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Abstract

The efficient deployment of large language models (LLMs) in online settings
requires optimizing inference performance under stringent latency constraints,
particularly the time-to-first-token (TTFT) and time-per-output-token (TPOT).
This paper focuses on the query scheduling problem for LLM inference with
prefix reuse, a technique that leverages shared prefixes across queries to reduce
computational overhead. Our work reveals previously unknown limitations of the
existing first-come-first-serve (FCFS) and longest-prefix-match (LPM) scheduling
strategies with respect to satisfying latency constraints. We present a formal
theoretical framework for LLM query scheduling under RadixAttention, a prefix
reuse mechanism that stores and reuses intermediate representations in a radix tree
structure. Our analysis establishes the NP-hardness of the scheduling problem with
prefix reuse under TTFT constraints and proposes a novel scheduling algorithm,
k-LPM, which generalizes existing methods by balancing prefix reuse and fairness
in query processing. Theoretical guarantees demonstrate that k-LPM achieves
improved TTFT performance under realistic traffic patterns captured by a data
generative model. Empirical evaluations in a realistic serving setting validates
our findings, showing significant reductions in P99 TTFT compared to baseline
methods.

1 Introduction

The rapid integration of large language models (LLMs) into online systems has spurred significant
research aimed at improving their inference efficiency. Unlike traditional batch-processing environ-
ments, online usage demands a nuanced understanding of performance, prioritizing what is often
termed “goodput” [Zhong et al.|[2024]—the maximum number of requests that can be served while
meeting stringent constraints on time-to-first-token (TTFT) and time-per-output-token (TPOT). This
shift in focus underscores the necessity of developing advanced inference and serving algorithms
that optimize goodput, ensuring efficient and cost-effective deployment of LLMs in latency-sensitive
applications.
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An important approach to improving LLM inference efficiency is prefix reuse. In autoregressive
LLMs, prompts with shared prefixes can leverage the intermediate representations (i.e. key and
value tensors, often stored in the key-value (KV) cache) of the common prefix, reducing both
memory usage and computational overhead during inference. A notable implementation of this
idea is RadixAttention, which stores the KV cache of processed queries and automatically reuses
shared prefixes by maintaining a radix tree |[Zheng et al.| [2024]]. This tree tracks cached values
and matches them with new incoming prompts, enabling efficient reuse without requiring manual
intervention. To manage memory constraints imposed by the fixed size of the KV cache, the system
employs a least recently used (LRU) eviction policy for cached values. This method is particularly
impactful in scenarios where many prompts share prefixes, offering substantial savings in compute
and memory. Moreover, its “out-of-the-box™ functionality simplifies adoption by eliminating the
need for users to manually analyze or encode prefix structures, making it a practical solution for
real-world applications.

Automatic prefix reuse enabled by RadixAttention can substantially improve goodput in many realistic
settings, particularly when there is large overlap among query prompts. However, under a stream of
queries, the performance of RadixAttention becomes dependent on the order in which queries are
processed (i.e., the “schedule”), and its implications for latency remain poorly understood.

The main scheduling algorithms considered in prior work are First Come First Serve (FCFS), which
processes queries in arrival order, and Longest Prefix Match (LPM ﬂ which greedily maximizes KV
cache reuse at each scheduling step. In the offline setting (where all queries are known in advance),
Theorem 3.1 in|Zheng et al.| [2024]] shows that LPM indeed maximizes cache reuse. However, the
online setting, where queries arrive over time under tight time-to-first-token constraints, was not
characterized.

In this work, we provide a theoretical exploration of RadixAttention scheduling in the online regime,
focusing on non-preemptive scheduling. Our analysis and experiments show that existing scheduling
approaches can lead to large TTFT spikes under heavy traffic, motivating a new scheduling algorithm
that more robustly balances prefix reuse and waiting time. Specifically, we design a mechanism that
exploits the benefits of LPM but mitigates its performance risks in high-load scenarios, resulting
in superior performance for long-prompt, short-output (i.e., prefill-dominant) queries where Radix-
Attention delivers significant efficiency gains. Examples of such applications include document
summarization, coding assistants, and prompts with detailed instruction sets among others |/Anthropic
[2024]]. Recently, a well-studied generation use case that can benefit from faster prefill is the scaling
of test-time compute (TTC) via best-of-N sampling, where N outputs are generated in parallel and a
verifier model is used to score them Snell et al.|[2024],/Cobbe et al.|[2021]]. TTC has enabled recent
LLMs to dramatically improve performance on reasoning benchmarks for domains like coding and
math |Guo et al.|[2025]].

1.1 Contributions

* In Section 2] we introduce a formal model for analyzing the LLM query scheduling problem. Our
model draws inspiration from prior work on the roofline model Imai et al.| [2024]] and incorporates
experimental observations to ensure practical relevance. Despite its grounding in real-world consid-
erations, the model remains sufficiently simple to facilitate analytical insights, including a formal
specification of the “query stream” (Definition[I]) and a computational model for LLMs (Definition
[2), enabling further exploration of the problem.

* We show that the decision problem of determining whether a TTFT constraint can be satisfied for a
given query stream is NP-Hard when using Radix Attention (Theorem ). This is in contrast to the
case without Radix Attention, where latency is trivially minimized by FCFES, or the case with Radix
Attention and uniform arrival times, where latency is minimized by LPM |[Zheng et al.|[2024].

¢ Although the decision problem is NP-hard, we introduce a data generative model (see Definition

M) that effectively captures the behavior of realistic query streams in key applications. Additionally,
we present a generalized algorithm, k-LPM (Algorithm|[I)), which outperforms both FCFS and LPM
under this data generative model (see Theorem 2] and Corollary [3).

'LPM is the default query scheduling algorithm in SGLang v0.4.1. Meanwhile, FCFS is an option in SGLang
and the default scheduling algorithm in vLLM v0.6.6.



* We validate our theoretical results with experiments demonstrating that our predictions hold in
practice by running a Llama-3.1-8B-Instruct model on the SGLang serving framework using real
prompts. In particular, the k-LPM algorithm is able to attain reduced P99 TTFT across a range of
request rates and settings of the hyperparameter k.

* Finally, in Appendix [A| we prove that an approximation algorithm exists that, for a length n query
stream Q and TTFT constraint 7', either 1) certifies no schedule exists satisfying the TTFT constraint,
or, 2) returns a schedule such that the (1 — p)-th percentile TTFT is at most T for p € (0,1).
Furthermore, this algorithm runs in O(n - exp(1/plog 1/p)) time.

1.2 Related work

There has been significant interest in prior work on scheduling LLM queries in order to maximize
throughput while satisfying TTFT constraints. Some examples are FastSwitch, which employs a
priority-based scheduler with preemption to dynamically allocate resources to effectively reduce
TTFT and GPU idleness [Shen et al.|[2024], and Orca, which employs iteration-level scheduling,
processing each model iteration separately allowing for flexible batching and immediate response to
newly arrived requests |Yu et al.[[2022]]. Many other papers increase throughput subject to latency
constraints by innovations to the processing schedule of incoming prompts Zhong et al.|[2024], |Patel
et al.| [2024], Jain et al. [2024], Agrawal et al.| [2024]. Collectively, this prior work underscores
the importance of dynamic scheduling in achieving high throughput without compromising latency
guarantees.

The most relevant work to ours addresses scheduling of LLM queries with consideration of prefix
reuse. [Zheng et al.[[2024] introduced RadixAttention and the LPM scheduler, which we build upon,
but their work provides only limited exploration of scheduling strategies. |Srivatsa et al.| [2024]]
proposes a priority-based local scheduler in Section 3.3 aimed at balancing prefix reuse and waiting
times. The scheduler works by assigning requests to priority groups based on prefix cache hit rate and
then selects a number of prompts in each group proportionally to its priority, but no accompanying
analysis is provided. Qin et al.|[2024] integrates RadixAttention in local instances but primarily
emphasizes maintaining a disaggregated KV cache to balance the decode and prefill phases, enhancing
throughput while adhering to latency constraints in highly overloaded scenarios.

Analytic exploration of LLM inference efficiency is relatively limited, with some notable examples.
Kim et al.| [2024] propose INFERMAX, an analytical framework for evaluating schedulers and
deriving theoretical performance bounds, while identifying prefix-sharing awareness as a future
direction. |Yang et al.| [2024] analyze the behavior of LLM queries using an M/G/1 queue while
accounting for unknown decoding length, and |(Guldogan et al.|[2024] examine multi-bin batching
to boost throughput. These studies underscore the value of theoretical approaches, which our work
advances through a focus on prefix-aware scheduling.

1.3 Notation

Let bold lower case letters denote strings, e.g., X or y, over some fixed alphabet. Let |x| denote the
length of string x. Let Overlap(x,y) denote the length of the maximal prefix overlap between x and

y.

2 Computational model of RadixAttention

In this section, we provide a model of LLM computation that allows for theoretical study of RadixAt-
tention under different scheduling algorithms. Consider a single LLM instance (that may be on a
single GPU or parallelized across multiple GPUs in various ways). This LLM instance can process
queries using continuous batching. The time for a single pass can be understood from the “roofline
model” (see Appendix A.2 of|[Imai et al.|[2024] for details on applying the roofline model to LLM
inference).

First, we define the query stream as a collection of prompts with associated arrival times.
Definition 1. (Query stream) Let a query stream of length n be denoted by Q = (X;,1;);c[n), where
X; is an arbitrary length string in some fixed alphabeﬁ and t; > 0 is the arrival time of the i-th query.

2This alphabet will be the set of tokens in practice.



Note that this definition specifies a fixed finite collection of queries rather than a distribution as is
common in queuing theory. We make this choice to simplify the analysis under the added complexity
of prefix reuse, and to enable focus on the “burst traffic” behavior of TTFT rather than stable state
behavior of the queue. That is, we are most interested in the behavior of scheduling algorithms in
the periods of time where queries arrive faster than they can be processed and so the queue becomes
temporarily long.

We present a formal model for the computation time of an LLM operating with a batch size of
one under a specified queue ordering. This model captures both the time to process each prompt—
accounting for prefix reuse from the preceding query—and the constraint that processing cannot start
before a prompt’s arrival time. We focus on scenarios where the prefill stage constitutes the primary
contributor to total inference time, and where RadixAttention provides the largest improvement
within that stage.

Definition 2 (LLM Instance Computation). Consider a stream of queries Q = {(X;,t;)}icin)-
Suppose these queries are processed in the order X;,,X;,, . ..,X;,. Let R(jy) denote the completion
time of the ji-th query. Then R(j1) = |x;, |% and,

R(jk) = maX{R(jk—1)> tjk} + (1 + Cattn * |Xjk|)(‘xjk| - Overla’p(xjk’xjk—l))'

In other words, the ji-th query cannot start processing until its arrival time t;, . Its processing cost is
proportional to the prompt length minus the prefix it shares with the previous query. We assume the
cache is empty initially, so the first query costs |x;, |.

During inference, the prefill stage involves a forward pass over all input tokens. The above formula
for R(jx) captures the dominant computational cost of a forward pass through an autoregressive
transformer architecture. Layers such as the query, key, and value projections or MLP modules scale
linearly with the number of tokens that must be processed in a query. Meanwhile in the attention
mechanism, each token must attend to all previous tokens. Taking into account the cached prefix,
this step scales with |x;, |(|x;,| — Overlap(x;,,x;, ,)). For short to medium sequence lengths, the
point-wise feed-forward network (FFN) typically dominates computation time. For long sequence
lengths, self-attention dominates, as it scales quadratically. We capture the relative cost of the MLP
versus self-attention operations for a fixed architecture by the c,, constant. By focusing on a
prefill-dominated regime, we simplify the analysis while retaining real-world relevance.

2.1 Batch size and prefix cache

The original specification of RadixAttention does not leverage reuse of prefixes of prompts in a single
batch (see Algorithm 1 in|Zheng et al.|[2024]). However, more recent development in SGLang has
enabled within batch prefix sharing. In this case, behavior of scheduling algorithms in the batched
setting can be closely approximated by the batch size one setting in Definition 2} Computing a query
processing order and then dividing the queries into B sized bins sequentially provides a schedule
for the B batch size setting that attains the same amount of prefix reuse. The only difference is that
the time that the i-th query is finished being processed will be the same as when the [/ B]-th query
is finished being processed. This difference will be negligible when the query arrival rate is high
relative to the batch size.

A discrepancy between Definition[2]and the behavior of RadixAttention is that our model assumes
only the last processed prompt is cached, whereas Radix Attention allocates a fixed amount of memory
for caching. We choose to make this simplification to avoid introducing an additional hyperparameter
and because the behavior remains similar under standard settings. Specifically, we expect the behavior
to be similar when prompt length is fairly uniform and the query arrival rate is high relative to the
TTFT constraint.

In our experiments (Section[3)), we use dynamic batch size and a fixed memory pool for the prefix
cache in the SGLang framework and observe that our theoretical predictions based on Definition 2]
are still accurate.

3 Complexity of scheduling under TTFT constraints

We first explore the complexity of the decision problem for determining whether there exists a
schedule for a fixed queue that satisfies a given TTFT constraint 7" for each query. By reduction to
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Figure 1: This figure graphically represents the imposed structure for any feasible schedule in the
query stream construction of Theorem [T} Note that the only flexibility in the schedule is how the set
of strings {X; };c[3, fits into the m time windows of size H. The solid lines represent arrival times
and the dashed lines represent processing start times.

the 3-PARTITION problem, we show that it is NP-Hard to decide feasibility of a queue under a TTFT
constraint, despite this problem being trivial in the case where there is zero prefix reuse (where FCFS
is optimal) or in the offline setting where all arrival times are uniform (where LPM is optimal).

3.1 NP-hardness of feasibility determination

We provide the definition of the 3-PARTITION problem, which is NP-Hard in the strong sense. See
SP15 in the appendix of (Garey and Johnson| [1979] for reference.

Definition 3. (3-PARTITION) Let m € N and H > 0. Given a set A of 3m integers such that
H/4<a<H/2foralla € Aand . , a = mH, decide if A can be partitioned into m disjoint
sets Ay, ..., A, such that ), a = H foralli € [m].

The intuition behind the proof of Theorem [I]is as follows. The introduction of prefix reuse along with
non-uniform arrival times allows us to construct query pairs that must be processed at a particular
time. As an example, let query x arrive at time H and query y arrive at 7' + H where x and y have
the same prompt. In order to achieve prefix reuse between these two prompts without any idle time
while satisfying the TTFT constraint 7', x must finish being processed at 7'+ H and y must start
being processed at this time. By using this idea to introduce constraints on processing times, we may
construct m “windows” of size H that a set of prompts may be feasibly scheduled within. By then
constructing a set of queries with processing time equal to the integers in Definition [3| deciding the
existence of a feasible schedule solves the 3-PARTITION problem.

Theorem 1. Deciding if there is a processing order in query stream Q (Definition|l|) such that a
TTFT constraint T is satisfied under the computational model of Definition2)is an NP-Hard problem.

Proof. Let A be an instance of the 3-PARTITION problem defined in Definition [3] We construct
a query stream Q such that determining whether the queries can be scheduled to meet the TTFT
constraint 7 = (m + m?)H under the computation model of Deﬁnitionis equivalent to deciding
the 3-PARTITION instance.

Query construction.
Define:

* X: A set of 3m queries {x;}, where each prompt consists of a unique character, leading to zero
prefix overlap between queries. Furthermore, |x;| = a; for some indexing that matches A. Assign
all x; the same arrival time t = (m + m?)H.

* V: An ordered set of m queries {y; }, each of length mH, each composed of a unique character
not appearing in X'. Assign arrival time ¢; = i(H +mH) to y;.

* Z: A set of m queries {z;} where each z; is identical to y; in content but arrives at time ¢; =
T +i(H +mH).

* w; and wy: Two additional queries, each of length 7', composed of characters distinct from those
in X U)Y. Let wy arrive at t = 0 and w, arrive at t = 27",



Set the overall query streamtobe @ = X U Y U £ U {w1, wa}. Observe:

1. w; must begin processing at time ¢ = 0. Since |w1| = T and there is no prior cache, it finishes
exactlyatt =1T.

2. Since wo composed of characters distinct from those in X' U ), wo has zero cache overlap when
it arrives at t = 2T Then, wo must begin processing exactly at ¢ = 27" to finish by 37, thereby
forcing all queries in X U Y U Z to be completed within the time window [T, 2T").

Within [T, 2T"), the only possible nontrivial cache overlaps come from pairs and (y;, z;) because all
other queries have prompts with distinct characters. For each ¢ € [m], the maximal prefix overlap
between y; and z; reduces the processing time by |y;|. However, to fit all queries from X UY U Z
into [T, 2T"), every possible overlap must be fully utilized. This rigid constraint implies:

* The total time to process ) and Z (accounting for maximum y;—z; overlap) is: Zyiey lyil =
m?H = T —mH.

* Processing must then be continuous (no idle time) in [T, 2T"), and must attain maximum overlap
between every y; and z;. In turn, this implies that y; must finish being processed at exactly
T +i(H 4+ mH) so that z; can be processed immediately as it arrives without violating the TTFT
constraint on y;.

Partition of X and relation to 3-PARTITION.

We next show that X must be partitioned into m disjoint batches, each of total length H. Observe
that for each ¢ € [m], since z; must start right when y; finishes, we have

yi end (and thus) z; begin at '+ i(H + mH).

Then y;.1 must be processed starting from T + ¢(H + mH) + H in order to finish by T+ (i +
1)(H 4+ mH) and maintain the “no idle time” schedule. Since z; is identical to y;, its processing
time is zero in this case. Therefore, between z; finishing at 7'+ i(H + mH) and y;; starting at
T +i(H +mH) + H, there is exactly a length-H sub-interval available. Since ) |x;| = mH,
the only way to fill these m sub-intervals continuously is to divide {x;} into m disjoint groups,
each summing to exactly H{. But deciding such a partition is precisely the 3-PARTITION problem.
Consequently, scheduling O to meet the TTFT constraint is possible if and only if the instance A of
3-PARTITION admits a feasible partition. O

In Appendix [A] we further explore the general problem of scheduling queries to satisfy a TTFT
constraint. In Theorem 4] we prove that there exists an algorithm that accepts a query stream and
TTFT constraint 7" and either certifies that there is no schedule satisfying constraint 7" or returns a
schedule such that the (1 — p)-th percentile TTFT is at most 7" in O(n - exp(1/plog1/p)) time.

4 k-LPM scheduling algorithm

In this section, we introduce our proposed scheduling algorithm, k-LPM, that generalizes the FCFS
and LPM scheduling algorithms. Note that it reduces to LPM when k£ = oo and reduces to FCFS
when k = 1.

Below, we show that k-LPM can achieve superior performance in terms of TTFT on random
queues under a data generative model that captures the relevant properties of realistic use cases for
RadixAttention (Theorem [2). This shows that, despite the intractability of the general scheduling
problem, it is still possible to obtain theoretically grounded improvement over existing methods in
realistic settings. In Section[5] we further support this improvement with experiments showing that
the k-LPM algorithm achieves better TTFT performance than FCFS or LPM on queues constructed
using real prompt distributions.

The intuition behind Algorithm I]is that it first performs & greedy prefix-match steps in the spirit
of LPM to maximize prefix reuse. After these k steps, it processes the oldest query in the queue,
mirroring FCFS. This strategy circumvents the LPM failure case, where a query could be unprocessed
if its prompt never have sufficiently high prefix overlap. At the same time, it retains the significant
prefix-reuse advantage that LPM provides.

31t is trivial to show that some queries must be processed between w and wo in order to meet the TTFT
constraint.



Algorithm 1 k-LPM

1: Input: Input queue of prompts and arrival times Q = (x;, ¢;)
2: while true do
3:  Process the oldest query, i.e., x; such that i = argminj t;

4 fori=1,....,k—1do

5: Process x that maximizes the prefix cache hit rate
6: end for

7: end while

4.1 Data generative model

Although deciding whether a TTFT constraint can be satisfied for a given query stream is NP-Hard
(see Theorem [I)), we are able to show that under a data generative model capturing properties of
practical use cases, k-LPM achieves an improvement on the maximum TTFT. Our data generative
model has the following additional structure.

Tree structured queries: Recall that the maximum prefix reuse is attained for a fixed set of prompts
by DFS traversal of the radix tree constructed from all prompts. Hence, RadixAttention can only
provide significant efficiency gains if the sum of edges of the radix tree constructed from prompts in
a query steam is significantly less than the sum of prompt lengths. Fortunately, many applications of
LLMs fulfill this assumption.

In this section, we restrict our attention to instances where queries in a queue approximately follow
a tree structure of low height. An example of such prompt structure used in [Team| [2025]] is x =
(base_prompt) (user_context) (doc). Here, all queries share the same (base_prompt), and
multiple queries may share the same (user_context).

Examples of such structures include generative usecases: personalized content generation |[Zhang
et al.|[2024]], conversational context-aware question answering |Zaib et al.|[2022], and the predictive
usecase with LLMs as engagement predictors in recommendation systems |Wu et al.|[2024]]. These
scenarios exemplify applications where the prompt structure remains consistent while the user context
varies, allowing for efficient processing and relevant responses. By focusing on such structured
instances, we can better analyze and optimize the computational models for LLMs under constrained
scheduling conditions.

Our data generative model considers the simplest case of prompts constructed from a height two
prefix tree, where the edges at each depth are constant. The arrivals of the queries are regular, but the
order of the arrivals is sampled uniformly from all permutations of the queue. This is the simplest
model that captures the interplay between the tree structure of the prompt prefixes and the arrival
rate of the queries under randomness in the queue arrival order. For ease of exposition, we keep with
the (user) and (doc) terminology of the previous example use case. However, these ideas apply
generally to query streams with approximately tree-structured prompts.

Definition 4 (Regular Arrival Shuffled Queue). Let n,u, k,d,s € N be parameters such that k
divides n. We form a collection of n queries, each denoted by (user) (doc), where:

* (user) is a substring of length u, repeated in exactly k distinct queries.

* (doc) is a substring of length d, unique to each query.

* Each (user) and (doc) starts with a distinct character from a large enough alphabet, ensuring
zero overlap among different (user) or (doc) substrings.

Thus, there are n/k distinct user substrings, each used k times, and n distinct doc substrings,
one per query, yielding n total prompts. We construct the regular arrival shuffled queue Q,, =
{(Xo@), 8- 0()) | i € [n]} by sampling a permutation o uniformly randomly from the symmetric
group Sy, and assigning arrival time s - (i) to the i-th prompt.

The structural assumptions in Definition ] can certainly be relaxed. In real settings, there would likely
be negligible but non-zero overlap between unique user and documents, and the repitions of each
user may not be uniform. Here, we avoid these details to focus on clarity regarding the most pertinent
structure.



4.2 TTFT improvement from k-LPM

In scenarios where each query can be processed swiftly—specifically, when the processing time of
a given query is less than the inter-arrival interval s—the FCFS scheduling algorithm is optimal.
However, in more practically relevant burst-traffic regimes where queries arrive in rapid succession
and cannot be processed fast enough, a backlog of unprocessed queries inevitably forms. To illustrate
this, consider a toy example with c,t, = 0, n = 4 queries, a replication factor £ = 2, and parameters
uw = 5 and d = 5. The queries are denoted as x; = (user);(doc)i, Xo = (user),(doc)s,
x3 = (user)i(doc)s, and x4 = (user)s(doc),. In the case where the inter-arrival time s =
10, FCFS scheduling is clearly optimal, resulting in a uniform TTFT of 10 units for each query.
Conversely, in the case with s = 0, representing a burst-traffic scenario, the LPM scheduling strategy
becomes optimal. Under FCFS, the processing order is x;, X2, X3, X4 and TTFT; = 10 - ¢ with
max(TTFT;) = TTFT4 = 40. Under LPM, the processing order is rearranged to x1, X3, X2, X4 With
TTFTs of 10, 15, 25, and 30, and max(TTFT;) = 30. This example underscores the improvement of
TTFT from cache reuse in practical scenarios.

In the following theorem, we show that k-LPM has a lower maximum TTFT than FCFS or LPME]
with high probability on instances of the regular arrival shuffled queue (Definition[d)). We set the
hyperparameter k in k-LPM to match the number of user repetitions defined in Definition 4| for
simplicity. In practice, the hyperparameter k in k-LPM can be determined through back-testing or by
employing an adaptive multi-armed bandit approach to achieve better performance than the provable
improvement observed in the simple setting. In our experiments (Section[3)), we empirically measure
the performance for varying values of the hyperparameter k.

Intuitively, the theorem shows that when s is small and w is large, LPM is much better than FCFS,
and k-LPM retains this advantage. On the other hand, when s is relatively large, FCFS is better and
k-LPM retains a % factor of the sn reduction in TTFT. For intermediate values of s and u, k-LPM
is better than both algorithms as we prove in Corollary [3] Proofs for these results are provided in
Appendix

Theorem 2 (LPM/FCFS vs. k-LPM). Let Q,, be a regular arrival shuffled queue (Definition )
of length n with k repetitions of each user prefix, user history length u, document length d, and
inter-arrival gap s. Suppose the queue starts being processed at time T' > sn, and let TTFT; denote
the time-to-first-token of the i-th query under a specified scheduling algorithm. Then, under the
computational model of Definition E] with capin = 0:

* (LPM) For every € > 0 and 6 € (0,1), there is an ngy such that for all n > ng, with
probability at least 1 — § (with respect to random shuffle and randomness in LPM):

max;ep, TTFT;, > T + (1—€)n (% —i-d).

» (FCFS) For every ¢ > 0 and 6 € (0,1), there is an ng such that for all n > ng, with
probability at least 1 — § (over the random shuffle):
maX;e, TTFT; > T + (1 — e) n (u +d— 5).

e (k-LPM) Deterministically (i.e. for any arrival order), Algorithm satisfies:
maxX;c(y ITFT; < T + n(%—kd— %)

Corollary 3. For any values of s, k, u, and d such that 0 < s < w and k > 1, and for any
d € (0,1), there exists ng € N such that k-LPM achieves a lower maximum TTFT that LPM and
FCFS simultaneously on the regular arrival shuffled queue (Definitiond)) for any value of n > ng
with probability at least 1 — 6. This result holds for any value of caten > 0 in the computational
model of Definition 2]

S Experiments

In this section, we measure the performance of k-LPM versus FCFS and LPM in a realistic setting.
Our results validate the predictive power of the computational model from Section 2] and the data
generative model from Definition 4in real-world serving scenarios.

*We assume that ties in prefix overlap are broken by uniform sampling in the LPM algorithm.



In our experiments, we use the Llama-3.1-8B-Instruct model Dubey et al.| [2024]] with tensor paral-
lelism across eight A100 GPUs. We run the experiment using the SGLang v0.4.1 serving framework.
In particular, we evaluate the timing metrics using SGLang’s serving benchmark utility SGLang
[2024] and only modify the benchmarking dataset. We implement the k-LPM algorithm as an
extension to the current LPM implementation in SGLang. Finally, we construct the dataset used
for benchmarking by sampling four prompts with shared user history from the 8k context length
prompts described in|{Team|[2025[ for 2100 prompts in total. We follow the textual interface of Team
[2025]]—(Instruction, Member Profile, Past Interactions, Question)—where the first three constitute
the shared prefix and only the Question varies; see 360Brew, Table 1 for an example of this exact
layout. We then randomly shuffle the ordering of these prompts and use 100 for warm up of the
benchmarking server.

5.1 Performance of k-LPM

We measure P99 TTFT vs. request rate for vary- 2504
ing values of k in the k-LPM algorithm. Our key
observation (Figure2) is that setting the hyper-
parameter to £ = 2 achieves reduced P99 TTFT
across a wide range of request rates compared
to FCFS and LPM. Note that SGLang’s bench-
marking utility uses a Poisson arrival process,
so “request rate” refers to the average number of
requests per second. Additional experiment re-
sults are provided in Appendix [C|showing other
TTFT percentile metrics and performance when
varying the amount of prefix reuse. 20 2 30 3 40 as
The experimental results not only highlight the Reauest Rate
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benefits of the k-LPM scheduling algorithm but
also demonstrate that our theoretical framework—
as encapsulated by Theorem 2}—accurately pre-
dicts scheduling behavior in real-world settings.
This holds true even though the experiments do

Figure 2: We measure P99 TTFT versus request
rate for five values of the hyperparameter k£ on
2000 randomly shuffled prompts from the use-
case described in[Team| [2025]]. Note that &k = 1
corresponds to FCFS and k = oo corresponds to

not strictly adhere to all of the assumptions re- LPM.
quired by the theorem. In particular, we make

the following observations:

* k-LPM consistently outperforms both FCFS and LPM. Over a wide range of request
rates considered, k-LPM achieves a lower TTFT. This underscores its robust advantage,
especially under moderate to heavy loads. Additionally, we note that large values of k (e.g.,
k = 1000) behave like £ = oo.

¢ FCFS shows better performance at low request rates, while LPM is advantageous at
higher rates. This matches our theoretical insight in Theorem 2] where a larger inter-arrival
time s favors FCFS, but as s decreases (i.e., the request rate grows), LPM becomes more
efficient than FCFS.

¢ k-LPM performance remains robust under realistic models and prompt data, even
when theoretical assumptions are relaxed. Despite using a real LLM, an off-the-shelf
serving framework, and an industrial prompt dataset, the observed scheduling behavior
closely matches our theory. Here, prefix overlap structure is only approximately tree-like
and random tie-breaking holds in practice; streaming processing (starting on first arrival)
shows the “T" > sn” assumption is inconsequential; and even when k differs from the true
replica count (we used four replicas), choices like £ = 2 or 3 still yield substantial P99
TTFT improvements.

6 Future work

The primary objectives of this work were to formalize the LLM query scheduling problem in the
context of RadixAttention and to develop a practical scheduling algorithm for latency-sensitive appli-
cations. This theoretical framework not only informs the design of new methods, but is particularly



valuable given the current lack of empirical benchmarks for comparing scheduling strategies. How-
ever, further advancements in this area will necessitate empirical evaluation using real-world arrival
patterns. In particular, the described behavior depends on the complex interaction between constant
factors dictating the arrival rate, query processing rate, and average prefix reuse, along with batch
size, radix tree memory limit, and other factors in real serving frameworks. Greater understanding of
LLM query scheduling in real systems necessitates a standardized, measurement-driven evaluation
suite to characterize the practically relevant regime.

The proposed problem formulation and theoretical results leave many interesting extensions open.
One open question is whether there is an algorithm which returns a schedule satisfying a constraint
on the (1 — p)-th percentile TTFT in poly(1/p) time, i.e., a polynomial time approximation scheme.
Additional directions of interest would be extending the computational model of Section [2]to handle
distributional query streams or non-constant decoding length. Finally, generalizing the data generative
model of Definition[d] may be interesting to capture other properties of real data.
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1. Claims
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paper’s contributions and scope?
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Justification: See our contributions section in the introduction for detailed connections
between our technical results and the overal goals of this paper.
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* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See the Future work section for discussion of limitations in the current work
and ideas for future extensions.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate ”Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Yes, every theorem/lemma has an accompanying formal proof, with proofs for
results in Section 4 provided in the appendix due to space restrictions.
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» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided the accurate pseudocode of the k-LPM algorithm in Section 4 and
necessary details of the experiment setup in Section 5. The experiment can be reproduced
by making a minor change to the SGLang version we specified to add the k-LPM algorithm
and then running with the setup we described. However, we are not permitted to share the
exact data of our experiments, though this does not affect the core behavior.

Guidelines:

* The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The algorithm can easily be reproduced as described above. We are not
permitted to share the exact data we used. However, we’ve described the relevant properties
of the data and so the results should be reproducible by using other similar synthetic or real
data sets.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details for the core setup are provided in Section 5 that are sufficient to
reproduce the behavior. As mentioned previously, we are unable to share the specific real
data set.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the computational burden of running repeated experiments for multiple
algorithms across many parameter values, we do not use report error bars. However, one
can see from the plots that clear patterns are present nonetheless.
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* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We discuss this in Section 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow all NeurIPS ethical guidelines.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: This paper is primarily focused on the theoretical behavior of query scheduling
algorithms for LLMs deployed in the online context.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: These concerns are unrelated to this paper.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the SGLang paper for the LLM serving framework we use in the
experiments and the Meta LLAMA paper for the model we benchmark on. We cite [Team!
[2025]] for the real data.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human subjects were involved.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects or related concerns are applicable.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: This paper is focused on scheduling queries to LLMs for online usage, which
we make clear throughout the paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Percentile TTFT constraint approximation

The hardness result of Theorem|[I| motivates us to consider approximation guarantees for computing a
schedule satisfying constraints on the TTFT. One important relaxation of the problem is to instead
consider scheduling algorithms that satisfy a constraint on a fixed percentile of the per-query TTFTs.
This problem is of interest since latency constrained applications typically seek to bound the P95 or
P99 latency of a response in practice. In this section, we show that such a relaxation is tractable when
the interaction distance of queries in a queue (controlled by the latency constraint 7" and maximum
prompt length m) is bounded.

Theorem [ proves there is an algorithm that runs in polynomial time with respect to the query stream
length that either returns a schedule satisfying constraint 7" on the (1 — p)-th percentile TTFT or
certifies that no feasible schedules exists such that all queries satisfy the TTFT constraint 7". Note
that there is a necessary gap where the the positive case pertain the the percentile TTFT problem
and the negative case certifies no schedule satisfies a constraint on the maximum TTFT. This gap
is fundamental, since otherwise we could solve the problem for the maximum TTFT in by adding
enough unsatisfiable queries and solving the percentile TTFT decision problem.

Theorem 4. There exists an algorithm that takes a length n query stream Q (see Definition|l) and a
TTFT constraint T > 0 as input and either:

1. Returns a certificate that no schedule exists for Q that satisfies TTFT constraint T', or

2. Returns a schedule for Q such that the (1 — p)-th percentile TTFT is at most T,

under the computational model of Definition|2|with caitn = 0. Furthermore, if every query is at most
length m and no query is an exact prefix of another, then this algorithm runs in O(n-exp(1/plog1/p))
time when m and T' are bounded by a constant.

Proof. At a high level we will prove that, if there exists a schedule for Q satisfying the TTFT
constraint T for all queries, then there exists a subset Q' C Q of size (1 — p)n that also satisfies
the constraint T for all queries. By the contrapositive of the statement, if Q' does not exist, then
no such schedule exists for Q. We show that Q' can be constructed by decomposing Q into ©(n)
subproblems, each of which can be solved in time independent from n, thereby providing an algorithm
that is tractable with respect to n.

Without loss of generality, we assume that p - n is an integer and that n is divisible by ng = % for
reasons we will explain later. First, we partition the query stream Q into d = n% disjoint blocks
91, ..., Qq that are contiguous with respect to arrival time.

Let this partition satisfy the constraint that for any ¢ < j, every query in Q; has an equal or earlier
arrival time than every query in Q;. For each block O}, we remove 27" queries with the latest arrival

times to form the reduced block Qj.. Define Q' = Ui:l Q..

First, note that if there exists a feasible schedule for Q' under a uniform TTFT constraint 7', then
there exists a schedule for Q where the (1 — p)-th percentile TTFT is at most 7". This schedule can
be constructed by following the schedule for all queries in Q' and then processing the remaining
queries afterwards. By the contrapositive statement, if there does not exist such a schedule for Q’,
then there does not exist such a schedule for Q.

We will next show that it is possible to efficiently compute such a schedule for Q' or certify that none
exists due to the decomposable nature of the problem. Since Q). was constructed by removing the
last 2T queries of Qy, the latest query arrival time in Q) must be at least 7" units of time before the
arrival time of any query in Q;  , if a schedule for Q satisfying the uniform TTFT constraint exists.
This is because no query is an exact prefix of another, and so it must take at least one unit of time to
process a query. Therefore, if all queries in Qj, \ Qj, satisfy the TTFT constraint, then their arrival
times must span at least a 7" length interval of time.

The partition { Qj, } x.c[q) Was constructed to partition the arrival times of Q into d contiguous intervals.
Then, the previous argument implies that the queries in Q) must finished being processed before
the earliest arrival time in Q}  ;, and so the processing time of queries in Q' (the earliest arrival
time to the latest completion time) under a processing order of Q satisfying constraint 7" can be
partitioned into d contiguous time windows, each corresponding to a Q;. block. However, this does
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not completely decompose the problem, as the processing order of Q) may still affect the the next
block Q; ,, through prefix reuse.

We may handle this dependency by keeping track of the feasible last queries for each block that
are possible under schedules that satisfy the TTFT constraint, as these dictate the potential cache
states when computing the next block. More concretely, if there is a feasible schedule for Q, then the
following procedure must return a feasible schedule for Q':

1. Let the possible cache initialization of Q;C be the feasible end queries of Q;C_l or the
empty string if & = 1. Then, in order of £ = 1,...,d, compute all possible pairs of a
cache initialization and last query processed in Qj where a feasible schedule satisfying the
constraint 7" exists.

2. Consider the queries as vertices in a graph along with a vertex representing the empty string
initialization and the set of pairs computed in the last step as directed edges in this graph.
Compute a path from the empty string vertex to a vertex representing a query in Q7.

3. There exists a feasible a schedule for Q" where the latest processed queries in each Q;C is

provided by the path computed in the last step. Hence, we may compute schedule for each

. with the fixed last query with the constraint that the cache initialization and last query
processed is dictated by the returned path.

Note that in step one above, if the query in Q). that is processed latest under the feasible schedule
for Q is recorded as a possible initialization of Q) , then the procedure will correctly identify the last
query in Q) processed under the feasible schedule for Q as a possible initialization for Q; ;. Since
the only feasible initialization of the cache at Q) is the empty string, by induction we conclude that
step one correctly identifies tuples of feasible cache initialization and end queries for block. From
this, there must exist a path returned by step two, since the sequence of tuples that occur correspond
to the feasible schedule for Q must be a directed path from the empty string vertex to the last query
processed under the schedule.

Next, we show that the above procedure runs in O(n - exp(1/p - log 1/p)) time for each of the above
steps:

1. To compute the set of tuples for Qf., we must consider at most ng possible cache initialization
and ng! orderings of queries in Q). We may verify if a fixed combination satisfies the
constraint in O(ng) time. Therefore, computing set of tuples for a fixed & has the following
time complexity:

O(nf - not) = O(ng**?) = exp(n - logng) = exp(1/p - log 1/p).
Performing this procedure for each k& then takes O(n - exp(1/p - log 1/p)) time.

2. For calculating the path, each directed edge is either between a query in Q) to a query
in Q; , or from the empty string vertex to a query in Q;. Hence, the directed graph is
acyclic, and the degree of every vertex is at most ng. Therefore, finding a path from the
empty set vertex to a vertex corresponding to a query in Q/; can be accomplished by BFS in
O(n - poly(ng)) time.

3. Finally, given a feasible sequence of last processed queries for each Qj,, we may compute
the schedule for the other queries in Q) while considering a fixed cache initialization and
last processed query. This can be done by evaluating all possible schedules in O(ng!) =
exp(1/p - log1/p) time. Doing this for all d blocks then takes O(n - exp(1/p - log 1/p))
time.

Note that computing the partition {Qy } <[] depends solely on the arrival times and so it can be done
in O(n) time. Finally, to complete the proof, note that we do not need to remove the 27 last queries
in Qg4 to construct Qii, as no other blocks will become dependent on it. Hence, we may adjust the

argument by a constant factor, and the assumption that n is exactly divisible by % is not needed. [J
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B Proofs for Section 4|

B.1 Proof of Theorem 2|

Proof. LPM: Label the queries so that 1,2, ..., n are in ascending order of arrival times, i.e. t; <
ty < --- <t,. Leto() be the permutation specifying the processing order under LPM. We show
that with high probability, some query among the earliest arrivals (say indices [g]) is processed in a
very late position (> j).

Concretely, for integers ¢ < j, define the event
{3i€lg):0(i) >j} = {some earliest-¢ arrival is not processed among the first j positions }.

Since the processing order of LPM with uniformly random tie breaking is independent from the
arrival times, o is a uniform random permutation of [n]. A standard combinatorial bound then gives:

| — i\ 4
— <)
n—r n

We set ¢ = n3/* and j = n — n'/2. Then,
n —nt/?

n3/4
P(Jiegg o) > j) 21— (———)
=1—(1—1/n/2)"*"
nl/2\pl/4
=1 (1= 1ty e
1

By the known limit lim, (1 — E)Z = %, we can conclude that there exists ng € N such that, for
any n > ng, P(3;¢[q o(i) > j) > 1 —0.

q—1

B(vi e lal. o) < 5) < ][

For a fixed ordering x;, , ..., X;, , the time at which the j-th query is finished being processed can be
written as:

TTFT;, +ti;, =T + [j/k] -u+d-j, (1)
since under LPM, [j/k| unique user prefixes and j unique document suffixes will be processed.
If the event occurs, then there must be a query of index ¢ € [g] that has not been processed at time
T+ [j/k]-u+d-j. Since t; < q-sforall i € [g], this implies there exists i € [g] such that:
TTFT;, > T + [j/k] -u+d-j—q-s
>T+j(u/k+d) —qgs

1/2

By substituting in the values ¢ = n*/4 and j = n — n'/2, we conclude the theorem bound for LPM

in the theorem statement.

FCFS: Label the queries so that 1,2, ..., n are in ascending order of arrival times, i.e. ;1 < to <
- < t,,. FCFS processes these queries in the order 1,2, ..., n.

Under the ¢4, = 0, query 7’s computational time equals:

(uw+d), if the user prefix differs from that of query ¢ — 1,
d, if query ¢ has the same user prefix as query ¢ — 1.

(For ¢ = 1, there is no previous query, so the time cost is always u + d.)

Define an indicator variable

o— 1, if queries ¢ and ¢ — 1 share the same user prefix,
7 ]0, otherwise.
Note that E[I;] = £=1 forall i = 2, ..., n, since the probability that the i and (i — 1)-th queries share the same
(user) prefix is % Then, the time needed to process the entire queue is given by:

n
TTFT, = T+ [x1| + > (x| — uli) — tn

=2

:T—l—n(u—l—d)—sn—uz.ﬂ.

1=2
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Markov’s inequality states that P(X > a) < @, where X is a non-negative value and @ > 0. Applying this

to X =" , I; with respect to randomness in the the queue order implies:
= E—1)vn _ k
(Y 1> va) < BV kB
JZ:; n—1 Vvn
This implies that as n — oo, % >, Ii converges to zero in probability. Then the formula can be written as:
TTFT, > T +n(u+d—s—e,),

where €, converges to zero in probability as n — oco. By the relation max;e(,) (TTFT;) > TTFT,, we conclude
the lower bound for the FCFS algorithm in the theorem statement.

k-LPM: First, note that all queries in the queue must finish being processed by ¢t = T +n(} + d). Additionally,
the ¢-th query must be processed by time 7" + i(u + kd), since this is the time needed to complete 7 groups of
user queries, and hence complete ¢ FCFS steps after the start time 7.

TTFT; < min{T + i(u + kd) — t;, T—|—n(% +d)—t;}
=min{T +i(u+ kd) —i - s, T—i—n(%—i—d)—i-s}

=min{ 7T + i(u + kd — s), T—&—n(%—&—d) —is}.

We want a uniform bound for all ¢ € [n]. Hence, we may bound over the maximum of all indices and then relax
the domain to the entire real line.

TTFT; < mz[n](min{TJr (u+kd—3s), T+ n(k
i€[n

u

+d) —is}

< meaRxmin{T—Fi(u—i- kd — s), T—|—n(% +d) — is}.

Observe that f1 (i) = T + i(u + kd — s) is increasing in 4, while f2(i) = T + n(3 + d) — is is decreasing in
1. The maximum of min{ f1 (), f2(¢) } occurs where these two lines intersect. We solve

(u+kd—s)= (%—i—d)—is,

which implies,
i(u+ kd) = n(> + d).

k
. n(¥+d n
T Q(LI:L kd) T E
Plugging " into f; and f> yields
R(") = L (utkd=s), @) = 7 (utkd-s),
S0 n
max min{ f1(7), f2(i)} = % (u+kd—s).

Hence for all i € [n],
TTFT; < mz[ni min{i(qukdf s), n(% +d) fis}

1€(n
n

k

IN

(u—|—kd—s).

B.2  Proof of Corollary[3]
Proof. From the conditions that £ > 1 and s > 0, it follows that:
U s U
T —+d— - T — +d).
—i—n(k—i— k)< —i—n(k—i— )
Furthermore, from the condition that u > s, it follows that:
T+n(%+d— %) <T+n(u+d-s).

22



Hence, by Theorem@ the corollary statement holds when c,, = 0. We extend to all ¢, > 0 by
observing that |x;| = u + d is constant under Deﬁnition Therefore, the time needed to process a
query of the regular arrival shuffled queue under Definition 2] with order indexed by j > 1 is:

(1 + caten|x;])(|x;] — Overlap(x;,x;-1))
= (14 ¢)(]x;| — Overlap(x;,x;-1)),
for some constant c that depends only on u and d. Rescaling s by this 1 + ¢ term extends the result to

all cattn > 0 and concludes the proof.
O

C Additional experiment results

C.1 Real prompt distribution latency metrics

In this section, we provide additional plots for latency metrics corresponding to the experiment of
Figure[2]

Note that the relative performance of the scheduling algorithms is accurately predicted by Theorem 2]
and surrounding discussion. That is, LPM (equivalent to k-LPM with k = co) attains the best median
TTFT as it maximizes prefix reuse. However, k-LPM with intermediate values of k attains nearly the
same median TTFT and better P99 TTFT by ensuring that no queued query is waiting for too long.
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Figure 3: We measure P50, P90, P95, and P99 TTFT versus request rate for five values of the
hyperparameter k£ on 2000 randomly shuffled prompts from the usecase described in |[Team| [2025]].
Note that £ = 1 corresponds to FCFS and k£ = oo corresponds to LPM.
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C.2 Varying prefix length ratio

In this section, we provide experiments which vary v and d in the Regular Arrival Shuffled Queue of
Deﬁnition@ﬂ We set n = 2000, k = 4 (the number of replications per prefixes), and measure at 80
requests per second. For this experiment, we use a single H100 GPU and the Meta-Llama-3.2-1B-
Instruct model |Dubey et al.| [2024]].

Table 3] shows latency results for k-LPM with k equal to 1, 4, and oo respectively, while varying the
ratio of the replicated prefix to the constant prompt length (see Definition ). These results match the
relative performance of the settings of & predicted by Theorem [2| That is, LPM consistently results in
lower median TTFT due to greater prefix reuse. However, when the ratio of the prefix length to the
prompt length (u to u + d) is small, FCFS achieves lower TTFT at high percentiles by avoiding any
query from waiting for too long. As the the ratio of the prefix length to the prompt length increases,
the impact of better prefix reuse becomes greater, and so LPM performs better even regarding higher
percentile TTFT. Finally, k-LPM with intermediate k& never performs simultaneously worse than
FCFS and LPM, while it performs better than both in the intermediate regime.

Table 1: TTFT timings in seconds while varying the ratio of the repeated prefix to a constant total
string length.

(a) FCFS

U d Median P90 P95

1000 5000 3466.21 5604.33 5843.80
3000 3000 509.93 1040.45 1081.62

5000 1000 20.15 524.91 564.44
(b) k-LPM
U d Median P90 P95

1000 5000 1940.35 8610.27 9128.23
3000 3000 177.40 821.41 1647.49

5000 1000 19.61 273.55 447.37
(c) LPM
U d Median P90 P95

1000 5000 677.07 11297.53 14733.45
3000 3000 176.32 1245.15 2821.72
5000 1000 20.70 216.88 565.92

Note that we generate the prefix and suffix as random strings of the specified length, which results in
non-zero negligible reuse between unique prefix or suffix substrings.
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