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ABSTRACT

In safety-critical applications of machine learning, it is often desirable for a model
to be conservative, abstaining from making predictions on “unknown" inputs which
are not well-represented in the training data. However, detecting unknown examples
is challenging, as it is impossible to anticipate all potential inputs at test time. To
address this, prior work (Hendrycks et al., 2018) minimizes model confidence
on an auxiliary outlier dataset carefully curated to be disjoint from the training
distribution. We theoretically analyze the choice of auxiliary dataset for confidence
minimization, revealing two actionable insights: (1) if the auxiliary set contains
unknown examples similar to those seen at test time, confidence minimization
leads to provable detection of unknown test examples, and (2) if the first condition
is satisfied, it is unnecessary to filter out known examples for out-of-distribution
(OOD) detection. Motivated by these guidelines, we propose the Data-Driven
Confidence Minimization (DCM) framework, which minimizes confidence on an
uncertainty dataset. We apply DCM to two problem settings in which conservative
prediction is paramount – selective classification and OOD detection – and provide
a realistic way to gather uncertainty data for each setting. Our experiments show
that DCM consistently outperforms existing selective classification approaches on
4 datasets when tested on unseen distributions and outperforms state-of-the-art
OOD detection methods on 12 ID-OOD dataset pairs, reducing FPR (at TPR 95%)
by 6.3% and 58.1% on CIFAR-10 and CIFAR-100 compared to Outlier Exposure.

1 INTRODUCTION

Figure 1: Visual overview of data-driven
confidence minimization (DCM), a frame-
work for training a model to make conserva-
tive predictions. DCM incorporates a regu-
larizer that minimizes confidence on an unla-
beled mixture of known and unknown exam-
ples that are similar to those seen at test-time.

While deep neural networks have demonstrated remark-
able performance on many tasks, they often fail unexpect-
edly (Simonyan & Zisserman, 2014; Zhang et al., 2017).
In safety-critical domains such as healthcare, such errors
may prevent the deployment of machine learning alto-
gether. For example, a tumor detection model that is
trained on histopathological images from one hospital may
perform poorly when deployed in other hospitals due to dif-
ferences in data collection methods or patient population
(Koh et al., 2021). In these scenarios, it may be preferable
to defer to a human expert. Conservative models—models
that can refrain from making predictions when they are
likely to make an error—may offer a solution.

Two fields of research aim to produce conservative mod-
els: selective classification (Liu et al., 2019; Kamath
et al., 2020; Huang et al., 2020) and out-of-distribution
(OOD) detection (Hendrycks & Gimpel, 2016; Liang
et al., 2017b; Lee et al., 2018; Liu et al., 2020). In both problem settings, inputs can be seen as belong-
ing to one of two high-level categories: known and unknown examples. Known examples are inputs
that are well-represented in the training distribution. Unknown examples include inputs belonging to
a new class not seen during training (OOD detection), and misclassified inputs insufficiently covered
by the training distribution (selective classification). Despite considerable research in these areas, the
problem of learning a conservative model remains challenging. As the test distribution can vary in a
myriad of ways, it is impractical to anticipate the exact examples that will arise at test time.
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A promising approach to OOD detection is Outlier Exposure (Hendrycks et al., 2018), which fine-
tunes a pretrained model with a combined objective of standard cross-entropy on training examples
and a regularizer that minimizes confidence on an auxiliary dataset, carefully curated to be distinct
from the training distribution. Unlabeled auxiliary data is often readily available, making it an
effective way of exposing the model to the types of unknown inputs it may encounter at test time.

Contrary to Outlier Exposure, which minimizes confidence on a specific choice of auxiliary dataset,
we aim to better understand a broader class of approaches that minimize confidence on an uncertainty
dataset and are applicable to both selective classification and OOD detection. Our theoretical analysis
reveals two key guidelines for creating an effective uncertainty dataset. First, it should contain
unknown examples that the model is likely to encounter and misclassify at test-time. Second, in the
setting of OOD detection, if the first criteria holds, then the uncertainty set can also contain known
examples, eliminating the need to filter out known examples as required by Hendrycks et al. (2018).
In other words, it can be harmless to minimize confidence on known examples, which the model
should be confident about. Our theory explains this counter-intuitive phenomenon: the effect of
confidence minimization on known examples in the uncertainty set is “cancelled out” by the cross
entropy loss on training examples, while the confidence loss on unknown examples in the uncertainty
set is not. We show that using such an uncertainty set provably detects unknown inputs under mild
assumptions.

Building on these insights, we present Data-Driven Confidence Minimization (DCM) as a unified
approach for conservative prediction in selective classification and OOD detection. For each problem
setting, we propose a realistic and effective way to construct the uncertainty dataset that follows the
two guidelines above. For selective classification, we use misclassified examples from a held-out
validation set from the training distribution as the uncertainty dataset, which naturally reflects what
the model is likely to misclassify at test time. For OOD detection, we use an uncertainty dataset
consisting of unlabeled examples from the test distribution, which includes both known and unknown
examples. While it’s not always the case that unlabeled examples from the test distribution are
available, there are a number of real world applications where this is the case, such as unannotated
medical data from a new hospital (Sagawa et al., 2021). We visualize the DCM framework in Figure 1.

We empirically verify our approach through experiments on several standard benchmarks for selective
classification and OOD detection demonstrate the effectiveness of DCM. In selective classification,
DCM consistently outperforms 6 representative approaches in conditions of distribution shift by
2.3% across 4 distribution-shift datasets. DCM also outperforms an ensemble of 5 models on 3 out
of 4 datasets in AUROC, despite the 5× difference in computational cost. In the OOD detection
setting, among other methods, we provide a comparison with Outlier Exposure (Hendrycks et al.,
2018), allowing us to test our choice of uncertainty dataset. DCM consistently outperforms Outlier
Exposure on a benchmark of 8 ID-OOD distribution pairs, reducing FPR (at TPR 95%) by 6.3%
and 58.1% on CIFAR-10 and CIFAR-100, respectively. DCM also shows strong performance in
challenging near-OOD detection settings, achieving 1.89% and 2.94% higher AUROC compared to
the state-of-the-art.

2 PROBLEM SETUP

We consider two problem settings that test a model’s ability to determine if its prediction is trustworthy:
selective classification and out-of-distribution (OOD) detection. In both settings, a model may
encounter known or unknown examples at test time. Known examples are inputs that are well-
represented in the training distribution; unknown examples are not.

We denote the input and label spaces as X and Y , respectively, and assume that the training dataset
Dtr contains known examples. In selective classification, all inputs have a ground-truth label within
Y , but the model may make errors due to overfitting or insufficient coverage in the training dataset
Dtr. In this setting, known examples are inputs that are correctly classified by the model and unknown
examples are inputs which are misclassified. In out-of-distribution detection, the model may encounter
inputs at test time that belong to a new class not in its training label space Y . In this setting, known
examples are those from the training input space X , and unknown examples are inputs from novel
classes. We first describe these problem settings in Section 2.1 and Section 2.2. In Section 3, we
present two instantiations of DCM for selective classification and OOD detection.

2



Under review as a conference paper at ICLR 2024

2.1 SELECTIVE CLASSIFICATION

Selective classification aims to produce a model that can abstain from making predictions on unknown
examples at test time. Such “rejected” inputs are typically ones that the model is most uncertain
about. A model is first trained on Dtr and then tested on examples that have associated ground-truth
labels in the training label space Y . Thus, while a perfect model trained on Dtr should correctly
classify all test inputs, models often make errors on new examples due to over-fitting Dtr. As in prior
work, we assume access to a labeled validation dataset Dval sampled from PID, which the model can
use to calibrate its predictive confidence. This validation set can be easily constructed by randomly
partitioning a training dataset into training and validation splits.

Models are evaluated on their ability to (1) accurately classify the inputs they do make a prediction
on (i.e., accuracy), while (2) rejecting as few inputs as possible (i.e., coverage). We evaluate these
capabilities through metrics such as ECE, AUC, Acc@Cov, Cov@Acc. Section 6 describes these
metrics and the datasets we use.

2.2 OUT-OF-DISTRIBUTION DETECTION

Out-of-distribution detection aims to distinguish between known and unknown examples at test time.
We denote the ID distribution with PID, and the OOD distribution with POOD. The test dataset is a
mixture of known and unknown examples, sampled from a mixture of the ID and OOD distributions
αtestPID + (1− αtest)POOD, where the mixture coefficient αtest is not known in advance. Given a test
input x, the model produces both a label prediction and a measure of confidence that should be higher
for inputs that are known, or ID, than inputs that are unknown, or OOD. Due to differences in the data
distributions PID and POOD, a model trained solely to minimize loss on Dtr may be overconfident on
unknown inputs. To address this challenge, we use an additional unlabeled dataset Du which includes
both known and unknown examples. Du is sampled from a mixture of PID and POOD, where the
mixture ratio αu is unknown to the model and can differ from αtest. The unlabeled dataset partially
informs the model about the directions of variation it may face at test time.

Models are evaluated on (1) their accuracy in classifying known examples, and (2) their capability to
detect unknown examples. These are measured by metrics such as FPR@TPR, AUROC, AUPR, and
ID Accuracy. Section 6 describes these metrics and the ID-OOD dataset pairs we use.

3 DATA-DRIVEN CONFIDENCE MINIMIZATION

We aim to produce a model that achieves high accuracy on the training data Dtr, while having a
predictive confidence that reflects the extent to which its prediction can be trusted. The crux of DCM
is to introduce a regularizer that minimizes confidence on an auxiliary dataset that is disjoint from the
training dataset. We refer to this auxiliary dataset as the uncertainty dataset, since it is intended to at
least partly consist of examples that the model should have low confidence on.

In DCM, we first pre-train a model f : X → P(Y) on the labeled training set using the standard
cross-entropy loss, as in prior works (Hendrycks et al., 2018; Liu et al., 2020):

Lxent(f,Dtr) = E
(x,y)∼Dtr

[− log f(y;x)] . (1)

A model trained solely with this loss can suffer from overconfidence on unknown examples. We
therefore continue to fine-tune this model on known examples, but simultaneously regularize to
minimize the model’s predictive confidence on an uncertainty dataset, which includes unknown
examples. Specifically, we minimize cross-entropy loss on a fine-tuning dataset of known examples
that includes the original training data (Dtr ⊆ Dft). Our additional regularizer minimizes confidence
on the uncertainty dataset Dunc:

Lconf(f,Dunc) = E
x′∼Dunc

[− log f(yu;x
′)] . (2)

Here, yu is a uniform target that assigns equal probability to all labels. The confidence loss Lconf is
equivalent to the KL divergence between the predicted probabilities and the uniform distribution U .
Our final objective is a weighted sum of the fine-tuning and confidence losses:

Lxent(f,Dft) + λLconf(f,Dunc), (3)

where λ is a hyperparameter that controls the relative weight of the confidence loss term. We find
that λ = 0.5 works well in practice and use this value in all experiments unless otherwise specified.
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Algorithm 1 DCM for Selective Classification
Input: Training data Dtr, Validation data Dval,
Hyperparameter λ

Initialize weights θ ← θ0
while Not converged do

Sample mini-batch Btr ∼ Dtr
Update θ using∇θLxent(Btr, f)

end while
Get correct set D◦

val ← {(x, y) ∈ Dval | fθ(x) = y}
Get error set D×

val ← {(x, y) ∈ Dval | fθ(x) ̸= y}
while Not converged do

Sample mini-batches Btr ∼ Dtr ∪D◦
val, B

×
val ∼ D×

val
Update θ using∇θLxent(Btr, f) + λLconf(B

×
val, f)

end while

Algorithm 2 DCM for OOD Detection
Input: Training data Dtr, Unlabeled data Du,
Hyperparameter λ

Initialize weights θ ← θ0
while Not converged do

Sample mini-batch Btr ∼ Dtr
Update θ using∇θLxent(f,Btr)

end while
while Not converged do

Sample mini-batches Btr ∼ Dtr, Bu ∼ Du
Update θ using∇θLxent(f,Btr)+λLconf(f,Bu)

end while

Further details, such as fine-tuning duration and the number of samples in Dft and Dunc, are described
in Appendix C.

The two instantiations of DCM for OOD detection and selective classification differ only in their
construction of Dft and Dunc, as we will describe in Section 3.2 and Section 3.1.
3.1 DCM FOR SELECTIVE CLASSIFICATION

We aim to produce a model that achieves high accuracy while having low confidence on inputs that it
is likely to misclassify. We expect the incorrect predictions of a model f pretrained on Dtr to reflect
its failure modes. Recall from Section 2.1 that we assume a held-out validation set Dval ∼ PID. To
better calibrate its predictive confidence, we compare our pre-trained model’s predictions for inputs
in Dval to their ground-truth labels, and obtain the set of correct and misclassified validation examples
D◦

val, D
×
val. In this setting, the unknown examples are the misclassified examples D×

val, since they
show where the model’s learned decision boundary is incorrect.

We set the fine-tuning dataset to be the union of the training dataset and the correctly-classified vali-
dation examples (Dft = Dtr ∪D◦

val), and use the misclassified validation examples as the uncertainty
dataset (Dunc = D×

val). By only minimizing confidence on the misclassified examples, we expect the
model to have lower confidence on all examples similar to inputs which initially produced errors. We
outline our approach in Algorithm 1.
3.2 DCM FOR OUT-OF-DISTRIBUTION DETECTION

We aim to produce a model that has low confidence on unknown inputs from the OOD distribution
POOD, while achieving high accuracy on known inputs from the ID distribution PID. Recall from
Section 2.2 that our problem setting assumes access to an unlabeled dataset Du, which includes both
ID and OOD inputs: we use this unlabeled set as the uncertainty dataset for reducing confidence
(Dunc = Du). Intuitively, minimizing confidence on Du discourages the model from making overly
confident predictions on the support of the uncertainty dataset.

We minimize confidence on all inputs in Du because it is not known a priori which inputs are ID
versus OOD, or in our terminology, known versus unknown. While we do not necessarily want to
minimize confidence on known inputs, confidence minimization is expected to have different effects
on known and unknown inputs because of its interaction with the original cross-entropy loss. On
known inputs, the effect of confidence minimization is “cancelled out” by the cross-entropy loss,
which maximizes the log likelihood of the true label, thus increasing the predictive confidence for
that input. However, on unknown inputs, the loss is solely confidence minimization, which forces the
model to have low confidence on such inputs. This allows DCM to differentiate between the ID and
OOD data distributions based on predictive confidence. We will formalize this intuition in Section 4.
In summary, in OOD detection, the fine-tuning dataset is the training dataset (Dft = Dtr), and the
uncertainty dataset is the unlabeled dataset (Dunc = Du). We outline our approach in Algorithm 2.
4 ANALYSIS
We now theoretically analyze the effect of the DCM objective on known and unknown inputs. We
first show that for all test examples, the prediction confidence of DCM is a lower bound on the true
confidence (Proposition 4.1). Using this property, we then demonstrate that DCM can provably detect
unknown examples similar to those in the uncertainty set with an appropriate threshold on predicted
confidence (Proposition 4.2). Detailed statements and proofs can be found in Appendix A.

We denote the true label distribution of input x as pD(x); this distribution need not be a point mass
on a single label. We further denote the maximum softmax probability of any distribution p as
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MSP(p) ≜ maxi pi, and denote by fλ(x) the predictive distribution of the model that minimizes
the expectation of our objective (3) with respect to the data distribution y ∼ pD(x) for input x.
Intuitively, the confidence minimization term in our objective function (3) forces the model to output
low-confidence predictions on all datapoints, resulting in a more conservative model compared to
one without this term. We formalize this intuition in the following proposition which relates the
maximum softmax probabilities of fλ and pD.
Proposition 4.1 (Lower bound on true confidence). For any input x in Du or Dtr, the optimal
predictive distribution fλ satisfies MSP(fλ) ≤ MSP(pD), with equality if and only if λ = 0.

We note that this proposition only assumes a sufficiently expressive model class (which large neural
networks often are).

Now we restrict ourselves to using an unlabeled mixture of known and unknown examples, Du, as the
uncertainty set. Beyond serving as a lower bound on the true confidence, the optimum distribution pλ
shows how the model, after being fine-tuned to minimize confidence on the unlabeled dataset Du,
behaves differently for known and unknown data despite Du containing both. We denote the subset of
known examples in Du as Dtest

k , the unknown subset as Dtest
unk, and the δ-neighborhoods of these two

sets as Dδ
k, D

δ
unk; we give a precise definition in Appendix A. For ID inputs, the optimal predictive

distribution pλ is determined by the weighted sum of the cross-entropy loss and the confidence loss,
resulting in a mixture between the true label distribution p and the uniform distribution U , with
mixture weight λ. On the other hand, for unknown inputs, the confidence loss is the only loss term,
thus the optimal predictive distribution pλ is the uniform distribution U . This distinct behavior allows
for the detection of unknown inputs by thresholding the confidence of the model’s predictions, as
formalized in the following proposition.
Proposition 4.2 (Low loss implies separation). Assume Dδ

k and Dδ
unk are disjoint, and that each

input x has only one ground-truth label, i.e., no label noise. Denote the lowest achievable loss for
the objective 3 with λ > 0 as L0. Under a mild smoothness assumption on the learned function fθ,
there exists ϵ, δ > 0 such that L(θ) − L0 < ϵ implies the following relationship between the max
probabilities:

inf
x∈Dδ

k

MSP(fθ(x)) > sup
x∈Dδ

unk

MSP(fθ(x)). (4)

The detailed smoothness assumption, along with all proofs, can be found in Appendix A. This
proposition implies that by minimizing the DCM objective (3), we can provably separate out known
and unknown data with an appropriate threshold on the maximum softmax probability. We note that
DCM optimizes a lower bound on confidence, rather than trying to be perfectly calibrated: this easier
requirement is arguably better suited for problem settings in which the model abstains from making
predictions such as OOD detection and selective classification.

Practical implications. Our theory suggests the following guidelines. First, the uncertainty dataset
should include some unknown examples. Second, if this is true, it is unnecessary to filter out known
examples for OOD detection. Under these conditions, DCM provably detects unknown examples.

5 RELATED WORK

Selective classification. Prior works have studied selective classification for many model classes
including SVM, boosting, and nearest neighbors (Hellman, 1970; Fumera & Roli, 2002; Cortes et al.,
2016). Because deep neural networks generalize well but are often overconfident (Guo et al., 2017;
Nixon et al., 2019), mitigating such overconfidence using selective classification while preserving its
generalization properties is an important capability (Geifman & El-Yaniv, 2017; Corbière et al., 2019;
Feng et al., 2019; Kamath et al., 2020; Fisch et al., 2022). Existing methods for learning conservative
neural networks rely on additional assumptions such as pseudo-labeling (Chan et al., 2020), multiple
distinct validation sets (Gangrade et al., 2021), or adversarial OOD examples (Setlur et al., 2022).
While minimizing the confidence of a set that includes OOD inputs has been shown to result in a more
conservative model in the offline reinforcement learning setting (Kumar et al., 2020), this approach
has not been validated in a supervised learning setting. DCM only requires a small validation set, and
our experiments in Section 6 show that it performs competitively with state-of-the-art methods for
selective classification, especially in the more challenging setting of distribution shift.

Out-of-distribution detection. Many existing methods for OOD detection use a criterion based on
the activations or predictions of a model trained on ID data (Bendale & Boult, 2016; Hendrycks &
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Gimpel, 2016; Liang et al., 2017a; Lee et al., 2018; Wei et al., 2022; Sun et al., 2022). However,
the performance of these methods are often inconsistent across different ID-OOD dataset pairs,
suggesting that the OOD detection problem is ill-defined (Tajwar et al., 2021). Indeed, a separate
line of work incorporates auxiliary data into the OOD detection setting; this dataset may consist
of natural (Hendrycks et al., 2018; Liu et al., 2020; Mohseni et al., 2020; Ţifrea et al., 2020; Chen
et al., 2021; Katz-Samuels et al., 2022; Narasimhan et al., 2023) or synthetic (Lee et al., 2017;
Du et al., 2022b) data. Similar to our method, Hendrycks et al. (2018) minimize confidence on
an auxiliary dataset, but do so on a single auxiliary dataset of known outliers, regardless of the
ID and OOD distributions, that is over 10, 000 times the size of those used by DCM. Our method
leverages an uncertainty dataset which contains a mix of ID and OOD data from the test distribution,
as in Ţifrea et al. (2020). However, their method requires an ensemble of models to measure
disagreement, while DCM uses a single model. We additionally present theoretical results showing
the benefit of minimizing confidence on an uncertainty dataset that includes inputs from the OOD
distribution. Our experiments confirm our theory, showing that this transductive setting results in
substantial performance gains, even when the unlabeled set is a mixture of ID and OOD data. Our data
assumptions are also shared by WOODS (Katz-Samuels et al., 2022), which leverages an auxiliary
dataset containing ID and OOD examples. However, WOODS solves a constrained optimization
problem to maximize OOD detection rate while keeping ID classification and OOD error rate of ID
examples low, which requires several additional hyperparameters compared to DCM, which uses
confidence minimization.

6 EXPERIMENTS

We evaluate the effectiveness of DCM for selective classification and OOD detection using several
image classification datasets. Our goal is to empirically answer the following questions: (1) How
does the data-driven confidence minimization loss affect the predictive confidence of the final model,
and what role does the distribution of the uncertainty data play? (2) Does confidence minimization
on the uncertainty dataset result in better calibration? (3) How does DCM compare to state-of-the-art
methods for OOD detection and selective classification?

Metrics. Recall that the selective classification problem involves a binary classification task to
predict whether the model will misclassify a given example, in addition to the main classification task.
Similarly, the OOD detection problem involves two classification tasks: (1) a binary classification task
to predict whether each example is ID or OOD, and (2) the main classification task of predicting labels
of images. To ensure a comprehensive evaluation, we consider multiple metrics, each measuring
the two key aspects of performance. We group the metrics below by their relevance to the selective
classification (SC) or OOD detection (D) setting. These metrics are defined in detail in Appendix B:

1. ECE (SC): expected difference between confidence and accuracy, i.e., E[|p(ŷ = y | p̂ = p)− p|].
2. AUC (SC): area under the curve of selective classification accuracy vs coverage.
3. Acc@Cov (SC): average accuracy on the Cov% datapoints with highest confidence.
4. Cov@Acc (SC): largest fraction of data for which selective accuracy is above Acc.
5. FPR@TPR (D): probability that an ID input is misclassified as OOD, given true positive rate TPR.
6. AUROC (D): area under the receiver operator curve of the binary ID/OOD classification task.
7. AUPR (D): area under the precision-recall curve of the binary ID/OOD classification task.

6.1 SELECTIVE CLASSIFICATION

We assess the capability of models fine-tuned with DCM to abstain from making incorrect predictions.
We evaluate on several toy and real-world image classification datasets that exhibit distribution shift.

Datasets. We evaluate selective classification performance on CIFAR-10 Krizhevsky et al. (a) and
CIFAR-10-C Hendrycks & Dietterich (2019), Waterbirds Sagawa et al. (2019); Wah et al. (2011),
Camelyon17 Koh et al. (2021), and FMoW Koh et al. (2021). These datasets were chosen to evaluate
selective classification performance in the presence of diverse distribution shifts: corrupted inputs in
CIFAR-10-C, spurious correlations in Waterbirds, and new domains in Camelyon17 and FMoW.

The ID/OOD/ID+OOD settings are constructed as follows. For CIFAR-10, the ID dataset is CIFAR-
10, the OOD dataset is CIFAR-10-C, and the ID+OOD dataset is a 50-50 mix of the two datasets. For
Waterbirds, the ID dataset is the training split and the OOD dataset is a group-balanced validation set;
we do not consider an ID+OOD dataset here. For Camelyon17, the ID dataset consists of images
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CIFAR-10 Waterbirds Camelyon17 FMoW

Setting Method Acc@90 (↑) AUC (↑) Acc@90 (↑) AUC (↑) Acc@90 (↑) AUC (↑) Acc@90 (↑) AUC (↑)

ID

Ensemble (×5) 98.4 (0.1)* 99.3 (0.1)* 98.9 (0.0)* 98.7 (0.0)* 96.8 (5.9)* 99.1 (2.7)* 68.4 (0.1)* 85.5 (0.0)*
MSP 98.4 (0.1) 99.3 (0.1) 99.1 (0.0) 98.7 (0.0) 92.0 (5.9) 96.9 (2.2) 62.6 (0.1) 81.3 (0.4)
MaxLogit 97.9 (0.1) 98.9 (0.1) 97.2 (0.0) 98.6 (0.0) 92.2 (5.8) 97.0 (2.2) 62.7 (0.2) 80.1 (0.2)
Binary Classifier 98.4 (0.1) 99.3 (0.1) 99.1 (0.0) 98.7 (0.0) 92.3 (5.9) 97.0 (4.5) 64.3 (0.1) 82.3 (0.3)
Fine-Tuning 99.1 (0.2) 99.6 (0.1) 99.4 (0.0) 98.7 (0.0) 99.7 (0.0) 99.8 (0.0) 64.0 (1.2) 82.8 (0.9)
Deep Gamblers 97.4 (0.1) 99.0 (0.0) 98.8 (0.1) 98.5 (0.0) 99.6 (0.1) 99.8 (0.0) 62.4 (0.9) 75.8 (0.2)
Self-Adaptive Training 97.6 (0.1) 99.2 (0.0) 99.1 (0.1) 98.6 (0.0) 99.7 (0.0) 99.8 (0.0) 63.0 (0.5) 81.1 (0.3)
DCM (ours) 98.0 (0.2) 99.2 (0.0) 99.2 (0.0) 98.7 (0.0) 98.6 (0.2) 99.5 (0.1) 64.2 (1.2) 82.9 (1.1)

ID
+
OOD

Ensemble (×5) 80.6 (0.1)* 92.6 (0.1)* – – 78.1 (4.8)* 85.8 (3.7)* 61.2 (0.0)* 81.7 (0.0)*
MSP 80.3 (0.1) 92.6 (0.1) – – 74.1 (5.1) 72.2 (4.8) 57.9 (0.1) 77.1 (0.5)
MaxLogit 80.4 (0.0) 91.7 (0.0) – – 74.2 (5.1) 85.8 (3.7) 57.8 (0.1) 75.8 (0.1)
Binary Classifier 80.3 (0.1) 92.5 (0.1) – – 74.4 (5.0) 86.2 (3.3) 59.3 (0.0) 78.0 (0.4)
Fine-Tuning 81.3 (0.1) 93.4 (0.1) – – 79.8 (3.5) 77.6 (3.3) 58.6 (1.2) 78.6 (0.8)
Deep Gamblers 81.0 (0.0) 93.0 (0.1) – – 77.2 (6.5) 88.1 (4.1) 57.5 (0.3) 71.6 (0.2)
Self-Adaptive Training 81.1 (0.0) 93.3 (0.0) – – 74.8 (1.1) 86.3 (0.4) 57.8 (0.4) 76.7 (0.2)
DCM (ours) 82.0 (0.1) 93.6 (0.1) – – 85.5 (1.0) 93.5 (0.6) 58.8 (1.3) 78.9 (1.1)

OOD

Ensemble (×5) 59.8 (0.1)* 72.9 (0.1)* 88.4 (0.0)* 94.4 (0.0)* 74.0 (5.2)* 81.4 (4.4)* 58.6 (0.1)* 79.5 (0.0)*
MSP 59.6 (0.2) 70.1 (0.1) 88.2 (0.0) 94.4 (0.0) 70.4 (4.8) 82.2 (3.9) 55.2 (0.2) 74.5 (0.6)
MaxLogit 59.4 (0.1) 71.7 (0.1) 87.9 (0.0) 94.2 (0.0) 70.4 (4.8) 82.1 (3.9) 55.2 (0.0) 73.3 (0.2)
Binary Classifier 59.5 (0.2) 72.8 (0.2) 87.5 (0.3) 94.0 (0.2) 70.5 (4.4) 82.4 (3.9) 56.8 (0.1) 75.6 (0.5)
Fine-Tuning 61.9 (0.2) 75.4 (0.1) 89.0 (0.5) 94.7 (0.2) 75.4 (4.2) 84.2 (3.8) 56.0 (0.9) 76.2 (0.8)
Deep Gamblers 61.4 (0.1) 74.3 (0.2) 88.6 (0.2) 94.8 (0.1) 72.1 (7.9) 84.8 (5.2) 54.9 (0.2) 69.2 (0.3)
Self-Adaptive Training 61.4 (0.1) 75.3 (0.1) 88.9 (0.1) 95.1 (0.0) 71.9 (0.8) 80.3 (0.6) 55.1 (0.4) 74.1 (0.2)
DCM (ours) 64.1 (0.2) 77.5 (0.2) 89.5 (0.3) 95.0 (0.1) 82.5 (1.2) 91.6 (1.1) 56.2 (1.4) 76.4 (1.1)

∗ Ensemble requires 5× the compute compared to other methods.

Table 1: Selective classification performance on four datasets. Numbers in parentheses represent
the standard error over 3 seeds, and we bold all methods that have overlapping error with the best-
performing method. DCM consistently achieves the best performance in settings with distribution
shift (ID+OOD, OOD).

from the first 3 hospitals, which are represented in the training data. The OOD dataset consists of
images from the last 2 hospitals, which do not appear in the training set. The ID+OOD dataset is
a mix of all five hospitals. For FMoW, the ID dataset consists of images collected from the years
2002− 2013, which are represented in the training data. The OOD setting tests on images collected
between 2016−2018, and the ID + OOD setting tests on images from 2002−2013 and 2016−2018.

Comparisons. We consider 7 representative prior methods as baselines: MSP (Hendrycks & Gimpel,
2016), MaxLogit (Hendrycks et al., 2022), Binary Classifier (Kamath et al., 2020), Fine-Tuning on
the labeled ID validation set, Deep Gamblers (Liu et al., 2019), and Self-Adaptive Training (Huang
et al., 2020), and an ensemble of 5 MSP models as a rough upper bound on performance given more
compute. All methods use the same ID validation set for hyperparameter tuning and/or calibration.

DCM outperforms prior methods when testing on unseen distributions. We present representative
metrics in Table 1 and full metrics in Tables 17 to 19. DCM consistently outperforms all baselines
in settings of distribution shift (OOD and ID+OOD). DCM even outperforms Ensemble on three
of the four datasets, despite requiring 1/5 of the compute. Fine-Tuning outperforms DCM when
the training and validation datasets are from the same distribution (ID). In settings where the test
distribution differs from the training and validation distributions, DCM outperforms Fine-Tuning on
most metrics. These experiments indicate that DCM learns a more conservative model in conditions
of distribution shift, compared to state-of-the-art methods for selective classification.

Figure 2: Selective classification performance of DCM on the CIFAR-10 → CIFAR-10-C task with
validation set sizes (left) and various confidence loss weights λ (right).
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ID Dataset
CIFAR-10 CIFAR-100

Method Architecture AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓)

MSP

WRN-40-2

90.7 30.9 70.3 72.1
Outlier Exposure 98.5 6.6 81.1 59.4
Energy Fine-Tuning 99.1 3.4 81.5 59.6
WOODS 99.4 4.1 98.0 12.9
DCM-Softmax (ours) 99.6 1.0 99.2 2.6
DCM-MaxLogit (ours) 99.8 0.7 99.4 1.7
DCM-Energy (ours) 99.7 0.3 99.5 1.3
Binary Classifier

ResNet-18

98.9 1.3 97.9 7.6
ERD 99.5∗ 1.0∗ 99.1∗ 2.6∗
DCM-Softmax (ours) 99.5 1.9 99.1 4.6
DCM-MaxLogit (ours) 99.5 1.5 99.2 3.5
DCM-Energy (ours) 99.5 1.4 99.3 2.3

∗ ERD requires 3× the compute compared to other methods.

Table 2: OOD detection performance of models trained on CIFAR-10 or CIFAR-100 and evaluated
on 4 OOD datasets. Metrics are averaged over OOD datasets; detailed dataset-specific results are
in Table 5. The three variants of DCM exhibit competitive performance on all datasets.

DCM is robust to a range of confidence loss weights, λ, and validation set sizes. We investigate the
sensitivity of DCM to the size of the validation set in Figure 2 (left). We find that DCM for selective
classification is robust to a range of validation set sizes. In Figure 2 (right), we plot the performance
of DCM with various values of λ on tasks constructed from the CIFAR-10 and CIFAR-10-C datasets.
We find that DCM performs best with λ = 0.5.

6.2 OOD DETECTION

We evaluate DCM on the standard OOD detection setting and the more challenging near-OOD
detection setting. We evaluate three variants of DCM, each using the training objective described
in Section 3, but with three different measures of confidence: MSP (Hendrycks & Gimpel, 2016),
MaxLogit (Hendrycks et al., 2022), and Energy (Liu et al., 2020). We denote these three variants as
DCM-Softmax, DCM-MaxLogit, DCM-Energy, and describe these variants in detail in Appendix C.
All experiments in this section use λ = 0.5 and the default hyperparameters from Hendrycks et al.
(2018). Further experimental details are in Appendix D.

Methods iNaturalist SUN Places Textures

FPR@95 (↓) AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓) AUROC (↑)

MSP 54.05 87.43 73.37 78.03 72.98 78.03 68.85 79.06
VOS 31.65 94.53 43.03 91.92 41.62 90.23 56.67 86.74
NPOS 16.58 96.19 43.77 90.44 45.27 89.44 46.12 88.80
DCM-Softmax 2.6 (0.5) 99.2 (0.1) 32.9 (1.5) 94.2 (0.2) 35.9 (1.8) 93.8 (0.3) 11.2 (1.0) 97.9 (0.1)
DCM-MaxLogit 1.8 (0.4) 99.4 (0.1) 27.5 (1.4) 94.9 (0.2) 32.5 (2.8) 94.5 (0.3) 8.2 (0.8) 98.3 (0.1)
DCM-Energy 0.5 (0.2) 99.6 (0.1) 24.5 (1.7) 95.8 (0.2) 30.8 (3.0) 95.4 (0.3) 4.3 (0.6) 98.8 (0.1)

Table 3: OOD detection performance of ViT-B/16 with ImageNet-1K as the in-distribution training data.

Datasets. We use CIFAR-10 and CIFAR-100 as our ID datasets and TinyImageNet, LSUN, iSUN
and SVHN as our OOD datasets, resulting in a total of 8 ID-OOD pairs. We split the ID data into
40,000 examples for training and 10,000 examples for validation. Our uncertainty and test sets are
disjoint datasets with 5,000 and 1,000 examples, respectively. On the near-OOD detection tasks, the
ID and OOD datasets consist of disjoint classes in the same dataset. The number of examples per
class is the same as in the standard OOD detection setting. For comparison on large-scale image
datasets, we use ImageNet-1K as ID and iNaturalist, SUN, Textures and Places as OOD datasets.
Please refer to Appendix I for further experimental details and the full comparison table.

Comparisons. In the standard OOD detection setting, we compare DCM with 8 representative
OOD detection methods: MSP (Hendrycks & Gimpel, 2016), MaxLogit (Hendrycks et al., 2022),
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Setting Method FPR@95 (↓) FPR@99 (↓) AUROC (↑) AUPR (↑)

ID = CIFAR-10 [0:5]
OOD = CIFAR-10 [5:10]

MSP 78.6 (3.6) 94.5 (2.8) 75.7 (0.6) 38.5 (1.7)
MaxLogit 79.2 (3.4) 94.4 (2.0) 75.5 (0.8) 40.3 (1.5)
Binary Classifier 78.6 (1.5) 94.0 (0.5) 71.8 (1.1) 79.5 (0.7)
ERD 72.5 (1.7) 92.1 (0.8) 79.3 (0.3) 47.9 (1.6)
DCM-Softmax (ours) 66.0 (2.6) 89.2 (1.0) 81.2 (0.3) 45.7 (0.6)
DCM-MaxLogit (ours) 67.6 (5.6) 89.2 (2.2) 81.3 (0.6) 46.1 (1.4)
DCM-Energy (ours) 67.3 (2.7) 89.1 (0.9) 81.4 (0.6) 46.3 (0.7)

ID = CIFAR-100 [0:50]
OOD = CIFAR-100 [50:100]

MSP 68.8 (1.2) 90.9 (1.1) 75.4 (0.8) 33.4 (1.4)
MaxLogit 69.8 (2.0) 91.5 (1.7) 76.0 (0.5) 33.9 (1.4)
Binary Classifier 89.0 (3.6) 91.8 (3.6) 61.0 (1.8) 71.7 (1.1)
ERD 75.4 (0.9) 88.8 (0.5) 71.3 (0.3) 30.2 (0.5)
DCM-Softmax (ours) 67.3 (0.5) 86.3 (0.6) 74.3 (0.2) 32.1 (0.8)
DCM-MaxLogit (ours) 66.7 (1.5) 87.6 (2.5) 74.3 (0.5) 32.2 (1.7)
DCM-Energy (ours) 66.7 (0.5) 87.6 (1.1) 73.9 (0.2) 32.1 (0.6)

Table 4: Near-OOD detection of ResNet-18 models on the CIFAR-10 and CIFAR-100 datasets.
Numbers in parentheses represent the standard error over 5 seeds.

Figure 3: Distribution of maximum softmax probability (left) for ID pre-training, (middle) fine-tuning
with OE, (right) fine-tuning with DCM. ID and OOD datasets are CIFAR-100 and TinyImageNet,
respectively. DCM results in (1) better separation of predictive confidence for ID and OOD inputs,
and (2) low predictive confidence on OOD inputs, suggesting that it learns a conservative model.

ODIN (Liang et al., 2017b), Mahalanobis (Lee et al., 2018), Energy Score (Liu et al., 2020), Outlier
Exposure (Hendrycks et al., 2018), Energy Fine-Tuning (Liu et al., 2020), and WOODS (Katz-
Samuels et al., 2022). In the more challenging near-OOD detection setting, standard methods such
as Mahalanobis perform poorly (Ren et al., 2021), so we compare DCM with Binary Classifier and
ERD (Tifrea et al., 2022), which attain state-of-the-art performance. Similar to DCM, these methods
leverage an unlabeled dataset containing ID and OOD inputs. For experiments on ImageNet-1K,
we compare to VOS (Du et al., 2022a) and NPOS (Tao et al., 2023), prior SOTA methods that use
synthetic outliers.

DCM outperforms prior methods. For the standard OOD detection setting, we report aggregated
results in Table 2 and full results in Appendix D. In this setting, DCM outperforms all 8 prior methods
on all 8 ID-OOD dataset pairs, as shown in Table 2. On the more challenging near-OOD detection
task, Table 4 shows that DCM outperforms Binary Classifier, and performs similarly to ERD with only
1/3 of the compute. Table 3 shows DCM also outperforms prior SOTA methods on ImageNet-1K,
therefore scaling well when the classification task becomes harder. Figure 3 suggests that (1) DCM
produces a conservative model that is only under-confident on OOD inputs, and (2) DCM better
distinguishes ID and OOD inputs by predictive confidence than Outlier Exposure. Further ablations
on the robustness of DCM to λ, the number of finetuning epochs, and the fraction of OOD examples
in the uncertainty dataset are in Appendix K.

7 CONCLUSION

In this work, we propose Data-Driven Confidence Minimization (DCM), which trains models to make
conservative predictions by minimizing confidence on an uncertainty dataset. Our empirical results
demonstrate that DCM can lead to more robust classifiers, particularly in conditions of distribution
shift. In our experiments, DCM consistently outperformed state-of-the-art methods for selective
classification and OOD detection. We believe that the theoretical guarantees and strong empirical
performance of DCM represents a promising step towards building more robust and reliable machine
learning systems in safety-critical scenarios.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a full description of our method in Algorithm 1 and Algorithm 2.
We also include details regarding our baselines, datasets, network architectures, hyperparameters, and
training procedure in Appendix D for OOD detection and Appendix L for selective classification. Our
algorithm is simple to implement and our codebase is built on top of the publicly available Outlier Ex-
posure codebase: https://github.com/hendrycks/outlier-exposure (Hendrycks
et al., 2018). We will open-source our code if the paper is accepted.
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A THEORETICAL ANALYSIS

In this section we provide a simple theoretical setup for our algorithm. First, we show our algorithm
can perfectly detect unknown examples when the known examples in the test set also appears in this
training set. Next, we show that under the assumptions of function smoothness and closeness of
known train and test examples in the input space, this also holds for unseen known and unknown
examples.

A.1 PROBLEM SETTING

Let X be the input space and Y the label space. Let PID be a distribution over X×{1, . . . , C} ⊆ X×Y
i.e., there are C classes, and let Dtr be a training dataset consisting of n datapoints sampled from PID.
We train a classifier fθ : X → [0, 1]C on the training data. We also consider a different distribution
POOD over X × Y that is different from PID (the OOD distribution). Let Du be an unlabeled test set
where half the examples are sampled from PID, the other half are sampled from POOD. Our objective
is to minimize the following loss function:

L(θ) = E
(x,y)∈Dtr

[Lxent(fθ(x), y)] + λ E
x′∈Du

[Lcon(fθ(x
′))] , (5)

where λ > 0, Lxent is the standard cross-entropy loss, and Lcon is a confidence loss which is calculated
as the cross-entropy with respect to the uniform distribution over the C classes. We focus on the
maximum softmax probability MSP(p) ≜ maxi pi as a measure of confidence in a given categorical
distribution p.

A.2 SIMPLIFIED SETTING: KNOWN EXAMPLES SHARED BETWEEN TRAIN AND UNLABELED
SETS

We start with the following lemma which characterizes the interaction of our loss function (3) with a
single datapoint.

Proposition A.1 (Lower bound on true confidence). Let p be the true label distribution of input x.
The minimum of the objective function (3) is achieved when the predicted distribution is pλ ≜

p+λ 1
C

1+λ .
For all x within Du and Dtr, the optimal distribution pλ satisfies MSP(pλ) ≤ MSP(p), with equality
iff λ = 0.

Proof. Denote the predicted logits for input x as z ∈ RC , and softmax probabilities as s =
ez/

∑
i e

zi ∈ [0, 1]C . The derivative of the logits with respect to the two loss terms have the
closed-form expressions ∂

∂zLxent = s− p, ∂
∂zLcon = s− 1

C1. Setting the derivative of the overall
objective to zero, we have

∂

∂z
(Lxent + λLcon) = s− p+ λ

(
s− 1

C

)
= 0 =⇒ s =

p+ λ 1
C

1 + λ
= pλ. (6)

To check the lower bound property, note that pλ is a combination of p and the uniform distribution U ,
where U is the uniform distribution over the C classes and has the lowest possible MSP among all
categorical distributions over C classes.

The resulting predictive distribution pλ can alternatively be seen as Laplace smoothing with pseudo-
count λ applied to the true label distribution p. This new distribution can be seen as “conservative” in
that it (1) has lower MSP than that of p, and (2) has an entropy greater than that of p.

Lemma A.2 (Pinsker’s inequality). If P and Q are two probability distributions, then

δTV(P,Q) ≤
√

1

2
DKL(P ∥ Q), (7)

where δTV(P,Q) is the total variation distance between P and Q.

Proof. Refer to (Pinsker, 1964; Canonne, 2022) for a detailed proof.
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Lemma A.3 (Low loss implies separation, transductive case). Assume that all known examples in
Du are also in Dtr, and that Din ∩ Dout = ∅. Let Dtest

in = {x ∈ Dtest : x ∼ Din}(= Dtrain) and
Dtest

out = {x ∈ Dtest : x ∼ Dout} = Dtest\Dtrain. Let L0 be the lowest achievable loss for the
objective (3) with λ > 0. Then there exists ϵ > 0 such that L(θ) − L0 < ϵ implies the following
relationship between the max probabilities holds:

min
x∈Dtest

in

MSP(fθ(x)) > max
x∈Dtest

out

MSP(fθ(x)) (8)

Proof. Since the training set is a subset of the unlabeled set, we can rearrange the objective (3) as

L(θ) = E
(x,y)∈Dtest

in

[Lxent(fθ(x), y) + λLcon(fθ(x))] + E
x∈Dtest

out

[λLcon(fθ(x
′))] . (9)

Note that the first term is the cross-entropy between fθ(x) and pλ ≜
p+λ 1

C

1+λ , and the second term is
the cross-entropy between fθ(x) and the uniform distribution U . We now rearrange to see that

L(θ)− L0 = E
(x,y)∈Dtest

in

[DKL(pλ ∥ fθ(x))] + E
x∈Dtest

out

[DKL(U ∥ fθ(x))] , (10)

where the lowest achievable loss L0 is obtained by setting fθ(x) = pλ for known inputs and
fθ(x) = U for unknown inputs. Because L− L0 < ϵ, we know that DKL(pλ ∥ fθ(x)) < Nϵ for all
known inputs and DKL(U ∥ fθ(x)) < Nϵ for all unknown inputs.

By Lemma A.2, we have for known input x

δTV(pλ, fθ(x)) ≤
√

1

2
DKL(pλ ∥ fθ(x)) =

√
Nϵ

2
. (11)

By the triangle inequality and because MSP is 1-Lipschitz with respect to output probabilities, we
have for all known inputs

MSP(fθ(x)) ≥ MSP(pλ)−
√

Nϵ

2
=

1

1 + λ
+

λ

1 + λ

1

C
−
√

Nϵ

2
. (12)

Similarly, by Lemma A.2, we have for unknown input x

δTV(U, fθ(x)) ≤
√

1

2
DKL(U ∥ fθ(x)) =

√
Nϵ

2
. (13)

By the triangle inequality and because MSP is 1-Lipschitz with respect to output probabilities, we
have for all unknown inputs

MSP(fθ(x)) ≤ MSP(U) +

√
Nϵ

2
=

1

C
+

√
Nϵ

2
. (14)

Letting ϵ < 1
2N

(
C−1

(1+λ)C

)2
, we have

min
x∈Dtest

in

MSP(fθ(x)) ≥
1

1 + λ
+

λ

1 + λ

1

C
−
√

Nϵ

2
>

1

C
+

√
Nϵ

2
≥ max

x∈Dtest
out

MSP(fθ(x)). (15)

Lemma A.3 shows that in the transductive setting, minimizing our objective L(θ) (3) below some
threshold provably leads to a separation between known and unknown examples in terms of the
maximum predicted probability for each example.

A.3 MORE GENERAL SETTING

We prove a more general version of the claim in Lemma A.3 which applies to datapoints outside of
the given dataset Dtest. Our theorem below depends only on a mild smoothness assumption on the
learned function.
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Proposition A.4 (Low loss implies separation). Assume that all known examples in Du are also in
Dtr, and that Din ∩ Dout = ∅. Let Dtest

in = {x ∈ Dtest : x ∼ Din}(= Dtrain) and Dtest
out = {x ∈

Dtest : x ∼ Dout} = Dtest\Dtrain. Assume that the classifier fθ : X → [0, 1]C is K-Lipschitz
continuous for all θ, i.e., for all x, x′ ∈ X , ||fθ(x) − fθ(x

′)||∞ ≤ Kd(x, x′) for some constant
K > 0. Let L0 be the lowest achievable loss for the objective (3) with λ > 0. For δ > 0, denote the
union of δ-balls around the known and unknown datapoints as

Dδ
in ≜ {x|∃x′ ∈ Dtest

in s.t. d(x, x′) < δ}, Dδ
out ≜ {x|∃x′ ∈ Dtest

out s.t. d(x, x′) < δ}. (16)

Then there exists ϵ, δ > 0 such that L(θ)− L0 < ϵ implies the following relationship between the
max probabilities holds:

inf
x∈Dδ

in

MSP(fθ(x)) > sup
x∈Dδ

out

MSP(fθ(x)) (17)

Proof. By Lemma A.3, we have for some ϵ, minx∈Dtest
in

MSP(fθ(x)) > maxx∈Dtest
out

MSP(fθ(x)).
Fix ϵ and denote the difference of these two terms as

min
x∈Dtest

in

MSP(fθ(x))− max
x∈Dtest

out

MSP(fθ(x)) = ∆. (18)

For any xδ
in ∈ Dδ

in and xδ
out ∈ Dδ

out, let xin ∈ Dtest
in , xout ∈ Dtest

out satisfy d(xδ
in, xin) < δ and

d(xδ
out, xout) < δ. By the K-Lipschitz property, we have

MSP(fθ(xδ
in)) ≥ MSP(fθ(xin))−Kδ, MSP(fθ(xδ

out)) ≤ MSP(fθ(xout)) +Kδ. (19)

Setting δ < ∆
2K , we have

MSP(fθ(xδ
in)) ≥ MSP(fθ(xin))−Kδ > MSP(fθ(xout)) +Kδ ≥ MSP(fθ(xδ

out)). (20)

Since the choice of xδ
in and xδ

out was arbitrary, the equation above holds for all datapoints inside each
δ-ball. Therefore, we have

inf
x∈Dδ

in

MSP(fθ(x)) > sup
x∈Dδ

out

MSP(fθ(x)). (21)

B METRICS

B.1 OOD DETECTION

We first define precision, recall, true positive rate and false positive rate. Let TP and FP denote the
number of examples correctly and incorrectly classified as positive, respectively. Similarly, let TN
and FN denote the number of examples correctly and incorrectly classified as negative, respectively.

Precision is defined as the fraction of correctly classified positive examples, among all examples that
are classified as positive.

Precision =
TP

TP + FP

Recall (also referred to as true positive rate (TPR)) is defined as the fraction of correctly classified
positive examples among all positive examples.

Recall =
TP

TP + FN

False positive rate (FPR) is defined as

FPR =
FP

FP + TN
.

We use the following metrics to evaluate OOD detection performance.
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1. AUROC: The receiver operating characteristic (ROC) curve is obtained by plotting the true
positive rate vs the false positive rate at different thresholds. AUROC is the area under the ROC
curve. AUROC is always between 0 and 1; the AUROC of a random and a perfect classifier is 0.5
and 1.0 respectively. The higher the AUROC, the better.

2. AUPR: The precision-recall (PR) curve is obtained by plotting the precision and recall of a
classifier at different threshold settings. AUPR is the area under this PR curve. Similar to AUROC,
higher AUPR implies a better classifier. See that AUPR would be different based on whether we
label the ID examples as positive or vice-versa. In this context, AUPR-In and AUPR-Out refers to
AUPR calculated using the convention of denoting ID and OOD examples as positive respectively.
If not mentioned otherwise, AUPR in this paper refers to AUPR-Out.

3. FPR@TPR: This metric represents the false positive rate of the classifier, when the decision
threshold is chosen such that true positive rate is TPR%. Typically, we report FPR@95 in our
paper, following prior work such as Hendrycks et al. (2022).

B.2 SELECTIVE CLASSIFICATION

1. ECE: The expected calibration error (ECE) measures the calibration of the classifier. It is
calculated as the expected difference between confidence and accuracy, i.e., E[|p(ŷ = y | p̂ =
p)− p|].

2. Acc@Cov: This metric measures the average accuracy of a fixed fraction of most confident
datapoints. Specifically, we calculate the average accuracy on the Cov% datapoints with highest
confidence.

3. Cov@Acc: This metric measures size of the largest subset that achieves a given average accuracy.
Specifically, we calculate the largest fraction of data for which selective accuracy is above Acc.

4. AUC: The area under the curve of selective classification accuracy vs coverage.

C VARIANTS OF DCM FOR OOD DETECTION

For OOD detection, we experiment with three different scoring methods on top of DCM. Concretely,
we denote the input space as X and assume that our ID distribution has C classes. Further, let
f : X → RC represent our model, and S : X → R represent a score function. Then OOD detection
becomes a binary classification problem, where we use the convention that OOD examples are
positive and ID examples are negative. During test time, we would choose a threshold γ and for
x ∈ X , we say x is OOD if S(x) ≥ γ, and x is classified as ID otherwise. We experiment with three
commonly used choices for the score function, S.

1. Maximum softmax score (MSP) (Hendrycks & Gimpel, 2016; Vaze et al., 2022): For class
i ∈ {1, . . . , C}, the softmax score, Si

soft(x) is defined as:

Si
soft(x) =

exp (f i(x))∑C
j=1 exp (f

j(x))

The MSP score is defined as:

SMSP(x) = − max
i∈{1,...,C}

Si
soft(x)

Here the negative signs comes due to our convention of labeling OOD examples as positive.
2. MaxLogit (Hendrycks et al., 2022; Vaze et al., 2022): Instead of using the softmax probabilities,

we use the maximum of the model’s un-normalized outputs (logits) as the score. Formally,

Smaxlogit(x) = − max
i∈1,...,C

f i(x)

3. Energy (Liu et al., 2020): The energy score is defined as follows:

Senergy(x) = − log

(
C∑
i=1

ef
i(x)

)

We see in our experiments that all three scores, when combined with DCM framework, performs
similarly, with Energy score giving slightly better performance.
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D DETAILED OOD DETECTION RESULTS IN THE REGULAR SETTING

D.1 BASELINES

We compare DCM against several prior OOD detection methods.

• MSP (Hendrycks & Gimpel, 2016; Vaze et al., 2022): A simple baseline for OOD detection,
where we take a network trained on ID samples and threshold on the network’s maximum softmax
probability prediction on a test example to separate ID and OOD examples.

• Max Logit (Hendrycks et al., 2022; Vaze et al., 2022): Similar to MSP, but instead of using
normalized softmax probabilities, this uses the maximum of the output logits to perform OOD
detection.

• ODIN (Liang et al., 2017b): This method uses temperature scaling and adding small noise
perturbations to the inputs to increase the separation of softmax probability between ID and OOD
examples.

• Mahalanobis (Lee et al., 2018): This method takes a pretrained softmax classifier and uses the
mahalanobis distance in the embedding space to separate ID examples from OOD examples.

• Energy Score (Liu et al., 2020): Instead of the softmax probability, this method uses energy scores
to separate ID and OOD examples.

• Outlier Exposure (Hendrycks et al., 2018): Leverages examples from a pseudo-OOD distribution,
i.e., a distribution different from the training distribution but not necessarily the OOD distribution
seen at test-time. Fine-tunes a pre-trained network with a combined objective of (1) cross entropy
loss on the training examples, and (2) confidence minimization loss on the pseudo-OOD examples.

• Energy Based Fine-Tuning (Liu et al., 2020): Minimizes the energy-based confidence score on
pseudo-OOD examples.

• WOODS (Katz-Samuels et al., 2022): Leverages a “wild” dataset – naturally comprising both
in-distribution (ID) and OOD samples. Rather than using confidence minimization, WOODS for-
mulates a constrained optimization problem to maximize the OOD detection rate while constraining
classification error for ID data and OOD error rate for ID examples.

D.2 ID DATASETS

We use the following ID datasets from common benchmarks:

• CIFAR-10 (Krizhevsky et al., a): CIFAR-10 contains 50,000 train and 10,000 test images, separated
into 10 disjoint classes. The images have 3 channels and are of size 32 x 32. The classes are similar
but disjoint from CIFAR-100.

• CIFAR-100 (Krizhevsky et al., b): Similar to CIFAR-10 and contains 50,000 train and 10,000 test
images. However, the images are now separated into 100 fine-grained and 20 coarse (super) classes.
Each super-class contains 5 fine-grained classes.

D.3 OOD DATASETS

In addition to CIFAR-10 and CIFAR-100, we follow prior work (Tajwar et al., 2021; Hendrycks &
Gimpel, 2016; Liu et al., 2020) and use the following benchmark OOD detection dataset:

• SVHN (Netzer et al., 2011): SVHN contains images of the 10 digits in English which represent the
10 classes in the dataset. The dataset contains 73,257 train and 26,032 test images. The original
dataset also contains extra training images that we do not use for our experiments. Each image in
the dataset has 3 channels and has shape 32 x 32.

• TinyImageNet (resized) (Le & Yang, 2015; Deng et al., 2009; Liang et al., 2017b): TinyImageNet
contains 10,000 test images divided into 200 classes and is a subset of the larger ImageNet (Deng
et al., 2009) dataset. The original dataset contains images of shape 64 x 64 and Liang et al. (2017b)
further creates a dataset by randomly cropping and resizing the images to shape 32 x 32. We use
the resized dataset here for our experiments.

• LSUN (resized) (Yu et al., 2015; Liang et al., 2017b): The Large-scale Scene UNderstanding
dataset (LSUN) contains 10,000 test images divided into 10 classes. Similar to the TinyImageNet
dataset above, Liang et al. (2017b) creates a dataset by randomly cropping and resizing the images
to shape 32 x 32. We use the resized dataset here for our experiments.
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• iSUN (Xu et al., 2015; Liang et al., 2017b): iSUN contains 6,000 training, 926 validation and 2,000
test images. We use the same dataset used by Liang et al. (2017b).

Instructions on how to download the TinyImageNet, LSUN and iSUN datasets can be found here:
https://github.com/ShiyuLiang/odin-pytorch

D.4 TRAINING DETAILS

• Architecture: For all experiments in this section, we use a WideResNet-40-2 (Zagoruyko &
Komodakis, 2016) network.

• Hyper-parameters: Outlier exposure and energy based fine-tuning uses 80 Million Tiny Im-
ages (Torralba et al., 2008) as the pseudo-OOD dataset. This dataset has been withdrawn be-
cause it contains derogatory terms as categories. Thus, for fair comparison, we use the pre-
trained weights provided by these papers’ authors for our experiments. For MSP, ODIN, Ma-
halanobis and energy score, we train our networks for 110 epochs with an initial learning rate
of 0.1, weight decay of 5 × 10−4, dropout 0.3 and batch size 128. ODIN and Mahalanobis
require a small OOD validation set to tune hyper-parameters. Instead, we tune the hyper-
parameters over the entire test set and report the best numbers, since we only want an upper
bound on the performance of these methods. For ODIN, we try T ∈ {1, 10, 100, 1000} and
ϵ ∈ {0.0, 0.0005, 0.001, 0.0014, 0.002, 0.0024, 0.005, 0.01, 0.05, 0.1, 0.2} as our hyper-parameter
search grid, and for Mahalanobis, we use the same hyper-parameter grid for ϵ. For the WOODS
baseline, we use all default hyperparameters, except that our setting uses an unlabeled auxiliary set
with OOD proportion π = 0.2. We train with a learning rate of 0.001 and batch size of 128 for 100
epochs. We use an in-distribution penalty of 1.0, out-of-distribution penalty of 1.0, classification
penalty of 1.0, false alarm cutoff of 0.05, learning rate for updating lambda of 1.0, tolerance for the
loss constraint of 2.0, multiplicative factor of 1.5 for the penalty method, and constraint tolerance
of 0.0. For our method, we pre-train our network for 100 epochs with the same setup, and fine-tune
the network with our modified loss objective for 10 epochs using the same setting, except we use
a initial learning rate of 0.001, batch size 32 for ID train set and 64 for the uncertainty dataset.
During fine-tuning, we use 27,000 images per epoch, 9,000 of which are labeled ID train examples
and the rest are from the uncertainty dataset. Finally, we use λ = 0.5 for all experiments, as in
Hendrycks et al. (2018), without any additional hyper-parameter tuning.

• Dataset train/val split: For all methods except outlier exposure and energy based fine-tuning, we
use 40,000 out of the 50,000 train examples for training and 10,000 train examples for validation.
Note that outlier exposure and energy based fine-tuning uses weights pre-trained with all 50,000
training examples, which puts our method in disadvantage.

• Uncertainty and test dataset construction: For our method, we use two disjoint sets of 6,000
images as the uncertainty dataset and test set. Each set contains 5,000 ID examples and 1,000 OOD
examples.

• Augmentations: For all methods, we use the same standard random flip and random crop augmen-
tations during training/fine-tuning.

E SEMI-SUPERVISED NOVELTY DETECTION SETTING

For the sake of fair comparison, we also compare our algorithm’s performance to binary classifier
and ERD (Tifrea et al., 2022). These methods leverage an uncertainty dataset that contains both ID
and OOD examples drawn from the distribution that we will see during test-time.

• ERD: Generates an ensemble by fine-tuning an ID pre-trained network on a combined ID +
uncertainty dataset (which is a mixture of ID and OOD examples and given one label for all
examples). Uses an ID validation set to early stop, and then uses the disagreement score between
the networks on the ensemble to separate ID and OOD examples.

• Binary Classifier: The approach learns to discriminate between labeled ID set and uncertainty
ID-OOD mixture set, with regularizations to prevent the entire uncertainty dataset to be classified
as OOD.

We use the same datasets as Appendix D.
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ID Dataset /
Network

Method SVHN TinyImageNet LSUN iSUN

AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓)

CIFAR-10
WRN-40-2

MSP 87.2 (5.6) 43.4 (23.3) 90.3 (1.4) 32.8 (6.0) 93.3 (0.9) 21.3 (2.6) 92.0 (1.3) 25.9 (4.1)
MaxLogit 88.5 (2.4) 42.1 (9.4) 93.2 (1.2) 27.3 (4.9) 96.6 (0.8) 14.1 (2.7) 95.5 (0.8) 18.4 (2.7)
ODIN 90.3 (2.1) 41.1 (8.1) 93.8 (0.7) 27.6 (6.5) 97.5 (0.9) 10.9 (3.6) 96.6 (0.7) 16.8 (2.7)
Mahalanobis 97.3 (0.7) 14.7 (4.4) 91.2 (1.3) 38.9 (4.6) 92.1 (0.6) 28.6 (0.8) 93.7 (1.4) 26.8 (5.4)
Energy Score 82.8 (10.5) 59.7 (22.7) 92.0 (2.8) 34.0 (10.9) 96.2 (1.2) 16.0 (5.0) 94.9 (1.9) 23.2 (8.6)
VOS 90.8 (1.4) 28.4 (7.3) 93.4 (0.7) 27.3 (2.7) 97.0 (0.3) 12.8 (1.6) 96.0 (0.6) 16.4 (2.3)
WOODS 99.5 (0.0) 3.3 (0.3) 99.2 (0.1) 5.3 (0.9) 99.3 (0.1) 5.0 (0.5) 99.5 (0.1) 2.9 (0.4)
Outlier Exposure 98.5 4.8 97.4 13.0 99.1 3.7 99.1 5.0
Energy Fine-Tuning 99.3 2.1 98.2 7.0 99.3 1.9 99.4 2.6
DCM-Softmax (ours) 99.7 (0.1) 0.4 (0.3) 99.3 (0.3) 2.6 (1.6) 99.8 (0.1) 0.5 (0.4) 99.7 (0.1) 0.6 (0.2)
DCM-MaxLogit (ours) 99.8 (0.1) 0.3 (0.1) 99.5 (0.2) 1.9 (0.6) 99.9 (0.1) 0.2 (0.1) 99.8 (0.1) 0.5 (0.2)
DCM-Energy (ours) 99.8 (0.1) 0.1 (0.1) 99.4 (0.2) 1.0 (0.8) 99.9 (0.1) 0.1 (0.1) 99.8 (0.1) 0.1 (0.1)

CIFAR-10
ResNet-18

Binary Classifier 98.9 (0.2) 1.3 (1.0) 98.7 (0.6) 1.8 (3.8) 99.0 (0.3) 0.3 (0.6) 98.8 (0.8) 1.6 (2.5)
ERD 99.3 (0.2) 1.7 (1.2) 99.3 (0.1) 1.7 (0.6) 99.7 (0.1) 0.2 (0.2) 99.7 (0.2) 0.5 (0.4)
DCM-Softmax (ours) 99.5 (0.2) 1.0 (0.6) 99.3 (0.1) 4.1 (1.3) 99.7 (0.1) 0.9 (0.3) 99.5 (0.1) 1.7 (0.4)
DCM-MaxLogit (ours) 99.5 (0.1) 0.9 (0.3) 99.3 (0.1) 2.7 (0.8) 99.8 (0.1) 0.8 (0.4) 99.4 (0.1) 1.5 (0.6)
DCM-Energy (ours) 99.5 (0.2) 0.6 (0.5) 99.3 (0.1) 3.2 (1.0) 99.8 (0.1) 0.4 (0.1) 99.5 (0.1) 1.2 (0.3)

CIFAR-100
WRN-40-2

MSP 77.7 (1.4) 58.0 (4.9) 68.0 (3.2) 77.0 (5.7) 68.5 (1.5) 75.6 (3.7) 67.1 (2.4) 77.6 (3.7)
MaxLogit 84.3 (2.8) 43.2 (7.4) 74.7 (5.5) 72.7 (11.3) 75.9 (4.8) 67.3 (10.4) 75.4 (4.5) 70.9 (10.0)
ODIN 90.9 (2.0) 30.7 (3.7) 82.2 (4.9) 62.3 (11.7) 82.9 (5.0) 57.1 (11.3) 82.0 (2.6) 61.7 (8.1)
Mahalanobis 92.7 (1.2) 32.3 (6.0) 91.8 (2.0) 39.0 (7.2) 92.2 (2.3) 34.3 (10.0) 89.6 (3.8) 43.5 (10.2)
Energy Score 81.7 (2.4) 51.3 (5.8) 73.1 (4.3) 73.5 (10.5) 75.2 (4.9) 70.0 (8.7) 73.8 (3.8) 72.0 (8.2)
VOS 85.1 (1.3) 41.0 (1.9) 78.2 (2.7) 63.3 (4.9) 80.1 (2.2) 56.7 (7.0) 79.1 (2.9) 59.2 (7.3)
WOODS 98.6 (0.0) 8.6 (0.3) 97.5 (0.0) 18.3 (0.3) 98.4 (0.2) 8.7 (1.3) 97.5 (0.3) 16.0 (2.1)
Outlier Exposure 88.2 40.4 75.7 71.6 81.4 59.1 79.2 66.4
Energy Fine-Tuning 96.8 12.6 70.9 85.2 80.9 65.6 77.4 75.1
DCM-Softmax (ours) 99.6 (0.1) 0.6 (0.7) 98.7 (0.3) 5.9 (2.9) 99.5 (0.2) 1.1 (1.0) 99.1 (0.2) 2.7 (1.9)
DCM-MaxLogit (ours) 99.6 (0.2) 0.8 (1.0) 99.0 (0.2) 3.6 (2.9) 99.8 (0.1) 0.1 (0.1) 99.2 (0.3) 2.2 (2.6)
DCM-Energy (ours) 99.7 (0.1) 0.3 (0.3) 99.0 (0.3) 3.5 (2.5) 99.7 (0.1) 0.5 (0.6) 99.4 (0.2) 0.9 (0.6)

CIFAR-100
ResNet-18

Binary Classifier 95.1 (6.8) 25.8 (40.8) 99.0 (0.7) 0.7 (0.6) 99.2 (0.4) 0.0 (0.1) 98.3 (0.5) 4.0 (5.3)
ERD 99.0 (0.1) 2.3 (0.9) 98.8 (0.3) 5.4 (1.9) 99.5 (0.1) 0.8 (0.4) 99.2 (0.1) 1.7 (0.9)
DCM-Softmax (ours) 99.3 (0.1) 2.5 (1.4) 98.7 (0.3) 7.8 (2.5) 99.4 (0.2) 1.6 (1.5) 98.8 (0.4) 6.3 (3.3)
DCM-MaxLogit (ours) 99.2 (0.1) 3.7 (0.6) 98.8 (0.2) 6.4 (1.8) 99.6 (0.1) 0.7 (0.3) 99.2 (0.2) 3.1 (1.7)
DCM-Energy (ours) 99.5 (0.1) 1.0 (0.6) 99.0 (0.3) 4.9 (2.3) 99.6 (0.2) 0.8 (0.7) 99.2 (0.3) 2.4 (0.9)

Table 5: OOD detection performance of models trained on CIFAR-10 or CIFAR-100 and evaluated
on four different OOD datasets. We average metrics across 5 random seeds and show standard error
in parentheses. Pre-trained weights provided by the respective authors are used to reproduce outlier
exposure and energy fine-tuning results, and hence those results do not have associated standard
errors. This is done due to these methods using 80-million tiny images as their auxiliary dataset,
which has since been withdrawn and hence these methods’ performance cannot be reproduced for
other random seeds.

Setting Method FPR95 FPR99 AUROC AUPR-In AUPR-Out
↓ ↓ ↑ ↑ ↑

ID = CIFAR-100
OOD = CIFAR-10

MSP 64.4 (1.4) 80.5 (0.7) 74.6 (0.7) 93.9 (0.2) 32.8 (1.7)
ODIN 69.2 (2.4) 86.6 (4.0) 75.5 (0.9) 93.7 (0.4) 34.6 (0.9)
Mahalanobis 87.7 (4.2) 96.7 (0.6) 59.1 (6.1) 87.8 (2.4) 20.4 (2.6)
Energy Score 67.2 (3.2) 86.6 (1.6) 75.7 (0.9) 93.8 (0.3) 34.4 (1.0)
Outlier Exposure 63.5 77.9 75.2 94.0 32.7
Energy Fine-Tuning 57.8 74.6 77.3 94.7 34.3
DCM-Softmax (ours) 58.0 (1.7) 79.3 (2.4) 80.8 (1.2) 95.3 (0.3) 44.3 (2.1)
DCM-Energy (ours) 60.3 (2.8) 80.4 (1.6) 81.0 (1.5) 95.3 (0.4) 47.6 (2.5)

ID = CIFAR-10
OOD = CIFAR-100

MSP 45.7 (2.5) 81.0 (5.6) 86.8 (0.3) 96.8 (0.1) 53.4 (1.0)
ODIN 54.8 (4.6) 85.1 (3.8) 87.0 (0.4) 96.6 (0.2) 59.9 (0.9)
Mahalanobis 65.4 (2.2) 85.0 (1.1) 79.4 (1.0) 94.7 (0.3) 44.2 (2.1)
Energy Score 59.6 (2.6) 89.0 (1.4) 86.2 (0.4) 96.2 (0.2) 59.2 (0.5)
Outlier Exposure 28.3 57.9 93.1 98.5 76.5
Energy Fine-Tuning 29.0 63.4 94.0 98.6 81.6
DCM-Softmax (ours) 57.5 (6.1) 90.0 (2.8) 87.6 (0.7) 96.5 (0.4) 63.1 (0.7)
DCM-Energy (ours) 60.4 (5.3) 90.5 (2.6) 87.0 (0.9) 96.3 (0.4) 64.3 (1.2)

Table 6: OOD detection performance with a WideResNet-40-2 model on CIFAR-10 to CIFAR-100
and CIFAR-100 to CIFAR-10. Bold numbers represent superior results. Numbers in parenthesis
represent the standard deviation over 5 seeds. ↓: lower is better, ↑: higher is better.

E.1 ARCHITECTURE AND TRAINING DETAILS

• Architecture: For all experiments in this section, we use a ResNet-18 (He et al., 2015) network,
same as Tifrea et al. (2022).
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Method Setting SVHN TinyImageNet LSUN iSUN

AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95

DCM-Softmax Regular 99.5 (0.2) 1.0 (0.6) 99.3 (0.1) 4.1 (1.3) 99.7 (0.1) 0.9 (0.3) 99.5 (0.1) 1.7 (0.4)
Transductive 99.8 (0.1) 0.4 (0.4) 98.8 (0.3) 6.5 (2.0) 99.2 (0.3) 4.2 (1.5) 99.2 (0.1) 4.9 (1.3)

DCM-MaxLogit Regular 99.5 (0.1) 0.9 (0.3) 99.3 (0.1) 2.7 (0.8) 99.8 (0.1) 0.8 (0.4) 99.4 (0.1) 1.5 (0.6)
Transductive 99.9 (0.1) 0.3 (0.3) 98.8 (0.2) 5.9 (1.9) 99.3 (0.2) 3.6 (1.3) 99.2 (0.1) 4.6 (1.3)

DCM-Energy Regular 99.5 (0.2) 0.6 (0.5) 99.3 (0.1) 3.2 (1.0) 99.8 (0.1) 0.4 (0.1) 99.5 (0.1) 1.2 (0.3)
Transductive 99.9 (0.1) 0.2 (0.2) 98.9 (0.2) 5.2 (1.8) 99.4 (0.2) 2.5 (0.8) 99.3 (0.1) 3.5 (0.5)

Table 7: Comparison between the regular and transductive setting peformance of our method for
ResNet-18 models trained on CIFAR-10.

Method Setting SVHN TinyImageNet LSUN iSUN

AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓)

DCM-Softmax Regular 99.3 (0.1) 2.5 (1.4) 98.7 (0.3) 7.8 (2.5) 99.4 (0.2) 1.6 (1.5) 98.8 (0.4) 6.3 (3.3)
Transductive 99.3 (0.4) 2.8 (2.5) 97.6 (0.4) 16.3 (4.6) 98.3 (0.9) 9.3 (7.3) 97.9 (1.2) 12.0 (8.2)

DCM-MaxLogit Regular 99.2 (0.1) 3.7 (0.6) 98.8 (0.2) 6.4 (1.8) 99.6 (0.1) 0.7 (0.3) 99.2 (0.2) 3.1 (1.7)
Transductive 99.5 (0.4) 1.6 (1.8) 97.7 (0.3) 14.8 (4.4) 98.5 (0.8) 7.7 (5.9) 98.2 (0.9) 10.2 (6.3)

DCM-Energy Regular 99.5 (0.1) 1.0 (0.6) 99.0 (0.3) 4.9 (2.3) 99.6 (0.2) 0.8 (0.7) 99.2 (0.3) 2.4 (0.9)
Transductive 99.5 (0.3) 1.4 (1.6) 97.8 (0.3) 11.9 (5.1) 98.7 (0.5) 5.3 (3.5) 98.7 (0.4) 6.1 (3.5)

Table 8: Comparison between the regular and transductive setting peformance of our method for
ResNet-18 models trained on CIFAR-100.

• Hyper-parameters: For ERD and binary classifier, we use the hyper-parameters and learning
rate schedule used by Tifrea et al. (2022). For ERD, we standardize the experiments by using
ensemble size = 3 for all experiments. The ensemble models are initialized with weights pre-
trained solely on the ID training set for 100 epochs, and then each is further trained for 10 epochs.
For binary classifier, we train all the networks from scratch for 100 epochs with a learning rate
schedule described by Tifrea et al. (2022). For our method, we use the same hyper-parameters as
Appendix D.

We use the same dataset splits, augmentations, uncertainty and test datasets as Appendix D.

F NEAR-OOD DETECTION SETTING

F.1 ARCHITECTURE AND TRAINING DETAILS

• Datasets: Similar to Tifrea et al. (2022), we try two settings: (1) ID = first 5 classes of CIFAR-10,
OOD = last 5 classes of CIFAR-100, (2) ID = first 50 classes of CIFAR-100, OOD = last 50 classes
of CIFAR-100.

• Dataset splits: We use 20,000 train and 5,000 validation label-balanced images during training.
• Uncertainty and test split construction: We use two disjoint datasets of size 3,000 as uncertainty

and test datasets. Each dataset contains 2,500 ID and 500 OOD examples.

We use the same architecture, hyper-parameters and augmentations, as Appendix E.

G TRANSDUCTIVE OOD DETECTION SETTING

In scenarios where examples similar to those encountered at test time are not available, we can use
a modified version of DCM in which we use an uncertainty dataset consisting of the test set itself.
We expect this transductive variant to perform slightly worse since we end up directly minimizing
confidence on ID test examples, in addition to the general absence of information from additional
unlabeled data. We assess the performance of DCM in this transductive setting. In Table 7 and
Table 8, we compare the performance of DCM in this transductive setting to the regular setting. While
we observe a slight drop compared to the default DCM, we still show competitive performance in the
transductive setting compared to prior approaches, as shown in Table 5.

H COMPARISON TO METHODS THAT USE SYNTHETIC OUTLIERS

Since DCM uses a mixture of known and unknown samples to finetune the model to be more
conservative during test-time, it is reasonable to compare DCM with OOD detection methods that
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ID Dataset /
Network

Method SVHN LSUN (Crop) iSUN Texture Places365

AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓)

CIFAR-10
ResNet-18

VOS 96.37 15.69 93.82 27.64 94.87 30.42 93.68 32.68 91.78 37.95
NPOS 97.64 5.61 97.52 4.08 94.92 14.13 94.67 8.39 91.35 18.57
DCM-Softmax 99.7 (0.1) 0.4 (0.3) 98.6 (0.8) 6.6 (3.0) 99.7 (0.1) 0.6 (0.2) 97.1 (0.2) 14.8 (0.3) 92.4 (0.3) 32.6 (2.1)
DCM-MaxLogit 99.8 (0.1) 0.3 (0.1) 98.7 (0.7) 6.0 (3.0) 99.8 (0.1) 0.5 (0.2) 97.1 (0.2) 14.9 (0.4) 92.5 (0.3) 34.4 (2.1)
DCM-Energy 99.8 (0.1) 0.1 (0.1) 98.8 (0.7) 5.3 (3.6) 99.8 (0.1) 0.1 (0.1) 97.1 (0.2) 16.1 (1.1) 92.5 (0.3) 35.6 (2.2)

CIFAR-100
ResNet-34

VOS 73.11 78.50 85.72 59.05 82.66 72.45 80.08 75.35 75.85 84.55
NPOS 97.84 11.14 82.43 56.27 85.48 51.72 92.44 35.20 71.30 79.08
Dream-OOD 87.01 58.75 95.23 24.25 99.73 1.10 88.82 46.60 79.94 70.85
DCM-Softmax 99.3 (0.2) 1.8 (0.9) 98.6 (0.3) 8.7 (1.9) 99.3 (0.2) 2.3 (1.4) 88.5 (0.5) 46.6 (2.7) 78.6 (0.4) 67.7 (2.3)
DCM-MaxLogit 99.3 (0.2) 2.0 (1.1) 98.7 (0.2) 7.3 (1.9) 99.3 (0.2) 2.3 (1.4) 88.8 (0.5) 46.9 (3.0) 78.6 (0.4) 68.8 (1.8)
DCM-Energy 99.2 (0.2) 2.2 (1.2) 98.9 (0.2) 5.2 (2.0) 99.4 (0.2) 1.9 (0.8) 89.3 (0.6) 48.6 (3.3) 78.3 (0.6) 68.9 (1.9)

Table 9: Comparison to methods that use synthetic outliers to make the model better at OOD detection.
The table reports results for CIFAR-10 and CIFAR-100 as ID datasets. The results for CIFAR-10 are
copied directly from Tao et al. (2023), and those for CIFAR-100 are copied directly from Du et al.
(2023).

Methods iNaturalist SUN Places Textures

FPR@95 (↓) AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓) AUROC (↑)

MCM (zero-shot) 32.08 94.41 39.21 92.28 44.88 89.83 58.05 85.96

(Fine-tuned)
Fort et al./MSP 54.05 87.43 73.37 78.03 72.98 78.03 68.85 79.06
ODIN 30.22 94.65 54.04 87.17 55.06 85.54 51.67 87.85
Energy 29.75 94.68 53.18 87.33 56.40 85.60 51.35 88.00
GradNorm 81.50 72.56 82.00 72.86 80.41 73.70 79.36 70.26
ViM 32.19 93.16 54.01 87.19 60.67 83.75 53.94 87.18
KNN 29.17 94.52 35.62 92.67 39.61 91.02 64.35 85.67
VOS 31.65 94.53 43.03 91.92 41.62 90.23 56.67 86.74
VOS+ 28.99 94.62 36.88 92.57 38.39 91.23 61.02 86.33
NPOS 16.58 96.19 43.77 90.44 45.27 89.44 46.12 88.80
DCM-Softmax 2.6 (0.5) 99.2 (0.1) 32.9 (1.5) 94.2 (0.2) 35.9 (1.8) 93.8 (0.3) 11.2 (1.0) 97.9 (0.1)
DCM-MaxLogit 1.8 (0.4) 99.4 (0.1) 27.5 (1.4) 94.9 (0.2) 32.5 (2.8) 94.5 (0.3) 8.2 (0.8) 98.3 (0.1)
DCM-Energy 0.5 (0.2) 99.6 (0.1) 24.5 (1.7) 95.8 (0.2) 30.8 (3.0) 95.4 (0.3) 4.3 (0.6) 98.8 (0.1)

Table 10: OOD detection performance for ImageNet-1K as ID dataset, using a ViT-B/16 model. The
performance metrics for baselines are copied directly from Tao et al. (2023). We report the mean and
standard error over 3 seeds for DCM.

generate synthetic outliers and use them to make the model conservative. In this section, we compare
against SOTA methods of this type: VOS (Du et al., 2022a), NPOS (Tao et al., 2023) and Dream-
OOD (Du et al., 2023). We report results for CIFAR-10 and CIFAR-100 as ID datasets. We use
SVHN (Netzer et al., 2011), LSUN (Yu et al., 2015; Liang et al., 2017b), iSUN (Xu et al., 2015;
Liang et al., 2017b), Texture (Cimpoi et al., 2013) and Places365 (Zhou et al., 2017) as OOD datasets,
following earlier work. Results in Table 9 show that DCM outperforms these points of comparison
in most cases. This suggests that directly using outlier inputs similar to those seen during test time,
instead of synthesizing such outlier examples, is an effective approach.

I OOD DETECTION EVALUATION ON IMAGENET-1K (DENG ET AL., 2009)
In order to show that DCM scales to large scale datasets beyond CIFAR-10 and CIFAR-100, we also
report results on ImageNet-1K.

I.1 OOD DATASETS

We use iNaturalist (Horn et al., 2018), SUN Xiao et al. (2010), Texture (Cimpoi et al., 2013)
and Places (Zhou et al., 2017) as OOD datasets following earlier work such as (Tao et al., 2023).
Particularly, we use the subsets of these datasets chosen by (Tao et al., 2023) for fair comparison.

I.2 BASELINES

We compare DCM with the following baselines:

• Maximum concept matching (MCM) (Ming et al., 2022)

• Maximum softmax probability (Hendrycks & Gimpel, 2016; Fort et al., 2021)

• ODIN score (Liang et al., 2017b)

• Energy score (Liu et al., 2020)
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Figure 4: Robustness of DCM to hyperparameters. Left: Performance of DCM on a near-OOD
detection task (CIFAR-100 [0:50] vs CIFAR-100 [50:100]) with various OOD proportions in the
uncertainty dataset. Our methods, DCM-Energy and DCM-Softmax, outperform existing methods
across all OOD proportions. Middle: Relative AUROC of DCM with various confidence weights λ;
note the negligible differences in AUROC. Right: Selective classification performance of DCM with
uncertainty datasets of various sizes on CIFAR-10 → CIFAR-10-C. These plots suggest that DCM is
robust to a range of confidence weights and sizes and compositions in the uncertainty dataset.

Figure 5: Further ablations on robustness of DCM to hyperparameters. Left: Relative AUROC
of DCM on 3 regular OOD detection setting, where we vary the number of epochs in the second
fine-tuning stage. Our default choice of 10 does not generally achieve the best performance. Middle:
Similar to the plot on the left, but we experiment in the challenging near-OOD detection setting.
Right: Relative AUROC of DCM where we vary the confidence weight λ.

• Grad norm (Huang et al., 2021)
• ViM (Wang et al., 2022)
• KNN distance (Sun et al., 2022)
• Virtual Outlier Synthesis (VOS) (Du et al., 2022a)
• Non-parametric Outlier Synthesis (NPOS) (Tao et al., 2023)

I.3 TRAINING DETAILS

For these experiments, we use a ViT-B/16 model (Dosovitskiy et al., 2021) pretrained on ImageNet-
1K. For each OOD dataset, we run DCM using an uncertainty dataset of size 25000, with 20000 class
balanced examples from ImageNet validation set (ID) and 5000 examples from the OOD dataset. We
test on a dataset of size 25000, with the same composition as the uncertainty dataset but containing
different images than that of the uncertainty dataset. Additionally, we use the remaining 10000 class
balanced images from the validation set, not used in the uncertainty dataset or the test dataset, as our
validation set. For DCM, we fine-tune the pre-trained model for an additional 5 epochs, with AdamW
optimizer, learning rate 3× 10−5, weight decay 0.01 and use cosine annealing learning rate decay.
Similar to our experiments on CIFAR-10 and CIFAR-100, we use confidence weight λ = 0.5. In
each batch, the model sees 32 ID training image and 64 uncertainty dataset image, and the epoch
ends when we exhaust the entire uncertainty dataset.

I.4 RESULTS

Table 10 shows the performance of DCM compared to the baselines. We see that DCM outperform
all other methods, and achieving state-of-the-art results on all 4 OOD datasets, showing that DCM
also scale to large-scale datasets.

J DCM FOR OOD DETECTION PRESERVES ID PERFORMANCE

Table 11 shows ID classification performance degradation on CIFAR-10 and CIFAR-100 compared
to ERM after DCM has fine-tuned the model to minimize confidence on the uncertainty dataset. ID
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ID Dataset OOD Dataset Classification Accuracy

ERM DCM

CIFAR-10

SVHN

94.7 (0.2)

93.7 (0.3)
TinyImageNet 93.5 (0.2)

LSUN 93.7 (0.2)
iSUN 93.5 (0.3)

CIFAR-100

SVHN

73.9 (0.4)

71.4 (0.5)
TinyImageNet 71.1 (0.4)

LSUN 71.0 (0.5)
iSUN 71.2 (0.8)

CIFAR-10 [0:5] CIFAR-10 [5:10] 94.9 (0.4) 94.0 (0.5)

CIFAR-100 [0:50] CIFAR-100 [50:100] 78.3 (0.5) 71.8 (0.6)

Table 11: Comparison between ERM and DCM on ID classification accuracy. We report the mean
and standard error over 5 seeds.

OOD Dataset Classification Accuracy

ERM DCM

iNaturalist

81.42

78.9 (0.2)
SUN 78.8 (0.1)

Places 78.8 (0.1)
Textures 78.9 (0.0)

Table 12: ID classification accuracy (using 10000 class balanced images from the validation set) on
ImageNet-1K of DCM compared to ERM. We report the mean and standard error over 3 seeds for
DCM.

performance does degrade as expected, but on average it does not degrade by much compared to the
gain we achieve on the OOD detection task. One can also use DCM to separate OOD examples,
and then use the pre-trained ERM weights for the ID classification task to have the best of both worlds.

We also report ID classification accuracy on ImageNet-1K in Table 12. DCM preserves ID
performance on ImageNet-1K as well, showing that this property scales to much larger datasets.

K EXPLORING DCM IN THE OOD DETECTION SETTING

DCM is robust to confidence minimization weight λ. We fix λ = 0.5 for all ID-OOD dataset pairs,
following the practice of Hendrycks et al. (2018); DeVries & Taylor (2018); Hendrycks & Gimpel
(2016). While some works (Lee et al., 2017; Liang et al., 2017a) tune hyperparameters for each
OOD distribution, we do not in order to test the model’s ability to detect OOD inputs from unseen
distributions. We plot OOD detection performance for 4 representative ID-OOD dataset pairs with
different λ in Figure 4. While λ = 0.5 is not always optimal, we find that differences in performance
due to changes in λ are negligible, suggesting that λ = 0.5 is a suitable default value. Figure 5
shows more results of the effect of λ on our algorithm for OOD detection. We achieve the best
performance when λ = 0.1 or 0.3 for (CIFAR-10, TinyImageNet) and (CIFAR-10 [0:5], CIFAR-10
[5:10]) respectively, as opposed to 0.5, our default choice.

Effect of number of epochs in the second fine-tuning stage Since the second fine-tuning stage
is the crucial step for our algorithm, we try different number of epochs for this stage and see its
effect. Figure 5 shows the results. We see that the performance variation due to varying the number
of epochs is negligible, implying DCM is robust to the choice of this hyper-parameters. We also see
that in the 4/5 cases we have tried out, our default choice of 10 for the number of fine-tuning epochs
do not achieve the best performance, justifying our experiment design.
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Figure 6: Performance of DCM on CIFAR-10 [0:5] vs CIFAR-10 [5:10] near-OOD detection task
with various OOD proportions in the uncertainty dataset. The test dataset is fixed with 2500 ID and
500 OOD examples and is disjoint from the uncertainty dataset.

Importance of having OOD examples in the uncertainty dataset. We analyze how the proportion
of OOD data in the uncertainty dataset affects the performance of OOD detectors trained with DCM.
We expect uncertainty datasets with a larger fraction of OOD examples to result in better separation,
with the highest performance achieved when the uncertainty dataset consists only of OOD data. In
the near-OOD detection task shown in Figure 4, we observe improved performance with larger
proportions of OOD examples in the uncertainty dataset for all methods, as expected. We note that
DCM achieves the highest performance across all proportions. This indicates that the benefits from
the data-driven regularization is robust to differences in uncertainty dataset composition. Similar
to Figure 4, we vary the fraction of OOD examples in the uncertainty dataset and measure the
performance of DCM for another near-OOD detection task, CIFAR-10 [0:5] vs CIFAR-10 [5:10].
Figure 6 shows our results. DCM outperform binary classifier for all OOD fractions, and performs
similarly to ERD while using 1/3 the compute.

DCM still performs competitively when the uncertainty dataset is the test set itself. We report
the performance of DCM using the test set as the uncertainty dataset in Table 7 and Table 8. When
examples similar to those encountered at test time are not available, we find that this transductive
variant of DCM still performs competitively to prior methods, despite a slight drop in performance
compared to the standard DCM due to the lack of additional data.

DCM compared to other forms of regularization. For the sake of completeness, we compare DCM
with weight decay and label smoothing (Szegedy et al., 2015), two popular regularization method. In
these experiments, we train a WideResNet-40-2 model on CIFAR-100 by varying each regularization
factor during training the model from scratch while keeping every other hyper-parameter and training
details fixed at those described in Appendix D.4. Tables 13 and 14 show the results of these
experiments.

We observe that controlling weight decay can result in a better OOD detection performance compared
to the default weight decay of 0.0005 we used in this paper. However, this is not true for label
smoothing, since using label smoothing = 0.0 achieves the best OOD detection performance in all
experiments. Overall, DCM performs much better, showing it is an effective form of regularization
against out-of-distribution samples.

DCM used during pre-training. We have so far used DCM as a fine-tuning mechanism on top of a
pre-trained model. Here we explore DCM as pre-training algorithm. Specifically, we skip pre-training
on the ID dataset from Algorithm 2, and directly train a model from scratch using objective (3), i.e.,
the weighted sum of cross-entropy loss on the ID training set and the confidence loss on the unlabeled
set. We use WideResNet-40-2 models and train for 100 epochs. Since the uncertainty dataset is much
smaller than the ID training set, we repeat the images from the uncertainty dataset so that the model
sees the entire training set during each epoch. The dataset composition and other hyper-parameters
are same as Appendix D.

Table 15 shows the results of these experiments. Training directly from scratch using DCM leads
to slightly lower ID accuracy but comparable performance on OOD detection tasks. The loss in ID
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MSP (Weight Decay) DCM-Softmax

OOD Dataset 0.0005 0.0006 0.0008 0.001 0.005 0.01

SVHN 77.7 81.9 78.3 76.5 60.2 53.4 99.7
LSUN 68.5 69.5 71.0 73.5 66.4 68.2 99.5

TinyImageNet 68.0 66.5 69.8 72.4 61.2 61.4 98.7
iSUN 67.1 68.5 68.4 71.5 61.5 63.5 99.1

Table 13: OOD detection AUROC of MSP (ID: CIFAR-100) when the classifier (WideResNet-40-2)
has been pre-trained with different weight decays. We see that controlling for weight decay can
improve OOD detection performance slightly. Best performance of MSP for each OOD data is
marked with an underline.

MSP (Label smoothing) DCM-Softmax

OOD Dataset 0 0.25 0.5 0.75 1

SVHN 77.7 74.9 67.2 76.4 50.0 99.7
LSUN 68.5 56.8 61.7 63.3 50.0 99.5

TinyImageNet 68.0 59.4 62.4 58.5 50.0 98.7
iSUN 67.1 55.1 61 59.2 50.0 99.1

Table 14: OOD detection AUROC of MSP (ID: CIFAR-100) when the classifier (WideResNet-40-
2) has been pre-trained with label smoothing. Increasing label smoothing hurts OOD detection
performance, as the model trained with label smoothing 0 does the best on all 4 OOD datasets. Best
performance of MSP for each OOD data is marked with an underline.

ID Dataset OOD Dataset Classification Accuracy OOD Detection AUROC OOD Detection FPR@95

Fine-tune Pre-train Fine-tune Pre-train Fine-tune Pre-train

CIFAR-10 SVHN 90.6 93.7 99.7 99.7 0.8 0.4
TinyImageNet 90.4 93.5 99.3 99.3 2.2 2.6

LSUN 90.6 93.7 99.2 99.8 2.5 0.5
iSUN 90.2 93.5 99.5 99.7 1.4 0.6

CIFAR-100 SVHN 69.3 71.4 99.6 99.6 0.4 0.6
TinyImageNet 68.1 71.1 99.0 98.7 3.2 5.9

LSUN 69.0 71.0 99.7 99.5 0.7 1.1
iSUN 68.1 71.2 99.4 99.1 2.0 2.7

Table 15: Comparison between DCM used during pre-training a model from scratch and fine-tuning
a pre-trained model. In both cases, we use the maximum softmax probability for OOD detection, and
use a WideResNet-40 model.

performance is due to the optimization task of DCM being harder: it has two components, namely
the cross-entropy loss on the ID training set and confidence minimization loss on ID examples of the
uncertainty dataset, that work in opposite directions, making learning the ID classification task harder.
Whereas if we fine-tune an ID pre-trained model, the model already has learned the ID task and the
fine-tuning step only further modifies the decision boundary, maintaining higher ID performance.

We use DCM to fine-tune a pretrained model due to computational reasons: the fine-tuning step is
much shorter than the pre-training step, and the ratio of compute required becomes smaller when
we use larger and larger datasets. When we pre-train one epoch using DCM, the model essentially
sees 2x the number of images compared to regular pre-training and hence takes 2x compute, since it
sees equal number of images from the training and auxiliary datasets. Also this lets us take one ID
pre-trained model and adapt it relatively quickly to different test distributions, avoiding the costly
pre-training process for each different test distribution.
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L SELECTIVE CLASSIFICATION EXPERIMENT DETAILS

L.1 BASELINES

• MSP (Hendrycks & Gimpel, 2016): Also referred to as Softmax Response (SR), MSP directly uses
the maximum softmax probability assigned by the model as an estimate of confidence. MSP has
been shown to distinguish in-distribution test examples that the model gets correct from the ones
that it gets incorrect.

• MaxLogit (Hendrycks et al., 2022): Directly uses the maximum logit outputted by the model as an
estimate of confidence.

• Ensemble (Lakshminarayanan et al., 2017): Uses an ensemble of 5 models, each trained with
ERM on the ID train distribution with different random seeds. Following Lakshminarayanan et al.
(2017), we use the entropy of the average softmax predictions of the models in the ensemble as the
disagreement metric.

• Binary Classifier (Kamath et al., 2020): Trains a classifier on the labeled training and validation
sets to predict inputs for which the base model will be correct versus incorrect. The classifier takes
as input the softmax probabilities outputted by the base model. For the Binary Classifier, we found
the MLP with softmax probabilities to work best compared to a random forest classifier and MLP
with last-layer features.

• Fine-tuning: First trains a model on the training set, then fine-tunes the model on the validation
set.

• Deep Gamblers (Liu et al., 2019): Trains a classifier using a loss function derived from the
doubling rate in a hypothetical horse race. Deep Gamblers introduces an extra (c+ 1)-th class that
represents abstention. Minimizing this loss corresponds to maximizing the return, where the model
makes a bet or prediction when confident, and abstains when uncertain.

• Self-Adaptive Training (Huang et al., 2020): Trains a classifier using model predictions to
dynamically calibrate the training process. SAT introduces an extra (c+ 1)-th class that represents
abstention and uses training targets that are exponential moving averages of model predictions and
ground-truth targets.

L.2 DATASETS

• CIFAR-10 (Krizhevsky et al., a) → CIFAR-10-C (Hendrycks & Dietterich, 2019): The task is to
classify images into 10 classes, where the target distribution contains severely corrupted images.
We run experiments over 15 corruptions (brightness, contrast, defocus blur, elastic transform, fog,
frost, gaussian noise, glass blur, impulse noise, jpeg compression, motion blur, pixelate, shot noise,
snow, zoom blur) and use the data loading code from Croce et al. (2020).

• Waterbirds Wah et al. (2011); Sagawa et al. (2019): The Waterbirds dataset consists of images of
landbirds and waterbirds on land or water backgrounds from the Places dataset (Zhou et al., 2017).
The train set consists of 4,795 images, of which 3,498 are of waterbirds on water backgrounds, and
1,057 are of landbirds on land backgrounds. There are 184 images of waterbirds on land and 56
images of landbirds on water, which are the minority groups.

• Camelyon17 (Koh et al., 2021; Bandi et al., 2018): The Camelyon17 dataset is a medical image
classification task from the WILDS benchmark (Koh et al., 2021). The dataset consists of 450, 000
whole-slide images of breast cancer metastases in lymph node from 5 hospitals. The input is a
96×96 image, and the label y indicates whether there is a tumor in the image. The train set consists
of lymph-node scans from 3 of the 5 hospitals, while the OOD validation set and OOD test datasets
consists of lymph-node scans from the fourth and fifth hospitals, respectively.

• FMoW (Koh et al., 2021): The FMoW dataset is a satellite image classification task from the
WILDS benchmark (Koh et al., 2021). The dataset consists of satellite images in various geographic
locations from 2002 − 2018. The input is a 224 × 224 RGB satellite image, and the label y is
one of 62 building or land use categories. The train, validation, and test splits are based on the
year that the images were taken: the train, ID validation, and ID test sets consist of images from
2002− 2013, the OOD validation set consists of images from 2013− 2016, and the OOD test set
consists of images from 2016− 2018.
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L.3 CIFAR-10 → CIFAR-10-C TRAINING DETAILS

• Architecture: We use a WideResNet-28-10 trained on the source CIFAR-10 distribution and
attains 94.78% clean accuracy (Croce et al., 2020). The base models for Deep Gamblers and
Self-Adaptive Training use the same architecture with an additional 11th class in the final linear
layer.

• Hyper-parameters: DCM, Fine-tuning, Binary Classifier, Deep Gamblers, and Self-Adaptive
Training fine-tune the base models for 10 epochs. We perform hyperparameter tuning on a separate,
held-out ID validation set. We tune all baselines over the learning rates {1e-3, 1e-4, 1e-5}, and use
an initial learning rate of 1e-3 for all baselines except DCM, which uses an initial learning rate of
1e-4. For DCM, we use a confidence weight of λ = 0.5 for all corruptions, as in Hendrycks et al.
(2018). For Deep Gamblers, we use a reward of 3.2 and tune over rewards in the range [2.0, 4.2]
with a step size of 0.2, as in Liu et al. (2019). We use SGD with a cosine learning rate schedule,
weight decay of 5× 10−4, and batch sizes of 128 and 256 for the fine-tuning set and uncertainty
datasets, respectively.

• Validation and test set construction: We use the CIFAR-10 test set, and split it into a validation
set of 5000 images, a test set of 4000 images, and set aside 1000 images for hyperparameter tuning.
Similarly, for CIFAR-10-C, we use a validation set of 5000 images, and a test set of 4000 images.
Each of our settings merges the train/val/test splits from the corresponding datasets. For example,
Val = CIFAR-10, Test = CIFAR-10 + CIFAR-10-C uses a validation set of 5000 CIFAR-10 images
for fine-tuning and a test set of 4000 CIFAR-10 and 4000 CIFAR-10-C images. Note that our
combined CIFAR-10 + CIFAR-10-C test sets have a 1:1 clean-to-corrupted ratio.

• Augmentations: For DCM and fine-tuning, we use the same standard random horizontal flip and
random crop (32× 32).

L.4 WATERBIRDS TRAINING DETAILS

• Architecture: For our base model, we train a pretrained ResNet50 from torchvision on a
subset of the Waterbirds train set (details of the split are described below). We follow the training
details for the ERM baseline used by Sagawa et al. (2019), and use SGD with a momentum term of
0.9, batch normalization, and no dropout. We use a fixed learning rate of 0.001, a ℓ2 penalty of
λ = 0.0001 and train for 300 epochs.

• Hyper-parameters: DCM, Fine-tuning, Binary Classifier, Deep Gamblers, and Self-Adaptive
Training fine-tune the base models for 20 epochs. We perform hyperparameter tuning on a separate,
held-out ID validation set. We tune all baselines over the learning rates {1e-3, 1e-4, 1e-5}, and use
an initial learning rate of 1e-3 for all baselines except DCM, which uses an initial learning rate of
1e-4. For DCM, we use a confidence weight of λ = 0.5. For Deep Gamblers, we use a reward of
1.4 and tune over rewards in the range [1.0, 2.0] with a step size of 0.2. We use SGD with a cosine
learning rate schedule, weight decay of 5× 10−4, and batch sizes of 64 and 128 for the fine-tuning
set and uncertainty datasets, respectively.

• Validation and test set construction: We split the Waterbirds train set from Sagawa et al. (2019)
into two sets, one which we use to pretrain a base ERM model, and the other which we use as our
ID validation set. We maintain group ratios, and the ID train and validation sets each contain 2,397
images, consisting of 1749 waterbirds on water, 528 landbirds on land, 92 waterbirds on land, and
28 landbirds on water. Our test set is the same test set from Sagawa et al. (2019).

• Augmentations: DCM and Fine-Tuning use the train augmentations as in Sagawa et al. (2019): a
random resized crop (224× 224) and random horizontal flip.

L.5 CAMELYON17 TRAINING DETAILS

• Architecture: We use a DenseNet121 pre-trained on the Camelyon17 train set from Koh et al.
(2021) as our base model. These models are trained for 5 epochs with a learning rate of 0.001, ℓ2
regularization strength of 0.01, batch size of 32, and SGD with momentum set to 0.9.

• Hyper-parameters: DCM, Fine-tuning, Binary Classifier, Deep Gamblers, and Self-Adaptive
Training fine-tune the base models for 1 epoch. We perform hyperparameter tuning on a separate,
held-out ID validation set. We tune all baselines over the learning rates {1e-3, 1e-4, 1e-5}, and use
an initial learning rate of 1e-4 for all baselines. For DCM, we use a confidence weight of λ = 0.5.
For Deep Gamblers, we use a reward of 1.4 and tune over rewards in the range [1.0, 2.0] with a
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step size of 0.2. We use an AdamW optimizer with a cosine learning rate schedule, weight decay
of 5× 10−4, and batch size of 32 for the fine-tuning set and uncertainty datasets.

• Validation and test set construction: We use the train / ID val / OOD val / OOD test splits from
the WILDS benchmark to construct our validation and test sets. For our ID validation set and ID
test set, we split the Camelyon17 ID validation set into two equally-sized subsets and maintain
group ratios. The Camelyon17 ID validation consists of samples from the same 3 hospitals as the
train set. We use the OOD test set as our target distribution, which contains samples from the 5th
hospital.

• Augmentations: DCM and Fine-tuning use random horizontal flips.

L.6 FMOW TRAINING DETAILS

• Architecture: We use FMoW ERM models from the WILDS benchmark Koh et al. (2021) as our
base model. These models use DenseNet121 pretrained on ImageNet with no ℓ2 regularization,
Adam optimizer with an initial learning rate of 1e-4 that decays by 0.96 per epoch, and train for 50
epochs with early stopping and batch size of 64.

• Hyper-parameters: DCM, Fine-tuning, Binary Classifier, Deep Gamblers, and Self-Adaptive
Training fine-tune the base models for 5 epochs. We perform hyperparameter tuning on a separate,
held-out ID validation set. We tune all baselines over the learning rates {1e-3, 1e-4, 1e-5, 1e-6},
and use an initial learning rate of 1e-3 for SAT, 1e-4 for Fine-tuning, Deep Gamblers, and Binary
Classifier, and 1e-5 for DCM. For DCM, we use a confidence weight of λ = 0.1 and tune over the
weights {0.01, 0.05, 0.1, 0.5, 1.0, 1.5} on a held-out ID validation set. For Deep Gamblers, we use
a reward of 35 and tune over rewards in the range [5.0, 65.0] with a step size of 5.0. We use an
AdamW optimizer with a cosine learning rate schedule, weight decay of 5× 10−4, and batch sizes
of 16 and 32 for the uncertainty dataset and fine-tuning sets, respectively.

• Validation and test set construction: We use the train, ID validation, OOD validation, and OOD
test splits from the WILDS benchmark as our validation and test sets. Specifically, we use the ID
validation set, ID test set, and OOD test sets. For example, the task Val = FMoW ID, Test = FMoW
ID + FMoW OOD uses the WILDS ID val set for validation, and the WILDS ID and OOD test sets
for testing.

• Augmentations: DCM and Fine-tuning use random horizontal flips.

M SELECTIVE CLASSIFICATION ABLATIONS

M.1 EFFECT OF VALIDATION SET SIZE

Figure 7 shows the performance of DCM on selective classification when we vary the size of the
validation set. DCM consistently outperforms baselines in distribution-shift settings with different
validation set sizes.

M.2 DCM COMPARED TO OTHER REGULARIZATION METHODS

Table 16 shows the comparison between pre-training with label smoothing (Szegedy et al., 2015)
as a form of regularization and DCM. We see that higher weights of label smoothing degrades
performance, and therefore is not an alternative to DCM.

MSP with Label Smoothing DCM-Softmax

Eval Data 0 0.25 0.5 0.75 1

ID 81.3 81.0 80.7 71.0 59.6 82.9
ID+OOD 77.1 76.9 76.4 67.8 52.5 78.9

OOD 74.5 74.3 74.2 64.0 55.1 76.4

Table 16: Pre-training with label smoothing does not improve selective classification. Here, we
compare an MSP classifier pre-trained with varying degrees of label smoothing with DCM on the
FMoW dataset. Higher weights of label smoothing degrade performance. We underline the best
performance of MSP with label smoothing.

N COMPUTE

All model training and experiments were conducted on a single NVIDIA RTX Titan or A40 GPU.
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Figure 7: Selective classification performance of DCM when we vary the size of the validation set.
Left: CIFAR-10 → CIFAR-10, Middle: CIFAR-10 → CIFAR-10-C, Right: CIFAR-10 → CIFAR-10
+ CIFAR-10-C. DCM consistently outperforms baselines in distribution-shift settings with different
validation set sizes.

Method ECE (↓) Acc (↑) AUC (↑) Acc@90 (↑) Acc@95 (↑) Acc@99 (↑) Cov@90 (↑) Cov@95 (↑) Cov@99 (↑)

Val = CIFAR-10, Test = CIFAR-10
MSP 0.5 (0.1) 95.2 (0.1) 99.3 (0.1) 98.4 (0.1) 97.2 (0.1) 95.7 (0.1) 100 (0.0) 100 (0.0) 87.0 (0.1)
MaxLogit 0.6 (0.1) 95.1 (0.1) 98.9 (0.1) 97.9 (0.1) 96.8 (0.1) 95.6 (0.1) 100 (0.0) 100 (0.0) 80.4 (0.1)
Ensemble 0.6 (0.1) 95.2 (0.1) 99.3 (0.1) 98.4 (0.1) 97.1 (0.1) 95.7 (0.1) 100 (0.0) 100 (0.0) 86.2 (0.1)
Binary Classifier 1.4 (0.1) 95.2 (0.1) 99.3 (0.1) 98.4 (0.1) 97.2 (0.2) 95.7 (0.2) 100 (0.0) 100 (0.0) 87.0 (2.3)
Fine-Tuning 0.3 (0.2) 96.2 (0.1) 99.6 (0.1) 99.1 (0.2) 98.7 (0.1) 97.5 (0.2) 100 (0.0) 100 (0.0) 91.6 (0.9)
DG 0.8 (0.1) 94.5 (0.0) 99.0 (0.0) 97.4 (0.1) 96.4 (0.0) 94.9 (0.1) 100 (0.0) 98.7 (0.1) 76.2 (1.7)
SAT 0.7 (0.1) 94.7 (0.0) 99.2 (0.0) 97.6 (0.1) 96.3 (0.0) 94.9 (0.1) 100 (0.0) 98.8 (0.1) 81.6 (1.1)
DCM (ours) 1.0 (0.2) 94.7 (0.2) 99.2 (0.2) 98.0 (0.2) 96.5 (0.2) 94.8 (0.2) 100 (0.0) 98.6 (0.4) 83.9 (1.0)

Val = CIFAR-10, Test = CIFAR-10 + CIFAR-10-C
MSP 9.3 (0.1) 75.8 (0.1) 92.6 (0.1) 80.4 (0.1) 78.3 (0.1) 76.4 (0.1) 72.4 (0.2) 60.6 (0.2) 27.4 (0.7)
MaxLogit 9.4 (0.0) 75.7 (0.1) 91.7 (0.0) 80.4 (0.0) 78.2 (0.0) 76.3 (0.0) 70.5 (0.1) 54.0 (0.3) 10.1 (0.3)
Ensemble 9.3 (0.1) 75.8 (0.1) 92.6 (0.1) 80.6 (0.1) 78.4 (0.1) 76.4 (0.1) 72.1 (0.3) 60.1 (0.3) 27.5 (0.8)
Binary Classifier 7.9 (0.1) 75.4 (0.1) 92.5 (0.1) 80.3 (0.1) 78.1 (0.1) 76.2 (0.1) 72.0 (0.2) 59.9 (0.3) 30.5 (1.7)
Fine-Tuning 8.2 (0.1) 75.2 (0.1) 93.4 (0.1) 81.3 (0.1) 78.9 (0.1) 77.0 (0.1) 74.2 (0.2) 63.4 (0.3) 42.4 (0.9)
DG 8.2 (0.0) 76.0 (0.1) 93.0 (0.1) 81.0 (0.0) 78.8 (0.0) 76.9 (0.0) 73.2 (0.2) 60.7 (0.5) 33.4 (1.2)
SAT 7.8 (0.0) 76.2 (0.1) 93.3 (0.0) 81.1 (0.0) 78.7 (0.1) 76.8 (0.0) 74.1 (0.0) 62.7 (0.1) 42.7 (0.3)
DCM (ours) 8.0 (0.1) 77.0 (0.1) 93.6 (0.1) 82.0 (0.1) 79.7 (0.1) 77.7 (0.1) 75.2 (0.1) 63.8 (0.3) 43.6 (0.9)
Val = CIFAR-10, Test = CIFAR-10-C
MSP 13.8 (0.1) 56.4 (0.1) 70.1 (0.1) 57.4 (0.2) 56.0 (0.2) 54.8 (0.1) 30.2 (0.3) 20.9 (0.5) 7.6 (0.3)
MaxLogit 14.6 (0.0) 56.4 (0.1) 71.7 (0.1) 59.4 (0.1) 58.0 (0.0) 56.8 (0.0) 23.2 (0.7) 11.3 (0.3) 3.5 (0.5)
Ensemble 14.5 (0.1) 56.8 (0.1) 72.9 (0.1) 59.8 (0.1) 58.2 (0.1) 57.0 (0.1) 27.6 (0.3) 16.6 (0.5) 5.0 (0.4)
Binary Classifier 13.6 (0.1) 56.2 (0.2) 72.8 (0.2) 59.5 (0.2) 58.0 (0.2) 56.7 (0.6) 28.5 (0.6) 16.4 (0.8) 8.2 (0.8)
Fine-Tuning 12.7 (0.1) 57.6 (0.1) 75.4 (0.1) 61.7 (0.2) 60.2 (0.3) 58.8 (0.3) 33.6 (0.8) 22.5 (0.8) 8.6 (0.5)
DG 12.7 (0.0) 56.8 (0.1) 74.3 (0.2) 61.4 (0.1) 59.9 (0.0) 58.7 (0.0) 28.4 (0.5) 17.2 (0.2) 7.2 (0.3)
SAT 12.5 (0.0) 57.4 (0.1) 75.3 (0.1) 61.4 (0.1) 59.8 (0.1) 58.4 (0.1) 32.5 (0.5) 22.0 (0.8) 8.6 (0.2)
DCM (ours) 12.3 (0.1) 59.4 (0.1) 77.5 (0.2) 64.1 (0.2) 62.4 (0.2) 61.0 (0.2) 37.6 (0.6) 25.2 (1.0) 8.9 (0.2)

Table 17: Selective classification performance on various distribution shift tasks constructed from
the CIFAR-10 and CIFAR-10-C datasets. Bold numbers represent superior results, and parentheses
show the standard error over 3 random seeds. DCM consistently outperforms MSP, MaxLogit, Deep
Gamblers (DG), and Self-Adaptive Training (SAT), and outperforms all 7 prior methods when the
validation and test sets are from different distributions.
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Method ECE (↓) Acc (↑) AUC (↑) Acc@90 (↑) Acc@95 (↑) Acc@99 (↑) Cov@90 (↑) Cov@95 (↑) Cov@99 (↑)

Val = Waterbirds-Train, Test = Waterbirds-Train
MSP 3.4 (0.0) 96.8 (0.0) 98.7 (0.0) 99.1 (0.0) 98.2 (0.0) 97.1 (0.0) 100 (0.0) 100 (0.0) 90.1 (0.0)
MaxLogit 3.2 (0.0) 96.8 (0.0) 98.6 (0.0) 99.3 (0.0) 98.2 (0.0) 97.2 (0.0) 100 (0.0) 100 (0.0) 91.0 (0.0)
Ensemble 3.1 (0.0) 97.0 (0.0) 98.7 (0.0) 98.9 (0.0) 98.2 (0.0) 97.2 (0.0) 100 (0.0) 100 (0.0) 88.8 (0.0)
Binary Classifier 3.4 (0.0) 96.0 (0.0) 98.7 (0.0) 99.1 (0.0) 98.2 (0.0) 97.1 (0.0) 100 (0.0) 100 (0.0) 90.1 (0.0)
Fine-Tuning 1.1 (0.0) 96.9 (0.0) 98.7 (0.0) 99.4 (0.0) 98.6 (0.0) 97.3 (0.0) 100 (0.0) 100 (0.0) 91.8 (0.0)
DG 1.3 (0.3) 97.0 (0.0) 98.5 (0.0) 98.8 (0.1) 98.0 (0.1) 97.3 (0.0) 100 (0.0) 100 (0.0) 86.9 (0.5)
SAT 0.7 (0.4) 96.8 (0.0) 98.6 (0.0) 99.1 (0.1) 98.3 (0.1) 97.4 (0.1) 100 (0.0) 100 (0.0) 91.3 (0.9)
DCM (ours) 1.8 (0.6) 96.8 (0.0) 98.7 (0.0) 99.2 (0.0) 98.3 (0.1) 97.2 (0.0) 100 (0.0) 100 (0.0) 91.9 (0.1)
Val = Waterbirds-Train, Test = Waterbirds-Test
MSP 15.1 (0.0) 84.3 (0.0) 94.4 (0.0) 88.2 (0.0) 86.8 (0.0) 85.3 (0.0) 83.9 (0.0) 60.9 (0.0) 27.5 (0.0)
MaxLogit 18.1 (0.0) 84.3 (0.0) 94.2 (0.0) 87.9 (0.0) 86.3 (0.0) 84.7 (0.0) 82.2 (0.0) 60.9 (0.0) 23.8 (0.0)
Ensemble 14.9 (0.0) 85.0 (0.0) 94.4 (0.0) 88.4 (0.0) 87.0 (0.0) 85.4 (0.0) 85.0 (0.0) 62.0 (0.0) 25.6 (0.0)
Binary Classifier 16.4 (0.3) 84.9 (0.2) 94.0 (0.2) 87.5 (0.3) 86.1 (0.2) 84.8 (0.2) 81.2 (1.8) 59.8 (2.0) 24.2 (1.1)
Fine-Tuning 15.3 (0.4) 85.9 (0.5) 94.7 (0.2) 89.0 (0.5) 87.2 (0.5) 86.2 (0.5) 86.8 (1.4) 64.0 (2.7) 27.9 (2.7)
DG 17.3 (0.4) 85.1 (0.1) 94.8 (0.1) 88.6 (0.2) 87.0 (0.2) 85.8 (0.2) 85.4 (0.6) 67.3 (1.1) 29.4 (0.4)
SAT 17.5 (0.2) 86.0 (0.0) 95.1 (0.0) 88.9 (0.1) 87.0 (0.1) 85.6 (0.1) 87.2 (0.4) 70.0 (0.3) 34.4 (0.4)
DCM (ours) 13.9 (0.7) 86.5 (0.2) 95.0 (0.1) 89.5 (0.3) 88.0 (0.4) 86.6 (0.4) 88.2 (0.8) 66.5 (0.3) 29.8 (1.1)

Table 18: Selective classification on the Waterbirds spurious correlation dataset. Bold numbers
represent superior results, and parentheses show the standard error over 3 random seeds. DCM
consistently outperforms all 7 prior methods when the validation and test sets are from different
distributions, suggesting that DCM is effective in spurious correlation settings.
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Method ECE (↓) Acc (↑) AUC (↑) Acc@90 (↑) Acc@95 (↑) Acc@99 (↑) Cov@90 (↑) Cov@95 (↑) Cov@99 (↑)

Val = Camelyon17 ID Val-1, Test = Camelyon17 ID Val-2
MSP 16.3 (10.4) 81.5 (7.8) 96.9 (2.2) 92.0 (5.9) 90.8 (6.4) 89.5 (6.6) 87.2 (10.5) 78.6 (17.5) 60.5 (25.5)
MaxLogit 16.4 (10.2) 81.5 (7.8) 97.0 (2.2) 92.2 (5.8) 91.0 (6.4) 89.8 (6.5) 87.8 (10.0) 79.1 (17.1) 60.1 (27.0)
Ensemble 15.7 (11.2) 94.8 (6.4) 99.1 (2.7) 96.8 (5.9) 95.9 (6.7) 95.1 (6.8) 100.0 (10.5) 99.4 (18.1) 73.2 (27.7)
Binary Classifier 16.3 (9.2) 89.4 (6.5) 97.0 (4.5) 92.3 (5.9) 91.4 (6.0) 90.3 (6.7) 88.1 (10.2) 79.3 (16.8) 61.0 (24.2)
Fine-Tuning 2.8 (0.2) 98.3 (0.2) 99.8 (0.0) 99.7 (0.0) 99.4 (0.1) 98.6 (0.2) 100.0 (0.0) 100.0 (0.0) 97.3 (0.7)
DG 3.4 (2.1) 97.5 (0.4) 99.8 (0.0) 99.6 (0.1) 99.2 (0.3) 98.2 (0.4) 100.0 (0.0) 100.0 (0.0) 96.1 (1.7)
SAT 1.6 (0.0) 97.7 (0.0) 99.8 (0.0) 99.7 (0.0) 99.4 (0.0) 98.5 (0.0) 100.0 (0.0) 100.0 (0.0) 96.7 (0.3)
DCM (ours) 9.9 (0.3) 95.3 (0.2) 99.5 (0.1) 98.6 (0.2) 98.0 (0.0) 96.6 (0.2) 100.0 (0.0) 100.0 (0.0) 82.4 (5.3)

Val = Camelyon17 ID Val-1, Test = Camelyon17 ID Val-2 + Camelyon17 OOD Test
MSP 25.9 (6.4) 66.2 (5.1) 85.8 (3.7) 74.1 (5.1) 73.1 (4.9) 72.2 (4.8) 40.6 (7.8) 29.4 (8.1) 7.4 (3.3)
MaxLogit 25.9 (6.4) 66.2 (5.1) 85.8 (3.7) 74.2 (5.1) 73.1 (5.0) 72.2 (4.8) 40.7 (7.9) 29.4 (8.2) 7.7 (3.6)
Ensemble 19.6 (6.7) 75.6 (4.6) 86.5 (4.1) 78.1 (4.8) 76.8 (5.2) 75.8 (4.2) 25.8 (8.1) 18.7 (8.4) 11.5 (3.5)
Binary Classifier 26.3 (6.0) 72.0 (4.7) 86.2 (3.3) 74.4 (5.0) 73.4 (4.9) 72.7 (4.4) 41.0 (8.1) 29.8 (8.2) 7.5 (3.5)
Fine-Tuning 20.5 (1.9) 76.7 (3.4) 88.9 (2.2) 79.8 (3.5) 78.6 (3.4) 77.6 (3.3) 44.2 (5.8) 33.1 (2.8) 9.7 (6.3)
DG 27.5 (7.3) 74.0 (5.8) 88.1 (4.1) 77.2 (6.5) 75.8 (6.3) 74.8 (6.0) 51.3 (14.3) 36.4 (9.3) 6.2 (3.8)
SAT 24.3 (2.1) 72.1 (1.1) 86.3 (0.4) 74.8 (1.1) 73.8 (1.1) 73.0 (1.2) 35.2 (1.3) 28.3 (1.6) 15.2 (1.4)
DCM (ours) 8.9 (1.5) 80.6 (1.0) 93.5 (0.6) 85.5 (1.0) 83.8 (1.0) 82.5 (0.9) 74.1 (4.3) 50.3 (6.5) 16.4 (0.6)
Val = Camelyon17 ID Val-1, Test = Camelyon17 OOD Test
MSP 28.2 (5.4) 63.1 (4.8) 82.2 (3.9) 70.4 (4.8) 69.5 (4.6) 68.8 (4.4) 31.5 (6.8) 21.8 (7.8) 2.4 (0.4)
MaxLogit 28.2 (5.4) 63.1 (4.8) 82.1 (3.9) 70.4 (4.8) 69.5 (4.6) 68.8 (4.4) 31.4 (6.9) 21.9 (7.8) 2.4 (0.4)
Ensemble 21.1 (5.6) 71.8 (4.8) 81.4 (4.4) 74.0 (5.2) 72.8 (4.3) 72.0 (4.7) 13.4 (7.3) 9.8 (8.1) 4.6 (0.3)
Binary Classifier 28.0 (5.3) 69.0 (5.2) 82.4 (3.9) 70.5 (4.4) 70.1 (4.2) 69.5 (6.5) 32.1 (5.6) 22.1 (7.3) 2.5 (0.4)
Fine-Tuning 23.6 (2.0) 72.8 (4.2) 84.2 (3.8) 75.4 (4.2) 74.3 (4.1) 73.5 (4.0) 31.4 (6.0) 21.6 (6.5) 3.8 (3.1)
DG 31.6 (8.5) 69.4 (7.5) 84.8 (5.2) 72.1 (7.9) 70.9 (7.7) 70.1 (7.3) 43.3 (11.2) 31.9 (8.0) 5.8 (4.0)
SAT 21.7 (2.3) 70.2 (0.7) 80.3 (0.6) 71.9 (0.8) 71.3 (1.0) 70.8 (1.0) 20.3 (3.6) 5.9 (4.0 ) 0.0 (0.0)
DCM (ours) 11.5 (2.1) 78.7 (1.2) 91.6 (1.1) 82.5 (1.2) 80.9 (1.1) 79.7 (1.1) 62.5 (8.2) 40.3 (7.5) 9.7 (2.9)

Val = FMoW ID Val, Test = FMoW ID Test
MSP 1.8 (0.4) 58.4 (1.5) 81.3 (0.4) 62.6 (0.1) 60.9 (0.1) 58.7 (0.1) 36.7 (1.3) 18.4 (5.8) 3.7 (1.8)
MaxLogit 1.8 (0.4) 58.4 (0.1) 80.1 (0.2) 62.7 (0.2) 60.6 (0.1) 58.8 (0.1) 29.7 (0.8) 10.7 (2.2) 0.8 (0.4)
Ensemble 0.8 (0.0) 62.5 (0.1) 85.5 (0.0) 68.4 (0.1) 66.1 (0.1) 64.2 (0.1) 44.8 (0.3) 31.5 (0.1) 10.6 (0.8)
Binary Classifier 1.9 (0.4) 58.4 (0.2) 82.3 (0.3) 64.3 (0.1) 62.0 (0.2) 60.2 (0.1) 37.6 (0.5) 20.9 (4.3) 3.7 (2.7)
Fine-Tuning 1.2 (0.5) 59.3 (2.7) 82.8 (0.9) 64.0 (1.2) 61.7 (1.3) 59.9 (1.2) 39.5 (2.4) 27.0 (2.8) 5.9 (1.2)
DG 1.8 (0.1) 58.5 (0.4) 75.8 (0.2) 62.4 (0.9) 60.9 (0.5) 59.9 (0.4) 12.9 (0.6) 2.6 (1.8) 0.1 (0.0)
SAT 1.1 (0.0) 58.3 (0.5) 81.1 (0.3) 63.0 (0.5) 60.8 (0.5) 59.1 (0.5) 33.5 (0.5) 18.8 (1.0) 4.3 (0.9)
DCM (ours) 1.1 (0.5) 59.3 (1.2) 82.9 (1.1) 64.2 (1.2) 61.7 (1.3) 59.9 (1.1) 39.4 (2.5) 26.7 (3.5) 6.3 (2.0)

Val = FMoW ID Val, Test = FMoW ID Test + FMoW OOD Test
MSP 2.3 (0.4) 51.5 (0.1) 77.1 (0.5) 57.9 (0.1) 55.9 (0.2) 54.2 (0.0) 25.4 (2.3) 11.0 (4.6) 1.2 (0.6)
MaxLogit 2.3 (0.5) 51.5 (0.1) 75.8 (0.1) 57.8 (0.1) 55.7 (0.1) 54.2 (0.0) 19.4 (0.3) 4.3 (0.9) 0.3 (0.2)
Ensemble 1.3 (0.0) 56.5 (0.0) 81.7 (0.0) 63.2 (0.0) 61.2 (0.0) 59.4 (0.0) 35.6 (0.2) 24.3 (0.1) 5.6 (0.2)
Binary Classifier 2.5 (0.4) 53.8 (0.1) 78.0 (0.4) 59.3 (0.0) 57.3 (0.0) 55.6 (0.0) 27.5 (1.5) 9.3 (6.2) 1.2 (0.9)
Fine-Tuning 1.7 (0.3) 54.2 (2.3) 78.6 (0.8) 58.6 (1.2) 56.5 (1.1) 54.8 (1.1) 30.8 (2.1) 19.1 (1.7) 3.0 (0.3)
DG 2.2 (0.0) 54.0 (0.3) 71.6 (0.2) 57.5 (0.3) 56.1 (0.2) 55.1 (0.2) 5.0 (0.2) 0.2 (0.1) 0.0 (0.0)
SAT 1.4 (0.0) 53.7 (0.4) 76.7 (0.2) 57.8 (0.4) 55.8 (0.4) 54.3 (0.4) 24.8 (0.3) 11.2 (0.8) 0.5 (0.2)
DCM (ours) 1.5 (0.3) 54.6 (1.7) 78.9 (1.1) 58.8 (1.3) 56.7 (1.3) 55.0 (1.3) 30.7 (2.0) 20.1 (2.2) 3.8 (1.1)

Val = FMoW ID Val, Test = FMoW OOD Test
MSP 2.6 (0.5) 50.9 (2.7) 74.5 (0.6) 55.2 (0.2) 53.4 (0.3) 52.0 (0.1) 20.6 (3.2) 8.4 (3.5) 1.3 (0.4)
MaxLogit 2.6 (0.5) 50.7 (0.1) 73.3 (0.2) 55.2 (0.0) 53.3 (0.1) 51.9 (0.1) 13.7 (0.4) 3.2 (0.8) 0.3 (0.1)
Ensemble 1.6 (0.0) 55.0 (0.1) 79.5 (0.0) 60.7 (0.1) 58.6 (0.1) 57.0 (0.1) 31.1 (0.1) 20.8 (0.4) 3.3 (0.6)
Binary Classifier 2.8 (0.5) 51.7 (0.0) 75.6 (0.5) 56.8 (0.1) 54.9 (0.0) 53.3 (0.0) 21.1 (3.8) 7.6 (4.8) 1.0 (0.4)
Fine-Tuning 2.0 (0.3) 51.8 (1.1) 76.2 (0.8) 56.0 (0.9) 53.9 (0.9) 52.4 (1.0) 26.8 (1.4) 14.8 (1.3) 1.7 (0.1)
DG 2.5 (0.0) 51.9 (0.1) 69.2 (0.3) 54.9 (0.2) 53.7 (0.1) 52.6 (0.0) 2.7 (0.8) 0.1 (0.1) 0.0 (0.0)
SAT 1.6 (0.0) 51.0 (0.4) 74.1 (0.2) 55.1 (0.4) 53.2 (0.3) 51.8 (0.3) 20.1 (0.4) 7.1 (1.1) 0.3 (0.1)
DCM (ours) 1.8 (0.3) 51.9 (1.7) 76.4 (1.1) 56.2 (1.4) 54.1 (1.3) 52.4 (1.2) 26.8 (1.6) 16.3 (1.7) 2.4 (0.5)

Table 19: Selective classification on the Camelyon17 and FMoW domain shift datasets. Bold
numbers represent best performance, and parentheses show the standard error over 3 random seeds.
On Camelyon17, DCM consistently outperforms all 7 prior methods when the validation and test sets
are from different distributions. On FMoW, DCM has the second-highest AUC after Ensemble, while
using only 1/5 of the compute.
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