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Reproducibility Summary1

Scope of Reproducibility2

The core finding of the paper is a novel architecture FamNet for handling the few-shot counting task. We examine its3

implementation in the provided code on GitHub and compare it to the theory in the original paper. The authors also4

introduce a data set with 147 visual categories FSC-147, which we analyze. We try to reproduce the authors’ results on5

it and on CARPK data set. Additionally, we test FamNet on a category specific data set JHU-CROWD++. Furthermore,6

we try to reproduce the ground truth density maps, the code for which is not provided by the authors.7

Methodology8

We use the combination of the authors’ and our own code, for parts where the code is not provided (e.g., generating9

ground truth density maps, CARPK data set preprocessing). We also modify some parts of the authors’ code so that we10

can evaluate the model on various data sets. For running the code we used the Quadro RTX 5000 GPU and had a total11

computation time of approximately 50 GPU hours.12

Results13

We could not reproduce the density maps, but we produced similar density maps by modifying some of the parameters.14

We exactly reproduced the results on the paper’s data set. We did not get the same results on the CARPK data set and in15

experiments where implementation details were not provided. However, the differences are within standard error and16

our results support the claim that the model outperforms the baselines.17

What was easy18

Running the pretrained models and the demo app was quite easy, as the authors provided instructions. It was also easy19

to reproduce the results on a given data set with a pretrained model.20

What was difficult21

It was difficult to verify the ground truth density map generation as the code was not provided and the process was22

incorrectly described. Obtaining a performant GPU was also quite a challenge and it took quite many emails to finally23

get one. This also meant that we were unable to reproduce the training of the model.24

Communication with original authors25

We contacted the authors three times through issues on GitHub. They were helpful and responsive, but we have not26

resolved all of the issues.27
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1 Introduction28

Counting objects in a scene is a task that is very simple and intuitive for humans, however, the problem arises when29

there are hundreds, thousands, or even more objects in one scene as the counting becomes difficult or impossible. Yet,30

sometimes it is beneficial to have a count estimation of such big amounts of objects and that is why many approaches31

for counting objects have been proposed. These methods can easily outperform humans, especially when there are32

many objects in a scene. Still, the advantage of humans is that we are able to count objects from the majority of visual33

categories with ease, which is not the case with the current object counting methods. In fact, the counting approaches34

that have been proposed until now can usually handle only one visual category at the time, and even those categories are35

mostly limited to a few, most frequently humans [1, 4, 5, 13, 18], vehicles [3, 6, 11, 12, 19], and animals [2, 20]. The36

reason behind these limitations in the currently proposed approaches is twofold. The majority of counting approaches37

requires dot annotations for thousands of objects on few thousands of training images. The second reason is that there38

exists no large enough unconstrained data set, which would allow the development of a method for counting any visual39

category. Both of these limitations exist as dot annotation and development of a large enough data is a laborious and a40

costly task.41

In this report we try to reproduce the paper Learning to Count Everything [14], in which the authors try to overcome42

both of the above mentioned limitations. Instead of mimicking the previous works and treating counting as a fully43

supervised regression task, they pose counting as a few shot regression task. This approach is generalizable as only an44

input image with a few exemplars from the same image (that represent the object of interest) is required to achieve45

generalization to a completely novel visual category class. Second, the authors of this paper also address the lack of46

data sets with many visual categories as they introduce a data set including more than 6000 images from 147 visual47

categories.48

2 Scope of reproducibility49

The authors are interested in counting everything and they achieve that by posing counting as a few-shot regression50

task. The core finding of the paper is a novel architecture called FamNet that handles a few-shot counting task together51

with a novel adaptation strategy that adapts the network to any novel visual category at test time, by using only a few52

exemplar objects from the novel category. Furthermore, the authors introduce a data set containing 147 different visual53

categories and they show that their method outperforms other state-of-the-art approaches – object detectors as well as54

few-shot counting approaches. We test these key findings from the paper:55

• FamNet outperforms other few-shot approaches when it comes to object counting.56

• FamNet performs well even on a category-specific data set.57

• Increasing the number of exemplars decreases FamNet’s error.58

3 Methodology59

Where available, we use the authors’ code from GitHub. We modify it so that we can evaluate the model on different data60

sets. Additionally, we prepare our scripts for generating ground truth density maps, ablation study, and preprocessing of61

CARPK data set, as the authors do not provide it.62

3.1 Model descriptions63

FamNet is composed of two main modules – a multi-scale feature extraction module and a density prediction module.64

The multi-scale feature extraction module is based on the ImageNet pretrained network, more specifically on the first65

four blocks from a pretrained ResNet-50 backbone. From the code, we find out that the authors use the pretrained66

ResNet-50 model from TorchVision. The density prediction module is designed in a way to be agnostic to the visual67

categories. They achieve this by not feeding the features obtained from the feature extraction module directly. Contrary,68

they rather use the correlation map between the exemplar features and image features as the input to the density69

prediction module. We show a visualization of inputs to the density prediction module in Appendix A.70
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As mentioned, the proposed FamNet can adapt to a new visual category once trained, using only a few exemplars.71

To understand the novel adaptation loss that is used during test time we first quickly describe the Min-Count and72

Perturbation losses.73

Let B denote the set of provided exemplar bounding boxes (bounding boxes denoting examples of the object, that we74

are counting, given to the network). For each bounding box b ∈ B, let Zb represent the crop from the density map Z at75

location b.76

3.1.1 Min-Count Loss77

Min-Count Loss is defined as78

LMinCount =
∑
b∈B

max(0, 1− ||Zb||1). (1)

The idea behind this loss is that the sum of density values within Zb should be at least 1 as the predicted count is a79

sum of predicted density values, and there is at least one object at the location b. Meaning that if the total value of the80

density map in the exemplar box is equal to or greater than 1, the loss will not increase for this location, but if the total81

value of the density map in the exemplar box is smaller than 1, we increase the loss.82

By inspecting the authors’ code, however, we find out that Min-Count loss is incorrectly implemented. Instead of83

using the difference between 1 and ||Zb||1, the authors use the squared difference. In notation, the implementation of84

Min-Count loss in the original implementation is85

Limplemented
MinCount =

∑
b∈B

max(0, (1− ||Zb||1)2). (2)

We address the issue and test the performance of the model for both implementations in Section 4.86

3.1.2 Perturbation Loss87

Perturbation Loss is defined as88

LPer =
∑
b∈B

||Zb −Gh×w||22, (3)

where Gh×w is a 2D Gaussian window of size h× w and standard deviation σG = 8. The authors do not provide the89

reasoning for the chosen value, so we try different options to investigate its influence. We report our findings in Section90

4.2.1. This loss is inspired by the success of tracking algorithms based on correlation filter, where algorithms learn a91

filter that has the highest response at the location of the bounding box and lower response at all perturbed locations. We92

can look at the density map Z as the correlation response between the exemplars and the image.93

3.1.3 Adaptation loss94

The final loss, called adaptation loss, is defined as a weighted combination95

LAdapt = λ1LMinCount + λ2LPer, (4)

where LMinCount is the Min-Count Loss, LPer is Perturbation Loss and λ1 and λ2 are scalar hyper-parameters. The96

authors fine-tuned them on validation set, and we use the same values λ1 = 10−9 and λ2 = 10−4. Note that adaptation97

loss is only used at test time, and MSE between predicted and ground truth density map over all pixels is used as a loss98

during training.99

3.2 Data sets100

3.2.1 FSC-147101

As the majority of the data sets are dedicated to a specific visual category, the authors collected and annotated 6135102

images across 147 different visual categories. The average image height is 774 and the average image width is 938103

pixels. In each image, all objects are dot-annotated in an approximate center of the object. Furthermore, in a majority of104

cases (96.26%) three object instances are randomly selected and are additionally annotated with axis-aligned bounding105
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boxes denoting exemplar bounding boxes. In some cases four (3.45%), five (0.27%), or six (0.02%) object instances106

are additionally annotated.107

The data set is divided into train, validation, and test sets in a way that each of these sets does not share any object108

categories. The train, validation, and test sets consist of 3659, 1286, and 1190 images, respectively.109

The authors provide two sets of ground truth density maps which are the same in all but two cases (3417.npy and110

3477.npy). In the second set of ground truth density maps, the first image appears more blurred, while different objects111

are counted on the latter image (see Figure 1).112

(a) Original image (b) GT density (from 1st set) (c) GT density (from 2nd set)

Figure 1: The figure shows one of the cases where the two provided ground truth density map sets do not agree. Image
(a) shows the color image, (b) shows the ground truth density map from the first provided set, and (c) shows the ground
truth density map from the second set. On (b) the object of interest are balloons, while on (c) the objects of interest are
dots on the balloons.

In the original paper, the authors compare FamNet to some common object detectors - Faster R-CNN [15], RetinaNet113

[10], and Mask R-CNN [7], which were pretrained on COCO data set [9]. Thus they select a subset of FSC-147, which114

contains categories that also appear in COCO. We manually try to find the intersecting categories and find that 17115

categories appear under the same (or similar) name in both data sets. The authors include all images from FSC-147116

from those categories in COCO-Val and COCO-Test splits that they provide, and do not leave out any categories that117

might appear in FSC-147 and COCO.118

3.2.2 Resizing of FSC-147 images before using FamNet119

The authors provide a link to FSC-147 data set in their GitHub repository. However, the images there are already resized120

as a part of preprocessing before using FamNet. The authors decided to resize all images to a fixed height of 384 pixels.121

They claim that they adjusted the width of the images in the way that the aspect ratio is preserved. As the authors122

provide the information about the original dimensions of each image, we checked, whether all processed images are123

correctly resized to have a height of 384 pixel and if their aspect ratio is truly preserved. We found some cases where124

the aspect ratio was not preserved. We showed such cases to the authors, who replied that they did not preserve the125

aspect ratio for images with original width of less than 384 pixels. However, the provided example with a corrupted126

aspect ratio did not have a width smaller than 384.127

3.2.3 FSC-147 ground truth density map generation128

The authors do not provide the code for the generation of ground truth density maps, but rather provide the already129

pre-computed density maps and only describe the process. While this is beneficial, as it saves computation time, it130

is somewhat questionable, as we do not get a full insight into how the data set was generated, and cannot verify their131

claims. An issue has been opened on the authors’ GitHub, but they did not provide the code.132

We implemented our own code as described in the paper. We used Gaussian smoothing with adaptive window size133

and estimated the size of the objects from distances between dot annotations and their nearest neighbor. We averaged134

those distances to obtain the size of the Gaussian window sG. The authors claim that they use the sG
4 as the standard135

deviation, however, we could not reproduce the results using this value. We obtained the closest results with sG
8 (see136

Figure 2 for illustrative example). When we asked the authors about the issue, they suggested that large discrepancies137

might be due to them computing ground truth deviations on larger images, and then downscaling them to the sizes in138

the data set. However, we still could not reproduce the same results with the suggested approach. This question still139

remains open and the issue has not been resolved. Our code produces results most similar to the ground truth density140

maps, though displacement for some points is visible.141
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(a) ground truth (b) σ = sG
4 (c) σ = sG

8 (d) error (|(a)− (c)|)

Figure 2: The leftmost image (a) represents the ground truth density map, image (b) represents the ground truth density
map that we generated by following the authors’ description using sG

4 as standard deviation, image (c) represents the
ground truth density map obtained with the same process as in (b), but using sG

8 as standard deviation, and image (d)
represents absolute point-wise differences between (a) and (c). sG

8 denotes the window size of the Gaussian filter. We
can see that (a) and (c) are more similar, while some positional displacements are still noticeable.

3.2.4 CARPK142

The authors want to check the performance of FamNet on category specific counting task. They use CARPK data set143

[8], which contains around 90,000 cars recorded in various parking lots, taken with drones. The data set is already split144

into train and test set, and for each image ground truths in a form of bounding boxes are provided.145

In order to convert the data set into a form suitable for the evaluation of FamNet, we had to create the density maps146

that represent the ground truths, select the bounding boxes that represent the exemplars, and resize the images to have147

a height of 384 pixels. The authors do not provide any information about the preprocessing of that data set. We first148

obtained the distribution for a number of exemplars in FSC-147 data set. We then sampled a number of exemplars n149

from this distribution for each image and randomly chose n bounding boxes that represent exemplars. To obtain the150

density maps, we represented each car by a Gaussian filter of the size of the provided bounding box. We set the σ of151

the filter to h+w
16 in order to follow the setting of σ for FSC-147 data set. However, we did not set the σ based on the152

authors’ description in the paper but based on our findings, described in Section 3.2.3.153

3.2.5 JHU-CROWD++154

As we want to check how the FamNet performs on a typical crowd counting data set, we extend the authors’ research155

and test the pretrained model on JHU-CROWD++ data set [16, 17]. This includes 4327 images collected under a diverse156

set of conditions (adverse weather, various illumination, varying densities, etc.) and 1.51 million annotations (dots,157

approximate bounding boxes, etc.).158

We again had to do some preprocessing in order to get the data set in the format for evaluation of FamNet. We used the159

same preprocessing as we did for CARPK data set (see Section 3.2.4).160

3.3 Hyperparameters161

There are several FamNet hyperparameters that have to be set. The authors set σG = 8 used in perturbation loss (see162

Section 3.1.2) without any explanation why. We therefore decided to check how different values of σG impact the error163

of the model. To select the best value of σG we used grid search. We tested every even integer value between 2 and 20164

and report our findings in Section 4.2.1.165

We did not test λ1 and λ2 from adaptation loss (see Section 3.1.3). The authors set their values to 10−9 and 10−4,166

respectively. They say that setting them to such small values is necessary, so the adaptation loss has a similar magnitude167

to the training loss. We also did not test the number of gradient descent steps and the learning rate during the test time168

adaptation. The authors said that these two values were tuned along with λ1 and λ2 on the validation set.169

3.4 Experimental setup and code170

To perform our experiments, we used the authors’ and our code. Authors’ code is available on their171

GitHub repository1 and our anonymized code is available on: https://anonymous.4open.science/r/172

1https://github.com/cvlab-stonybrook/LearningToCountEverything
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re-LearningToCountEverything-51A3. We performed our experiments by running file test_extended.py,173

which is an extended version of the authors’ file test.py, with some flags for manipulation of different options.174

To evaluate different values of σG, we used script choose_sigma.py, which is run in a similar way as the scripts175

mentioned before. We also did some preprocessing and testing in our Jupyter notebooks that are self-explanatory to run.176

Model is evaluated with absolute error (MAE) and root mean squared error (RMSE), defined as:177

MAE =
1

n

n∑
i=1

|ci − ĉi|, RMSE =

√√√√ 1

n

n∑
i=1

(ci − ĉi)2, (5)

where n denotes the number of instances in test/val set, ci denotes the number of selected objects on i-th image from178

that set, and ĉi denotes the predicted count for that image.179

3.5 Computational requirements180

All experiments were ran on GPU only (hence we do not report used CPU and RAM). We ran our experiments on181

a server with Nvidia Quadro RTX 5000 GPU. Each evaluation of FamNet on test or validation set (FSC-147) takes182

around 2 minutes without the test time adaptation and around 1 hour and 40 minutes with it. The ablation study with183

number of exemplars takes around 3 hours (the execution times are shorter when the number of exemplars is decreased).184

Evaluation of FamNet on subset of categories from COCO data set takes around 40 minutes with adaptation. Evaluation185

of FamNet on CARPK data set (with adaptation) takes around 1 hour and 20 minutes. We spent around 50 GPU hours186

to run all of our experiments.187

4 Results188

Our results support the claims of the authors about the quality of their proposed FamNet structure. We managed to189

reproduce their results exactly (where the code is provided) or up to the point that we can confirm that their model190

performs as they claim in comparison with the other methods191

4.1 Results reproducing original paper192

We reproduced most of the results obtained with FamNet on FSC-147 and CARPK datasets. The only exception is the193

ablation study with number of exemplars, where our results do not entirely support the authors’ claim.194

4.1.1 Evaluation of FamNet on FSC-147 dataset195

We managed to get the same results as the authors when testing FamNet on FSC-147 validation and test set, which196

supports the claim that FamNet outperforms other tested few-shot approaches. The results are given in Table 1 of the197

original paper. However, we did not test the few-shot methods that FamNet is compared to.198

4.1.2 Comparison with object detectors199

We tried to reproduce the comparison of FamNet with object detectors, trained on COCO data set. The authors compare200

FamNet with the detectors on images from FSC-147 data set from categories that overlap in FSC-147 and COCO. We201

did not manage to reproduce the exact results obtained by the authors (Table 2 in their paper), but we get the results that202

are within the standard error of theirs or, in case of RetinaNet worse than theirs, and still support the claim that FamNet203

beats listed object detectors. Our results are shown in Table 1. Additionally to the authors, we report the standard error204

of MAE estimate, which was calculated from standard deviation. We obtained those results using TorchVision models.205

The authors use Detectron2 models instead, which perform worse in our experiments.206

4.1.3 Number of exemplars ablation study207

We reproduced the experiment, that tested the impact of the number of exemplars on the performance of FamNet.208

However, our results (see Table 2) do not entirely support the claim of the authors that increasing the number of209

exemplars improves the performance of the FamNet. We can see that by increasing the number of exemplars from 2 to210

3, RMSE increased on both test and val set, while the MAE increased on val set and decreased on train set.211

6

https://anonymous.4open.science/r/re-LearningToCountEverything-51A3
https://anonymous.4open.science/r/re-LearningToCountEverything-51A3


Table 1: The results of different object detectors on FSC-147 categories intersecting with COCO categories. Columns
SE show the standard error of MAE estimates. Suffixes -Val and -Test to the name of the data set represent the different
split of FSC-147 data set that was used.

COCO-Val COCO-Test
MAE SE RMSE MAE SE RMSE

Mask R-CNN (Resnet-50) 52.04 9.61 168.23 36.66 3.31 66.58
Faster R-CNN (Resnet-50) 53.57 9.64 169.12 38.88 3.57 71.46

RetinaNet (Resnet-50) 91.17 8.75 171.85 70.2 3.34 89.85
SSD (VGG-16) 94.96 8.50 170.45 61.57 4.0 91.11

FamNet (no adaptation) 41.13 6.32 112.92 23.23 2.42 46.79
FamNet (adaptation) 39.82 6.04 108.15 22.76 2.37 45.92

Table 2: The performance of FamNet on FSC-147 data set with respect to the number of exemplars. Columns SE show
standard errors of MAE estimates.

Val set Test set
Number of exemplars MAE SE RMSE MAE SE RMSE

1 26.8 2.0 78.1 26.2 3.3 116.0
2 23.1 1.7 65.2 22.4 2.7 97.2
3 23.7 1.8 69.3 22.0 0.8 99.3

4.1.4 Evaluation on a category-specific data set212

The authors evaluate FamNet on a CARPK data set. We reproduced their results of FamNet trained on FSC-147,213

but we did not try to reproduce the results for FamNet trained on CARPK. As the authors do not describe the used214

preprocessing, we did not get exactly the same results as they did. However, our results are close to theirs and still215

support their claim that FamNet performs well on this category-specific data set. We got MAE 27.9 (with standard error216

1.1) and RMSE 36.4, while the authors got MAE 28.8 and RMSE 44.4.217

4.2 Results beyond original paper218

Additionally, we tested how σG (Section 3.1.2) and correction of the Min-Count Loss affect the model’s performance,219

evaluated the model on another category-specific data set, visually inspected the errors of the model and effects of test220

time adaptation.221

4.2.1 Impact of σG on the error of the model222

Since the authors do not provide any justification for setting σG = 8, we test how the MAE of FamNet changes with223

different σG (see Figure 3). We can see that σG has practically no impact on MAE of FamNet.224

4.2.2 Min-Count Loss correction225

Since we have noticed that the authors’ definition of Min-Count Loss differs from their implementation (see Section226

3.1.1), we tested how it affects the error of the model. Our results did not show any significant difference in MAE and227

RMSE.228

4.2.3 Evaluation on JHU-CROWD++229

To test the performance of FamNet on category-specific data set even further, we evaluated it on the JHU-CROWD++230

data set (see Section 3.2.5). We use a model trained on FSC-147. The results are shown in Table 3. We can see that231

FamNet performs worse than baselines. However, this data set is challenging (large number of objects, small bounding232

boxes) and training the model on that data set with a higher number of exemplars would likely boost the performance.233

7



Figure 3: MAE (full blue line) of FamNet depending on
σG and the standard error of the estimate (dotted line). The
tested values were even integers between 2 and 20.

Table 3: Evaluation of FamNet on JHU-Crowd++, trained
on FSC-147, compared to two other models evaluated on
the same data set. Column SE shows the standard error of
MAE estimate.

MAE SE RMSE

MCNN 188.9 / 483.4
CSR-Net 85.9 / 309.2

FamNet (our results) 256.9 15.0 652.5

4.2.4 Performance of the model without adaptation234

Additionally, we visually inspect the images, where absolute error, normalized by the ground truth count, is the highest235

or the lowest. Our observations and visualisations are described in Appendix B.236

4.2.5 Effect of adaptation on model’s predictions237

To inspect the effect of adaptation, we analysed the most positive and negative effects of adaptation on model’s238

performance. We describe the results in Appendix C.239

5 Discussion240

We tried to reproduce the results from the paper Learning to count everything. We obtained the same results as in the241

paper for some experiments. For others, our results are still close enough to the papers’. We confirmed that FamNet242

outperforms other few-shot approaches when it comes to object counting and that FamNet performs well even on243

a category-specific data set. Our experiments disprove the authors’ claim that increasing the number of exemplars244

decreases FamNet’s error. We assume that this is due to the fact that we discarded different exemplars than the authors.245

This might suggest that choosing correct exemplars is more important than choosing more of them.246

5.1 What was easy247

A demo app with clear instructions helped with the understanding of the model. The model’s architecture was248

understandable from the code and the paper. It was easy to reproduce the results on FSC-147 with a pretrained model.249

5.2 What was difficult250

Reproducing the ground truth density maps was difficult, as the process in the paper did not lead to the paper’s results,251

and the code for it was not provided. We did our best to mimic the ground truth density maps. Evaluating other models252

for which the code was not provided was challenging, as no parameters were given (e.g., confidence or intersect over253

union thresholds for object detectors). We struggled obtaining a good enough GPU. Due to lack of time, we were254

unable to train the model ourselves, and we delegate this to future work.255

5.3 Communication with original authors256

We contacted the authors three times through issues on GitHub. They were helpful and responsive, but we have not257

resolved all of the issues.258
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A Input features to density prediction module309

The authors use a density prediction module that is agnostic to the visual categories. Instead of feeding the features310

obtained from the feature extraction module directly, they rather use the correlation map between the exemplar features311

and image features as the input to the density prediction module. In Figure 4 we show an example of an input (correlation312

features) to the density prediction module.313

(a) Input image with three exemplars

(b) Correlation maps

Figure 4: Figure shows an example of an input image (a) from FSC-147 with three exemplars (blue rectangles), and
correlation maps between exemplar and image features (b), that are fed to the density prediction module. Each row
corresponds to one exemplar, while each column corresponds to one combination of scale (3 scales) and feature output
from third or fourth block of ResNet-18.

B Images with the best and the worst relative MAE on test set without adaptation314

We visually inspect the images where absolute error normalized by the ground truth count is the highest or the lowest,315

and show some of the images in Figure 5. We can see that the algorithm predicts density maps with highest relative316

count error in cases where he predicts counts for wrong objects. In all three cases defined shapes which confuse the317

algorithm are present. Algorithm works the best on images, where the shape of the object it counts is well-defined and318

differs from the background, or there is no background at all. Adaptation in some cases improves the prediction, while319

in some cases it makes it worse. Thus, we investigate the affect of adaptation in the next section of appendix.320

C Effect of adaptation on predictions321

We inspect on which images the absolute error normalized by the ground truth count is improved or worsened the322

most. We show examples of those images in Figure 6. We do not observe any special pattern in the shown images.323

The main reason for a bigger impact of adaptation on those images is that their relative errors were quite high/low and324

consequently absolute changes in the prediction had a bigger impact on relative error.325
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7171.jpg GT: 13 Pred: 647.7 Pred (A): 670.5

5365.jpg GT: 9 Pred: 75.7 Pred (A): 73.7

4885.jpg GT: 11 Pred: 35.0 Pred (A): 45.2

2163.jpg GT: 13 Pred: 5.9 Pred (A): 6.4

4300.jpg GT: 83 Pred: 63.7 Pred (A): 63.0

5811.jpg GT: 37 Pred: 22.1 Pred (A): 24.7

Figure 5: The first column represents input images, the second represents ground truth density maps, while the third
and the fourth represent predicted density maps without and with test-time adaptation, respectively. The first three rows
include cases where absolute error normalized by ground truth count is among the highest in the test set, while the last
three rows where it is among the lowest.
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5365.jpg GT: 9 Pred: 75.7 Pred (A): 73.7

6266.jpg GT: 17 Pred: 65.6 Pred (A): 62.6

2910.jpg GT: 14 Pred: 30.6 Pred (A): 28.4

4112.jpg GT: 11 Pred: 11.8 Pred (A): 14.1

7639.jpg GT: 20 Pred: 57.5 Pred (A): 63.9

7171.jpg GT: 13 Pred: 647.7 Pred (A): 670.5

Figure 6: The first column represents input images, the second represents ground truth density maps, while the third
and the fourth represent predicted density maps without and with test-time adaptation, respectively. The first three rows
include cases where the test time adaptation decreased relative error, while the last three rows include cases where the
test time adaptation had a negative impact.
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