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ABSTRACT

Deep learning has shown great promise in arrhythmia classification in electrocar-
diogram (ECG). Existing works, when classifying an ECG segment with multiple
beats, do not identify the locations of the anomalies, which reduces clinical inter-
pretability. On the other hand, segmenting abnormal beats by deep learning usu-
ally requires annotation for a large number of regular and irregular beats, which
can be laborious, sometimes even challenging, with strong inter-observer variabil-
ity between experts. In this work, we propose a method capable of not only dif-
ferentiating arrhythmia but also segmenting the associated abnormal beats in the
ECG segment. The only annotation used in the training is the type of abnormal
beats and no segmentation labels are needed. Imitating human’s perception of an
ECG signal, the framework consists of a segmenter and classifier. The segmenter
outputs an attention map, which aims to highlight the abnormal sections in the
ECG by element-wise modulation. Afterwards, the signals are sent to a classifier
for arrhythmia differentiation. Though the training data is only labeled to super-
vise the classifier, the segmenter and the classifier are trained in an end-to-end
manner so that optimizing classification performance also adjusts how the abnor-
mal beats are segmented. Validation of our method is conducted on two dataset.

We observe that involving the unsupervised segmentation in fact boosts the clas-
sification performance. Meanwhile, a grade study performed by experts suggests
that the segmenter also achieves satisfactory quality in identifying abnormal beats,
which significantly enhances the interpretability of the classification results.

1 INTRODUCTION

Arrhythmia in electrocardiogram (ECG) is a reflection of heart conduction abnormality and occurs
randomly among normal beats. Deep learning based methods have demonstrated strong power in
classifying different types of arrhythmia. There are plenty of works on classifying a single beat,
involving convolutional neural networks (CNN) (Acharya et al., 2017b; [Zubair et al., 2016)), long
short-term memory (LSTM) (Yildirim, |2018)), and generative adversarial networks (GAN) (Golany
& Radinsky|, 2019). For these methods to work in clinical setting, however, a good segmenter is
needed to accurately extract a single beat from an ECG segment, which may be hard when abnormal
beats are present. Alternatively, other works (Acharya et al., 2017a; Hannun et al., [2019) try to
directly identify the genres of arrhythmia present in an ECG segment. The limitation of these works
is that they work as a black-box and fail to provide cardiologists with any clue on how the prediction
is made such as the location of the associated abnormal beats.

In terms of ECG segmentation, there are different tasks such as segmenting ECG records into beats
or into P wave, QRS complexity, and T wave. On one hand, some existing works take advantage
of signal processing techniques to locate some fiducial points of PQRST complex so that the ECG
signals can be divided. For example, Pan-Tompkins algorithm (Pan & Tompkins| [1985) uses a
combination of filters, squaring, and moving window integration to detect QRS complexity. The
shortcomings of these methods are that handcraft selection of filter parameters and threshold is
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needed. More importantly, they are unable to distinguish abnormal heartbeats from normal ones.
To address these issues, Moskalenko et al.| (2019); |Oh et al.| (2019) deploy CNNs for automatic
beat segmentation. However, the quality of these methods highly depends on the labels for fiducial
points of ECG signals, the annotation process of which can be laborious and sometimes very hard.
Besides, due to the high morphological variation of arrhythmia, strong variations exist even between
annotations from experienced cardiologists. As such, unsupervised learning based approaches might
be a better choice.

Inspired by human’s perception of ECG signals, our proposed framework firstly locates the abnormal
beats in an ECG segment in the form of attention map and then does abnormal beats classification by
focusing on these abnormal beats. Thus, the framework not only differentiates arrhythmia types but
also identifies the location of the associated abnormal beats for better interpretability of the result.
It is worth noting that, in our workflow, we only make use of annotation for the type of abnormality
in each ECG segment without abnormal beat localization information during training, given the
difficulty and tedious effort in obtaining the latter.

We validate our methods on two datasets from different sources. The first one contains 508 12-lead
ECG records of Premature Ventricular Contraction patients, which are categorized into different
classes by the origin of premature contraction (e.g., left ventricle (LV) or right ventricle (RV)). For
the other dataset, we process signals in the MIT-BIH Arrhythmia dataset into segments of standard
length. This dataset includes various types of abnormal beats, and we select 2627 segments with
PVC present and 356 segemnts with Atrial Premature Beat (APB) present. Experiments on both two
dataset show quantitative evidence that introducing the segmentation of abnormal beats through an
attention map, although unsupervised, can in fact benefit the arrhythmia classification performance
as measured by accuracy, sensitivity, specificity, and area under Receiver Operating Characteristic
(ROC) curve. At the same time, a grade study by experts qualitatively demonstrates our method’s
promising capability to segment abnormal beats among normal ones, which can provide useful in-
sight into the classification result. Our code and dataset, which is the first for the challenging PVC
differentiation problem, will be released to the public.

2 RELATED WORKS

Multitask learning There are many works devoted to training one deep learning models for multi-
tasks rather than one specific task, like simultaneous segmentation and classification. (Yang et al.,
2017) solves skin lesion segmentation and classification at the same time by utilizing similarities
and differences across tasks. In the area of ECG signals, (Oh et al.l|2019) modifies UNet to output
the localization of r peaks and arrhythmia prediction simultaneously. What those two works have in
common is that different tasks share certain layers in feature extraction. In contrast, our segmenter
and classifier are independent models and there is no layer sharing between them. As can be seen
in Figure [I| we use attention maps as a bridge connecting the two models. (Mehta et al., [2018])
segments different types of issues in breast biopsy images with a UNet and apply a discriminative
map generated by a subbranch of the UNet to the segmentation result as input to a MLP for diag-
nosis. However, their segmentation and classification tasks are not trained end-to-end. (Zhou et al.,
2019) proposes a method for collaborative learning of disease grading and lesion segmentation.
They first perform a traditional semantic segmentation task with a small portion of annotated labels,
and then they jointly train the segmenter and classifier for fine-tuning with an attention mechanism,
which is applied on the latent features in the classification model, different from our method. An-
other difference is that for most existing multitask learning works, labels for each task are necessary,
i.e., all tasks are supervised. Our method, on the other hand, only requires the labels of one task
(classification), leading to a joint supervised/unsupervised scheme.

Attention mechanism After firstly proposed for machine translation (Bahdanau et al., [2014)), at-
tention model became a prevalent concept in deep learning and leads to improved performance in
various tasks in natural language processing and computer visions. (Vaswani et al., | 2017) exploits
self-attention in their encoder-decoder architecture to draw dependency between input and output
sentences. (Wang et al.,2017) builds a very deep network with attention modules which generates
attention-aware features for image classification and (Oktay et al.| 2018]) integrates attention gates
into U-Net (Ronneberger et al.,[2015) to highlight latent channels informative for segmentation task.
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Figure 1: (a) Overview of our framework consisting of a segmenter and a classifier. The segmenter is
amodified version of U-Net. The input of the classifier is the element-wise production of the original
ECG segment and the attention map generated by the segmenter. The tuple alongside every cuboid
represents (number of channels, length of data) for the feature maps. (b) The detailed architecture
of the classifier. Following a 1D point-wise convolutional layer are four convolutional blocks, each
containing two combinations of Conv + BN + ReLU. GAP stands for global average pooling while
MLP stands for a two-layer perceptron. The elements in the tuple represent channel number and
downsample ratio respectively.

When it comes to ECG, (Hong et al., 2019) proposes a multilevel knowledge guided attention net-
work to discriminate Atrial fibrillation (AF) patients, making the learned models explainable at beat
level, rhythm level, and frequency level, which is highly related to our work. Our method and theirs
however are quite different in the way attention weights are derived and applied, as well as the output
of attention network. First, in that work, the attention weights are obtained from the outputs of hid-
den layers, while ours are directly from the input. Second, domain knowledge about AF is needed to
help the attention extraction, so the process is weakly supervised, while ours do not use any external
information and is fully unsupervised. Third, their attention weights are applied to latent features in
that work while ours are applied to the input for better interpretability. Finally, in that work, the in-
put ECG segment is divided into equal-length segments in advance and the attention network output
only indicates which segment contains the target arrhythmia. The quality highly depends on how
the segment is divided, and it does not provide the exact locations of abnormal beats. On the other
hand, our method directly locates the abnormal beats on the entire input ECG, offering potentially
better interpretability and robustness.

3 METHOD

3.1 OVERVIEW OF THE FRAMEWORK

Here we briefly introduce the workflow of our joint learning frameworks for supervised classification
and unsupervised segmentation. Firstly, in this work, we choose to model the input signal as a
one-dimensional signal D € RM*N where M is the number of leads and N is the length of the
input ECG segment (number of samples over time). We then use a one-dimensional (1D) fully
convolutional network called segmenter S to output a feature map L = S(D) € RM*N | After that,
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we apply a pooling layer to generate window-style element-wise attention A € RM >N containing

weights directly for every sample in the input ECG. The after-attention signal X = A®D € RM*N|
where © represents element-wise production, is then fed into a multi-layer CNN called classifier C,
in which the outermost fully connected layer gives the prediction of the arrhythmia types. After
training, the abnormal areas are highlighted in X, thus achieving the goal of segmenting abnormal
beats from normal ones. Moreover, z, which indicates those beats that are highly associated with
the differentiation task, also serves as an explanation for C’s decision. The architecture of our
framework is illustrated in Fig 1.

3.2 SEGMENTER AND CLASSIFIER

In most existing works, the attention map is fused with the deep features in a neural network. How-
ever, for our specific purposes of enhancing intepretability of the classification results as well as
unsupervised segmentation, the best result would be obtained by directly applying it to the input
signal D. In order to generate attention weights of the same length as D, we choose to utilize U-
Net (Ronneberger et al.| [2015)), a fully convolutional network highlighted by the skip connection
on different stages. Encoding path extract features recursively and decoding path reconstruct the
data as instructed by loss function. Note that the output of S has only 1 channel and we expand it
channel-wise so that it matches the channel dimension of the ECG signal and at the same time each
channel gets the same attention. The reason is that the 12 leads are measured synchronously and the
abnormal beats occur at the same time across all the leads.

Both recurrent neural networks (RNN) and CNN are candidate architectures for many arrhythmia
classification works. RNN takes an ECG signal as sequential data and is good at dealing with the
temporal relationship. CNN focuses on recognition of shapes and patterns in ECG, thus is less
sensitive to the relative position of abnormal beats with respect to normal ones. Because abnormal
beats may occur randomly among normal beats, we decide to use CNN as the backbone of our
classifier. The detailed implementation of C' is shown in [T(b).

3.3 POOLING FOR WINDOW-STYLE ATTENTION

We do not use the output of the segmenter L as the attention map directly but instead perform a
pooling with large kernel size first. This is out of considerations for both interpretability and perfor-
mance. Regarding interpretability, it is desirable that each abnormal beat is uniformly highlighted,
i.e., the attention weights should be almost constant and smooth for all the samples within each
abnormal beat. Regarding performance, it is desirable that the attention map A does not distort the
shape of abnormal beats after it is applied to the input X. Pooling layer is the easiest way to achieve
this goal, functioning as a sliding window over multiple samples in an ECG signal for global in-
formation extraction. Max pooling outputs the same value around a local maximum, and average
pooling reduces fluctuation by averaging over multiple samples. The kernel size cannot be too large,
which may fuse sharp changes from neighboring areas and lead to the loss of local information.
Therefore, deciding the proper pooling kernel size is essentially finding a balance between local
information and global information preservation. Through experiments to be shown in Section [5.3]
we find that setting the kernel size as nearly half the length of a normal beat yields the best balance
between performance and interpretability. Padding of zeros on both sides of the segmenter output L
is implemented to keep the length of the resulting attention map A after pooling to be the same as
the input X.

Meanwhile, the polarization of QRS complex is a critical feature for ECG signal, while the com-
monly used pooling layers, like max pooling and average pooling, fail to control the sign of out-
put, leading to differentiation performance degradation. Rectified linear unit (ReLu) o(l. ) =
max (0, l¢ ), where c and m denote channel number and spatial position in L respectively, is usu-
ally performed as an activation function to add non-linearity to neural network for stronger represen-
tation ability. In this work, we can apply ReLU on L before pooling so that the all the weights in A
generated by the following max pooling are positive. Alternatively, we replace average pooling with
L2 norm pooling that takes square root of the L2 norm of input. In that case, ReLU is not needed.
The two pooling implementations can be expressed as:

mazr _ PJV[AX (L)

Aem c¢,m = axr {O'(lc,m)7 U(lc,7rz+1)a ceey U(lc,m-i-k')} (1)
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where, a. , is the mth data point in channel c of A and k is the kernel size for the pooling.

3.4 JOINT LEARNING

Compared to traditional segmentation network, our segmenter S does not give a prediction on ev-
ery point in the input ECG, instead we generate an attention map A and distinguish heartbeats by
the amplitude of weights in A. The segmentation result is reflected in the after-attention signal X.
During training, with only annotation for the arrhythmia differentiation task, the segmentation task
is actually unsupervised. Unlike clustering or mutual learning, the popular unsupervised segmen-
tation methods, we train the segmenter and classifier in an end-to-end manner and the gradient of
classification loss is backpropagated to .S for updating how the signal is segmented.

4 EXPERIMENTS

4.1 DATASET

Our experiments are conducted on two datasets from different sources. The first dataset is collected
by a MAC5500 machine at a sample rate of 500H z. They are all from patients diagnosed with
PVC. Further catheter ablation test is performed to confirm the origins of PVC, so all the labels
are accurate. For every patient, experienced cardiologists exam the long ECG record and grabs a
ECG segment that contains the PVC arrhythmia with fixed length of 5000 samples. In the dataset,
there are totally 508 segments, including 135 cases of left ventricle (LV) and 373 cases of right
ventricle (RV). Moreover, within left ventricle patients, 91 are left ventricle outflow origins (LVOT)
and among right ventricle patients 332 are right ventricle outflow origins (RVOT). It is of clinical
interest to classify between LV and RV, and between LVOT and RVOT, so we will explore both
problems in our experiments. We will release this dataset to the public, which will be the first for
the challenging problem of PVC differentiation.

The other dataset is derived from the public MIT-BIH Arrhythmia dataset (Moody & Mark, |2001),
which includes 48 recordings of 47 patients, all sampled at 360 Hz. There are two leads for every
records. All heart beats in those recordings are annotated by expert cardiologists and arrhythmia
types include PVC, atrial premature beat (APB), left/right bundle branch block beat, etc. We prepro-
cess those ECG signals into segment with standard 2000 samples. More specitically, we accumula-
tively add beat of interest to a segment until its length will exceeds 2000 if the next beat is added.
Then we pad zeros for that segment to the target size. Among those segments, we focus on 356
segments with only normal beats and APB and 2627 segments with only normal and PVC beats.

As for preprocessing, we adopt a series of filters and remove the high frequency noise and baseline
drift. Besides, we apply normalization to each lead independently so that the voltage ranges are all
the same for the 12 leads.

4.2 EXPERIMENT SETTING

All our codes are based on the open source machine learning library PyTorch. Architecture details
of our segmenter and classifier are shown in Figure [I| As for the classifier, inside each block are
two serialized Conv + BN + ReLU combinations. The dimensions of weights in the two-layer
perceptron are 128 x 128 and 128 x 2 respectively. We choose Adam algorithm (Kingma & Ba,
2014])) as our optimizer with initial learning rate set to 0.00001. The training epoch is set to 120 as
we observe lowest validation loss and highest accuracy can be achieved by then. The loss function
for the classification is negative log likelihood loss and we add weights for different classes due to
the imbalanced distribution of the dataset. We apply five-fold cross-validation with different classes
evenly distributed between folds, and the average performance is reported.

We implement our method with L2 norm pooling as well as a combination of ReLu and max pooling
at the output of the segmenter, as discussed in Section All the hyperparameters remain the same
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Figure 2: (a) Training loss curve, (b) validation loss curve and (c) validation accuracy curve for the
classifier only method (Classifier), cascaded segmenter and classifier (Cascaded), our methods with
ReLu and max pooling (Max), and with L2 norm pooling (L2 norm) on (LVOT, RVOT) task. There
is a clear overfitting for the cascaded segmenter and classifier method.

for both datasets, except for the kernel size which is set to be linearly proportional to the sampling
frequency as different sample frequencies result in different beat duration. The kernel size for PVC
origin dataset is 200 and that for MIT-BIH dataset is 150. As none of the existing works addresses
the problem of supervised arrhythmia classification with unsupervised abnormal beat segmentation,
we also implement the following two baseline models for comparison: (1) classifier only: Keep
the same classifier design, but without segmenter or any attention. (2) cascaded segmenter and
classifier: Feed A instead of A ® D into the classifier and train segmenter and classifier together.
The resulting architecture will have the same number of layers as the original one in Figure([T}

5 RESULTS
Task Method Accuracy%  Specificity%  Sensitivity% AUC
Classifier only 88.5+0.5 93.5+09 74.84+1.0 0.912+0.005
Cascaded segmenter/classifier ~ 70.5 £ 2.5 78.8£5.1 47.6 4.2 0.728 £ 0.030
(RV, LV) Ours (ReLu + max pooling) 89.9+0.4 96.4£1.0 72.0£2.8 0.918 £0.014
Ours (L2 norm pooling) 90.2+0.6 96.5+04 72.7+26 0.92240.010
Classifier only 89.3+0.5 94.6 + 0.8 70.1+1.5 0.878 £0.019

Cascaded segmenter/classifier ~ 70.2 +1.9 7924+19 374+11.6  0.618 +0.066

(RVOT, LOVT)  Ours (ReLu + max pooling) 89.6 £0.3 96.0£1.3 70.0 £ 0.6 0.884 +0.010
Ours (L2 norm pooling) 91.3+0.9 974+09 70.3+1.9 0.913+0.010

Classifier only 98.1+0.4 98.9£0.5 949+1.3 0.988 £ 0.004

Cascaded segmenter/classifier ~ 88.1 2.1 96.3+4.4 60.4+8.1 0.928 £ 0.050

(PVC, APB) Ours (ReLu + max pooling) 98.8+0.2 99.44+1.0 93.0+1.6 0.990 £ 0.007
Ours (L2 norm pooling) 98.84+0.1 99.6+0.2 93.4+1.3 0.993+0.004

Table 1: Comparison of different methods’ performance on two tasks of PVC orgin differentiation
and the arrhythmia classification task on MIT-BIH. Our method with L2 norm pooling almost always
attains the best scores.

5.1 COMPARISON OF PVC DIFFERENTIATION PERFORMANCE

The metrics we select for comparison include overall accuracy, specificity, sensitivity, and AUC
(area under curve) of ROC (Receiver Operating Characteristic) curve. We evaluate the performance
of all the methods on two tasks: differentiating PVC originating in LV and RV ((RV,LV) task), as
well as PVC originating in LVOT and RVOT ((RVOT, LVOT) task). For (RV, LV) task, the specificity
and sensitivity are calculated with regards to RV, for (RVOT, LVOT), it is with regards to RVOT, and
it is PVC for (PVC, APB) task. For all tasks, we calculate the AUC of ROC curve for each class and
record the average value.

Table[T]lists the results for three baseline methods and our methods with two different pooling. A few
meaningful observations can be made out of the table. Firstly, in general our methods show higher
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Figure 3: Visual examples of the segmentation results on (a) our dataset and (b) MIT-BIH Arrhyth-
mia dataset. The columns represent different cases. For (a), in the original ECG, the abnormal beats
occur simultaneously in all the 12 leads and are only marked on the first one. Regarding the heat
map of the attention, the warmer an area is, the larger the attention weight is.

score in almost all benchmarks including accuracy, specificity, sensitivity and AUC, than the baseline
methods. This proves that our attention mechanism indeed improves the classifier’s capability of
PVC origin classification. Secondly, using L2 norm pooling has better performance than using the
combination of ReLU and max pooling, which implies the limitation of ReLU which may lose
information in negative values. In contrast, L2 norm pooling preserves the negative information.
Finally, the cascaded segmenter and classifier method, which has the same number of layers as
our methods, has poor performance. This confirms that the better classification performance of
our methods actually comes from the attention mechanism instead of deeper architecture. Actually,
from Figure[2]we can see that there is a large gap between the training loss and the validation loss for
the cascaded segmenter and classifier method after several epochs, suggesting apparent overfitting.
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Figure 4: Illustration of the three classes in grade study. In class I, all abnormal beats are identified
and all normal beats are removed. In Class II, all abnormal beats are detected, though some normal
beats are also included. In Class III, no significant difference can be found between abnormal and
normal beats.

Moreover, the benefits of adding a segmenter to the MIT-BIH dataset seems not large, but it is due
to that distinguishing between PVC and APB is much less challenging than differentiating various
origins of PVC. Also, the baseline already achieves good performance.

5.2 EVALUATION OF SEGMENTATION AND INTERPRETABILITY

Three visual examples of the segmentation results are shown in Figure 3] From the figure we can
see that after applying the attention map to the original ECG signal, the location of the abnormal
beats can be easily identified.

We design an independent and blind grade study by an experienced cardiologist to qualitatively
evaluate our segmenter’s ability to detect abnormal beats for the (RVOT, LVOT) task. In general,
qualitative evaluation is widely used in attention mechanism related works due to simplicity and
visualization (Hu, [2019). It is also most suitable to judge the intepretability perspective of the
results.

Focusing on the after-attention signal X, we categorize the segmentation result into three classes by
the contrast between abnormal beats and normal beats, as shown in Figure El Class I: all normal
beats are eliminated, and all abnormal beats are kept. Best interpretability is attained. Class II: some
normal beats still remain, and all abnormal beats are kept. In this case, interpretability is reduced but
all abnormal beats can still be identified in X. Class III: there is no significant difference between
abnormal beats and normal beats. There is little interpretability.

We randomly select the after-attention signals of 100 ECG segments and the blind grade study result
shows that the number of cases in the three classes are 50:27:23 (Class I: Class II: Class III), which
implies superior performance of our segmenter. In practice, these segmentation results provide
cardiologists quick understanding of why the prediction is made.

5.3 INFLUENCE OF KERNEL SIZE

Fig[5]shows the comparison of classification performance and segmentation result of our framework
with different kernel sizes in the L2 norm pooling layer at the output of the segmenter regarding the
(RVOT, LVOT) task. We can see apparent degradation of accuracy, specificity, and AUC when the
kernel size is increased to 300 while the performance difference between kernel size 100 and 200 is
minor. Regarding the segmentation result, additional grade studies are conducted on kernel size 100
and kernel size 300. The ratios between the number of cases in the three classes when the kernel
size is 200 is close to those when kernel size is 300, showing comparable ability of abnormal beats
detection. There is a much higher number of class III cases for kernel size 100, suggesting that too
small kernels may suffer from poor segmentation and low intrepretability in accordance with the
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Figure 5: Comparison of classification performance and grade study result for different kernel size
with respect to differentiating RVOT and LVOT

analysis in Section [3.3] After weighing interpretbility and performance, we choose the kernel size
of 200.

6 CONCLUSION AND DISCUSSION

In this paper, we propose a novel framework combining unsupervised abnormal beats segmentation
and supervised arrhythmia differentiation. The key to the multitask learning is applying an attention
map generated by a segmenter directly to input data before the classification task. In addition, we
perform a large-kernel pooling layer to constrain the shape of attention map for better performance
and easier interpretability. We use premature ventricular contraction differentiating, one of the most
challenging problems in arrhythmia classification as a case study to evaluate effectiveness of our
method. On one hand, experiment result demonstrates better accuracy with the help of attention
map. On the other hand, we observe obvious discrimination between abnormal beats and normal
beats from after-attention signal. Indicating enhanced interpretability in clinical practice.

In the future, we expect to extend our method to high-dimension data such as images and videos.
In our opinion, the difficulties in applying our framework on 2-D /3-D data are more complicated
background information and the need for fine-grained constraint on the attention map shape. When
doing arrhythmia classification, the “background” in ECG signal is just normal beats. As for image
classification, the “background” can be more complex, like birds flying among flowers and cars
driving through streets, etc. Learning the difference between target objects and environment may
be harder for the segmenter if without labels. On the other hand, the target objects can have higher
variations in terms of size, shape and texture, even within the same class, which requires a more
elaborate design of constraints on the attention map shape.

REFERENCES

U Rajendra Acharya, Hamido Fujita, Oh Shu Lih, Yuki Hagiwara, Jen Hong Tan, and Muhammad
Adam. Automated detection of arrhythmias using different intervals of tachycardia ecg segments
with convolutional neural network. Information sciences, 405:81-90, 2017a.

U Rajendra Acharya, Shu Lih Oh, Yuki Hagiwara, Jen Hong Tan, Muhammad Adam, Arkadiusz
Gertych, and Ru San Tan. A deep convolutional neural network model to classify heartbeats.
Computers in biology and medicine, 89:389-396, 2017b.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Tomer Golany and Kira Radinsky. Pgans: Personalized generative adversarial networks for ecg syn-
thesis to improve patient-specific deep ecg classification. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pp. 557-564, 2019.



Under review as a conference paper at ICLR 2021

Awni Y Hannun, Pranav Rajpurkar, Masoumeh Haghpanahi, Geoffrey H Tison, Codie Bourn,
Mintu P Turakhia, and Andrew Y Ng. Cardiologist-level arrhythmia detection and classifica-
tion in ambulatory electrocardiograms using a deep neural network. Nature medicine, 25(1):65,
2019.

Shenda Hong, Cao Xiao, Tengfei Ma, Hongyan Li, and Jimeng Sun. Mina: Multilevel knowledge-
guided attention for modeling electrocardiography signals. arXiv preprint arXiv:1905.11333,
2019.

Dichao Hu. An introductory survey on attention mechanisms in nlp problems. In Proceedings of
SAI Intelligent Systems Conference, pp. 432-448. Springer, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Sachin Mehta, Ezgi Mercan, Jamen Bartlett, Donald Weaver, Joann G Elmore, and Linda Shapiro.
Y-net: joint segmentation and classification for diagnosis of breast biopsy images. In Inferna-
tional Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 893—
901. Springer, 2018.

George B Moody and Roger G Mark. The impact of the mit-bih arrhythmia database. IEEE Engi-
neering in Medicine and Biology Magazine, 20(3):45-50, 2001.

Viktor Moskalenko, Nikolai Zolotykh, and Grigory Osipov. Deep learning for ecg segmentation. In
International Conference on Neuroinformatics, pp. 246-254. Springer, 2019.

Shu Lih Oh, Eddie YK Ng, Ru San Tan, and U Rajendra Acharya. Automated beat-wise arrhythmia
diagnosis using modified u-net on extended electrocardiographic recordings with heterogeneous
arrhythmia types. Computers in biology and medicine, 105:92-101, 2019.

Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari Misawa,
Kensaku Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. Attention u-net:
Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999, 2018.

Jiapu Pan and Willis J Tompkins. A real-time qrs detection algorithm. IEEE transactions on biomed-
ical engineering, (3):230-236, 1985.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234-241. Springer, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998-6008, 2017.

Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang,
and Xiaoou Tang. Residual attention network for image classification. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3156-3164, 2017.

Xulei Yang, Zeng Zeng, Si Yong Yeo, Colin Tan, Hong Liang Tey, and Yi Su. A novel
multi-task deep learning model for skin lesion segmentation and classification. arXiv preprint
arXiv:1703.01025, 2017.

Ozal Yildirim. A novel wavelet sequence based on deep bidirectional Istm network model for ecg
signal classification. Computers in biology and medicine, 96:189-202, 2018.

Yi Zhou, Xiaodong He, Lei Huang, Li Liu, Fan Zhu, Shanshan Cui, and Ling Shao. Collaborative
learning of semi-supervised segmentation and classification for medical images. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2079-2088, 2019.

Muhammad Zubair, Jinsul Kim, and Changwoo Yoon. An automated ecg beat classification system
using convolutional neural networks. In 2016 6th international conference on IT convergence and
security (ICITCS), pp. 1-5. IEEE, 2016.

10



	Introduction
	Related works
	Method
	Overview of the framework
	Segmenter and classifier
	Pooling for window-style attention
	Joint learning

	Experiments
	dataset
	Experiment Setting

	Results
	Comparison of PVC differentiation performance
	Evaluation of segmentation and interpretability
	Influence of kernel size

	Conclusion and Discussion

