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ABSTRACT

Message passing graph neural networks (GNNs) are known to have a limited ex-
pressiveness in distinguishing graphs. A recent approach tackles this problem by
transforming graphs to regular cell complexes. This makes it possible to model
higher-order structures and yields algorithms that are more powerful than the We-
isfeiler Leman test (WL) or GNNs. However, this approach cannot easily be com-
bined with previous graph algorithms and implementations due to their funda-
mental differences. We develop Cell Encoding, a novel approach of transforming
regular cell complexes to graphs. We show that cell encoding combined with
WL or a suitably expressive GNN is at least as expressive as Cellular Weisfeiler
Leman (CWL) in distinguishing cell complexes. This means that with a simple
preprocessing one can use any GNN for learning tasks on cell complexes. Addi-
tionally, we show that this approach can make GNNs more expressive and give
better results on graph classification datasets.

1 INTRODUCTION

Xu et al. (2019) and Morris et al. (2019) showed that message passing graph neural networks (GNNs)
have limited expressiveness in distinguishing graphs. They showed that any GNN can only distin-
guish two graphs if the Weisfeiler Leman test (WL) can distinguish them. This motivated the re-
search into provably more expressive GNNs. One approach for this is to extend the vertex features.
This can be done by adding random features (Dasoulas et al., 2020; Abboud et al., 2021; Sato et al.,
2021), subgraph counts (Bouritsas et al., 2020), or rooted subgraph homomorphism counts (Barceló
et al., 2021). Other methods change the way message passing is performed, such as higher order
GNNs (Morris et al., 2019), equivariant subgraph aggregation networks (Bevilacqua et al., 2021),
structural message-passing neural networks (Vignac et al., 2020), and CW Networks (Bodnar et al.,
2021a). The latter method is especially interesting as it changes the message passing scheme by
transforming a graph to a topological construct called a regular cell complex. They define Cellular
Weisfeiler Leman (CWL) a variant of WL that works on regular cell complexes, and an equiva-
lent of graph neural networks on regular cell complexes called CW Networks. Depending on the
transformation from graph to cell complex, these methods can have higher expressiveness and bet-
ter connectivity between nodes than WL or GNNs. Other algorithms that operate on regular cell
complexes are Simplicial Networks (Bodnar et al., 2021c), Simplical Neural Networks (Ebli et al.,
2020), Dist2Cycle (Keros et al., 2022), and Cell Complex Neural Networks (Hajij et al., 2020).

In this work, we present Cell Encoding an algorithm that can transform any regular cell complex to a
graph. We prove that this transformation combined with WL or a suitably expressive GNN is at least
as expressive as CWL and CW Networks in distinguishing regular cell complexes. This shows that
it is possible to perform message passing on graphs instead of the corresponding cell complexes. We
also use this approach to encode structural features as additional nodes, which corresponds to lifting
the graph to a cell complex and then transforming it back. Message passing in this modified graph
corresponds to message passing on the cell complex and can improve the expressiveness of GNNs1.
We show empirically that this approach improves the results of GNNs on graph classification tasks.

1Similar ideas are discussed in another paper at this workshop by Veličković (2022).
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2 CELLULAR WEISFEILER LEMAN

In this section, we introduce the concept of expressiveness and the necessary concepts of Bodnar
et al. (2021a) to understand message passing on regular cell complexes. For details we defer to to
Appendix A or Bodnar et al. (2021a). We say that algorithm A is at least as expressive as algorithm
B if A can distinguish every pair of graphs or cell complexes that B can distinguish. A is more
expressive than B if A is at least as expressive as B and can distinguish more pairs of graphs or cell
complexes than B.

Bodnar et al. (2021a) generalized the message passing paradigm from graphs to regular cell com-
plexes. Regular cell complexes generalize the simplical complexes used by Bodnar et al. (2021b).
A regular cell complex X is a topological space consisting of subspaces {Xσ}σ∈PX

called cells
together with an indexing set PX . This indexing set encodes all topological information about X
and can be used to define a boundary relation ≺ between cells. This boundary relation can then be
leveraged to define adjacencies between cells. Cellular Weisfeiler Leman (CWL) performs message
passing on cells. In each iteration of CWL the algorithm computes a colouring for each cell depend-
ing on the colours of neighbouring cells in the previous iteration. Similar to WL two regular cell
complexes are not isomorphic if at some iteration the colour histograms of all cells are different for
the two complexes.

To apply the concept of regular cell complexes to graphs, Bodnar et al. (2021a) define the concept
of a cellular lifting map, a function f that transforms a graph to a regular cell complex such that two
graphs G1, G2 are isomorphic if and only if f(G1), f(G2) are isomorphic. They prove that a class
of lifting maps called skeleton preserving lifting maps together with CWL are at least as expressive
as WL. Typically, such lifting maps create cells out of vertices, together with cells that encode
other structures such as induced cycles or cliques. Figure 1 shows an example of this, the original
graph (left) is turned into a cell complex (right) where the vertices are 0-dimensional cells, edges
are 1-dimensional cells, and cycles are 2-dimensional cells (blue). Bodnar et al. (2021a) define CW
Networks which combine neural networks with cellular message passing, similar to graph neural
networks with message passing. CW Networks can be made equally expressive as CWL. Thus, by
lifting graphs to cell complexes and then using a CW Network one can obtain algorithms that are
strictly more expressive than WL.

3 CELL ENCODING

Figure 1: A graph (left) and a cell
complex built from that graph.

We propose Cell Encoding, a novel algorithm that transforms
a regular cell complex X to a graph GX . A similar construc-
tion for a type of regular cell complexes called simplical com-
plexes is already known to the topology community (Grigor
et al., 2014). We show that cell encoding combined with WL
is at least as expressive as CWL in distinguishing regular cell
complexes. With this, we can perform message passing on
graphs instead of cell complexes while keeping the expressive-
ness guarantees from CWL. However, this approach is not lim-
ited to cell complexes obtained with a cellular lifting map. In-
deed, any cell complex can be transformed into a graph while
ensuring that WL is as expressive least as CWL.
Definition 1 (Cell Encoding). Given a regular cell complex
X with a finite indexing set PX , cell encoding transforms PX

into a graph GX = (VX , EX) with vertex features. Where

VX = PX ,

EX = {{τ, δ} | τ, δ ∈ PX , τ ≺ δ or δ ≺ τ} ∪ {{τ, δ} | ∃σ ∈ PX , τ ≺ σ, δ ≺ σ},
and the features of a vertex σ encode the dimension of cell σ.

Encoding the dimension of a cell in vertex features can be done via one-hot encoding and we use it
to distinguish between cells of different dimensions.
Theorem 2. Cell encoding together with WL is as least as expressive as CWL.
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Proof Sketch. (Full proof in Appendix B). We prove that every pair of vertices assigned the same
colour by WL imply that the underlying cells will be assigned the same colour by CWL. We show
this by induction on the iterations of CWL. The base case directly follows from the fact that graphs
obtained by applying CRE to a regular cell complex have the same number of vertices as the under-
lying cell complex has cells. In the induction step, the properties of a stable WL colouring together
with the vertex features encoding the dimension of cells means we can distinguish between vertices
that correspond to cells of different dimensions. This allows us to show that if cell encoding together
with WL cannot distinguish a pair of regular cell complexes then neither can CWL.

While cell encoding together with WL is as expressive as CWL, this does not mean that it yields
exactly the same result. For example, when CWL passes messages via higher dimensional cells, it
adds the colour of the higher dimensional cell to the message. This is not something covered by our
transformation and does not impact the expressiveness. However, this extra information might still
lead to different results.

4 CELLULAR RING ENCODING

In this section, we show that cell encoding can be used to build more expressive GNNs. Bodnar et al.
(2021a) present cellular lifting maps such as k-IC that when combined with CWL yield algorithms
strictly more expressive than WL. We focus on the lifting map k-IC that transforms every vertex,
edge and induced cycle of length up to k into a cell. Note that k ≥ 3 is a hyperparamter that needs
to be set separately. Combining k-IC with cell encoding gives us a transformation we call Cellular
Ring Encoding (CRE). CRE transforms a graph into another graph with vertex features. An example
of CRE can be seen in Figure 2.

Proposition 3. CRE together with WL is more expressive than WL.

Proof. k-IC has been shown to be strictly more expressive than WL when combined with CWL
(Bodnar et al., 2021a). By Theorem 2 it follows that combining CRE with WL is strictly more
expressive than just WL.

Furthermore, since the graph neural network GIN (Xu et al., 2019) can be made as expressive as
WL it follows that combining CRE with GIN is more expressive than WL.

5 EXPERIMENTS

Figure 2: A graph (left) and the re-
sult of applying Cellular Ring En-
coding on it (right). Gray filled
vertices correspond to cells that
were originally edges and the red
filled vertex to a cell that was a cy-
cle.

In this section, we investigate the performance of Cellular Ring
Encoding on graph classification datasets. The experiments2

are designed to determine whether Cellular Ring Encoding is
on par with the model CIN introduced in Bodnar et al. (2021a)
and current GNNs. Furthermore, we also investigate whether
Cellular Ring Encoding generally improves the empirical per-
formance of graph classification methods.

Similar to CIN (Bodnar et al., 2021a), we use GIN (Xu et al.,
2019) with Jumping Knowledge (Xu et al., 2018) as our model.
CIN performs message passing on cell complexes constructed
with the cellular lifting map k-IC. Analogously, we use Cellu-
lar Ring Encoding. The size k of the largest induced cycle to
lift will be tuned to the given datasets. For details about the
models we defer to Appendix C.1 and for details about hyper-
parameters we defer to Appendix C.4.

TUDataset. We perform two sets of experiments on datasets
from the TUDataset collection (Morris et al., 2020), the first
follows Xu et al. (2019) and the second follows Errica et al.

2Code can be found at https://github.com/ocatias/CellComplexesToGraphs
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Table 1: Accuracy on TUDataset graph classification tasks. Citations signify the source of the result.
N/A means that the authors did not evaluate their algorithm on the given dataset.

Method PROTEINS NCI1 NCI109

WL Kernel (Shervashidze et al., 2011) N/A 84.6 ± 0.4 84.5 ± 0.2
GIN (Xu et al., 2019) 76.2 ± 2.8 82.7 ± 1.6 N/A
PPGNs (Maron et al., 2019) 77.2 ± 4.7 83.2 ± 1.1 82.2 ± 1.4
GSN (Bouritsas et al., 2020) 76.6 ± 5.0 83.5 ± 2.0 N/A
CIN (Bodnar et al., 2021a) 77.0 ± 4.3 83.6 ± 1.4 84.0 ± 1.6

GIN + CRE 77.5 ± 3.9 84.0 ± 1.3 84.3 ± 1.5

Table 2: Ablation on NCI1
Method Accuracy

WL SP (1 iter) 76.6 ± 2.8
WL SP (2 iter) 78.9 ± 2.3
WL SP (1 iter) + CRE 78.8 ± 2.5
WL SP (2 iter) + CRE Out of RAM

WL ST 82.3 ± 1.5
WL ST + CRE 82.5 ± 1.5

GIN 81.5 ± 2.2
CIN 81.4 ± 2.2
GIN + CRE 82.4 ± 1.8

Table 3: ROC-AUC on ogb-molhiv. Citations sig-
nify the source of the result.

Method ROC-AUC

GIN + VN (Hu et al., 2020) 77.07 ± 1.49
GSN + GIN + VN (Bouritsas et al., 2020) 77.99 ± 1.00
GSN + DGN (Bouritsas et al., 2020) 80.39 ± 0.90
CIN (Bodnar et al., 2021a) 80.94 ± 0.57

GIN + VN + CRE 78.98 ± 1.53

(2020). In the first set of experiments we evaluate GIN + CRE
on NCI1, NCI109, and PROTEINS. These datasets consist of 1000 - 4000 graphs belonging to
one of two classes. These datasets were chosen as they are the largest commonly used molecular
datasets in the collection. We perform stratified 10-fold cross-validation and report the average and
standard deviation of the epoch with the highest validation accuracy. We use Bayesian optimization
to quickly find suitable parameters within less than 20 parameter combinations. Following Xu et al.
(2019) we report the result of the parameter configuration with the best validation accuracy. The
results can be found in Table 1. As expected, CRE improves the accuracy of GIN. Interestingly,
GIN + CRE achieves a higher accuracy than CIN on all three datasets.

This evaluation method can overestimate the performance of models. To get a more realistic un-
derstanding of the performance of Cellular Ring Encoding we do an ablation study by adapting an
experiment setup introduced by Errica et al. (2020). For this we perform stratified 10-fold cross
validation on the NCI1 dataset and ensure that hyperparameters are only selected on the training
set. More details can be found in Appendix C.2. We investigate three neural networks: GIN, GIN
with Cellular Ring Encoding and CIN. We also investigate the Weisfeiler-Leman Shortest Path (WL
SP) and Subtree Kernels (WL ST) using an SVM as the learning algorithm, with and without CRE.

The results can be found in Table 2. Combining GIN with with CRE improves the accuracy over
GIN. Interestingly, CRE does not improve WL ST but improves WL SP when restricting it to a
single iteration of the WL algorithm. It is surprising that in this setting CIN performs similarly to
GIN even though we would expect it to outperform GIN and achieve similar results as GIN + CRE.

ogb-molhiv. We evaluate GIN + CRE on the ogb-molhiv dataset (Hu et al., 2020). Results are
evaluated with the ROC-AUC score, according to Hu et al. (2020). ogb-molhiv provides a train,
validation and test split, allowing fair comparisons between different methods. Similar to Hu et al.
(2020) we extend our setup with a virtual node (VN), that is, a node that is connected to all nodes in
the graph. We train GIN + VN + CRE to see how much we can improve upon GIN + VN. We tune
the hypereparameters via Bayesian optimization on the validation set, and train a model with the
best parameters 10 times without setting a random seed. We report the mean and standard deviation
of the test ROC-AUC score in the epoch with the highest validation score in Table 3. Cell encoding
substantially improves over just GIN + VN, but does not manage to beat CIN.
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6 CONCLUSION

In this paper, we have shown that transforming any regular cell complex into a graph and applying
WL is at least as expressive as CWL on the cell complex. We can adapt any GNN to operate on reg-
ular cell complexes with a single line of code. Similarly, a simple preprocessing can make any GNN
with WL expressiveness (such as GIN) at least as expressive as cellular message passing. We have
demonstrated empirically that this approach can improve the performance on graph classification
datasets. A downside of the original cellular message passing and also our cell encoding is the po-
tentially large number of cells in a lifted graph. The reason is that cellular lifting maps create at least
a cell for every vertex and edge in the graph. This can lead to increased runtimes on larger graphs.
For a computational analysis of computing the cell complex we refer to Bodnar et al. (2021a).

We conclude by proposing a generalization of our ideas as future work. The idea behind cell en-
coding is creating vertices corresponding to structures in graphs or cells together with a feature that
gives more information about this structure. We have already shown that this approach can be used
to perform cellular message passing on graphs instead of regular cell complexes. A similar approach
could be used to encode subgraph (Bouritsas et al., 2020) or homomorphism patterns (Barceló et al.,
2021) as additional vertices. Finally, it is seems possible to emulate k-dimensional WL (Immerman
& Lander, 1990) using 1-WL on a transformed graph.
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A MORE DETAILS ABOUT CELLULAR WEISFEILER LEMAN

In this section we give an explanation of cellular lifting maps and the Cellular Weisfeiler Leman
algorithm. Note that all definitions are take from the cited sources with some additional details. We
use {{·}} to denote a multiset.
Definition 4 (Hansen & Ghrist, 2019, Bodnar et al., 2021a). A regular cell complex is a topological
space X together with an indexing set PX that defines a partition {Xσ}σ∈PX

of subspaces Xσ of
X called cells, such that

1. For each x ∈ X , every sufficiently small neighborhood of x intersects finitely many cells.

2. For all σ, τ ∈ PX we have that Xτ ∩Xσ ̸= ∅ only if Xτ ⊆ Xσ , where Xσ is the closure of
a cell.

3. Every cell Xσ is homeomorphic to Rnσ for some nσ ∈ N.

4. (Regularity) For every σ ∈ PX there is a homeomorphism ϕ of a closed ball in Rnσ to Xσ

such that the restriction of ϕ to the interior of the ball is a homeomorphism onto Xσ .

For the purpose of this paper we will assume that PX is finite. For every cell Xσ we call nσ the
dimension of the cell. This definition implies that the indexing set PX has poset structure defined
by τ ≤ σ iff Xτ ⊆ Xσ that encodes all topological information about X . From this Bodnar et al.
(2021a) define a boundary relation:
Definition 5 (Bodnar et al., 2021a). The boundary relation σ ≺ τ holds iff σ < τ and there is no
cell δ such that σ < δ < τ .

This boundary relation can then be leveraged to define adjacencies in regular cell complexes. Note,
that we simplify the definitions of Bodnar et al. (2021a) by applying their Theorem 7 to remove
adjacencies that do not improve the expressiveness of CWL.
Definition 6 (Bodnar et al., 2021a). For a regular cell complex X and a cell σ ∈ PX , we define:

1. The boundary adjacent cells B(σ) = {τ | τ ≺ σ}. These are the lower-dimensional cells
on the boundary of σ. For instance, the boundary cells of an edge are its vertices.

2. The co-boundary adjacent cell C(σ) = {τ | σ ≺ τ}. These are the higher-dimensional
cells with σ on their boundary. For instance, the co-boundary cells of a vertex are the
edges it is part of.

3. The upper adjacent cells N↑(σ) = {τ | ∃δ such that σ ≺ δ and τ ≺ δ}. These are the cells
of the same dimension as σ that are on the boundary of the same higher-dimensional cell
as σ. The typical graph adjacencies between vertices are the canonical example here.

Definition 7 (Bodnar et al., 2021a). For any cells σ, τ ∈ PX we define C(σ, τ) = C(σ) ∩ C(τ).

From this one can define how the adjacencies influence the colouring of a cell.
Definition 8 (Bodnar et al., 2021a). A cellular colouring is a map c that maps every cell of a regular
cell complex to a colour from a fixed colour palette.
Definition 9 (Bodnar et al., 2021a). Let c be a celulular colouring of X with cσ denoting the colour
assigned to cell σ ∈ PX . We define the following multi-sets of colours:

1. The colours of the boundary cells of σ : cB(σ) = {{cτ | τ ∈ B(σ)}}.

2. The upper adjacent colours of σ : c↑(σ) = {{(cτ , cδ) | τ ∈ N↑(σ) and δ ∈ C(σ, τ)}}.

Finally, we can define CWL a colour refinement scheme for regular cell comple analogously to
Bodnar et al. (2021a).

1. Given a regular cell complex X , all cells are initialised with the same colour.
2. Given the colour ctσ of cell σ at iteration t, we compute the colour of cell σ at the next

iteration ct+1
σ by injectively mapping the multi-sets of colours belonging to the adjacent

cells of σ using a perfect HASH function: ct+1
σ = HASH

(
ctσ, c

t
B(σ), c

t
↑(σ)

)
.
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3. The algorithm stops when a stable colouring is reached. Two cell complexes are considered
non-isomorphic if their colour histograms are different. Otherwise, the test is inconclusive.

To apply this algorithm to graphs one needs to lift a graph to a regular cell complex. To ensure that
the expressiveness of CWL is comparable with that of WL such a lifting operation needs to respect
isomorphisms.
Definition 10 (Bodnar et al., 2021a). A cellular lifting map is a function f : G → X from the space
of graphs G to the space of regular cell complexes X with the property that two graphs G1, G2 are
isomorphic iff the cell complexes f(G1), f(G2) are isomorphic.

Finally, Bodnar et al. show that a class of cellular lifting maps called skeleton preserving lifting maps
together with CWL are at least as expressive as WL. For this one first lifts the graph to a regular
cell complex with a skeleton preserving lifting map and then performs CWL on it. Then graphs can
be distinguished via their cellular colouring. There also exist skeleton preserving lifting maps that
when combined with CWL are strictly more expressive than WL.

B PROOF OF THEOREM 2

We give a proof of Theorem 2. We use {{·}} to denote a multiset and NG(v) to denote the neighbors
of vertex v in graph G.

Proof. Let PX , PY be the indexing sets of two regular cell complexes. Let GX and HY be the
graphs obtained by applying cell encoding to PX and PY . We use π to denote the stable colouring
obtained by WL and ct to denote the colour obtained by CWL after iteration t. Thus πσ denotes
the colours assigned to vertex σ by WL and ctσ denotes the colour assigned to cell σ by CWL. We
assume that WL with cell encoding cannot distinguish GX and HY . From this we show that for any
iteration t ≥ 0 of CWL it holds that:

For all τ ∈ V (GX), σ ∈ V (HY ) with πτ = πσ it holds that ctτ = ctσ.

Note that this is equivalent to showing that if WL with cell encoding cannot distinguish GX and
HY then CWL cannot distinguish PX and PY . This is because when WL with cell encoding cannot
distinguish GX and HY , then we know that for every vertex in GX there is a vertex in HY that
are assigned the same color by WL. The statement then implies that there is a bijective mapping
from cells of PX to PY such that they are assigned the same colour by CWL which means that the
histogram of colours is the same for both graphs. We show that this statement holds by induction on
the iteration t of CWL.

During the proof we will make use of the fact that π is a stable colouring. This means that if two
vertices p ∈ V (GX) and q ∈ V (HY ) are assigned the same colour πp = πq , then if WL is run
for another iteration they will still have the same colour. This implies that the multiset of colours of
neighbors of p is equivalent to the multiset of colours of neighbors of q. Thus, there exists a bijective
function α : NGX

(p) → NHY
(q) such that for any x ∈ NGX

(p) it holds that πx = πα(x).

Base case: We show that the statements hold for t = 0. CWL initializes all of its cells to the same
colour. Thus, all we need to show is that PX and PY have the same number of cells. The number
of vertices in GX and HY is equal to the number of cells in PX and PY , respectively. Since WL
cannot distinguish GX and HY we know that they must have the same number of vertices.

Induction hypothesis: We assume that the statements holds for t = n.

Induction step: We show that the statements hold for t = n + 1. Let τ ∈ V (GX), σ ∈ V (HY )
be arbitrary vertices with πτ = πσ . We need to show that cn+1

τ = cn+1
σ . By the definition of CWL

we know that cn+1
τ = HASH

(
cnτ , c

n
B(τ), c

n
↑ (τ)

)
and cn+1

σ = HASH
(
cnσ, c

n
B(σ), c

n
↑ (σ)

)
. We will

show that the inputs into the two hash functions are equal for cn+1
τ and cn+1

σ .

First, we show that cnτ = cnσ . This immediately follows from the assumption πτ = πσ and the
induction hypothesis.

Next, we want to show that cnB(τ) = cnB(σ). The assumption πτ = πσ implies that there exists a
bijective function α : NGX

(τ) → NHY
(σ) such that for any x ∈ NGX

(τ) it holds that πx = πα(x).

8
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Since the initial colours encode the dimensions of the cell, this function mus also respect the dimen-
sion of the cell meaning it only maps vertices to vertices whose cells have the same dimensions. This
implies that for every cell µ with µ ≺ τ we know that there exists a cell ν = α(µ) with ν ≺ σ such
that πµ = πν . With the induction hypothesis it follows that cnµ = cnν . Observe, that B(τ) contains
only cells µ with µ ≺ τ . Analogously, B(σ) contains cells ν with ν ≺ σ. Thus cnB(τ) = cnB(σ).

Finally, we need to show that cn↑ (τ) = cn↑ (σ). By definition we know that
cn↑ (τ) =

{{
(cnµ, c

n
δ ) | µ ∈ N↑(τ) and δ ∈ C(τ, µ)

}}
. We can rewrite this as cn↑ (τ) ={{

(cnµ, c
n
δ ) | τ ≺ δ and µ ≺ δ

}}
. We will make use of the bijective function α defined in the para-

graph above. We know that for any cell δ with τ ≺ δ there exists a vertex δ adjacent to τ such
that πδ = πα(δ). This implies two things: first by using the induction hypothesis we know that
cnδ = cnα(δ). Secondly, there exist a bijective function βδ : NGX

(δ) → NHY
(α(δ)) that has the

same properties as α. That is, for any x ∈ NGX
(δ) it holds that πx = πβδ(x).

We can now put all of this together. The existence of α means that for any cell δ with τ ≺ δ there is
a cell α(δ) ∈ PY such that cnδ = cnα(δ). Next, with the existence of βδ it follows that for each cell µ
with µ ≺ δ there exists a cell βδ(µ) ∈ PY such that cnµ = cnβδ(µ)

. With the fact that α and βδ(µ) are
bijective, it follows that cn↑ (τ) = cn↑ (σ). This proves the induction step and concludes the proof of
Theorem 2.

C EXPERIMENTAL DETAILS

The neural network models are implemented in Python with PyTorch (Paszke et al., 2019) and Py-
Torch Geometric (Fey & Lenssen, 2019). For kernel methods we used the GraKeL library (Siglidis
et al., 2020). The code to compute Cellular Ring Encoding is based on Bodnar et al. (2021a) and
uses graph-tool3 to compute induced cycles in the graphs. We used the sweep feature from Weights
& Biases4 to perform Bayesian optimization to tune the hyperparameters in all but the ablation
experiments.

All models except CIN were trained on systems with an NVIDIA GeForce RTX 3080 GPU, 64 GB
of RAM and an Intel i7-10700KF CPU or an Intel i9-11900KF CPU. CIN was trained on a system
with an NVIDIA GeForce GTX TITAN X GPU, 94 GB of RAM and an Intel Xeon X5680 CPU.

C.1 MODEL IMPLEMENTATIONS

Similar to Bodnar et al. (2021a) we implement a graph readout operation that makes better use of
CRE. Instead of summing up the representation of each node, we keep track whether a node came
from a node, an edge or a cycle in the original graph. Then we separately sum the representations
for these three types of nodes and apply a multilayer perceptron with a non linear activation function
to each of the three resulting representations. Finally, we sum up all three representations to obtain
a single vector that encodes an entire graph.

For experiments on the TUDatasets we use the implementation of GIN with Jumping Knowledge
from Bodnar et al. (2021a) that is mostly equivalent to the benchmark implentation from PyTorch
Geometric. Additionally, we add dimensional pooling to this model.

For experiments on ogb-molhiv we take the experimental setup from Hu et al. (2020) including
their implementation of GIN with Jumping Knowledge and a virtual node. We extend this setup by
adding Cellular Ring Encoding and extending the models with dimensional pooling.

C.2 DETAILS ON THE ABLATION SETUP

We perform stratified 10-fold cross validation on the NCI1 dataset to obtain tuples of training and
test sets. For the GNN methods, we split off 10% of the trainig set as a validation set, while ensuring
an equal class distribution. For each fold we tune the parameters on the training and validation set.
In total we test 20 randomly selected parameters per fold. Then we train a model with the selected

3https://graph-tool.skewed.de/
4https://wandb.ai/
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Table 4: Hyperparameters of GIN based methods

Hyperparameters Gin+CRE
PROTEINS, NCI1, NCI109

Gin+CRE
Ablation NCI1

Gin
Ablation NCI1

Gin+CR
ogb-molhiv

Epochs 350 350 350 100
Batch size 16, 32, 64, 128 16, 32, 64, 128 16, 32, 64, 128 32, 64, 128

Learning rate 1e-3, 1e-4, 5e-4,
1e-5

1e-3, 1e-4, 5e-4,
1e-5

1e-3, 1e-4, 5e-4,
1e-5

1e-2, 1e-3, 1-e4,
5e-4, 1e-5

Drop out rate 0, 0.1, 0.2, 0.3,
0.4, 0.5

0, 0.1, 0.2, 0.3,
0.4, 0.5

0, 0.1, 0.2, 0.3,
0.4, 0.5 0, 0.5

Number of layers 2,3,4,5 2,3,4,5 2,3,4,5 2, 3, 4, 5
LR decay steps 5, 10, 20, 30, 40, 50 5, 10, 20, 30, 40, 50 5, 10, 20, 30, 40, 50 50
LR decay rate 0.25, 0.5, 0.9, 0.99 0.25, 0.5, 0.9, 0.99 0.25, 0.5, 0.9, 0.99 0.5

Embedding dimension 64 32, 64 32, 64 32, 64, 128, 300,
512, 1024

Max Ring Size 6, 8, 10 6, 8, 10 N/A 6, 8, 18
Aggr. edge features N/A N/A N/A True, False
Aggr. vertex features True, False True, False N/A True, False
Explicit pattern encoding (EPE) True, False True, False N/A True, False
Edge features in vertices N/A N/A N/A True, False
Dimensional pooling Coupled to EPE Coupled to EPE N/A True, False

parameters on the training set with early stopping on the validation set and evaluate it on the test
set, we do this three times for each fold to smooth out non-deterministic behaviour in the training
process.

For the kernel methods we do not split off a validation set. Instead we train on the entire training
set and select the parameter configuration with the highest training accuracy, in total we try up to 20
random parameter configurations per fold depending on the size of the parameter grid. We evaluate
on the test set and report the average accuracy and standard deviation over all folds.

C.3 DETAILS ON CELLULAR RING ENCODING

Cellular Ring Encoding One-Hot encodes the dimension of cells. This means for every vertex that
corresponds to a 0-dimensional cell the vector (1, 0, 0) will be added to the vertex features. For 1-
dimensional and 2-dimensional the vectors (0, 1, 0) and (0, 0, 1) will be added to the vertex features,
respectively. We call this explicit pattern encoding. While this is necessary for the expressiveness
guarantees of Theorem 2 it can also be turned of.

Additionally, we implement the option to collect vertex features into newly created vertices by Cel-
lular Ring Encoding. Intuitively, if CRE adds a new vertex that corresponds to an edge {p, q} in
the graph than the newly created vertex will have the average of p and q. This feature is called
aggr. vertex features in the following section. Finally, we developed two different ways for CRE to
interact with edge features. Edge features in vertices appends the average edge feature of a vertex to
its features. This allows GNNs that normally cannot use edge features to use them. Aggregate edge
features sets newly created edges by CRE to have the average edge features of the edge that created
that edge. For example, if {p, q} is an edge then CRE will create a vertex that corresponds to this
edge. This new vertex will be adjacent to both p and q. Then the aggregate edge features will ensure
that these newly created edges have the same features as {p, q}.

C.4 HYPERPARAMETER

We present all used hyperparameter configurations in Tables 4, 5 and 6. The top part of the table
contains model specific hyperparamters and the bottom part contains CRE specific hyperparameters.
More information about the CRE specific hyperparamters can be found in Appendix C.3. As the used
TUDatasets do not provide edge features the parameters “aggr. edge features” and “edge features in
vertices” are irrelevant to those experiments. Additionally, for GIN + CRE on TUDatasets we couple
the use of dimensional pooling to the “Explicit pattern encoding” parameter meaning dimensional
pooling will be used if “Explicit pattern encoding” is set to true. For GIN + CRE on ogb-molhiv
dimensional pooling is a separately tuneable parameter.
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Table 5: Hyperparameters of kernel methods in the ablation on NCI1

Hyperparameters WL SP
(1 iter)

WL SP
(2 iter)

WL SP + CRE
(1 iter)

WL SP + CRE
(2 iter) WL ST + CRE WL ST + CRE

WL Iterations 1 1, 2 1 1, 2 1, 2, 3, 4, 5, 10 1, 2, 3, 4, 5, 10

Max Ring Size N/A N/A 6, 8, 10 6, 8, 10 N/A 6, 8, 10
Aggr. vertex features N/A N/A True, False True, False N/A True, False
Explicit pattern encoding N/A N/A True, False True, False N/A True, False

Table 6: Hyperparameters of CIN in the ablation on NCI1
Hyperparameters CIN

Epochs 150
Batch size 32, 128
Drop position lin2, final readout, lin1
Drop rate 0.0, 0.5
Embedding dim. 16, 32, 64
Init method sum, mean
Learning rate 5e-4, 1e-3, 3e-3, 1e-2
LR decay rate 0.5, 0.9
LR decay steps 50, 20
Use coboundaries True, False
Number of layers 3 ,4

11


	Introduction
	Cellular Weisfeiler Leman
	Cell Encoding
	Cellular Ring Encoding
	Experiments
	Conclusion
	More Details About Cellular Weisfeiler Leman
	Proof of Theorem 2
	Experimental Details
	Model Implementations
	Details on the Ablation Setup
	Details on Cellular Ring Encoding
	Hyperparameter


