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Abstract

Large-scale graphs are increasingly common in various applications, leading to1

significant computational challenges in data processing and analysis. To address2

this, coarsening algorithms are employed to reduce graph size while preserving key3

properties. However, existing methods for large-scale graphs are computationally4

intensive, undermining the coarsening goal. Additionally, real-world graphs often5

contain node-specific features or contexts, which current coarsening approaches6

overlook, focusing solely on structural information like adjacency matrices. This7

limitation may not suit downstream tasks reliant on node features. In this paper,8

we introduce a Feature-Aware graph Coarsening algorithm via Hashing, called9

FACH, inspired by locality sensitive hashing to coarsen the graph based on the node10

features. To our knowledge, this is the first-ever method that coarsens a graph with11

node features in linear time. FACH is over 7× faster than the quickest and around12

150× faster than the existing techniques for datasets like Coauthor Physics which13

has 34,493 nodes. We also demonstrate the efficacy of the proposed framework14

in terms of superior run-time complexity. The coarsened graph obtained by our15

method also preserves the spectral properties of the original graph while achieving16

massive improvement in time-complexity of coarsening which is the primary goal17

of our study. We showcase the effectiveness of FACH for the downstream task by18

evaluating the performance on scalable training of graph neural networks using19

coarsened data on benchmark real-world datasets.20

1 Introduction21

Graphs are a useful representational tool for a wide range of natural and man-made structures. They22

can be used to represent a wide variety of relations and process dynamics in physical, biological, and23

social systems as well as in computer science. Increasingly the applications of graphs in different24

domains are increasing like maps, transport networks, social network graphs, citation networks, etc.25

These graphs in such varied applications are also ever-growing. As a result, it is only fair to look for26

ways to simplify the graph with the least information loss [1]. Coarsening is one of the most widely27

used approaches for reducing graphs. Instead of solving a vast graph problem in its native domain,28

coarsening entails solving a similar problem of a smaller size at a lower cost. It is used in a number29

of algorithms for partitioning [2, 3, 4, 5, 6] and visualizing big graphs in a computationally efficient30

manner [7, 8]. It’s also been used to make coarse-grained diffusion maps [9], multi-scale wavelets31

[10], and pyramids [11], which are multi-scale representations of graph-structured data. Coarsening32

has also been used as a pooling operation in graph convolutional networks [12]. The spatial size of33

each layer’s output is reduced by combining the values of nearby vertices, preventing overfitting and34

facilitating representations’ hierarchical scaling.35
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Real-world nodes are typically distinguished by a number of different characteristics in addition36

to their connections. In social networks, nodes’ attributes might include a person’s age, gender, or37

nationality; in protein-interaction networks, nodes’ attributes might include the quantity of proteins38

in a cell participating in those networks; or nodes’ attributes might include the location of airports39

connected by directed flights. Integrating information about the features of nodes is crucial in40

performing many operations on graphs. However, the vast majority of graph coarsening algorithms41

[13, 14, 5, 15, 16] depend solely on the structural information of the graph and do not make use of42

the node attributes throughout the coarsening process. All these methods cannot be straightforwardly43

extended to incorporate the node information from the graph. Therefore, when employing graph44

coarsening for the purpose of learning enriched smaller representations, it is essential to incorporate45

the node information. Moreover, the computational cost of the existing coarsening methods is high46

as they are dependent on the graph’s adjacency matrix as input. Furthermore, the existing works47

cannot generalize well to the unseen/new nodes since these methods use the adjacency matrix. In48

this paper, we present a novel feature-aware graph coarsening algorithm, FACH, for graphs that49

exploits the structure of the graphs using node features. Our method is motivated by locality-sensitive50

hashing (LSH) to address the issues mentioned above. We first cluster the nodes of the graph based51

on node features using the principles of locality sensitive hashing [17] such that nodes having similar52

features get grouped together which also allows us to coarsen the graph to any desired coarsening53

ratio and then use the adjacency matrix of the graph to learn the edges that connect those clusters54

(supernodes). Since we start with node features, we get the merit of handling large nodes at once to55

cluster which is done linearly and then to learn the edges connecting the supernodes we perform a56

matrix multiplication which is a one time process. This makes our algorithm faster.57

Our Main contributions are summarized below:58

• We proposed a novel linear time complexity framework that is extremely fast compared to59

other state-of-the-art methods for graph coarsening.60

• In our framework, node features are taken into account to coarsen the graph, and the61

adjacency matrix of the original graph is used to rewire the edges between these nodes. The62

suggested framework is essentially a first linear time method that takes into account both63

node attributes and the structure of the original graph.64

• The proposed framework is also shown to be helpful for graph-based downstream tasks. We65

have benchmarked our framework on standard graph classification instances, demonstrating66

its effectiveness with extensive computational experiments. Results on classification tasks67

using GCN show the efficacy of the proposed framework.68

2 Background69

In this section, we give a brief background of graphs, graph coarsening, and some properties of the70

original graph to be preserved in the coarsened graph. Then we give background about locality-71

sensitive hashing and describe the existing related graph coarsening algorithms and their limitations.72

2.1 Graph and Graph Coarsening73

A graph is denoted by G = (V,E,A,X) where V = {v1, v2, · · · , v|k|} is the set of k vertices , E74

is set of edges (vi, vj) which is a subset of (V × V ). A ∈ Rk×k is the adjacency matrix, non-zero75

entries of A i.e Aij denotes a edge between node i and j in the graph. We also have a feature matrix76

X ∈ Rk×d, every row of X is a feature vector Xi ∈ Rd associated with ith node of G. A degree77

matrix D with diagonal entries Dii =
∑

j Aij denotes the degree of nodes of G. Along with the78

adjacency matrix, we also have Graph Laplacian L matrix. L is defined as D −A [18] . Matrix L ∈79

Rk×k belongs to the following set: SL =

{
L ∈ Rk×k|Lij = Lji ≤ 0∀i ̸= j;Lii = −

∑
j ̸=i Lij

}
.80

Through graph coarsening, we want to reduce our input Graph G(V,E,X) which has p-nodes and81

X ∈ Rp×d into a new graph Gc(Ṽ , Ẽ, X̃) which has k-nodes and X̃ ∈ Rk×d where k << p nodes.82

The graph coarsening problem can be posed as a problem where we want to learn a coarsening matrix83

C ∈ Rk×p, which is a linear mapping from V → Ṽ . The linear mapping ensures that the similar84
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nodes in G are mapped to a super-node in Gc such that X̃ = CX . Every non-zero entry in Cij in C85

denotes mapping of ith node to jth supernode.86

This coarsening matrix belongs to the set87

S =

{
C ∈ Rp×k, ⟨Ci, Cj⟩ = 0,∀i ̸= j, ⟨Cl, Cl⟩ = di, ||Ci||0 ≥ 1

}
(1)

where di is degree of ith-node. ⟨Ci, Cj⟩ = 0 will make sure that every node in G is only mapped to88

one single super-node. Also, every super-node should have at least one node in it, ||Ci||0 ≥ 1 term89

looks after it.90

2.2 Preserving properties of G in coarsened Graph.91

It is desired that coarsened graph Gc is similar to the original graph. There are some graph similarities92

that are widely used in literature [16] to describe this measure of similarity which we describe below:93

Spectral Similarity. This similarity measure, also called Relative Eigen Error (REE), also used in94

papers [16, 19] gives the means to quantify the measure of the eigen properties of the original graph95

that are preserved in the coarsened graph. REE is defined as: REE(L,Lc, k) =
1
k

∑k
i=1

|λ̃i−λi|
λi

,96

where λi and λ̃i are top k eigenvalues of Laplacian original (L) and Laplacian coarsened graph(Lc)97

matrix respectively. For the best approximation, we need REE to be close to zero.98

Hyperbolic error (HE). It is reasonable to think about how relevant linear operators treat the same99

input vector when contracting a graph G to its reduced form Gc. Such a measure is given by100

hyperbolic error defined as101

HE = arccosh(
||(L− Llift)X||

2
F ||X||2F

2trace(XTLX)trace(XTLliftX)
+ 1) (2)

where L and X ∈ Rk×d are the Laplacian, and X is the feature matrix of the original input graph,102

and Llift is the lifted Laplacian matrix defined as Llift = CTLcC where C ∈ Rk×p is the coarsening103

matrix and Lc is the Laplacian of coarsened graph. The lifted Laplacian matrix is the reconstruction104

of the original space from the coarsened space.105

REE value indicates the similarity between the eigenspace of G and Gc. A low value of REE is106

desired for higher spectral similarity. HE indicates the structural similarity between G and Gc with107

the help of a lifted matrix along with the feature matrix X of the original graph. Even though each of108

these characteristics has a unique sense of similarity, coarsening is better when these error levels are109

lower across all of them. Extensive results have been shown in Section 4.110

2.3 Locality Sensitive Hashing111

Locality sensitive hashing (LSH) has been widely used for efficient similarity search methods112

for higher dimensional data [20, 21, 22, 23]. LSH aims to map a higher dimensional vector to a113

representation in lower dimension space by ensuring that the probability of two vectors colliding is114

equal to their similarity under the given measure. LSH is this defined as a distribution on a family H115

of hash functions that operate on vectors such that for any two vectors in the vector collection, u, v,116

Prh∈H
[h(u) = h(v)] = sim(u, v) where sim(u,v) is a similarity measure defined on the collection117

of vectors. The LSH algorithm is parameterized by k and L where k << d, d is the dimension of the118

vectors in the original space, k is the reduced dimension of vectors, and L is the number of functions119

randomly, and independently sampled from H . The larger the k is, the higher the precision. For the120

recall to be higher, the LSH algorithm independently and randomly samples L functions from H .121

The data is now replicated in L hash tables, where each vector is mapped to L buckets. Upon query,122

the search is carried out in L buckets, increasing recall at the expense of more processing and storage.123

In simpler terms and for Euclidean distance as the similarity measure, LSH involves scalar projection124

given by hi(x) =
⌊
<x,ai>−bi

w

⌋
, where ai is selected at random from a probability distribution, for125

example, sampled from Gaussian distribution N (0, 1), x is the data in higher dimensional space,126

3



Figure 1: The figure shows an illustration of our proposed graph coarsening algorithm FACH that
aims to learn a reduced graph Gc(Vc, Ac, Xc) from the larger original graph G(V,A,X). In Step (1),
we hash the node features of the graph and assign their bins. In Step (2), we cluster the graph nodes
occurring in the same bin to form supernodes. After forming the supernodes, the edge weights are
assigned by aggregating the weight of the cross edges in the original graph G as seen in Step (3).

w is the width (bin-width) of each quantization bin and offset bi is a random variable uniformly127

distributed between 0 and w. Because of the clustering nature of LSH, it has been widely used for128

image retrieval, similarity search algorithms, duplicate webpage detection, etc.129

2.4 Related Works130

Several graph reduction methods aim to decrease the graph size by reducing the number of nodes131

through vertex selection, re-combination schemes, or aggregation. Loukas proposed advanced spectral132

graph coarsening algorithms based on local variation to preserve the spectral properties of the original133

graph [19]. Two variants, edge-based local variation and neighborhood-based local variation, select134

contraction sets with small local variation in each stage. However, these methods have limitations135

in achieving arbitrary levels of coarsening [19]. Another technique, heavy edge matching (HEM),136

determines the contraction family by computing a maximum-weight matching based on the weight of137

each contraction set [5, 15]. The Algebraic Distance method calculates the weight of each candidate138

set using an algebraic distance measure [15, 14]. The affinity method, inspired by algebraic distance,139

uses a vertex proximity heuristic [13]. Kron reduction method selects a set of vertices based on the140

positive elements of the final eigenvector of the Laplacian matrix [24], but it suffers from high time141

complexity for large networks. These methods do not consider node features during graph coarsening142

and often require large computing memory. To address these limitations, we propose a method that143

efficiently utilizes node features to coarsen the graph while maintaining computational speed.144

3 Proposed Feature Aware Coarsening via Hashing145

In this section, we formalize our problem setting and introduce the notation followed in the paper.146

Then we describe our algorithm, the parameters of our method, and time complexity analysis.147

3.1 Problem Formulation148

The input is a graph G = (V,A,X), where V = {v1, v2, · · · , v|N |} is the set of vertices, A ∈149

R|N |×|N | is the adjacency matrix and X ∈ R|N |×d is the node feature matrix with d being the150

dimension of node feature, and the i−th row of X denotes the feature vector of node vi in the graph151

G. Our goal is to construct an appropriate "coarser" graph Gc = (Vc, Ac, Xc), such that the set of152

vertices of the coarsen graph |Vc| << |V | and the principal eigenvalues and eigenspaces of Laplacian153

matrices of the original and coarsened graph are comparable. The coarsening ratio is defined as154

r = 1 − n
N where N is the number of nodes in the original graph G and n is the number of the155

nodes in the coarsened graph Gc. The first step is to define a surjective mapping using hashing156

π : V → Vc such that for any node vc ∈ Vc, all nodes π−1(vc) ⊂ V are mapped to this supernode vc157

in the coarsened graph Gc. Next, we define the edge weights, Ac, of the coarsened graph equal to158

the sum of weights of crossing edges in the original graph. Similarly, we define the features of the159

supernodes, vc, based on the features of all nodes π−1(vc) ⊂ V that maps to this supernode vc in the160

Gc according to the defined surjective mapping, π. Figure 1 represents the overview of FACH. The161

goal is to group together the graph nodes by applying projection hashing on their features such that162

the nodes that are close in feature space are grouped together in the same bins upon hashing.163
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Algorithm 1 FACH: Feature-Aware Graph Coarsening via Hashing

Require: Input G(V,A,X), L←# of Projectors, h← bin-width, N ← # of nodes in graph G
Ensure: Coarsen Graph Gc(Vc, Ac, Xc)

1: for every projector ℓ ∈ {1, 2, ...., L} do
2: hℓ ← N size array for Hash indices
3: P ℓ ← d dimensional Projection weight, bℓ ← Scalar for generated bias
4: end for
5: for ℓ ∈ {1, 2, ...., L} do
6: P ℓ

i ∼ U [0, 1] ∀i ∈ {1, 2, 3, ....., d}
7: bℓ ∼ U [−h, h]
8: hℓ

i ← ⌊ 1h × (
∑j=d

j=1(X
j
i × P ℓ

j ) + bℓ)⌋ ∀i ∈ {1, 2, 3, ....., N}
9: end for

10: h← N size array for Supernode indices.
11: hi ← maxOccurence{hℓ

i ; ℓ ∈ {1, 2, 3, ..., L}}∀i ∈ {1, 2, 3, ....., N}
12: n←# of distinct hash indices/# of nodes in the coarsen graph Gc.
13: π ← Dictionary mapping every node in G to supernode ∈ {1, 2, ..., n} in Gc

14: C ∈ Rn×N ← Coarsening Matrix
15: for every node v in V do
16: C[v, π[v]]← 1
17: end for
18: Ac(i, j)←

∑
(u∈π−1(ṽi),v∈π−1(ṽj))

Auv , ∀i, j ∈ {1, 2, ..., n}
19: Xc(i)← 1

|π−1(ṽi)|
∑

u∈π−1(ṽi)
Xu, ∀i ∈ {1, 2, ..., n}

20: return Gc(Vc, Ac, Xc) , n

3.2 Construction of Surjective Mapping164

Let Xi ∈ Rd represent the graph node feature corresponding to node vi. Let P ∈ RL×d and b ∈ RL165

be the hashing matrices employed in the method, with L denoting the number of projectors used for166

clustering the graph nodes. This is shown as Step 1 in Figure 1. The hash index that has the maximum167

occurrence among the hash indices generated by the hash functions is the hash value assigned to168

the graph node. So, the hash value for node vi is given by hi = max{⌊ 1h ∗ (P ·Xi + b)⌋}, where h169

is a hyperparameter called the bin-width. The hyperparameter h controls the size of the coarsened170

graph Gc and "·" represents matrix multiplication between matrix P and the feature vector Xi. It is171

found out empirically that increasing the value of h decreases the size of the Gc. Now, all the nodes172

that have been assigned the same hash value refer to the same supernode in the Gc as also shown173

in Step 2 of Figure 1. And if we assign an index to the cluster of nodes of the Gc, we have the set174

{ṽ1, ṽ2, ...., ṽn} where n is the number of nodes in the Gc.175

3.3 Construction of Coarsened Graph176

Let Gc = (Vc, Ac, Xc) represent the coarsened graph that is to be built. Now, any of the supernodes,177

say ṽi and ṽj , in the coarsened graph Gc are connected to each other, if any of the nodes say178

u ∈ π−1(ṽi) has an edge to any of the nodes, say v ∈ π−1(ṽj) in the original graph, i.e., ∃179

u ∈ π−1(ṽi), v ∈ π−1(ṽj) such that eu,v ∈ E where E is the edge set of the graph G. The coarsened180

graph Gc is weighted, and the weight assigned to the edge between nodes ṽi and ṽj , a parameter181

Ac(ij) =
∑

(u∈π−1(ṽi),v∈π−1(ṽj))
Auv, where Auv refers to the element (u, v) in the adjacency182

matrix A of graph G, is incorporated, which reflects the strength of the connection between them.183

The features of super-nodes are taken to be the average of the features of the nodes in the super-node,184

i.e., Xc(i) = 1
|π−1(ṽi)|

∑
u∈π−1(ṽi)

Xu. The supernode’s label is chosen as the class that has the185

most instances. The partition can be represented by a matrix C̃ ∈ {0, 1}N×n, where N is the number186

of nodes in the original graph and C̃ij = 1 if and only if vertex vi in the original graph belongs to187

cluster ṽj . Also, note that any node in G can only be assigned a single hi value, i.e., each node has188

a single supernode mapping and bin-width hyperparameter (h) ensures that every supernode has at189

least one node; more details about h is presented in the forthcoming section. Thus, each row of C̃190

contains exactly one nonzero entry, and columns of C̃ are pairwise orthogonal. Hence our partition191
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matrix satisfies constraints described in the equation 1. From this C matrix, we can calculate the192

adjacency Ac matrix of Gc. Because each super-edge combines multiple edges from the original193

graph, the number of edges in the coarse graph is also much less than m. It means that the adjacency194

matrix Ac has a substantially smaller number of non-zero elements than A. The pseudo-code for195

FACH is listed down in Algorithm 1.196

3.4 Relation between Bin-width Parameter h and Coarsening Ratio r197

The parameter bin-width h decides the size of the coarsened graph Gc. For a particular coarsening198

ratio r, we find the corresponding h by divide and conquer approach on the real axis, which is similar199

to binary search. Algorithm 2 in the Appendix shows the method by which we find the h for any given200

r for Gc. Figure 5 in the Appendix shows the relation of h with r for two datasets: Cora & Coauthor201

CS. It is observed that the r decreases as the h increases. The h for any r can be obtained by running202

a bin-width finder as stated in Algorithm 2. For each dataset Bin-width finder is a hyper-parameter203

that needs to be run only once, and hence it is not included in the reported time complexity.204

3.5 Time Complexity Analysis of FACH205

FACH offers notable advantage of linear time complexity, O(NLd), where N is the number of206

nodes, L is the number of projectors used in constructing the partition matrix C, and d is the feature207

dimension. The algorithm 1 performs three passes over the graph nodes. In the 1st pass, nodes are208

individually hashed to bins based on their features, taking O(N) operations. The overall time for209

initializing the weight matrix is L× d. The 2nd pass involves constructing the supernodes for the210

Gc using node accumulation in the bins. These two phases contribute to the time complexity of211

O(NLd) ≡ O(NC), where C is a constant. Obtaining the partition matrix takes O(N) time. In212

the 3rd phase, the features of the coarsened graph’s supernodes are computed. Edge weights are213

calculated by iterating over the edges of the original graph and incrementing the corresponding edge’s214

weight between supernodes in Gc using the surjective mapping π : V → Vc. The computational cost215

for this operation is O(m), with m is the number of edges in the original graph.216

4 Experiments217

In this section, we conduct extensive experiments to evaluate the proposed FACH against the existing218

graph coarsening algorithms. The experiments are unfolded by answering the following questions: (i)219

How does FACH perform against other algorithms in terms of run-time? (ii) Is FACH able to preserve220

the spectrum of the original graph in the coarsened graph, i.e., retain information in the coarsened221

graph? (iii) How does FACH perform for real-world graph applications when we reduce the size of222

the original graph under question?223

4.1 Experimental Protocol224

4.1.1 Baselines.225

We compare our proposed algorithm with the following coarsening algorithms: two variation methods226

based on edges and neighborhood [16], Algebraic Distance [14], Affinity [13], Heavy Edge [5, 15]227

and Kron [24]. We show that time complexity wise FACH is better than all of these methods. All the228

experiments conducted for this research were performed on an Intel Xeon W-295 CPU and 64GB of229

RAM desktop using the Python environment.230

4.1.2 Datasets231

We perform experiments on widely-used benchmarks with class-labeled nodes, including citation232

networks like Cora, CiteSeer, Coauthor CS, Coauthor Physics, DBLP, and PubMed, which feature233

sparse bag-of-words document vectors and citation links. Additionally, we utilize FACH to preprocess234

large datasets such as Flickr, Reddit, and Yelp, which was previously infeasible using existing235

techniques. Estimating eigen error for preserving spectral features in these datasets is beyond the236

scope of this paper. Refer to Table 7 in the Appendix for dataset specifics.237
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Data/
Method CiteSeer Cora CS PubMed DBLP Physics Flickr Reddit Yelp

Var. Neigh. 8.72 6.64 23.43 24.38 22.79 58.0 OOM OOM OOM
Var. Edges 7.37 5.34 16.72 18.69 20.59 67.16 OOM OOM OOM

Var. Cliques 9.8 7.29 24.59 61.85 38.31 69.80 OOM OOM OOM
Heavy Edge 1.41 0.70 7.50 12.03 8.39 39.77 OOM OOM OOM

Alg. Distance 1.55 0.93 9.63 10.48 9.67 46.42 OOM OOM OOM
Affinity GS 2.53 2.36 169.05 168.38 110.95 924.75 OOM OOM OOM

Kron 1.37 0.63 5.81 6.37 7.09 34.53 OOM OOM OOM
FACH 0.54 0.29 2.9 1.12 1.38 5.9 4.7 12.49 136.03

Table 2: Summary of run-time in seconds averaged over 5 runs taken by other coarsening algorithms
to reduce the graph to 50 percent coarsening ratios.

Dat/
Method CiteSeer Cora CS PubMed DBLP Physics Flickr Reddit Yelp

Var. Neigh. 0.1807 0.1211 0.2488 0.1087 0.1179 0.2737 OOM OOM OOM
Var. Edges 0.1363 0.1293 0.0498 0.9654 0.1355 0.0424 OOM OOM OOM
Var. Cliques 0.0640 0.0850 0.0263 1.2089 0.0826 0.0394 OOM OOM OOM
Heavy Edge 0.0434 0.0713 0.0467 0.8343 0.0863 0.0310 OOM OOM OOM
Alg. Distance 0.1117 0.1079 0.0872 0.4039 0.0471 0.1176 OOM OOM OOM
Affinity GS 0.0571 0.0950 0.0633 0.0637 0.0735 0.0520 OOM OOM OOM
Kron 0.0287 0.0695 0.0564 0.3781 0.0601 0.0641 OOM OOM OOM
FACH 0.3408 0.2244 0.2080 0.1791 0.1455 0.0168 0.0140 EOOM EOOM

Table 3: Relative Eigen Error for other methods at 50 percent coarsening.

4.2 Experiments for Run-time analysis.238

Dataset/
Coarsening Ratio 0.1 0.3 0.5 0.7 0.9

Yelp 138.35 137.19 136.03 123.9 122.8
Reddit 12.8 12.48 12.49 12.44 12.55
Coauthor CS 2.91 2.98 2.9 2.97 2.93
Flickr 4.72 4.76 4.79 4.78 4.7
Cora 0.28 0.29 0.29 0.29 0.29
PubMed 1.13 1.12 1.12 1.13 1.1
DBLP 1.35 1.41 1.38 1.4 1.37
Physics 5.87 5.93 5.95 6.03 5.99
CiteSeer 0.52 0.55 0.54 0.54 0.52

Table 1: Summary of run-time in seconds averaged
over 5 runs taken by FACH to coarsen the graph to
corresponding to different coarsening ratios.

The main contribution of our algorithm is in239

terms of computational time. The time needed240

to obtain the coarsening matrix using FACH for241

different datasets is summarized in Table 1. It242

is clear from Table 1 that the run-time complex-243

ity of our algorithm is linear with respect to the244

coarsening ratio. Table 2 demonstrates the supe-245

riority of FACH by showing that it outperforms246

all existing algorithms across all datasets by sig-247

nificant margins. FACH is over 7× faster than248

the quickest and around 150× faster than the249

slowest technique for large datasets like Physics250

which has 34,493 nodes. While other methods251

fail at large datasets, FACH is able to coarsen252

down massive datasets like Yelp, which has253

716,847 nodes, which was previously not possible. It should be emphasized that the time taken by254

FACH on the Reddit dataset which has 7× more number of nodes compared to Physics is one-third255

the time taken by the fastest state-of-the-art methods on the Physics dataset.256

(a) Comparison of REE. (b) Comparison of HE. (c) Comparison of GCN accuracy.

Figure 2: This figure shows the comparison of all graph coarsening methods in terms of REE, HE, and
GCN accuracy on the PubMed dataset. FACH’s REE performance, while not the best, is comparable
to other methods. FACH outperforms these methods significantly in terms of GCN accuracy.
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Figure 3: Top 100 eigenvalues of the original and coarsened graph at coarsening ratios: 30%, 50%
and 70%. We can observe that the spectral property is maintained across all coarsening ratios for all
coarsened graphs. For a lower coarsening ratio, this approximation (REE) is more accurate.

(a) Original graph. (b) 30% coarsened graph (c) 50% coarsened graph (d) 70% coarsened graph

Figure 4: Visualization of GCN predicted nodes when training is done using coarsened graph.

4.3 Spectral properties preservation.257

We evaluated our coarsened graph using relative eigen error (REE) and hyperbolic error (HE) as258

metrics for spectral and smoothness similarity. Figure 3 demonstrates the preservation of eigenvalues,259

showing that even a 70% coarsened graph maintains spectral properties for most datasets. However,260

the accuracy of the approximation decreases as the coarsening ratio increases, leading to higher261

REE. Table 3 compares REE values for different approaches at a fixed 50% coarsening ratio, where262

FACH performs comparably. For larger datasets like Yelp and Reddit, eigen error calculation was not263

feasible due to memory limitations (EOOM), whereas other methods failed to generate the coarsened264

graph (OOM). Figure 2 and Table 6 illustrate the effect of varying coarsening ratios on eigen error,265

hyperbolic error, and GCN accuracy. FACH consistently achieves higher GCN accuracy than other266

methods for three out of six datasets. Notably, FACH achieves the highest GCN accuracy for the267

PubMed dataset, despite ranking third in terms of REE (Table 6). This emphasizes the need for268

further investigation into the relationship between GNNs, downstream tasks, and graph spectral269

properties. While REE values for FACH may not always be the best, Figure 2 demonstrates that270

FACH successfully preserves spectral properties. Considering the significant speedup offered by our271

framework compared to other approaches in the literature, these REE values are reasonable.272

4.4 Invariant to Hash Functions.273

Dataset ℓ2 norm ℓ1 norm

Physics 94.70 93.80
CS 74.19 73.57
Cora 77.92 83.43
PubMed 85.65 85.12
DBLP 75.50 74.21
Citeseer 68.48 68.03

Table 4: This table reports the GCN accuracy on
the coarsened graphs for ℓ2 and ℓ1 hash functions
at 50 percent coarsening.

As discussed in Section 3, we have employed274

dot-product i.e., WX+B
h as the hash function275

for all of the above results. Here, we demon-276

strate FACH’s compatibility with various hash277

functions. We have also used two other Hash278

functions a) ℓ1-norm i.e ||W−X||1
h b) ℓ2 norm279

i.e ||W−X||2
h where h is the bin-width we used280

to control coarsening ratio r and W and B are281

the randomly generated matrix. X is the feature282

matrix we discussed in previous sections. Ta-283

ble 4 summarizes GCN accuracy when we use284

ℓ2 norm and ℓ1 norm hash functions to coarsen285

down our original graph matrix. Since various datasets may exhibit varying types of similarities,286
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our algorithm is designed to be adaptable, so that we can incorporate any suitable hash function287

respecting the properties of any given dataset, encoding the similarities unique to a dataset.288

4.5 Application of Coarsened Graph289

4.5.1 Scalable Training of Graph Neural Networks (GNNs).290

Ratio/
Data

Cite-
Seer Cora CS Pub-

Med DBLP Physics

30 68.48 81.63 79.54 85.82 76.0 94.8
50 66.97 74.92 74.19 85.65 75.5 94.7
70 62.27 69.76 67.29 84.82 72.5 94.43

Table 5: Accuracy of GCN on node classification
after coarsening by FACH at different ratios.

Graph neural networks (GNNs) are advanced291

deep learning architectures designed for han-292

dling non-Euclidean input [18, 25, 26, 27, 28],293

with applications spanning various domains in-294

volving graph structures [29, 30, 31, 32]. De-295

spite their massive success, one of the biggest296

issues in graph machine learning is the scala-297

bility of GNNs. The receptive fields increase298

exponentially because the representation of a299

node is derived by recursively aggregating and300

transforming representation vectors of its nearby nodes from previous layers, rendering typical301

stochastic optimization strategies ineffective [27, 33, 34]. [35] proposes a generic method to apply302

off-the-shelf graph coarsening algorithms to scale up the training of GNNs. We experiment to check303

how well our proposed graph coarsening algorithm performs on the scalable training of GNNs.304

4.5.2 Experimental Details.305

We employed a single hidden layer GCN model with standard hyper-parameters values [18]. Coars-306

ened data is used to train the GCN model and all the prediction is being done on original graph data.307

The idea is to coarsen the original graph G(V,A,X) to a smaller graph Gc(Vc, Ac, Xc) which is308

then used for training a GCN. The learned weights on Gc, are then used for making predictions on309

G. Table 5 lists the outcomes of the classification performance by the GCN when we coarsen down310

datasets with different coarsening ratios. It is evident that for most of the datasets, accuracy is on par311

with all the above-mentioned techniques. Even at a 70% coarsening ratio, accuracy on most of the312

datasets is maintained. Table 6 compares the accuracy among all the approaches with all datasets313

when they are coarsened down by 50%. We have used t-SNE [36] algorithm for visualization of314

predicted node labels shown in Figure 4. It is evident that even with 70% coarsened data training315

GCN model is able to maintain its accuracy. Very few of the data points are mis-classified (mostly316

outliers) when we increase our coarsening ratio to reduce the original graph.317

5 Conclusion318

Ratio/
Data

Cite-
Seer Cora CS DBLP Pub-

Med Physics

Var.Neigh. 69.54 79.75 87.90 77.05 77.87 93.74
Var.Edges 70.60 81.57 88.74 79.93 78.34 93.86
Var.Clique 68.81 80.92 85.66 79.15 73.32 92.94
Heavy Edge 71.11 79.90 69.54 77.46 74.66 93.03
Alg. Dis. 70.09 79.83 83.74 74.51 74.59 93.94
Aff. GS 70.70 80.20 87.15 78.15 80.53 93.06
Kron 69.00 80.71 85.35 77.79 74.89 92.26
FACH 66.97 77.92 74.19 75.50 85.65 94.70

Table 6: Accuracy of GCN after Coarsening by other meth-
ods with 50 percent coarsen ratios

In this paper, we presented a frame-319

work FACH for efficient graph coars-320

ening using a hashing of node fea-321

tures inspired by Locality Sensitive322

Hashing (LSH). FACH exhibits linear323

time complexity, making it the fastest324

graph coarsening algorithm to the best325

of our knowledge. Our experiments326

on large graphs like Reddit and Yelp327

demonstrate its scalability and effi-328

ciency. We’ve also shown that FACH329

preserves spectrum and smoothness330

properties. When applied to training331

graph neural networks, FACH main-332

tains performance even after substantial coarsening, enabling scalable training on complex graphs. In333

conclusion, FACH is a significant contribution to graph coarsening, providing a fast, efficient solution334

for simplifying large networks. Our future research will explore different hash functions and novel335

applications for the framework.336
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A Relation between Bin-width Parameter h and Coarsening Ratio r430

Algorithm 2 Bin-width Finder

Require: Input G(V,A,X) , L ← # of Projectors, c ← Coarsening Ratio, p ← precision of
coarsening, N ←# of nodes in the graph G

Ensure: bin-width h
1: h← 1, ratio← 1
2: while |c− ratio| > p do
3: if ratio > c then
4: h← h ∗ 0.5
5: else
6: h← h ∗ 1.5
7: end if
8: _, n← FACH(G,L, h,N)
9: ratio← (1− n

N )
10: end while
11: return h

Figure 5: This figure shows the trend of coarsening ratio as the bin-width increases on two datasets:
Cora and Coauthor CS.

B Datasets Summary431

Dataset Nodes Edges Features Classes
Cora 2,708 5,429 1,433 7

Citeseer 3,327 9,104 3,703 6
DBLP 17,716 52,867 1,639 4

Coauthor CS 18,333 163,788 6,805 15
PubMed 19,717 44,338 500 3

Coauthor Phy. 34,493 247,962 8,415 5
Flickr 89,250 899,756 500 7
Reddit 232,965 114,615,892 602 41
Yelp 716,847 13,954,819 300 100

Table 7: Summary of the datasets.
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