop is K-Hop whose kernel is optmized by Equation 5, rather than the original separation loss.
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We integrate Hopfield networks into a memory-based classifier (see Appendix A.4.4), and evaluated
predictive performance of A-Hop and baselines on five tabular datasets. Table 3 shows that A-Hop
consistently outperforms all other associative memory-based classifiers, and demonstrates an advan-
tage over Extra Trees (Geurts et al., 2006), Random Forest (Breiman, 2001), and AdaBoost (Freund
& Schapire, 1997). However, XGBoost (Chen & Guestrin, 2016) has a slight edge over A-Hop on
4 out of 5 datasets, dominating this task.

Notably, Adult and Heart appear harder than the other datasets: A-Hop yields a 5-10% absolute
gain over memory-based baselines on these two, compared with less than 2% on others. This pat-
tern suggests that these datasets exhibit subtler, heterogeneous variant distributions (e.g., mixed fea-
ture types, sparsity, complexity) where adaptive similarity better aligns the memory’s neighborhood
structure with the data geometry. This validates the potential of adaptivity in this domain.

4.3 IMAGE CLASSIFICATION AND MULTIPLE INSTANCE LEARNING

Table 4: Classification accuracy (1) of each model on images, and AUC-ROC score (1) of each
model in multiple instance learning task. Each cell contains accuracy or AUC-ROC score with
standard deviation in a smaller font. Results of the best-performing associative memory are bolded.

Image Classification ‘ Multiple Instance Learning

Tiger Fox Elephant UCSB

Dataset | CIFAR10 CIFAR100 '™ ‘Dataset
ImageNet

M-Hop | .5123+003 .2464+003 .1095+.002| M-Hop | .8924+.005 .6327+.013 .9344+009 .8815+.022
K-Hop | .5489+.002 .2877+002 .1164+002| S-Hop | .8923+.006 .6433+015 .9365+002 .8794+.024
A-Hop | .5637+.003 .2904+002 .1213+002| A-Hop | .9030+.007 .6753+.013 .9451+.004 .8935+.022

Following established protocols, we evaluate A-Hop on image classification (Wu et al., 2024a)
and multiple instance learning (Ramsauer et al., 2021; Hu et al., 2023) by integrating it as a
layer within larger and more complicated neural network architectures (i.e., HopfieldLayer,
HopfieldPooling). As shown in Table 4, A-Hop consistently achieves the highest scores
among all Hopfield variants in both task categories. This demonstrates that the benefits of adaptive
similarity extend to complex, high-dimensional data and can enhance the performance of sophisti-
cated models like the Image Transformer. While the performance gains are more modest compared
to the memory retrieval task, this is expected, as the HopfieldLayer is one component within a
much larger model. Nevertheless, the consistent improvement confirms that optimizing the similar-
ity measure remains a valuable factor for enhancing performance in complex deep learning systems.

4.4 ABLATION STUDY

Due to page limit, the ablation study is moved to Appendix A.4.6.

5 CONCLUSION

We reframe associative memory retrieval as a problem of correct retrieval under a task- and context-
dependent variant distribution, motivating a similarity measure that approximates the likelihood that
a stored pattern generated the query. Building on this principle, we propose adaptive similarity,
prove its optimality for three canonical variant families (noisy, masked, biased), and instantiate
it in a new adaptive Hopfield network, A-Hop. This perspective clarifies why fixed, pre-defined
similarities are inherently limited: they cannot align to the prevailing variant distribution and thus
struggle to guarantee correctness, whereas adaptivity enables the model to capture the underlying
variant distribution through samples, shifting towards correctness.

Empirically, A-Hop establishes state-of-the-art performance among Hopfield networks across mem-
ory retrieval, tabular classification, image classification, and multiple instance learning. The gains
are most pronounced under mixed variant settings where adaptive similarity maintains impressively
high retrieval accuracy and low error. In downstream tasks, A-Hop consistently improves over
prior Hopfield variants. Ultimately, adaptive similarity is a key principle for advancing associative
memories, paving the way for more powerful and resilient memory systems.
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experiments were conducted that could raise privacy or security concerns. We are committed to
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7 REPRODUCIBILITY STATEMENT

Code We provide code to help understand this work, and is publicly available at: https://
anonymous.4open.science/r/Adaptive-Hopfield-Network—-C137/.

Datasets All datasets are either included in the repo, or a description for how to download and
preprocess the dataset is provided. All datasets are public and raise no ethical concerns.

Hyperparameters All parameters of our proposed framework are in Appendix A.4.
Environment Details of our experimental setups are provided in Appendix A.4.

Random Seed we do not set a random seed specifically for all random behavior, with the random
seed determined PyTorch.

8 LLM USAGE

Large Language Models (LLMs) were used to aid polishing of the manuscript. Specifically, we used
an LLM to assist in refining the language, improving readability, and ensuring clarity in various
sections of the paper. The model helped with tasks such as sentence rephrasing, grammar checking,
and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

REFERENCES

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Leo Breiman. Random Forests. Machine Learning, 45(1):5-32, October 2001. ISSN 1573-0565.
doi: 10.1023/A:1010933404324. URL https://link.springer.com/article/10.
1023/A:1010933404324. Company: Springer Distributor: Springer Institution: Springer
Label: Springer Number: 1 Publisher: Kluwer Academic Publishers.

P. Bull, I. Slavitt, and G. Lipstein. Harnessing the power of the crowd to increase capacity for data
science in the social sector. In ICML #Data4Good Workshop, 2016.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD 16, pp. 785-794, New York, NY, USA, 2016. Association for Computing Machin-
ery. ISBN 9781450342322. doi: 10.1145/2939672.2939785. URL https://doi.org/10.
1145/2939672.2939785.

Mete Demircigil, Judith Heusel, Matthias Lowe, Sven Upgang, and Franck Vermet. On a Model of
Associative Memory with Huge Storage Capacity. Journal of Statistical Physics, 168(2):288—
299, July 2017. ISSN 1572-9613. doi: 10.1007/s10955-017-1806-y. URL https://doi.
0rg/10.1007/s10955-017-1806-vy.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

10


https://anonymous.4open.science/r/Adaptive-Hopfield-Network-C137/
https://anonymous.4open.science/r/Adaptive-Hopfield-Network-C137/
https://link.springer.com/article/10.1023/A:1010933404324
https://link.springer.com/article/10.1023/A:1010933404324
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/s10955-017-1806-y
https://doi.org/10.1007/s10955-017-1806-y

Under review as a conference paper at ICLR 2026

DrivenData. Flu shot learning: Predict hinl and seasonal flu vaccines. https://www.
drivendata.org/competitions/66/flu-shot—learning/data/, 2019.

Yoav Freund and Robert E. Schapire. A Decision-Theoretic Generalization of On-Line Learn-
ing and an Application to Boosting. Journal of Computer and System Sciences, 55(1):119-
139, 1997. 1ISSN 0022-0000. doi: https://doi.org/10.1006/jcss.1997.1504. URL https:
//www.scilencedirect.com/science/article/pii/S002200009791504X.

Elisa Drelie Gelasca, Jiyun Byun, Boguslaw Obara, and B.S. Manjunath. Evaluation and benchmark
for biological image segmentation. In IEEE International Conference on Image Processing, Oct
2008. URL http://vision.ece.ucsb.edu/publications/elisa_ICIP08.pdf.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine Learning,
63(1):3-42, April 2006. ISSN 1573-0565. doi: 10.1007/s10994-006-6226-1. URL https:
//doi.org/10.1007/s10994-006-6226-1.

J. J. Hopfield. Neural networks and physical systems with emergent collective computational abil-
ities. Proceedings of the National Academy of Sciences, 79(8):2554-2558, April 1982. doi:
10.1073/pnas.79.8.2554. URL https://www.pnas.org/doi/abs/10.1073/pnas.
79.8.2554. Publisher: Proceedings of the National Academy of Sciences.

Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu. On Sparse
Modern Hopfield Model. Advances in Neural Information Processing Systems, 36:27594-27608,
December 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/hash/57bc0a850255e2041341bf74c7e2b9fa-Abstract—Conference.
html.

Jerry Yao-Chieh Hu, Dennis Wu, and Han Liu. Provably Optimal Memory Capacity for
Modern Hopfield Models: Transformer-Compatible Dense Associative Memories as Spher-
ical Codes. Advances in Neural Information Processing Systems, 37:70693-70729, Decem-
ber 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
hash/82846el9%9e6d42ebfd4aced36ldef29ae-Abstract-Conference.html.

Jerry Yao-Chieh Hu, Bo-Yu Chen, Dennis Wu, Feng Ruan, and Han Liu. Nonparametric modern
hopfield models. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=xkvV3uCQtJm.

Kaggle. Cardiovascular disease dataset. https://www.kaggle.com/datasets/
sulianova/cardiovascular—disease—dataset, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Dmitry Krotov and John J. Hopfield. Dense Associative Memory for Pattern Recognition.
In Advances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016. URL https://papers.nips.cc/paper_files/paper/2016/hash/
caae339c4d89fcl02edd9dbdb6a28915-Abstract.html.

Dmitry Krotov, Benjamin Hoover, Parikshit Ram, and Bao Pham. Modern Methods in Associative
Memory, July 2025. URL http://arxiv.org/abs/2507.06211. arXiv:2507.06211 [cs].

Gert Lanckriet and Bharath K. Sriperumbudur. On the Convergence of the Concave-Convex
Procedure. In Advances in Neural Information Processing Systems, volume 22. Curran As-
sociates, Inc., 2009. URL https://papers.nips.cc/paper_files/paper/2009/
hash/8b5040a8a5baf3e0e67386c2e3a90903-Abstract.html.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Beren Millidge, Tommaso Salvatori, Yuhang Song, Thomas Lukasiewicz, and Rafal Bogacz. Uni-
versal Hopfield Networks: A General Framework for Single-Shot Associative Memory Models.
In Proceedings of the 39th International Conference on Machine Learning, pp. 15561-15583.
PMLR, June 2022. URL https://proceedings.mlr.press/v162/millidge22a.
html. ISSN: 2640-3498.

11


 https://www.drivendata.org/competitions/66/flu-shot-learning/data/ 
 https://www.drivendata.org/competitions/66/flu-shot-learning/data/ 
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://www.sciencedirect.com/science/article/pii/S002200009791504X
http://vision.ece.ucsb.edu/publications/elisa_ICIP08.pdf
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://www.pnas.org/doi/abs/10.1073/pnas.79.8.2554
https://www.pnas.org/doi/abs/10.1073/pnas.79.8.2554
https://proceedings.neurips.cc/paper_files/paper/2023/hash/57bc0a850255e2041341bf74c7e2b9fa-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/57bc0a850255e2041341bf74c7e2b9fa-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/57bc0a850255e2041341bf74c7e2b9fa-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/82846e19e6d42ebfd4ace4361def29ae-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/82846e19e6d42ebfd4ace4361def29ae-Abstract-Conference.html
https://openreview.net/forum?id=xkV3uCQtJm
 https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset 
 https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset 
https://papers.nips.cc/paper_files/paper/2016/hash/eaae339c4d89fc102edd9dbdb6a28915-Abstract.html
https://papers.nips.cc/paper_files/paper/2016/hash/eaae339c4d89fc102edd9dbdb6a28915-Abstract.html
http://arxiv.org/abs/2507.06211
https://papers.nips.cc/paper_files/paper/2009/hash/8b5040a8a5baf3e0e67386c2e3a9b903-Abstract.html
https://papers.nips.cc/paper_files/paper/2009/hash/8b5040a8a5baf3e0e67386c2e3a9b903-Abstract.html
https://proceedings.mlr.press/v162/millidge22a.html
https://proceedings.mlr.press/v162/millidge22a.html

Under review as a conference paper at ICLR 2026

Yasushi Miyashita. Neuronal correlate of visual associative long-term memory in the primate tempo-
ral cortex. Nature, 335(6193):817-820, October 1988. ISSN 1476-4687. doi: 10.1038/335817a0.
URL https://www.nature.com/articles/335817a0. Publisher: Nature Publishing
Group.

Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach to predict the success of bank
telemarketing. Decision Support Systems, 62:22-31, 2014. ISSN 0167-9236. doi: https://doi.
org/10.1016/j.dss.2014.03.001. URL https://www.sciencedirect.com/science/
article/pii/sS016792361400061X.

John M. Pearce and Mark E. Bouton. Theories of Associative Learning in Animals. Annual Review
of Psychology, 52(Volume 52, 2001):111-139, February 2001. ISSN 0066-4308, 1545-2085. doi:
10.1146/annurev.psych.52.1.111. URL https://www.annualreviews.org/content/
journals/10.1146/annurev.psych.52.1.111. Publisher: Annual Reviews.

Hubert Ramsauer, Bernhard Schifl, Johannes Lehner, Philipp Seidl, Michael Widrich, Lukas Gru-
ber, Markus Holzleitner, Thomas Adler, David Kreil, Michael K Kopp, Giinter Klambauer, Jo-
hannes Brandstetter, and Sepp Hochreiter. Hopfield networks is all you need. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=tL89RnzIiCd.

Bishwajit Saha, Dmitry Krotov, Mohammed J Zaki, and Parikshit Ram. End-to-end differentiable
clustering with associative memories. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th Inter-
national Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 29649-29670. PMLR, 23-29 Jul 2023. URL https://proceedings.mlr.
press/v202/saha23a.html.

C. Sakar and Yomi Kastro. Online Shoppers Purchasing Intention Dataset. UCI Machine Learning
Repository, 2018. DOI: https://doi.org/10.24432/C5F88Q.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, L. ukasz Kaiser, and Illia Polosukhin.  Attention is All you Need. In Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
hash/3f5ee243547dee91fbd053clcd4a845aa—Abstract.html.

Jane X. Wang, Lynn M. Rogers, Evan Z. Gross, Anthony J. Ryals, Mehmet E. Dokucu, Kelly L.
Brandstatt, Molly S. Hermiller, and Joel L. Voss. Targeted enhancement of cortical-hippocampal
brain networks and associative memory. Science, 345(6200):1054-1057, August 2014. doi:
10.1126/science.1252900. URL https://www.science.org/doi/full/10.1126/
science.1252900. Publisher: American Association for the Advancement of Science.

Shurong Wang, Zhuoyang Shen, Xinbao Qiao, Tongning Zhang, and Meng Zhang. Dynfrs: An
efficient framework for machine unlearning in random forest. In Y. Yue, A. Garg, N. Peng, F. Sha,
and R. Yu (eds.), International Conference on Representation Learning, volume 2025, pp. 10636—
10657, 2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/
hash/1caf09c9f4e6b0150b06a07e77£f2710c-Abstract-Conference.html.

Dennis Wu, Jerry Yao-Chieh Hu, Teng-Yun Hsiao, and Han Liu. Uniform Memory Retrieval
with Larger Capacity for Modern Hopfield Models. In Proceedings of the 41st International
Conference on Machine Learning, pp. 53471-53514. PMLR, July 2024a. URL https:
//proceedings.mlr.press/v235/wu24i.html. ISSN: 2640-3498.

Yu-Hsuan Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. STan-
Hop:  Sparse Tandem Hopfield Model for Memory- Enhanced Time Series Pre-
diction. International Conference on Representation Learning, 2024:30886-30925,
May 2024b. URL https://proceedings.iclr.cc/paper_files/paper/2024/
hash/832b20b65£655587e9c0447860406a82-Abstract-Conference.html.

12


https://www.nature.com/articles/335817a0
https://www.sciencedirect.com/science/article/pii/S016792361400061X
https://www.sciencedirect.com/science/article/pii/S016792361400061X
https://www.annualreviews.org/content/journals/10.1146/annurev.psych.52.1.111
https://www.annualreviews.org/content/journals/10.1146/annurev.psych.52.1.111
https://openreview.net/forum?id=tL89RnzIiCd
https://openreview.net/forum?id=tL89RnzIiCd
https://proceedings.mlr.press/v202/saha23a.html
https://proceedings.mlr.press/v202/saha23a.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://www.science.org/doi/full/10.1126/science.1252900
https://www.science.org/doi/full/10.1126/science.1252900
https://proceedings.iclr.cc/paper_files/paper/2025/hash/1caf09c9f4e6b0150b06a07e77f2710c-Abstract-Conference.html
https://proceedings.iclr.cc/paper_files/paper/2025/hash/1caf09c9f4e6b0150b06a07e77f2710c-Abstract-Conference.html
https://proceedings.mlr.press/v235/wu24i.html
https://proceedings.mlr.press/v235/wu24i.html
https://proceedings.iclr.cc/paper_files/paper/2024/hash/832b20b65f655587e9c0447860406a82-Abstract-Conference.html
https://proceedings.iclr.cc/paper_files/paper/2024/hash/832b20b65f655587e9c0447860406a82-Abstract-Conference.html

Under review as a conference paper at ICLR 2026

A APPENDIX

APPENDIX CONTENTS

A.l
A2

A3

A4

NOtations . . . . . . . . o it e 14
Theorems . . . . . . o o o e e e e e 15
A.2.1 Optimal Correct Retrieval . . . . ... ... ... .. ... ........ 15
A.2.2 Unified Adaptive Similarity and Energy Function . . . . . . ... .. ... 19
Discussion . . . . . . ... e 21
A3.1 OnOptimal Correct Retrieval . . . . ... ... . ... ...... ... 21
A.3.2 On More Complicated Variant Distribution . . . . .. ... ... .. ... 22
Experiments . . . . . . . . .o e e e e e e e e e 22
A.4.1 Baselinesand Metrics . . . . . . .. ... 22
A42 Datasets . . . . ..o oo e 23
A4.3 Memory Retrieval . . . . .. ... 24
A4.4 Tabular Classification . . . . . . ... ... ... 24
A.45 Image Classification and Multiple Instance Learning . . . . . . .. .. .. 24
A4.6 AblationStudy . . . ... 25

13



Under review as a conference paper at ICLR 2026

A.1 NOTATIONS
Table 5: Notations and symbolds used in this work.
Symbol ‘ Description
& &k A specific memory pattern (d X 1) (or memory, stored memory pattern, stored pattern).
= The d x N memory matrix, with each memory pattern being its column vector.
d The dimensionality of memory patterns.
N The number of stored memory patterns.
sim(€, x) T.he. similari_ty .fun.ction that measures how strong the association are between the inputs (or
’ similarity, similarity measure, measure, association).
sep(s) The separation function, turning the output of sim(-, -) (logits) to a probability distribution.
mod(=E) The modulation function that governs how memory patterns are stored and learned.
E(x) The energy landscape, defined on the same vector space as memory patterns.
T(x) The retrieval dynamics, defined on the same vector space as memory patterns.
P The probability distribution vector produced by sep(-).
s The similarity score vector produced by sim(, -).
b4 The query vector. Also, the input to the associative memory
y The retrieval result vector. Also, the output of the associative memory.
V(E) The Varignt distribution on memory matrix =, governs how q'ugries are generated. Each
query x is sampled from this distribution together with its origin memory pattern .
The joint probability density function that measures the likelihood that € and x are
pv(€:x) observed together.
The conditional probability density function (posterior) that measures the likelihood that x
pv(€x) originates from x when observed x.
The joint probability density function (likelihood) that measures the likelihood that £
pv(x[€) generates X when observed &.
The dimension-wise similarity vector whose value of the i-th index measures the similarity
a between the value of i-th index in x and &.
q The sorted version of q (sorted in ascending order).
U The upper right triangle matrix of ones.
dis(&,x) The (negative and squared) Euclidean distance similarity —||x — &||3.
dot(&,x) The dot product similarity x ' £.
sim ®) (&,x) The k-optimal similarity function that finds a k-dimensional subspace that maximizes the

ftptsim (67 X)

similarity sim(+, ) of the inputs within that subspace.
The similarity footprint function that generates the rich descriptor between £ and x with
sim(-, -) being the base similarity (or footprint).

Ssim (€, X) The adaptive similarity function adopting ftpt,;,, (-, -) with sim(-, -) as the base similarity.
Ssim(Z, X) The vectorized forrp of .the; adgptive similarity function_ssim (+,+), and returns a vector that
) measures the adaptive similarity between &; and x for i € [IN].
s(€,%) The. ﬁngl a@aptive similarity function that aggregate multiple Ssim, (-, -) for different base
similarity sim(-, -) / footprint.
_ The vectorized form of the final adaptive similarity function s(-, -), and returns a vector
s(2,x) that measures the adaptive similarity between &; and x for ¢ € [N].
w The weight vector that turns the footprint into a scalar, which is designed to extract
information from the rich descriptor.
B Scalar used to aggregate different adaptive similarities Sgim (-, -).
L(E,V) The loss function used to optimize w’s and 3’s
[n] The set of integers less than or equal to n.
sgn(x) Return the sign (—1 or +1) of the input.
o(x) The Dirac delta that returns 1 when the input is O and returns 0 otherwise.
v’ Transpose of a vector / matrix.
diag(v) Transform vector v to a diagonal matrix.
VD A sub-vector of v containing only the elements corresponding to indices in D.
Ivlp The ¢, norm.
Ise(v) The log-sum-exp function.
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A.2 THEOREMS

We define the retrieval accuracy that estimates the retrieval performance of an associative memory
under a certain variant distribution.

Definition 8: Retrieval accuracy

Retrieval accuracy for an associative memory with retrieval dynamics 7 (-) is the probability that
correct retrieval is met:

Eex~v@) [5 ( arg min{[|7(x) — &[]z} — arg max{pv(&’X)}ﬂ
§'cE £'c=

. [argmin{HT(X)€/||2}—argmaX{Pv(€'|X)}]
Ex)~V(E) | ¢ex= g'cE

However, Definition 8 is usually intractable as py (x|€) is unknown and complicated. Therefore, we
define empirical retrieval accuracy based on samples drawn from V(Z), which is computable, and
used in our experiments (Section 4).

Definition 9: Empirical retrieval accuracy

Empirical retrieval accuracy for an associative memory with retrieval dynamics 7 () can be esti-
mated by performing abundant retrieval tests:

Eex~v(=) l5(ar§ergiﬂ{llT(X) —&[l2} €>]

Pr
(&x)~V(E)

larggenéin{lT(X) — &2} = 5]

A.2.1 OPTIMAL CORRECT RETRIEVAL
We now start to prove Theorem 1.
Let us begin with a simple variant — the isotropic noisy variant.

Lemma 1: Optimal correct retrieval for isotropic noisy variant

A-Hop achieves optimal correct retrieval (Definition 7) for isotrophic noisy variant Veisy (2)
(Definition 4, (x — &) ~ N(0,0T) for (§,x) ~ Viisy(E) some o € R) for arbitrary memory
matrix & € RV,

Proof. We claim that the optimal correct retrieval is achieved when using sep(-) = arg max(-), and
ftpty;s (€, x) only (i.e., /1 = 1 and B2 = 0 in Equation 4). That is, the retrieval dynamics should be:

T (x) = arg max {watptdiS(él, X)}
g'e=2
= argmax {— ¢’ — x/|3}
§'eE

This step can be satisfied by setting w; = 1, and w; = 0 for 2 < ¢ < d. Then, optimal retrieval is
achieved only when Equation 1 is met. We first estimate the right-hand side of Equation 1:
arg max {py,,, (€]x)} = argmax {Inpy,,, (x]¢)}
ger gcE
d 1
= arg max { In2ro — —||x — E’%}
¢eE 2 20
= argmax {—[¢" — x||3}
§'eE

The first step comes from Equation 2, and assuming that the prior p(&) is uniform (which is often
the case for memory retrieval) or can be easily obtained from samples. And the second step comes
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from Definition 4. We can see that the derived results coincide with the retrieval dynamics derived
before. Therefore, plugging the retrieval dynamics to the left-hand side of Equation 1 gives:

g (17(5) - €)= g { g (1" w13 - €1, |

geE
N
=9 (Hargmax{ne"xII%} EkH2> &
k=1 &
N
N (max{—ng" —x|3} ~ [~ g —xll%]) &
k=1

5//
= arg max{—||& — x|}
£LEE

The second step holds as there always exists a ¢’ € E that let || arg max,, {—[|¢” —x|[3} —¢&'[|2 =
0, since the resulting vector of the arg max(-) € &, and &' iterates every column vector of Z, thus
must have coincided with resulting vector, and the thrid step holds for a similar reason.

Therefore, we show that the left-hand side and right-hand side of Equation 1 are the same
(arg maxg c={—[|éx — x|13}). Thus, the requirement for correct retrieval is met for all (£,x) ~
V(E), yielding optimal correct retrieval. O

If we adopt a footprint that does not sort the dimension-wise similarity vector q by substituting g
in Equation 3 to q and gives ftpty;y (£,x) = Ugq, we can prove the optimality for the standard
noisy variant defined in Definition 4, which is more general than Lemma 1. However, the footprint
ftptys (€, %) = UQ achieves high empirical retrieval accuracy, but it is harder to estimate analyti-
cally.

Lemma 2: Optimal retrieval for noisy variant

A-Hop achieves optimal correct retrieval (Definition 7) for noisy variant Vyeisy (2) (Definition 4

for arbitrary memory matrix & € R¥V,

Proof. Following the same spirit in the proof of Lemma 1. One can see that the right-hand side
(RHS) of Equation 1 is (similar to Lemma 1):

, _ 1 . 1 ’ . —1 ’
argan (v, (€'} = g { = n [(2r) o)) — 5 x — €)ding(e) - €)

re=

4 (& —x)?
= argmax{ — —_—
¢'e= i1 g;

While the left-hand side (LHS) of Equation 1 is (step 1 follows how RHS is resolved in Lemma 1):
arg min {]|7(x) — €'[l5} = arg max {w U (& — x)?}
g'e= ELEE

= arg max {uT(ﬁk —x)?}

==
d
2
= arg max Z w;(€ri —x)
£rEE i—1
Here, v2 € R< denotes a dimension-wise square operation over v € R4, so that (& — X)f =

(€. — x;)?. Also, we letu' = w ' U for simplicity. One can see that LHS equals RHS when:
1
VZ'7 1€ [d], u;, = ——
ag;
Since U is a full-rank matrix, so that w' = u' U~! holds. When we set w in the following way:

w = o i=1
R Tl 2<i<d
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LHS and RHS of Equation | are the same, satisfying the requirement for correct retrieval. Further-
more, we can tell that Lemma 1 is a special case of this lemma. O

Lemma 3: Optimal retrieval for masked variant

A-Hop achieves optimal correct retrieval (Definition 7) for masked variant Viasked (2) (Definition
5 for arbitrary memory matrix E € R4*¥ and for a uniform generator G (pg (-) is a constant).

Proof. Asin Lemma 1, we first reformulate the RHS of Equation 1, and find the suitable choice for
w to make LHS of Equation 1 equal RHS. We let q be the dimension-wise similarity vector with
q; = —(& — x;)?, and q the vector that sort q in ascending order. The RHS can be expanded as:

argg max {pvmasked (5/ |X)}
'eB

d d
= arg max {lnpmasked . Z[l —0(x; — &)+ Z[l —0(x; — &)] lnpg(x;)}

g'cE i=1 i=1

§'eE

d
= arg max {(hlpmasked +Inpg) - Z[l —0(x; — 52)]}

i=1
d
= arg max —d—|—25(xi—£;)
geE i1
d
= arg max Z 0(a,)
gez |

Here, the second step is valid as pg is a constant, and we term this constant pg. As pg is a constant,
it must be less than or equal to 1 to make pg(+) a valid probability density function. Additionally, we
know 0 < prasked < 1 from definition, and therefore, In pasked + 10 pg < 0, and this explains why a
sign change occurs in step three. The derived RHS suggests designing a discrete adaptive similarity:

d
sdis(€,%) = w'8(q;) = Zwifs(fli)

Then, the LHS would be (first step following that of Lemma 1, and recall we use arg max(-) as
separation function):

d
arsgmin {IT(x)— €12} = arggmax {w'é(q;)} = argmax {sz . 6(611-)}
‘eE LEE

ELEE 1
Setting w = 1 concludes that LHS equals RHS for all (£, x) ~ V(E), and thus, the optimal correct
retrieval is achieved for this concrete adaptive similarity sqis(&, x). O

It can be shown that it is impossible to find a continuous sq;s(&€,x) for masked variant’s optimal
correct retrieval, unless more constraints on £ and x are made. Typically, such a continuous function
is possible if ||& — x||2 > € (can be bounded from below) for & > 0.

Lemma 4: Optimal retrieval for biased variant

—
=

A-Hop achieves optimal correct retrieval (Definition 7) for biased variant Viiysea(2) (Definition
5 for arbitrary memory matrix 2 € R?*¥ | and an arbitrary difference vector d € R?.

Proof. Following the proof to Lemma 1, the LHS of Equation 1 is:

d
arsg,?:‘ax {PVes (€']%)} = arg max {(5 [d - Z §(x; — & — di)] }

§'ceE

d
= argmax{—d+z5(xi - ¢ _di)}

§'ceE

= arEgmax {-lx-¢& - d||§}
eE
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The last step follows that the maximum score is both 0 before and after the transform, and the goal
is to assign a high score (0) when x — £ = d. Here, we use a similar continuous adaptive similarity
defined in the main text:

sais(§,x) =w'Ua—q'q
withq =x — £, andsetu’ = w' U with u = 2d". Then, the RHS of Equation 1 is:

argmin {|| 7 (x) — &'[|2} = argmax {uTq - qTOI}

£'e= ELEE
= arg max {Zqu —q'q— de}
£LEE
= arg max {—(q — d)T(q — d)}
£LEE

= argmax {—|lq — d|/3}
£LEE

= arg max {—HX — & — d||§}
£LEE

This follows immediately that LHS equals RHS, and the optimal correct retrieval is achieved when:

- — 2d, i=1
Tl2d; —2dim; 2<i<d

It finally comes down to Theorem 1.

Theorem 1: A-Hop retrieval dynamics

The following retrieval dynamics adopted by A—-Hop achieves optimal correct retrieval for noisy,
masked, and biased variants, with a careful design of s(E, x):

y = T(x) = Esep(s(E,x))

Proof. First of all, sep(-) = argmax(-) is crucial for achieving optimal correct retrieval, as it
transforms the left-hand side of Equation 1 as (see Lemma 1):

argmin {||7(x) — &'||2} = arg max {sais(&x, %)}
¢'eE 13

LEE
In Lemma 2, we see that using the following adaptive similarity achieves optimal correct retrieval:
T —0'_1 1 =1
sqis(€,x) =w ' Uq with w; = { -1 1

o,_,—0o;, 2<i<d

(2
In Lemma 3, we see that using the following adaptive similarity achieves optimal correct retrieval:
sqis(€,x) =w'8(q)  withw; = 1fori € [d]
In Lemma 4, we see that using the following adaptive similarity achieves optimal correct retrieval:

2d; 1=1

sais(€,%) =w U (x —€) — (x =€) T(x — §) W“h“’i{zdimi_l 2<i<d

O

One can see that achieving optimal correct retrieval is not easy, and it requires the sacrifice of
continunity. However, we can build a continuous adaptive similarity inspired from the proof of
Theorem 1 that achieve high retrieval accuracy (at least, empirically). For more discussion on this
topic, please read Appendix A.3.1.
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A.2.2 UNIFIED ADAPTIVE SIMILARITY AND ENERGY FUNCTION
We can find that the adaptive similarity in Lemma | has the form:
s(€.x) = —(x— &) (x—¢)
while that of Lemma 2 has the form:
s(€,x) = —(x — &) diag(a)(x — €)
for some diagonal matrix diag(a), and a; > 0 for all ¢ € [d]. Meanwhile, for Lemma 4 has the

form:
(%) =—(x=& (x-§+b"(x—¢)
for some real vector b. That is being said that we can unifies these three adaptive similarity by:

sunify (€, %) = —(x — &) " diag(a)(x — €) + b (x — €)
However, this similarity is too tough, we can analysis a simpler one:
Sunify(fv X) = —(x— S)T(X —&)+ bT(X =&

If we use a softmax(-) function as the separation function and synify (§, x) as the similarity function,
and construct an energy function (with syiry (2, x) being the vectorized form of suyify (£, x)):

E(x) = —lse(sunity (8, %)) (6)

whose gradient is:
VxE(x) = —softmax(Sunity (2, x))Tszunify

Letting p;(x) £ softmax(synity (2, X));:

N
VXE(X) = — Z Pi (X)szunify(£i7 X)
=1
N
= Zpi(x) - (—2x+2¢; +b)
1=1

N
—ox-b-23 pi)
i=1
Retrieval on the gradient flow gives:

N
dx
5 = V=B =-2x+b+2 Zl pi(x)-&
Then, consider using gradient descent with step 7, where 1 > 0 for discrete-time retrieval:
<t — (&) _ anE(X(t))
N
=(1=2n)-xD +nb+2n> pi(x") &
i=1

By setting n = % that would cancels the x term on the RHS and remove the coefficient before the
summation, which is wonderful:

1
x(t+1) = ib + E softmax(suniry (2, X))

From Lemma 4, we know that the setting b = 2d is optimal for noisy variant, plugging this in gives:
xt) —d = T(x®) = Esoftmax(sumiry (Z, X)) (7

suggesting that we add a new de-bias term —d for biased variants, which coincidentally, remove the
bias vector d. However, when there is no bias, Equation 7 reduce to the simple retrieval dynamics
we are familiar with.
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We then further analysis the behavior of the energy (Equation 6) retrieval dynamics Equation 7:

Lemma 5: Rewriting the energy
Let the energy function be E(x) = —Ise(s(E,x)), where s(£;,x) = —(x — &) (x — &) +
b " (x — &;). Then, the energy can be written as

B(x) = ||x||2 — Ise(Ax + ¢)

for some matrix A € RV *4 and vector ¢ € R,

Proof.
E(x) = —lIse (s(B,x))

N
= —Iny exp [=[x[I3 — &3 + (26 +b) "x + £7b]
i=1

= —In Y _exp(—[x[3) +exp [(2& +b) "x + &b — [|&3]
i=1
=Inn+|x||3 —Ise (Ax +c)

for A] =2¢, +bandc; =& b — ||&]|3. Also, we can omit the term Inn as it is a constant. [

Therefore, we have decomposed the energy function E(x) into a convex function g(x) = ||x||3, and

a concave function —h(x) = —lse(Ax + ¢).

Lemma 6: Decreasing energy

Energy function F(x) would be monotonically decreasing using the retrieval dynamics:
xtH) _d = 7(x®) = Esoftmax(s(E,x)) for s(&;,x) = —(x—&)" (x—&)+b' (x—&;)
Proof. Using the concave convex procedure (Lanckriet & Sriperumbudur, 2009), we construct a

convex surrogate function U;(x) for each iteration ¢ by linearizing the concave function —h(x)
around the current x(*):

Uy(x) = g(x) — [h(x®) + Vyeh(x®)T (x — x(t))}
= (/13 = Foch(x?) Tx + (Vich(x(®) T — h(x())

The next x(**1) is the minimizer of U;(x), i.e., x**1) = arg min,cpa{U;(x)}, and we can find it
by setting its gradient to zero:

1 1
Vili(x) = 2x — Vih(x®) =0 — xtD = §Vxh(x(t)) = §ATsoftmax(Ax(t) +c)

We can add the term —||x||3 back to softmax(-) as it is independent of index i. Thus, by denoting
pi(x;) = softmax(Ax® + ¢) = softmax(s(E,x)) (follows Lemma 5), we have:

1 N
(t+1) — = o (x®)
K =5 Al

Il
.MZ

@
I
—

N
1
(Y = E ()
& - pi(x'") 2b-71pl(x )

E softmax(s(E, x1)) — %b
and this agrees with what we have derived before (Equation 7).
Then, by convexity of h(x) (recall —h(x) is concave), we have the following inequality:
h(x) > h(x®) + Vyh(x®) T (x — x1)
= g(x) = h(x) < g(x) = A(xD) + Vih(x") T (x = x1) = Uy(x)

20



Under review as a conference paper at ICLR 2026

with the equality holds iff x = x(*), and recall that x(**1) is the minimum value of U (x), we have:
E(X(t+1)) < Ut(x(t“)) < Ut(x(t)) — E(X(t)) (8)

with equality holds when x(¥) = x(**1)_ Thus, E(x(*t1) < E(x()) completes the proof. O

We can see that E(x) = ||x/|3 — O(||x]|2), so that E(x) — +00 as ||x|l2 — 400, so E(x) is coer-
cive, meaning its level sets are compact. Additionally, Uy (x) is 2-strongly convex as V2U,(x) = 21,
therefore,

U(x) = Uye+1) 2 [ = x4V

Along with Inequality 8:
E(x") = Bx") > U(xY) = Uy (x"*) > [|x — D3
This yields that
t—1
) = Bx®) 2 3 [x7+) - xO)3
=0
This mean that F(x(®)) is bounded from below. We can see that the sequence of x: {x(¥)} must
remain within the level set {x | F(x) < E(x(®)} as the sequence E(x(?)) is non-increasing.
Therefore, {x(*)} must remains in the compact set {x | F(x) < F(x(?)}, and be bounded.
Theorem 2: A-Hop energy landscape
energy Energy F(x) will be monotonically decreasing and its value could be bounded for
isotropic noisy, and biased variants, if the following energy is used:

E(x) = —lse (s(E,x))

Proof. In Lemma 6, we have proven that the energy function will be monotonically decreasing.

Also, from above analysis we can see that F(x(*)) could be bounded by:
t—1
0< Y XY - x™)2 < Bx®) < Bx©)
7=0
O

We try to find the property for a very different energy landscape and a different retrieval dynamics,
also these retrieval dynamics can guaratee optimal correct retrieval, for iostropic noisy, and biased
variant, when the separation function is arg max(-) and has weight b choosen ideally. Theorem 2
tries to connect the noval correct retrieval and the traditional energy analysis.

A.3 DISCUSSION
A.3.1 ON OPTIMAL CORRECT RETRIEVAL

Achieving optimal correct retrieval is costly, as it requires designing “weird” adaptive similarity
function or adopting discrete function making the model unlearnable. For instance, it is impossible
to achieve optimal correct retrieval for masked variants, as there would always be lower-bound issue
for continuous functions. Also, using softmax(-) as the separation make it hard to prove whether
optimal retrieval is achieved or not, as we cannot exclude the effect of other memory patherns from
the one receive largest similarity score.

However, we propose choosing the value of w wisely for adaptive similarity s(¢,x) = w'Ugq to
achieve “sub-optimal” correct retrieval (well, it is hard to rigorously define sub-optimality).

For noisy variant, a choice that setting w; = 1 and other values to O is suggested. This enable the
model to have global view (mauniplate similarity in the largest subspace), and its electron cloud
would look like a shpere as illustrated in Fig. la.
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Next, for masked variant, we suggest using w; = iC' for some large constant C' > 2d?, because this
punishes patterns that has very limited dimension where &; = x;, and stress importance on small
subspaces. By doing so the similarity function will look like the likelihood electron cloud in Fig. 1b.

Finally, for biased variant, the best way to set w is to set u' =w'Uto El, the sorted bias vector,
so that they similarity function can focus on how comparing the difference of x — £ with a unkown
but almost known bias.

The main point of this section is that the optimality of correct retrieval is too strict so that achieving
so force us to abandon good properties. Also, in most cases, some very corner cases set very high
difficulty for achieve optimal. However, correct retrieval itself is a good property, but making every
retrieval correct is too strict. Therefore, an open question is that how to define a sub-optimal correct
retrieval standard so that it guarantees great memory retreival performance and leave us freedom.

A.3.2 ON MORE COMPLICATED VARIANT DISTRIBUTION

Variant distributions discussed so far are actually simple. In previous analysis, we assumes that all
memory variants follows a similar distribution. For example, (§,%) ~ Vyoisy(E) ensures that all
memory patterns generates a noisy variants, sharing a similar py, (x|€). We say a variant distribution
general if knowing py (x|€;) is equivalent to knowing py(x|&;) for arbitrary 4, j € [N] and ¢ # j.
In other words, we can obtain py (x|x;) by substituting x; with x;. However, there could be cases
where each memory patterns generates variants quite differently. Intuitively, we say each pattern is
generates on their own, meaning that py (x|€) has completely different form for different memory
patterns, and we call such memory variant isolated.

By looking closely to the adaptive similarity function:
s(6,x) =w'Uq

One can see that it uses a universal weight w for all pairs of (§,x) ~ V(Z), assuming that the
variant distribution it is trying to model is general. However, such limiltaion can be easily broken
by introducing more weights. For instance, we use separate weights for different memory patterns,
i.e., for NV memory patterns, we spare weight wj, to memory pattern &. Therefore, the adaptive
similarity that can suit isolated variant distribution look like:

s(&k,x) = W,IUQ

This can fit each isolated likelihood py,(x|€) as the weights are no longer shared. But this rises
more problem: (1) it requires more samples, and it might be impossible in real-world scenarios. (2)
it requires samples generated by each memory pattern &, as each individual weight wy, is optimized
by samples involving &j.

Additionally, the adaptive similarities are a family of similarity measures that can fit to the variant
distribution through sampling, it is not solely Equation 4. When proving the optimal correct retrieval
for noisy, masked, and biased variants, we propose more adaptive similarity as theoretical tools. We
wrote Equation 4 in the main text simply because it is the most effective ones for retrieving under
noisy, masked, biased, and mixed settings, and it requires minimum trainable weight, as examined
in ablation study (Appendix A.4.6).

One more thing is that the priori py,(€|x) are often ignored in this work. Well, it should not be
ignored in all cases. However, we can use a bias term b € RY and use by, capture the occurrance
of pattern £;. By assuming similarity is a logits of the posteriori py (€]x) (e.g., log py,(€]x)), then
we can see that arg max, .z {logpy(€]x)} = arg maxg z{logpy(x|¢’) + logpy(€')}, and we
set pass s(E, x) + b to the separation function so that b handles the term log py (&).

A.4 EXPERIMENTS

A.4.1 BASELINES AND METRICS

For memory retrieval test, we compare our Adaptive Hopfield network A-Hop against: Modern
Hopfield network M—Hop (Ramsauer et al., 2021); Universal Hopfield network U-Hop (Millidge
et al., 2022) with sim(&,x) = —||& — x| and sep(-) = argmax(-) as they report a leading
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performance for such configuration when masking out half of the dimensions in memory pat-
terns (similar to masked variant, Definition 5); Kernelized Hopfield network K-Hop (Wu et al.,
2024a) with the kernel optimized by separation loss proposed by Wu et al. (2024a); Kernelized
Hopfield network Ko—Hop with the kernel optimized by loss defined by variant distribution (Equa-
tion 5) rather than the separation loss; and Multi-Layer Perceptrons MLP that has 4 layers and a
input dimensionality d, output dimensionality N, trying to fit py,(£|x) but unsatisfactory. We es-
timate the empirical retrieval accuracy of each model (Definition 9), and the mean squared error
Ee v [(T(x) — &) T(T(x) — &)]. We wrote a generator that can generate noisy, masked,
biased, and mixed variants.

For tabular classification test, we compare the A-Hop with a memory-based classifier (Ap-
pendix A.4.4) with: M-Hop uses the same classifier framework but the unlearnable similarity func-
tion; Ko—Hop that uses the same classifier framework but a different similarity function, and its
kernel function is optimized by the classification loss; Extremely Randomized Trees (Geurts et al.,
2006), or Extra Trees, a tree-based classifier; Random Forest (Breiman, 2001), yes, the famous
Random Forest classifier; AdaBoost (Freund & Schapire, 1997), a classic boosting classifier; and
XGBoost (Chen & Guestrin, 2016), an enhanced Gradient Boosting Decision Tree. All models are
tuned with a 5-fold cross-validation on the training set. We measure the test accuracy for the dataset
with a positive sample rate 0.2 < % pos < 0.8, and the ROC-AUC score otherwise, following the
settings in Wang et al. (2025).

For image classification task, we follow the settings in Wu et al. (2024a), where they replaced the
attention component with a HopfieldLayer (Ramsauer et al., 2021). We experiment by inte-
grating A—Hop, M-Hop, and K-Hop into the HopfieldLayer. Similarly, we follow the settings
in Ramsauer et al. (2021); Hu et al. (2023), where they use HopfieldPooling for multiple in-
stance learning. We integrate A-Hop, M-Hop, and K-Hop to HopfieldPooling, and run a
5-fold cross-validation to report the mean ROC-AUC of all folds as the result.

For all experiments, we report the results with the mean and standard deviation of five runs.

A.4.2 DATASETS

We used a total of 12 datasets to assess the performance of A-Hop on tasks including tabular clas-
sification (Adult, Bank, Vaccine, Purchase, and Heart), and image classification (CIFAR 10, CIFAR
100, and Tiny ImageNet), and multiple instance learning (Tiger, Fox, Elephant, UCSB).

Adult (Becker & Kohavi, 1996) The prediction task for this dataset is to classify individuals’ in-
come levels as either above or below $50,000 annually. The data was extracted by Barry
Becker from the 1994 Census database.

Bank (Moro et al., 2014) To predict the success of a term deposit subscription, this dataset records
the outcomes of telemarketing campaigns from a banking institution in Portugal.

Vaccine (Bull et al., 2016; DrivenData, 2019) We use this dataset from a DrivenData competition
to predict if a person received a seasonal flu vaccine. The data consists of 26,707 survey
responses detailing 36 behavioral and personal attributes.

Purchase (Sakar & Kastro, 2018) The objective with this dataset is to forecast the online shopping
intentions of visitors to an e-commerce website, determining whether a user will proceed
with a purchase.

Heart (Kaggle, 2018) This dataset facilitates the prediction of cardiovascular disease presence. It
contains health-related data from 70,000 patients, as provided by Ulianova.

CIFAR 10 (Krizhevsky et al., 2009) is a classic image recognition dataset consisting of 60,000
32 x 32 color images in 10 classes, with 6,000 images per class.

CIFAR 100 (Krizhevsky et al., 2009) is a more challenging version of CIFAR 10, containing the
same number of images but split into 100 fine-grained classes.

Tiny ImageNet (Le & Yang, 2015) is a subset of the ImageNet dataset designed for educational
purposes. It contains 100,000 images from 200 classes, downsized to 64 x 64 pixels.

Tiger, Fox, Elephant (Deng et al., 2009) These are specific class subsets extracted from the large-
scale ImageNet database, often used for fine-grained image classification tasks.
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UCSB (Gelasca et al., 2008) This dataset is composed of 58 breast cancer histopathology images
stained with Hematoxylin and Eosin (H&E). The primary challenge it presents is the ac-
curate segmentation of individual cells from the complex tissue background, which is a
critical precursor to classifying cells as benign or malignant.

A.4.3 MEMORY RETRIEVAL

We first introduce the intensity of variant setting. A triplet (dmask, dnoise, dbias) € [0, 1] is used to
describe a variant setting. This mean that we will first add a Gaussian noise n ~ A(0, dpoiseI) to a
certain memory pattern £ € = obtaining x < £ 4+ n. Then, we will choose d - dp, indices, and set
these indices of x to random numbers choosen uniformly from [—1, 1]. Finally, we will add a bias
dtox < x + d with d; = s; - dpiss, Wwhere s; is a random sign sampled uniformly from {—1,+1}.
Then, the generator return (&, x) as a sample of V(Z). Therefore, different triplet describle different
variant settings, and thus, corresponds to different variant distribution V(Z).

In the memory retrieval task, we use the retrieval dynamics written in Equation 4. To learn the
weight w’s and /3’s we use optimizer Adam for 200 epoches, and use a learning rate 0.1 in all
settings. However, we argue that number of epoches (N_epoch) and learning rate (1r) should be
tuned when applying A-Hop to other memory retrieval settings.

For K-Hop and Ko—Hop, we tuned them carefully. For the original K—Hop, it optimize a separation
loss, and we try to make it as small as possible. However, the retrieval accuracy of K—Hop is not
satisfactory, and it is reasonable since it is not optimized for correct retrieval, but for e-retrieval. We
found that the domain of the memory pattern in their experiments is [0, 1]%, and it is harmful to dot
product-based methods (think of using only 1/2¢ of the space) as dot product highly relies on signs.
Therefore, for fair comparision, we sample the random vectors uniformly from [—1, 1]¢ and change
the domain of pixels in MNIST images to [—1, 1].

A.4.4 TABULAR CLASSIFICATION

We develop a memory-based model for tabular classification that takes advantage of the excellent
memory retrieval effectiveness of associative memories. The insight is that classification is hierar-
chical, and we divide instances into cases, and further classify cases into the final class. For instance,
there are type I diabetes and type II diabetes, where each type here resembles the idea of cases. An-
other samples is that cats has plenty of breeds, and associative memory can capture specific idea of
orange cat, or blue cat, while they have a hard time figuring out the generalize idea of cats. So, we
let associative memory match instances into cases by choosing some instances in the training set as
the representatives of cases, or use K -means cluster to produce such representatives, and pass the
retrieval probability to a multi-layer perceptron (MLP) for classifying cases. That is, the model can
be represented as y = MLP(LayerNorm(sim(Z,x))), and this can be trained on a conventional
machine learning fashion by minimizing classification loss:

L(D) = Exy)~pl(y — 9)7] 9)

We no longer tune weights in adaptive memories using loss defined in Equation 5, as they can be
tuned using the classification loss when participanting into going forward in the network.

We tuned the hyperparameters by grid searching on the training data:

Table 6: Hyperparameters tuned in tabular classification

Name Domain
N_epoch {50, 100, 150, 200, 250}
batch_size {100, 1000}
1r {2-1073,1073%,5-107%,2-107*,107*}
init Cluster, No cluster

A.4.5 IMAGE CLASSIFICATION AND MULTIPLE INSTANCE LEARNING

For image classification, we follow the settings in Wu et al. (2024a), and place the adaptive similarity
to the Hopfield layer inside a image Transformer. For M-Hop and K—Hop, we use the hyperparame-
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ter suggested in Wu et al. (2024a), and find the optimal number of epoch and learning rate for A-Hop
via grid search. We run five iterations of separate loss optimization for A-Hop before testing.

Table 7: Hyperparameters tuned in image classification

Name Domain
N_epoch  {25,40,50}
1r {107%,107*}

For multiple instance learning, we follow the settings in Hu et al. (2023), and use
HopfieldPooling as the backbone. Similarly, we place the adaptive similarity in the core Hop-
field component replacing the fixed dot product. All experiments are run on a 5-fold validation, and
the ROC-AUC scored is taken as the mean of all folds.

Table 8: Hyperparameters tuned in multiple instance learning

Name Domain
N_epoch {10, 20, 40}
1r {1073,107%,107°}
lr_decay {0.9,0.75}

A.4.6 ABLATION STUDY

We conduct four different ablation studies to see the effective of different components.

In the first experiment (Table 9), we tested if sorting the dimension-wise similarity vector q and the

upper-right triangle matrix U is needed. The results shows that both of them are necessay for high
retrieval accuracy.

Table 9: Retrieval accuracy (1) and error (]) between unsorted and sorted q. Each cell contains the

mean accuracy or error with standard deviation in a smaller font. Results of the best-performing
model are bolded.

Conditions | Synthetic(d=0.4) |  Synthetic (d = 0.5)
q sorted? use U? ‘ Accuracy Error ‘ Accuracy Error
X X 5172+.034 .1900+.017 2094 + 022 .2658+.005
X v 5444+ 007 .1665+.007 .1888+.015 .2738+.003
v X .6928+.034 .1173+.010 .3374+.025 2324+ 006
v v 7280+.034 1033+ 011 3634+ 040 2207 +.011

Next, we look for a better matrix U (Table 10), which is the core of similarity measure. Our results
show that the upper-right triangle structure of U is optimal, while making U learnable and initialize
it with the upper-right triangle yields the best result, but we does not adopt learnable U in other
experiments to keep minimum learnable parameters. Another finding is that a randomized matrix U
is better than not having U (when U = I). Therefore, along with Table 9, we find that the footprint
structure is essential to adaptive similarities.
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Table 10: Retrieval accuracy (1) and error (]) between different configuration of U. Each cell
contains the mean accuracy or error with standard deviation in a smaller font. Results of the best-
performing model are bolded, and the second are underlined.

Conditions | Synthetic(d=0.4) |  Synthetic (d = 0.5)
U learnable? initialization? ‘ Accuracy Error ‘ Accuracy Error
X Random 6928+ 015 1147 + 005 .3340+.019 .2305+.005
X I .6802+.013 1194+ 004 .3458+.025 2298+ 008
X U 7242+ 016 .1056+.007 .3600+.024 2272 +.005
v Random 7176+.027 1087 +.007 3414+ 023 2292+ 006
v I 7114+ .019 .1096+.006 .3528+.021 .2270+.005
v U 7280+ 034 10334011 3634+ 040 2207 +.011

We also tested the effect of different footprint with different base similarity (see Table 11). Results
shows that two footprints (dis and dot) is always better than one alone, and we found that ftpt ;;,
performs better than ftpt,,, in this setting. However, even though retrieval accuracy degrades by re-
moving one of the footprint, using ftpty;, or ftpt,,, only is still better than other Hopfield networks.

Table 11: Retrieval accuracy (1) and error (J) between different usage of footprint. Each cell con-
tains the mean accuracy or error with standard deviation in a smaller font. Results of the best-
performing model are bolded.

Conditions | Synthetic(d=0.4) |  Synthetic (d = 0.5)

use ftpty;?  use ftpty,,? | Accuracy Error ‘ Accuracy Error

X v .5926+.016 1517 +.005 .2520+.027 2515+.004
v X 6458+ 042 A317+011 .3286+.023 2326007
v v 7242+ 016 .1056-+.007 .3600+.024 2272+ 005

Finally, we tested the number of samples needed for adaptive similarity to mimic the variant distri-

bution. It looks like training on only 512 samples provides a good enough adaptive similarity for
2048 64-dimension memory patterns.

Table 12: Retrieval accuracy (1) and error (|) between different number of samples provided for
learning. Each cell contains the mean accuracy or error with standard deviation in a smaller font.
Results of the best-performing model are bolded.

Conditions | Synthetic(d=0.4) |  Synthetic (d = 0.5)
number of samples? ‘ Accuracy Error ‘ Accuracy Error
512 7204+.029 .1077+.010 3541+.028 2311+.004
00 7242+ 016 1056+ 007 .3600-+.024 2272+ 005
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