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ABSTRACT

Learning physical simulations has been an essential and central aspect of many
recent research efforts in machine learning, particularly for Navier-Stokes-based
fluid mechanics. Classic numerical solvers have traditionally been computation-
ally expensive and challenging to use in inverse problems, whereas Neural solvers
aim to address both concerns through machine learning. We propose a general
formulation for continuous convolutions using separable basis functions as a su-
perset of existing methods and evaluate a large set of basis functions in the context
of (a) a compressible 1D SPH simulation, (b) a weakly compressible 2D SPH sim-
ulation, and (c) an incompressible 2D SPH Simulation. We demonstrate that even
and odd symmetries included in the basis functions are key aspects of stability
and accuracy. Our broad evaluation shows that Fourier-based continuous convo-
lutions outperform all other architectures regarding accuracy and generalization.
Finally, using these Fourier-based networks, we show that prior inductive biases,
such as window functions, are no longer necessary. An implementation of our
approach, as well as complete datasets and solver implementations, is available at
https://github.com/tum-pbs/SFBC.

1 INTRODUCTION

Physical simulations play an essential role in many fields of science, e.g., Computational Fluid
Dynamics (CFD) (Zhang et al., 2021), with a long history of classical numerical research aimed at
improving the performance and accuracy of solvers (Vacondio et al., 2021). Nonetheless, numerical
solvers typically rely on many insights and intuitions, e.g., which solver and time-stepping scheme
to use and which conservation laws to enforce explicitly and implicitly (Pope, 2000). While neural
solvers traditionally focus on learning from data (Ummenhofer et al., 2019; Morton et al., 2018)
there is often a clear benefit to the integration of inductive biases to enforce difficult-to-learn aspects,
e.g., rotational invariance (Satorras et al., 2021; Lino et al., 2022; Thomas et al., 2018), momentum
conservation (Prantl et al., 2022) and symmetry (Wang et al., 2021).

Within CFD, the underlying Partial Differential Equations (PDEs) are either solved on grids with
Eulerian approaches or using particles with Lagrangian methods. For Eulerian approaches on struc-
tured grids, Convolutional Neural Networks (CNNs) have found broad adoption (Tompson et al.,
2017; Bar-Sinai et al., 2019; Thuerey et al., 2020); however, applying CNNs to unstructured grids
is not directly possible. Graph Neural Networks (GNNs) (Pfaff et al., 2021; Zhou et al., 2020)
approaches have been popular for unstructured grids, e.g., GNS (Sanchez-Gonzalez et al., 2020),
where cell centers are treated as vertices and cell faces as graph edges. These GNNs have found
broad application for various PDEs, e.g., Burger’s equation, for unstructured grids and particle-based
systems (Brandstetter et al., 2022b; Allen et al., 2022). Continuous Convolutions (CConvs) (Wang
et al., 2018) are a subset of GNNs, where interactions are based solely on the relative position of
cells or particles. These continuous approaches are especially suited for Lagrangian simulations,
as particle positions change continuously over time. CConvs often use convolutional filters built
using interpolation approaches instead of using Multilayer-Perceptrons (MLPs), as these filters have
inherently useful properties, such as smoothness (Fey et al., 2018) and antisymmetry (Prantl et al.,
2022). Consequently, CConv approaches learn more accurate solutions than general GNNs for an
equivalent number of parameters in physical problems (Prantl et al., 2022).
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Figure 1: Visual overview of SFBC.

In this context, we propose (a) a generalized for-
mulation of CConvs using separable basis functions,
(b) a Fourier-based architecture with even and odd
symmetry for improved inference accuracy and (c)
a novel dataset consisting of four test cases designed
to be challenging while exhibiting quantifiable phys-
ical behavior. We perform an exhaustive set of ab-
lation studies to investigate which classes of basis
functions and inductive biases are beneficial for accurately learning Lagrangian flow physics.

2 BACKGROUND AND RELATED WORK

We will first outline our definition of neural solvers in Section 2.1, followed by an overview of clas-
sical solvers in Section 2.2 and prior work regarding machine learning for simulations in Section 2.3.

2.1 NEURAL NETWORK TIME INTEGRATION

At a given time t with particles at position xt ∈ Rd, with d spatial dimensions, and corresponding
velocities vt ∈ Rd, the goal of a physics simulation is to compute a new set of positions and veloc-
ities at a new time-point t⋆, i.e., xt⋆ and vt⋆ , subject to a PDE δtu = F (t,x,u, δxu, δxxu, . . . ),
where u is being solved for. Based on the PDE, a solver now computes an update for the particle
positions, ∆xt, and particle velocities, ∆vt, for a given discrete time-step ∆t, which yields:

xt+∆t = xt +∆xt; vt+∆t = vt +∆vt. (1)

Existing neural solvers (Ummenhofer et al., 2019; Prantl et al., 2022) often simplify this problem
by inferring the velocity update from the position update, i.e., ∆vt = ∆xt/∆t. Including an initial
velocity vt and external constant forces at, such as gravity, yields our general learning task as

xt+∆t = xt,′ +G(xt, f t,Θ); xt,′ = xt +∆tvt +∆t2at, (2)

where G is a Neural Network with parameters Θ and a feature vector f . Note that the initial velocity
vt, due to the inference of velocity from position updates, is not the actual instantaneous velocity of
the particles but is defined via vt = xt−xt−∆t

∆t . The minimization task is then given as

min
Θ

L(xt,′ +G(xt, f t,Θ),yt+∆t), (3)

where yt+∆t are known, ground-truth positions from a given dataset and L being a loss function,
commonly chosen as L2. In the following, we refer to solvers of this form as Neural Network Time
Integrators (NNTIs). Note that the time-step ∆t and associated time-stepping scheme do not need
to be the same for ground-truth simulation and NNTI. For example, it is possible to predict multiple
ground truth-simulation steps simultaneously using multi-stepping or temporal-bundling (Ummen-
hofer et al., 2019; Brandstetter et al., 2022b).

2.2 CLASSICAL SOLVERS

We utilize the Smoothed Particle Hydrodynamics (SPH) method as the basis for our test cases and
to inform some of our inductive biases. SPH is a Lagrangian simulation technique initially intro-
duced in an astrophysics context (Monaghan, 1994) but has found broad application in various fields,
e.g., in CFD (Monaghan, 2005) and Computer Graphics (Ihmsen et al., 2013; Macklin & Müller,
2013). At the heart of SPH are interpolation operations ⟨A⟩ of quantities A carried by particles, with
positions x, mass m and density ρ, using a Gaussian-like kernel function W as

⟨Ai⟩ =
∑
j∈Ni

Aj
mj

ρj
W (xj − xi, h), (4)

where h is the support radius and Ni being the neighbors of i, including itself, which are all particles
closer than h, see Koschier et al. (2019) for a broader overview. This can be seen as a message-
passing step using the edge lengths and features of the adjacent vertices with a summation message-
gathering operation. Within SPH many solvers exist for a broad variety of problems and choosing
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the correct one for a respective problem can be challenging as they are vastly different. As our test
cases involve compressible, weakly-compressible and incompressible SPH solvers to generate the
data, understanding their background and requirements is valuable.

For compressible simulations, SPH utilizes either an explicit pressure formulation using a com-
pressible Equation of State, as do we, or using Riemannian solvers (Puri & Ramachandran, 2014),
which would be an important direction for future research due to their complexity. For weakly com-
pressible simulations the most commonly utilized technique is the δ-SPH method (Marrone et al.,
2011), using explicit pressure forces combined with diffusion models for velocity and density terms
using very small timesteps, with the δ+-SPH (Sun et al., 2018) variant that we use for our data
generation further expanding this approach. Finally, for incompressible SPH (Ihmsen et al., 2013;
Bender & Koschier, 2015) the simulation revolves around solving a Pressure Poisson Equation us-
ing an implicit solver using many iterations per timestep. Overall, the SPH solvers we used vary
from straightforward explicit integration over numerically challenging explicit integration with very
small timesteps to requiring large linear systems to be solved per timestep.

2.3 NEURAL NETWORKS

Many methods have been proposed to solve PDEs using machine learning techniques Battaglia et al.
(2016); Morton et al. (2018); Um et al. (2020), where Physics-Informed Neural Networks (PINNs)
are among the most prominent approaches to solving such PDEs (Cai et al., 2021). PINNS are
coordinate networks that learn the solution of a PDE without first requiring a discretization using
continuous residuals. While powerful, these methods have many drawbacks, including difficulties
in training and cannot be applied to discrete simulation data. Another prominent machine learning
technique is point-cloud classification and segmentation, e.g., PointNet (Qi et al., 2017). However,
these approaches are not well-suited to Lagrangian simulations as particles are much more inter-
connected than point clouds. Neural Operators have recently also found research interest in solving
PDEs (Li et al., 2021b; Guibas et al., 2021; Li et al., 2021a). However, applying these approaches to
irregular grids or particle-based simulation is not easily possible. On the other hand, Graph Neural
Networks (GNNs) (Sanchez-Gonzalez et al., 2020) naturally map to simulations as most simulations
can be interpreted as a form of message passing on a graph.

Graph Neural Networks can be directly applied to SPH simulations, where each particle is a ver-
tex, and the particle neighborhoods describe the graph connectivity. GNNs use the graph to generate
messages using just the vertex information (Qi et al., 2017), edge information (Wang et al., 2018),
edge and vertex (Sanchez-Gonzalez et al., 2020), or edge, vertex, and additional feed-through fea-
tures collected on vertices using pooling operations (Brandstetter et al., 2022a). These collected
messages are then either used directly, as new features on the vertices, or combined with existing
vertex features. Further operations, such as input encoding and output decoding, have also been
proposed (Sanchez-Gonzalez et al., 2020). The message processing performed using MLPs with
relatively shallow but broad hidden architectures, e.g., 2 hidden layers with 128 neurons.

Continuous Convolutions are a subset of GNNs and utilize only coordinate distances as inputs to
the filter functions, similar to SPH kernel functions (Ummenhofer et al., 2019). These filter functions
are then combined with the features of adjacent vertices to form the messages. While this imposes
an inductive bias, it can make learning the problem more manageable. The coordinate distances
can then be processed using an MLP (Wang et al., 2018) or other function interpolation techniques,
e.g., linear interpolation (Ummenhofer et al., 2019) or spline-based interpolation (Fey et al., 2018).
Several extensions of these approaches have been proposed for physical simulations, e.g., using
antisymmetry (Prantl et al., 2022) to conserve particle momentum.

Fourier and Chebyshev Methodes: Fourier Neural Operators (FNOs) (Li et al., 2021b) learn phys-
ical simulations by transforming a given spatial discretization into a spectral representation using an
FFT. By applying the learning task in the spectral domain, these operators can learn spatially in-
variant behavior but are limited to regularly sampled data due to their reliance on FFTs. Fourier
encodings have also been applied in image classification and segmentation to make networks less
spatially dependent (Li et al., 2021a). Chebyshev basis polynomials have also been used in Graph
classification tasks using CConvs as higher-order interpolants (Defferrard et al., 2016; He et al.,
2022), as well as other polynomial bases, e.g., Bernstein polynomials (He et al., 2021).
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3 METHOD

Our work builds on a generalized formulation of continuous convolutions that acts as a superset of
existing methods, such as LinCConv (Ummenhofer et al., 2019) and SplineConv (Fey et al., 2018).
Based on this model, we describe parameterizations of convolutional filter functions using separable
basis functions and explain how prior work fits into this concept. Furthermore, we will describe how
symmetries can be built into this model and construct a Fourier-based convolutional architecture that
uses both even and odd symmetry. Finally, we will discuss window functions, an important inductive
bias in many existing CConv approaches.

Formulation: In general, convolution is a mathematical operation that combines an input function,
f : R → R, and a filter function, g : R → R, through an operation defined as (Wang et al., 2018)

(f ◦ g)(x) =
∫ ∞

−∞
f(x− τ) · g(τ)dτ. (5)

We then limit g to be compact, i.e., g(τ) = 0 : ∀|τ | ≥ h, with h being a cutoff distance, also referred
to as support radius within SPH contexts. We can then sample f on the positions of vertices, x, and
base τ on the coordinate distances between connected vertices to discretize the convolution as

(f ◦ g)(xi) =
∑
j∈Ni

f(xj) · g
(
xi − xj

h

)
, (6)

where i and j are the indices of two vertices, see Appendix A.1. This formulation is then expanded
by the inclusion of a normalization term ϕ(x), typically only used in classification tasks, a window
function w similar in shape to an SPH kernel function, see Appendix A.2, and a coordinate mapping
function Λ : Rd → Rd, see Appendix A.3. Denoting the trainable weights of g by Θ this yields

(f ◦ g)(xi) =
1

ϕ(xi)

∑
j∈Ni

f(xj) · gΘ
(
Λ

(
xi − xj

h

))
· w

(
|xi − xj |

h

)
. (7)

The machine learning task then is to find a set of weights Θ such that (f ◦ gΘ)(xi) = y(xi), where
y represents the supervised ground truth result. We now propose to parametrize gΘ using a set of n
one-dimensional basis functions bi(x), with i ∈ [0, n), such that for a one-dimensional convolution
we get gΘ(q) = ⟨b(q),Θ⟩, where ⟨·, ·⟩ denotes the inner product. A direct choice for bi would
be a piece-wise constant function that results in a Nearest Neighbor interpolation or a piece-wise
linear function that results in the LinCConv approach; see Appendix A.4. For a two-dimensional
convolution, we construct a matrix of basis terms as the outer product of a set of separable basis
terms in x and y, i.e., bxi (qx), with i ∈ [0, u), and byj (qy), with j ∈ [0, v), such that

gΘ(q) = ⟨[bx(qx)⊗ by(qy)] ,Θ⟩. (8)

While the imposed restriction of the basis terms being separable limits the potential choices for basis
terms, it is also in line with prior work, e.g., by Fey et al. (2018). A key benefit of such a separable
formulation is that gradients can be computed straightforwardly through a transpose of the weight
matrix instead of requiring more expensive steps or even involving non-linear optimization, as is
required for traditional RBF Networks as proposed by Broomhead & Lowe (1988). It is important
to keep in mind that, as continuous convolutions are matrix multiplications, updating Θ at learning
time is still a linear operation even if the basis terms are non-linear; see Appendix A.1.

Several basis terms b have already been considered in prior work, and we will summarize some of
them here in a two-dimensional context. A simple choice is using a bi-linear interpolation, e.g., as
in the LinCConv approach (Ummenhofer et al., 2019). Here, each entry of the weight matrix Θ only
has a very local influence, and the shape of the learned convolution operator gΘ is a combination of
piece-wise linear functions, and thus also piece-wise linear. While such a formulation is straight-
forward to implement, it gives no guarantees regarding symmetry, the learned function cannot be
smooth, and all learned convolutional filters in a larger network will have discontinuities located at
the same relative positions. Using cubic B-Splines (Fey et al., 2018) results in smoother learned
filters without discontinuities but still does not guarantee any symmetries.

Incorporating Symmetry: The DMCF approach (Prantl et al., 2022) used an antisymmetric basis to
enforce conservation of momentum, which was implemented through explicit mirroring of weights.
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Figure 2: Quantitative evaluation of the one-dimensional kernel function (left) and kernel gradient
(right) toy problem. Evaluations are based on the L2 error related to the number of base terms.

This had the side effect of reducing the effective number of parameters by a factor of two, and
symmetry was neglected during backpropagation. Our framework allows us to directly implement
the antisymmetry constraint, which enables us to instead modify the basis formulation from Eq. 8
such that it can be applied to any basis function and results in an antisymmetric basis

gasymm
Θ (q) = ⟨[sgn(qx)b

x(2|qx| − 1)⊗ by(sgn(qx) · qy)] ,Θ⟩, (9)
which can be modified to lead to a symmetric formulation by excluding the sgn term:

gsymm
Θ (q) = ⟨[bx(2|qx| − 1)⊗ by(sgn(qx) · qy)] ,Θ⟩. (10)

While ensuring that all basis functions are antisymmetric is useful for conserving momentum, not
all target functions are necessarily antisymmetric, e.g., a density interpolation in SPH is rotationally
invariant and can not be learned with such a basis. Furthermore, the resulting filter function is not
smooth, and the resolution along different coordinate axes is not identical. To resolve these short-
comings, we propose a set of smooth basis functions with either even or odd symmetry, where all
basis terms influence the outcome for any value q. Our primary choice for such a basis is a Fourier
series; see Appendix A.4 for visualization and definition of the two-dimensional Fourier series.
Note that this fundamentally differs from applying a Fourier transform, e.g., as done in the FNO
approach (Li et al., 2021b). Architectures like FNO transform an input signal into frequency space
through an explicit Fourier transform and learn in the frequency domain. We instead use the Fourier
basis to construct a convolutional kernel. The input signal keeps its spatial representation, but the
learning task becomes finding the best possible coefficients for a Fourier series. Finally, we also in-
clude Chebyshev polynomials, which are popular for approximating non-periodic compact functions
and have inherent symmetries. Additional basis constructions are discussed in Appendix A.4.

Window Functions are an important inductive bias in many prior works regarding CConvs, espe-
cially within learning physical simulations. The general motivation behind a window function is that
interactions should be (a) compact, (b) smooth, and (c) behave like SPH interpolations. This induc-
tive bias is primarily informed by SPH methodology and, consequently, prior work generally used
SPH kernel functions as window functions such as the Müller (Ummenhofer et al., 2019) or Spiky
kernel (Prantl et al., 2022). We evaluate several other functions; details are given in Appendix A.2.

4 RESULTS

We now propose the SFBC (Symmetric Fourier Basis Convolution) approach using a Fourier basis
with no window function and an identity coordinate mapping. We first compare SFBC against other
CConv approaches in a toy problem in one and three dimensions to compare the capabilities of
the interpolation bases; see Section 4.1. We then compare SFBC against various baselines in a
compressible one-dimensional problem; see Section 4.2. Next, we perform an in-depth evaluation
of a two-dimensional closed domain simulation focused on inference stability; see Section 4.3.
Finally, we evaluate a fluid blob collision scenario to investigate how different basis terms perform
with partially occupied support domains; see Section 4.4. For more details on the training and setup,
see Appendix C. We also performed a runtime analysis of the most relevant hyperparameters and
found that SFBC on average only incurs an increase of 0.5%, 8.5% and 12% over LinCConv in one,
two, and three dimensions, respectively, see Appendix C.6 and Figure 38 for details.

4.1 TOY PROBLEMS

To evaluate the capabilities of the different basis functions to learn symmetries, we consider two
tasks: (a) a symmetric task to learn an SPH kernel interpolation, and (b) an antisymmetric task
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Figure 3: A quantitative evaluation of the relationship between parameter count and test error for
basis convolutions(left), and a quantitative evaluation of different networks for a fixed layout with
four message-passing steps and 32 features per layer (right). Error bars showing lower to upper 5%.

to learn the SPH gradient, see Appendix B.2. This setup is motivated by the concept that if a
machine learning method cannot learn the basic components of an SPH simulation, then learning
the overarching SPH simulation is made more difficult. As we want to evaluate the abilities of the
different basis functions to act as interpolation functions, we utilize a network with a single message-
passing step without activation functions, i.e., the learning task is a linear optimization problem.

Kernel Function: Based on the results shown in Figure 2 and Appendix C.1.1, we observe a clear
difference between different basis terms. The SFBC approach performs best but shows a decrease
in performance with increasing numbers of base terms as this learning task does not require any
higher-order harmonics, and learning a contribution of zero is potentially challenging. The second
best-performing method is the Chebyshev basis, although this method performs several orders of
magnitude worse than the Fourier basis. The baseline methods show much worse overall perfor-
mance, only getting closer SFBC for a high number of terms. The DMCF approach and a Fourier
series consisting of odd terms perform the worst as these, by construction, can only learn antisym-
metric behavior. The inclusion of symmetry significantly improves performance and reduces the
lowest achieved L2 error by a factor of 5217 when compared to LinCConv.

Kernel Gradient: For this case, shown in Figure 2 and Appendix C.1.2, we see a notably different
result. Only a few of the methods demonstrate any reasonable performance, and all of these meth-
ods have inherently antisymmetric terms. Overall, the Fourier series with only odd symmetry terms
performed best, followed by a complete Fourier series and DMCF, where the latter was impeded
primarily by a lack of smoothness for low basis term counts. These results demonstrate that an-
tisymmetric learning tasks are challenging for traditional basis functions, and including symmetry
and smoothness as an inductive bias significantly improves the overall learning behavior by a factor
of 7.6 relative to DMCF and 853 relative to LinCConv when compared to the odd Fourier series.

Three Dimensions: We expanded this evaluation to three dimensions, see Appendix B.5, where we
found similar behavior regarding symmetric tasks with SFBC outperforming LinCConv by a factor
of two on average. As the tensor products of antisymmetric bases are not necessarily antisymmetric,
we observed much worse performance for the antisymmetric odd Fourier basis. They perform on
average three times worse than SFBC (see Appendix C.5.1). We also utilized this setup to evaluate
how non-ideal learning setups perform and found that SFBC was significantly more resilient against
superfluous message-passing steps and input features, see Appendix C.5.2. Overall these findings
suggest that including symmetry and smoothness into the basis significantly improves learning per-
formance and improves the networks ability to learn in a broad range of conditions.

4.2 TEST CASE I: COMPRESSIBLE 1D SPH

Based on the results from the toy problems, we now evaluate how these behaviors translate to a more
holistic learning task where the overall physics update should be learned. The learning setup here
is a one-dimensional compressible SPH simulation, where the updated velocities per particle should
be learned based on the velocity of the current particles. Appendix B.1 provides details of the data
generation and underlying simulation model. For the width of the base functions, we chose n = 6,
based on the results from the toy problems and a hidden architecture for the MLP-based approaches
of 2 deep and 128 wide, in line with Sanchez-Gonzalez et al. (2020).

Basis Function Methods: We first consider the influence of the network size on the achievable
test error by evaluating a large number of hyperparameters, see Fig. 3 and Appendix C.2. Our
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Figure 4: A qualitative comparison after 64 inference steps with (f.l.t.r.) of the ground truth data,
our SFBC approach, LinCConv, a Fourier basis with window, and Chebyshev with window. The
particle data is mapped to a regular grid with color mapping indicating current velocity.
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Figure 5: The quantitative results are based on the integrated error over an inference period of 64
steps regarding four error metrics not included in the training loss.

results demonstrate that there is a clear and noticeable difference between basis functions built upon
antisymmetric terms, i.e., Fourier, Fourier (odd) and DMCF, that makes them perform notably better
than all other basis functions. Considering the size of the network, we made several observations;
see Appendix C.2. On the one hand, we found that increasing the number of message-passing steps,
e.g., from 3 to 6, only changed the network performance by ±10%, while increasing the features per
layer from 4 to 32, with 3 message-passing steps, improved performance by an order of magnitude,
see Fig. 21. On the other hand, we also saw a clear benefit of the SFBC approach as it outperforms
DMCF at virtually all sizes, with a more significant difference for smaller layouts.

MLP-based Methods: Next we compare to a set of MLP-based GNNs using PointNet (Qi et al.,
2017), GNS (Sanchez-Gonzalez et al., 2020), MLSConv (Wang et al., 2018) and MP-PDE (Brand-
stetter et al., 2022b) architectures with 5 message passing steps and 32 features per vertex and mes-
sage. Our results show that GNS and MP-PDE perform as well as most convolutional basis functions
but not as well as methods with built-in symmetries, see Fig. 3. However, they require significantly
more parameters to reach a comparable accuracy, i.e., MLSConv, GNS, and MP-PDE require 229K,
393K, and 395K parameters, respectively, compared to 30K for the CConv methods. This highlights
the importance of basis convolutions as an inductive bias that allows the CConv-based networks
to achieve the same performance with fewer resources. Within the collection of MLP baselines,
MLSConv performs slightly worse but is still comparable to other approaches. This indicates that
the inductive bias of including a convolution by itself is not sufficient but that the advantages come
from constructing them using basis functions with inherently useful properties.

Overall, the results indicate that the basis function convolutions perform similarly to MLP-based
GNNs while requiring significantly fewer parameters. Furthermore, including a bias of symmetry
significantly improves the capabilities of a network, e.g., only methods with symmetry were able
to accurately learn the gradient function. Overall, our SFBC approach shows its robustness by per-
forming better than other methods across a wide range of architectural changes, see Appendix C.2.

4.3 TEST CASE II: WEAKLY-COMPRESSIBLE 2D SPH

For the second test case, we focus on the long-term stability of various NNTIs for a closed domain
weakly-compressible simulation; see Appendix B.3 for details on the data generation. We utilize a
network architecture using n = 4 with four rounds of message passing, in line with Ummenhofer
et al. (2019), and train the networks with a maximum rollout of 10 and an evaluation on the test
dataset with an inference length of 64. To quantify the performance, we map the particle density and
velocity to a regularly sampled grid spanning the closed simulation domain and then assess the L2

difference of density, velocity, and divergence on the grid. We also compute a Power Spectral Den-
sity (PSD) difference based on the velocity field. The divergence is the central metric for this case
as it is a derived metric that is challenging to uphold and closely correlated to a lack of smoothness,
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e.g., see Fig. 4. Note that we naturally require a low error in all metrics for a truly accurate result.
We now evaluate a broad set of choices of basis functions and hyperparameters.

Baseline Comparison: The proposed Fourier-based network performs notably better than other
baseline methods, i.e., LinCConv, DMCF and SplineConv, and outperforms all other basis functions
in almost all metrics, e.g., it outperforms LinCConv by a factor of 2.6 regarding divergence error.
The only exception is the nearest neighbor basis regarding density and PSD error but, crucially,
not regarding divergence error; see Fig. 5 and Appendix C.3.1. Overall, Chebyshev basis functions
also performed well, but only when using a window function, and SplineConv performs worse than
LinCConv, in line with prior observations (Ummenhofer et al., 2019). Finally, for B-spline and other
SPH kernels, the higher the order, the better the result. In addition to the quantitative evaluations,
we also considered the qualitative results, where the Fourier basis with no window shows the, by far,
best prediction, see Fig. 4. In contrast, other methods show a superimposed noise on the velocity
field, which is a combination of both the choice of basis and window function, adding different
noise patterns. This superimposition of noise can easily dominate the overall prediction and make
the prediction unstable and unusable. We also performed a study for a more significant number of
seeds (32 instead of 4) for the key methods, see Appendix C.3.5, and found no significant difference,
i.e., the divergence error for our method changed from 1.29 to 1.30.

Basis: LinCConv Basis: SFBC

103
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Window
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Cubic Spline
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1 x

1 x2

Figure 6: Window Function Study

Window Function: We also evaluated different window
functions regarding both the LinCConv baseline and our
proposed basis, see Fig. 6. We observed that the choice
of window function significantly impacts the network
performance, e.g., LinCConv improved in terms of den-
sity error by 2.1 times; see Appendix C.3.2. At the same
time, the Fourier basis shows a 2 times increase for the
divergence error with the Müller window. This points to
fundamental differences stemming from the basis con-
struction. Notably, the Fourier basis has the desirable
property of giving a very good performance without requiring a window function. Finally, our eval-
uations demonstrate that contrary to intuitions in prior work, using window functions that are not
Gaussian-shaped, e.g., a linear window, can outperform existing window functions, e.g., using a
linear window showed the lowest density, velocity, and PSD errors for LinCConv. This highlights
the importance of choosing the window, as the network’s performance can be fine-tuned for a task.

Window: None Window: Spiky
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Divergence

Fourier Series
SFBC
Fourier (4-Terms)
Fourier (5-Terms)

Fourier (even)
Fourier (odd)

Fourier (odd) + x
Fourier (odd) + sgn(x)

Figure 7: Fourier Series Study

Fourier Terms: We already observed a significantly dif-
ferent behavior for different choices of Fourier series
terms in the toy problems and now investigate this more
closely. We evaluated different variations of Fourier-
based networks; see Fig. 7 and Appendix C.3.4, where
we made several crucial observations. Using only even
or odd symmetry basis terms did not lead to an overall
stable prediction, highlighting that using either symme-
try exclusively is not ideal. Furthermore, by changing which harmonics are used for a given number
of terms, the behavior can be adjusted to be optimal for using a window function or not. Replacing
the first harmonic cosine term with a second harmonic sine term without a window function reduced
the divergence error by a factor of 1.4.

Coordinate Mappings: Ummenhofer et al. (2019) proposed a volume-preserving mapping in the
LinCConv approach. To expand on the brief evaluations in previous work, we used our framework
to assess the importance of the coordinate mapping. In addition to the volume-preserving mapping,
a mapping via the classic choice of polar coordinates serves as a baseline, details for which can be
found in Appendix C.3.3. Comparing these two variants to networks trained without any coordinate
mapping shows no clear advantage as the divergence error increased by up to 15%.

Overall, our evaluations show a clear and significant improvement over existing baselines for our
SFBC approach. Not only are quantitative metrics improved, e.g., the divergence error is reduced
by 30%, but these results were also achieved with fewer inductive biases.
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4.4 TEST CASE III: INCOMPRESSIBLE 2D SPH

16 32 64
Inference Step

0.0

2.5

5.0

7.5

1e 5
Basis

Nearest Neighbor
LinCConv
SplineConv
Chebyshev
SFBC
DMCF

Figure 8: Point-wise distances for different
inference lengths as mean values per step.

For our final test case, we focus on the behavior
of different basis terms regarding free surfaces for
an underlying divergence free solver; see Figure 9
and Appendix C.5. We use the L2 difference of
the ground truth and predicted particle positions for
training and compute the mean distance of all pre-
dicted particle positions to the closest particle in the
ground truth data for evaluation.

Basis Function Comparison: We use an architecture with 6 basis terms, 6 message-passing steps
and 32 features to compare the most relevant baselines. The Fourier-based method performs best
during the initial inference period, up to 2 times the training rollout length, e.g., 16 inference steps.
Still, after that, most methods perform more similar; see Fig. 8 and 31. Qualitatively, the Fourier ba-
sis performed noticeably better than other methods in preserving the shape of the colliding droplets,
as shown in Fig. 9. The window function in this scenario, see Appendix C.4.3, has a significant
impact on performance for prior approaches, i.e., LinCConv showed a 3.3× difference by changing
the window function, and DMCF was only stable with the Müller window. In contrast, Fourier and
Chebyshev bases exhibited a 20% difference.

Groundtruth

Ours

Ours + Window

LinConv

Figure 9: Qualitative evaluation of test
case 3 starting on frame 10 for 32, 64
and 96 timesteps, velocity color coded.

Varying Network Size: To verify whether the benefits of
the Fourier approach hold across varied architectures, we
repeated this experiment across different base term counts
and network layouts, see Appendix C.4.1 and C.4.2. This
evaluation shows that the same scaling behavior occurs as
in test case I, implying that this behavior holds across dif-
ferent dimensions and problems. Furthermore, we found
the same benefit for our SFBC approach, i.e., there is a
notable improvement at virtually all network sizes with
a more pronounced benefit of up to 50% for smaller lay-
outs, indicating that SFBC provides a robust and accurate
basis for learning representations of physical systems.

Overall, our SFBC approach works best in this very chal-
lenging scenario and outperforms all baselines. We fur-
thermore observed that some baseline methods, especially DMCF, performed vastly differently
when using no, or simply different, window functions. In contrast, our approach remains stable
in all cases while performing best without a window function.

5 CONCLUSIONS

We introduced the Symmetric Fourier Basis Convolution (SFBC) approach as a novel inherently
symmetric and smooth continuous convolution approach applied to Lagrangian fluid simulations.
Using this technique, we found improved performance in our challenging test cases, representing
different fluid systems and solvers. Our broad evaluations identified prior inductive biases that are
no longer necessary for our Fourier-based approach. At the same time, they confirm the general
benefits of learning function-based convolutions in unstructured settings.

However, while we did consider a broad set of parameters, we only considered networks with up
to circa 200 thousand parameters, which is a very relevant topic for future work. Our framework
allows for easy and flexible explorations of continuous convolutions with new basis functions. We
hope our work will inspire future investigations to improve learning methods for unstructured data
sets outside of fluid mechanics (Lam et al., 2022; Reiser et al., 2022; Ahmedt-Aristizabal et al.,
2021). rephrased: Furthermore, we would like to expand our formulation to encompass more general
non-linear versions of Radial Basis Function networks (Broomhead & Lowe, 1988). In addition,
algorithms for the initialization of the new types of basis networks, and existing methods such as
LinCConv, are an area where substantial room for improvement exists. Finally, we would like to
explore the larger space of basis functions combining different functions for different tasks, e.g.,
using a different basis for the radial and angular components for spherical coordinate mapping.
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Table 1: Overview of the different Ablation Studies

Section Test Case Hyperparameter Purpose

C.1.1 I Number of Basis Terms Symmetric learning task performance
C.1.2 I Number of Basis Terms Anitsymmetric learning task performance
C.2 I Basis Function & Layout Comparison against baseline methods

C.3.1 II Basis Function Comparison against baseline methods
C.3.4 II Fourier Series Terms Influence of including certain sine/cosine terms
C.3.5 II Random Seed Repeatability and statistical significance
C.3.3 II Coordinate Mapping Evaluation of prior inductive biases
C.3.2 II Window Function Evaluation of prior inductive biases

C.4.1 III Number of Basis Terms Validation of one-dimensional results
C.4.2 III Network Layout Search for optimal network
C.4.3 III Basis Function Comparison against baseline

C.5.1 IV Basis Function Comparison against baseline
C.5.2 IV Network Architecture Influence of Overparametrization

C.6 - Computational Performance Comparison against baseline

APPENDIX
In the appendix, we will be providing additional information to the main paper. First we will be
discussing additional details regarding the basis convolution model, e.g., defining all choices of
basis functions we considered, see Appendix A. Next, we will be discussing details regarding the
simulation setup and data generation, e.g., how the random initial conditions were chosen, see Ap-
pendix B. Finally, we will be providing additional results for all of our ablation studies, see Table 1
for an overview of the ablation studies, in Appendix C.

A SUPPLEMENTARY MODEL DETAILS

Here, we will discuss the mathematical foundations of our convolutional approach and mathematical
definitions of all used basis functions, window functions, and coordinate mappings.

A.1 MATHEMATICAL MODEL

In general, a convolution in 1D is a mathematical operation on two functions f : R → R, the input
function, and g : R → R, the filter function, which are convolved using a convolutional operator ◦,
i.e., h(x) = (f ◦ g)(x). This convolutional operator in a continuous form is defined as

(f ◦ g)(x) =
∫ ∞

−∞
f(x− τ)g(τ)dτ. (11)

In a Machine Learning problem, the goal is now that given an input function f , e.g., the input feature
vector at a given set of positions, and a target output function h, i.e., the ground truth, to find a filter
function g such that h is the convolution of f and g. To achieve this, g needs to be parametrized into
a learnable form gΘ, where we consider three primary approaches:

• Using a Multilayer Perceptron (MLP)
• Using Radial Basis Functions, e.g., piece-wise linear functions
• Using Traditional approximation techniques, e.g., a Fourier series

Note that for the discussions here, we will only focus on the latter two approaches as they are very
similar, and most of our evaluations concentrate on these approaches.

For a Lagrangian simulation, e.g., using SPH, several inductive biases can be included to help a
network. As particle simulations only have a finite set of particles, we can reformulate the convo-
lutional operation as one where interactions are based on the edges of a graph, with particles being
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the vertices and the edge features being pair-wise particle distances. Accordingly, we can rewrite
the convolutional operation for n particles and apply it at the location of a single particle xi to be

(f ◦ gΘ)(xi) =

n∑
j=1

f(xj)gΘ(xi − xj), (12)

which is a direct discretization. However, this formulation is not very practical as every convolution
would require an interaction for every particle-particle pairing, i.e., a computational complexity of
O(n2). To resolve this issue, we apply an inductive bias motivated by SPH and similar methods in
limiting the interactions to a compact domain, i.e., gΘ is zero outside of the interval [−h, h], with h
being the support radius of the particles. Note that for convenience, we will assume h = 1 for further
discussions (which can be ensured through appropriate scaling of the positions x. This results in a
change in the convolutional operation as

(f ◦ gΘ)(xi) =
∑
j∈Ni

f(xj)gΘ(xi − xj), (13)

where Ni are all the neighboring particles of i with |xi − xj | ≤ h. Based on this convolution, some
approaches introduce a normalization function ϕ(x) as

(f ◦ gΘ)(xi) =
1

ϕ(x)

∑
j∈Ni

f(xj)gΘ(xi − xj), (14)

However, an inductive bias we apply is that the filter function g should behave similarly to an SPH
interpolation, i.e., fewer neighbors lead to smaller interpolation values. While this, on a numerical
level, leads to a kernel deficiency problem in SPH for free surfaces, it is nevertheless a widely used
SPH technique. This can be achieved simply by setting ϕ(x) = 1, which has been done in prior
work, e.g., in the LinCConv approach (Ummenhofer et al., 2019).

A further inductive bias we apply is to exclude the particle from interactions with itself and instead
use a fully connected layer for self-interactions. This bias has been utilized before (Prantl et al.,
2022) and is primarily motivated by gradient interpolations in SPH, which include no contribution
from a particle on itself, similar to central difference schemes. If a learning task were to learn such
a gradient interpolation, either explicitly or implicitly, as part of a more involved learning problem,
any weight describing the self-interaction would have to be zero. This, however, overly restricts the
weights, and it is more straightforward to exclude such an interaction, e.g., as

(f ◦ gΘ)(xi) =
∑

j∈Ni\i

f(xj)gΘ(xi − xj) + ωf(xi), (15)

We will exclude this bias from further discussions for convenience and readability.

To parameterize gΘ, we define gΘ as a combination of n basis terms bi(τ), with an associated weight
θi, where the overall filter function is a summation of these terms. For example, for the LinCConv
approach, the basis terms bi describe a linear interpolation over the domain [−1, 1] with each basis
function being piece-wise linear. For computational efficiency, we can reformulate this summation
as a dot product of a basis term vector b with the weight vector Θ as

gΘ(x) = ⟨b(x),Θ⟩. (16)

We impose a further inductive bias for a two-dimensional convolution in that the filter functions are
separable w.r.t. the coordinate axes, e.g., the LinCConv approach uses a bi-linear interpolation with
piece-wise linear separable basis functions. Treating Θ as a weight matrix with basis functions bx,
with u components, and by , with v components, and x = [px, py], we can re-write the convolution:

gΘ(x) =

u∑
i=1

v∑
j=1

B(x)i,j ·Θi,j ; B(x) = bx(px)⊗ by(py), (17)

Which works analogously for three dimensions. At this point an important observation is that if bx

and by are orthogonal bases then the resulting two dimensional basis will also be orthogonal. To
prove this we first consider the definition of orthogonality for a basis in one dimension, which is
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defined based on the existence of an inner product such that ⟨f, g⟩ = 0, which is evaluated through
an integral of the form

⟨f, g⟩ =
∫ 1

−1

f(x)g(x)w(x)dx, (18)

where w(x) is a weight function. Given some functions, e.g., an orthogonal polynomial basis, the
corresponding series can be written as fa(x) =

∑
j ajFj(x), where F is the basis polynomial and

aj is a sequence of coefficients. For orthogonality to hold for this series any inner product of two
basis terms needs to be either non zero, if the same term is multiplied with itself, or 0 otherwise.
Accordingly, we can write the orthogonality constraint as∫ 1

−1

Fi(x)Fj(x)w(x)dx = 0, ∀i, j ∈ N ∧ i ̸= j. (19)

For example given the Chebyshev polynomials of the first kind Tn(x) defined through the recursion

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x) + Tn−1(x),

with an according orthogonality constraint of∫ 1

−1

Ti(x)Tj(x)w(x)dx = 0, ∀i, j ∈ N ∧ i ̸= j. (20)

As an example, consider T4(x) and T3(x), which yields∫ 1

−1

[
8x4 − 8x2 + 1

] [
4x3 − 3x

] [ 1√
1− x2

]
dx (21)

which can be readily integrated and yields 0 as its definite integral. The orthogonality constraint in
a two dimensional function is defined as an inner product over a square region and can be written as∫∫ 1

−1

f(x, y)g(x, y)w(x, y)dxdy = 0, (22)

with a weight function w dependent on both parameters. For our basis convolution approach we
now consider two, not necessarily identical, orthogonal bases a and b defined via an outer product
as

B(x, y) =
∑
i

∑
j

ai(x) · bj(y),∀i, j ∈ N, (23)

which means that for orthogonality to hold any inner product of two basis term Bi,j(x, y) = ai(x) ·
bj(y) and Bk,l(x, y) = ak(x) · bl(y) is either non zero, for i ̸= k ∧ j ̸= l, or 0. To show that this is
true we first consider the orthogonality of the basis terms Bi,j along each cardinal direction, i.e., we
want to verify that∫ 1

−1

fi,j(x, y)gk,l(x, y)w(x)dx =

∫ 1

−1

ai(x)bj(y) · ak(x)bl(y)w(x, y)dx = 0, ∀y ∈ R, (24)

and analogously along the other axes. Considering the integrand, bj and bl are independent w.r.t. the
variable of integration and can be moved out of the integration to yield∫ 1

−1

ai(x)bj(y) · ak(x)bl(y)dx = [bj(y) · bl(y)]
∫ 1

−1

ai(x) · ak(x)w(x, y)dx. (25)

The right hand part of this equation is the same as the orthogonality requirement for a itself and,
accordingly, the integral is zero if w(x, y) is identical to the weight function wa(x) for the orthogo-
nality of a. The derivation along the other axes proceeds analogously. We now consider the original
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orthogonality requirement again and refactor w(x, y) = wa(x) · wb(y), which yields:

0 =

∫∫ 1

−1

fi,j(x, y)gk,l(x, y)w(x, y)dxdy,

=

∫∫ 1

−1

fi,j(x, y)gk,l(x, y) [wa(x) · wb(y)] dxdy,

=

∫ 1

−1

∫ 1

−1

ai(x)bj(y) · ak(x)bl(y) [wa(x) · wb(y)] dxdy

=

∫ 1

−1

∫ 1

−1

[ai(x) · ak(x)wa(x)] [bj(y) · bl(y)wb(y)] dxdy

=

[∫ 1

−1

ai(x) · ak(x)wa(x)dx

] [∫ 1

−1

bj(y) · bl(y)wb(y)dy

]
.

(26)

Thus we have shown that given two orthogonal bases a and b, with respective weight functions
wa and wb, the two dimensional basis resulting from an outer product is orthogonal with respect
to w(x, y) = wa(x)wb(y). Accordingly, using any basis along an axis and using this seperable
construction results in an orthogonal combined basis. Note that this can be analogously shown for
three-dimensional bases that are the tensor product of three bases.

For many learning problems, f is not a scalar function but describes a multi-dimensional input
function f : R → Rinput, with input features defined at all locations. Furthermore, the output of a
convolution is multi-dimensional, i.e., f ◦ g : R → Routput, where we impose the bias that each input
feature should be connected with each output feature, i.e., the convolution should be fully connected,
which is in line with prior work. Accordingly, we can redefine the convolutional operator as

(f ◦ gΘ)(xi)output =
∑

j∈Ni\i

inputFeatures∑
input=1

ginput,output
Θ (xi − xj)finput(xj), (27)

which can be reformulated by summarizing all relevant input feature associations for one output as

goutput
Θ (x) =

[
g1,output
Θ (x), . . . ,ginputFeatures,output

Θ (x)
]T

, (28)

(f ◦ gΘ)(xi)output =
∑

j∈Ni\i

⟨goutput
Θ (xi − xj), f(xj)⟩. (29)

We now compute the messages M, which are an n × o tensor (with o being the number of output
features and n the number of edges of the graph), based on the basis function tensors Bx and By ,
of shape n× u and n× v, respectively, as well as the input feature tensor F, of shape n× i (with i
input features), as well as the weight matrix W , of shape u× v × i× o, using Einsum notation as

Mno = Bx
nu ·By

nv ·Wuvio · Fni, (30)
which can be efficiently implemented using either the built-in einsum function of PyTorch (Paszke
et al., 2019) (and related frameworks) or a more direct implementation such as Nvidia’s Cutlass li-
brary (Thakkar et al., 2023), as done by Ummenhofer et al. (2019). Computing the gradients of such
an operation is, mathematically, straightforward as it is just a sequence of matrix multiplications,
and the shape of the actual base functions comprising B do not affect the shape of the gradients.

However, relying on auto-diff gradients can be impractical for such operations as the intermediate
matrices can be large and must be stored for every convolution operation in a Neural Network. We
chose to implement this process through a custom forward and backward operation that does not
compute B for all edges at once. Instead it performs this operation in batches of size b, which limits
the memory requirements significantly as there is no need for a large intermediate matrix. Further-
more, we recompute the basis terms Bx and By during backpropagation as this allows us to only
store the particle distances, which are shared for all layers, and input features, per layer, for back-
propagation, instead of large matrices that are potentially different per layer. Whilst this imposes
some computational overhead, it can also significantly reduce memory requirements, allowing train-
ing on GPUs with 4GByte of VRAM and less, even for three dimensional networks, with the batch
size parameter b trading off computational performance and memory requirements. For details on
computational requirements see Appendix C.6

17



Published as a conference paper at ICLR 2024

A.2 WINDOW FUNCTIONS

A further inductive bias applied by prior work is including so-called window functions in the convo-
lution operator. These window functions are inspired by the shape of SPH kernel functions, which
are zero at the support radius and tend to be shaped like Gaussian functions. Imposing this bias can
be achieved straightforwardly by including an additional term in the convolutional operation as

(f ◦ gΘ)(xi) =
1

ϕ(xi)

∑
j∈Ni\i

gΘ(xi − xj)f(xj) ·W
(
|xi − xj |

h

)
, (31)

where W is the window function, which is zero at 1 and Gaussian-shaped. While many choices
exist for these window functions, we limit our evaluations to the following window functions:

None: Using no window function is the most straightforward choice as this can be implemented by
simply not including the window function. This term could also be defined as

WNone(r) =

{
1, r ≤ 1,

0, else.
(32)

Linear: A naı̈ve choice for a window function is a function that is 1 at the origin and linearly decays
towards 0 at r = 1. While this function is not very Gaussian shaped, it does not significantly impact
the shape of the learned convolutional operation besides tending towards 0 and can be defined as

W Linear(r) = [1− r]+ , (33)

where [·]+ = max (·, 0).
Parabolic: A slightly more complex variant of the prior Linear window function uses a parabolic
decay instead of a linear one. This window function can thus be defined simply as

W Parabolic(r) =
[
1− r2

]
+

(34)

Müller: This window function is based on Müller et al. (2003) and defined as a polynomial series
of order 6. The advantage of this window function is that it is Gaussian-shaped but does not require
any square root operations as the distance r is only used squared and is defined as

WMüller(r) =
[
1− r2

]3
+

(35)

Spiky: This window function is based on Müller et al. (2003) and is purposefully designed to not
be Gaussian shaped, i.e., the gradient of the kernel function does not tend towards 0 as r tends to
0. This is imposed to ensure that particles keep repulsing each other in SPH, which avoids particles
clumping up unnaturally, also known as the pairing problem in SPH. This function is defined as

W Spiky(r) = [1− r]
3
+ . (36)

B-Splines: Piece-wise Bezier splines are a popular choice in SPH for kernel functions and find
wide usage, especially within Computer Graphics focused research (Ihmsen et al., 2013). For these
functions, three popular choices exist based on the degree of the spline, i.e., cubic, quartic, and
quintic splines (Dehnen & Aly, 2012). These are defined, respectively, as:

WCubic(r) = [1− r]
3
+ − 4

[
1

2
− r

]3
+

(37)

WQuartic(r) = [1− r]
4
+ − 5

[
3

5
− r

]4
+

+ 10

[
1

5
− r

]4
+

(38)

WQuintic(r) = [1− r]
5
+ − 6

[
2

3
− r

]5
+

+ 15

[
1

3
− r

]5
+

(39)
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A.3 COORDINATE MAPPINGS

So far, we only considered the coordinates to be given as Cartesian; however, it might be helpful to
utilize other coordinate systems. Coordinate mappings Λ are applied to the filter function gΘ as

(f ◦ gΘ)(xi) =
1

ϕ(xi)

∑
j∈Ni\i

gΘ(Λ (xi − xj))f(xj) ·W
(
|xi − xj |

h

)
,

The mapping function Λ thus is a function Λ : Rd → Rd, which could be defined in arbitrary
ways, e.g., in one dimension one could utilize Λ(x) = x2, however, we only consider commonly
used coordinate mappings. Accordingly, no functional mapping exists in one dimension besides an
identity mapping, i.e., using Λ(x) = x. For two-dimensions (which also can be expanded similarly
to three-dimensions), we consider the following three mappings:

Identity: This mapping serves as the baseline approach of directly using the Cartesian as

ΛIdentity (x) = x

Polar: As the inputs to Λ are distances, limited by a spherical support radius h, a direct choice for a
coordinate mapping is to map the input to polar coordinates. Note that this implies some necessary
changes to how the basis functions are evaluated; however, we will skip the details here for brevity
as the results indicate no significant gain in using this mapping. This polar coordinate mapping can
be defined straightforwardly using the atan2 function as

ΛPolar (x) =

[
2||x||2 − 1,

1

π
atan2 (xy,xx)

]T
,

where the scaling ensures that the domain remains unchanged, i.e., Λ : [−1, 1]2 → [−1, 1]2.

Preserving: The preserving mapping, proposed by Ummenhofer et al. (2019) and based on Griepen-
trog et al. (2008), is intended to remap the spherical support volume of the convolutions to a cubic
domain to ensure that each weight influences a comparable amount of space. While this becomes
more important in three dimensions, as the volume ratio between a cube and sphere is much worse
than that of a square and circle, it can still be applied in two dimensions by setting the z component
when performing the mapping to zero. This preserving mapping works in a two-stage process where
a ball is first mapped to a cylinder and then mapped to a cube. This mapping is defined as:

Λball→cyl(q) =


(0, 0, 0) , if||q||2 = 0(
x ||q||2
||(x,y)||2 , y

||q||2
||(x,y)||2 ,

3
2z

)
, if 54z

2 ≤ x2 + y2(
x
√

3||q||2
||q||2+|z| , y

√
3||q||2

||q||2+|z| , sgn(z)||q||2
)
, else

(40)

Λcyl→cube(q) =


(0, 0, z) , ifx = 0, y = 0(
sgn(x)||(x, y)||2, 4

π sgn(x)||(x, y)||2 arctan y
x , z

)
, if|y| ≤ |x|(

4
π sgn(y)||(x, y)||2 arctan x

y , sgn(y)||(x, y)||2, z
)
, else.

(41)

A.4 BASE FUNCTIONS

So far, we only considered an arbitrary basis tensor Bx,y(x) and now we would like to discuss
all the utilized base functions within this paper with particular emphasis on our proposed Fourier
basis. For the versions based on Radial Basis Functions (RBFs) we assume a Cartesian coordinate
system with an evenly spaced grid of central points ci among the x and y axes, as xi = −1 + i 2

u−1

and yj = −1 + j 2
v−1 , respectively with a separation distance of ∆x. Due to our assumption of

separability, the functions are defined equally regardless of which axis they are applied to, with the
sole exception being the DMCF formulation, which requires some further processing. Furthermore,
for each of these central points, we can compute the relative signed distance ri from the input point
and the centroid, i.e., ri = p− ci. Accordingly, each RBF is defined as bi

(
q = p−ci

∆x

)
.

Finally, most of these basis functions are designed to act as partitions of unity, i.e., with a weight
vector Θ = 1, the resulting filter function gΘ is 1 everywhere. This is essential, as we want these
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Figure 10: The 5× 5 basis function combinations for the DMCF basis (left) and SplineConv (right).

methods to act as interpolation functions rather than approximations. Enforcing this property is
possible by either normalizing the output of g, i.e., by introducing a corrective term 1∑

i bi(
p−ci
∆x )

,

or by adjusting the definitions of the basis functions such that they do not require this corrective
term. We chose the latter option as the former introduces modifications to the shapes of the basis
functions, e.g., the basis functions for the corner terms might appear different than the central points,
which is undesirable, and this approach has been used by prior work as well (Fey et al., 2018).

Nearest Neighbor: Nearest Neighbor interpolation is a simple baseline to compare all other meth-
ods against and is constructed simply as a group of piece-wise constant functions. An important
note here, however, is that the function needs to be carefully designed such that there is no overlap
of the basis terms on the edges of their influence radii, i.e., using |q| ≤ 0.5 would lead to multiple
bases contributing to the same input p, which would violate the requirement of a partition of unity.
This basis term can then be defined as

bNN(q) =

{
1, − 1

2 < q ≤ 1
2 ,

0, else.
(42)

LinCConv: A higher-order interpolation scheme is a linear interpolation, also used by (Ummen-
hofer et al., 2019) and referred to by this name in this paper. Building a linear interpolation as a
radial basis is straightforward using a piece-wise linear definition, which can be further simplified
by using the [·]+ notation used before as

bLinCConv(q) = [1− |q|]+ (43)

DMCF: In prior work, a modification of the linear basis was proposed that includes only antisym-
metric terms, primarily focused on antisymmetries of the combined coordinate-axes. Consequently,
these terms have few symmetries along the individual axes, see Figure 10, but are always antisym-
metric overall. Prantl et al. (2022) defined these terms as a bilinear basis and then modified the
filter weights separately after each weight update to be antisymmetric. However, this results in the
network not seeing the correct gradients and losing half of the weights to enforce antisymmetry.
Instead, we define the DMCF basis using the LinCConv basis with a modification as

gDMCF
Θ (q) = ⟨

[
sgn(qx)b

LinCConv,x(2|qx| − 1)⊗ bLinCConv,y(sgn(qx) · qy)
]
,Θ⟩, (44)

which utilizes all weights but increases the interpolation frequency in x by a factor of 2. For com-
pleteness, an alternative formulation that also ignores half the weights but still yields correct gradi-
ents without increasing the interpolation frequency could be formulated as

gDMCF/2
Θ (q) = ⟨

[
sgn(qx)b

LinCConv,x(|qx|)⊗ bLinCConv,y(sgn(qx) · qy)
]
,Θ⟩. (45)

B-Spline/SplineConv: A natural extension of linear interpolation is using higher-order spline func-
tions, where the cubic B-Spline function has been used before by Fey et al. (2018). However, ensur-
ing that these methods are partitions of unity is more challenging as it requires adjusting the spacing
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of the centroids by scaling them by 1− 2
n , i.e., the new centroids are cspline

i =
(
1− 2

n

) (
−1 + i 2

n−1

)
.

Furthermore, the width of each basis function needs to be adjusted, compared to their definition as
window functions used before. We evaluate these modified widths through an optimization pro-
cess, i.e., we optimized this parameter such that the interpolation results in a partition of unity with
minimal width per basis. This results in three B-Spline basis terms:

bSplineConv(q) =

[
1− |q|

c

]3
+

− 4

[
1

2
− |q|

c

]3
+

, (46)

bQuartic(q) =

[
1− |q|

c

]4
+

− 5

[
3

5
− |q|

c

]4
+

+ 10

[
1

5
− |q|

c

]4
+

, (47)

bQuintic(q) =

[
1− |q|

c

]5
+

− 6

[
2

3
− |q|

c

]5
+

+ 15

[
1

3
− |q|

c

]5
+

, (48)

with normalization constants c of 1.732051, 1.936492 and 2.121321 (Dehnen & Aly, 2012).

Wendland-2: An alternative kernel often used within CFD-oriented SPH applications is part of the
Wendland series of kernel functions (Dehnen & Aly, 2012; Sun et al., 2018). These functions are
also polynomial but do not exhibit some of the numerical disadvantages as the B-Spline kernels and,
as such, are an interesting alternative to evaluate for a machine learning context. These terms also
require the modified spacing, identical to the B-Splines, and the Wendland-2 basis is defined as

bWendland-2(q) =

[
1− |q|

c

]4
+

(
1 + 4

|q|
c

)
; c = 1.620185. (49)

Gaussian: A natural extension of the Spline bases is utilizing non-compact Gaussian functions, i.e.,
using exponential functions. As these are locally defined, i.e., only as part of the filter function
and not used to determine the graph edges, non-compact functions do not impose any of the usual
drawbacks. These terms also require the same spline centroid and are defined as

bGaussian(q) = exp
(
−q2

)
. (50)

Spiky: The Spiky kernel, discussed before, is primarily included as an additional case for ablation
studies as, due to the shape of the function, this basis term cannot be normalized by adjusting the
spacing and width of the basis. Nevertheless, this basis term is defined as (Müller et al., 2003)

bSpiky(q) = [1− |q|]3+ (51)

RBF Bump: There is a rich history of Radial Basis Functions within RBF Interpolation theory, and
we chose one of these terms that is different from the classic bases. Note that for an actual RBF
basis, and thus RBF network, the centroids would need to be learned as well, which is a non-linear
optimization task, to achieve proper interpolation qualities and not doing so, as done here, is unlikely
to work but serves as a valuable baseline for ablation studies. Nevertheless, this basis is defined as

bBump(q) =

{
exp

(
−1

1−(0.38739618954567656r)2

)
, ifr < 1

0.38739618954567656 ,

0, else.
(52)

In addition to this set of radial base terms, we also consider two traditional approximation tech-
niques that operate more globally, i.e., they are directly evaluated on p instead of q. While many
approximation bases exist, we primarily focus on Fourier series terms and Chebyshev polynomials
as they find wide application for interpolating periodic and non-periodic functions.

Fourier: This method is the primary focus of our paper and results from using a Fourier-series as
the basis. The first term of a Fourier series is always a constant function, i.e., b0(p) = 1; however,
for higher order terms, we could either first use the sine or cosine term. We will later include an
ablation study of some variations of this ordering, but the following is the standard definition:

bFourier
i (p) =


1, i = 0,
1√
π
cos

(
π
[
⌊ i−1

2 ⌋+ 1
]
p
)
, i odd,

1√
π
sin

(
π
[
⌊ i−1

2 ⌋+ 1
]
p
)
, i even.

(53)
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Figure 11: The 5× 5 basis function combinations for a Fourier basis (left) and Chebyshev (right).

For some of the variants we evaluate in our ablation studies, we modify the first term, i.e., bFourier
0 ,

as this term is inherently symmetric, but we want to evaluate purely asymmetric Fourier terms as
well. To achieve this, we either (a) drop the term, (b) modify the term to be based on the sign of x,
i.e., bFourier, sgn

0 (x) = sgn(x), or (c) use x directly, i.e., bFourier, linear
0 (x) = x. Using the standard basis

definition for n = 5 in two dimensions, we find symmetries and antisymmetries, see Figure 11, w.r.t.
the x and y coordinates as well as the combined coordinates p = [x, y], in a variety of configurations.

Chebyshev: Another popular choice in graph convolutions are Chebyshev basis functions, which are
smooth, inherently symmetric, and antisymmetric. For these terms, we primarily consider Cheby-
shev polynomials of the first kind; see Figure 11 for a visualization of this basis, defined as:

bChebyshev
0 (p) = 1

bChebyshev
1 (p) = p

bChebyshev
i (p) = 2pbChebyshev

i−1 (p)− bChebyshev
i−2 (p),

(54)

where the magnitude of the basis terms is bound by the domain [−1, 1]. Furthermore, for some
ablation studies, we also considered Chebyshev polynomials of the second kind, defined as

bChebyshev2
0 (p) = 1

bChebyshev2
1 (p) = 2p

bChebyshev2
i (p) = 2pbChebyshev2

i−1 (p)− bChebyshev2
i−2 (p),

(55)

which are not bound in magnitude by the domain [−1, 1].

B EXPERIMENTAL DETAILS

We focus on several datasets with a focus on quantifiable behavior, and describe in th following
how these datasets were generated. Existing datasets oftentimes involve behavior that is difficult to
numerically quantify or behavior where a loss metric is difficult to relate to the visual perception of
the simulation.

We chose to create our datasets to include a wide variety of SPH problems across one, two, and three
dimensions to make them as versatile as possible. In this section, we will focus on the setup of the
solvers for the generation of our datasets, as well as basic network parameters and data augmentation
techniques. Accordingly, we will be discussing each test case in a separate sub-section.

Overall, there are few similarities between our different test cases and datasets; however, some fa-
miliarities exist. Notably, all of our datasets, as well as the implementations of our used classical
solvers, and the implementation of our network architecture is available as open source code at
https://github.com/tum-pbs/SFBC. Furthermore, we utilized the Adam (Kingma & Ba, 2015) op-
timizer in all cases. We built all of our code, including the SPH simulations, using PyTorch and
PyTorch Geometric for graph processing, e.g., neighborhood searches.
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Figure 12: Visualization of the test dataset for test case I consisting of 4 simulations of 2048
timesteps each. Each plot represents a simulation from the dataset, with simulation time on the
x (from 0 to 2.048s) axis and particle index on the y axis (from 0 to 2048), with color mapping
indicating particle velocity (blue for up and red for down). The initial conditions were randomly
generated with identical simulation parameters, e.g., viscosity, across all simulations and not spe-
cially selected for good or bad testing performance for some methods.

B.1 TEST-CASE I: ONE-DIMENSIONAL COMPRESSIBLE SPH

Lagrangian fluid simulations pose several problems for machine learning techniques compared to
Eulerian simulations. One primary consideration is the particle spacing and distribution, which, for
Lagrangian simulations, changes as the flow evolves. This means that if the predictions of a network
lead to errors on one inference step, then the input to the next inference step is out of distribution,
compared to the ground truth. Accordingly, it is vital that machine learning techniques can deal with
changing and varied particle distributions and that the network solution does not learn behavior that
is only useful for a very narrow set of distributions. Consequently, data augmentation techniques are
essential during training; however, in this test case, we want to specifically investigate how different
particle distributions affect the network performance.

For an incompressible simulation, the spacing between particles is somewhat constrained due to
incompressibility limitations; however, for a compressible simulation, we can generate particle dis-
tributions that cover a much broader range of inter-particle spacings. Furthermore, by reducing the
dimensionality of the simulation, we can perform a much more focused investigation of this relation-
ship. Accordingly, our test case is a compressible one-dimensional SPH simulation that primarily
investigates differences in methods’ capabilities to handle a broad range of particle distributions.

Our underlying simulation model, in this case, is a simple Equation of State (EoS) based explicit
time integrator using a Runge-Kutta integrator of fourth order (Antuono et al., 2012) combined with
an explicit diffusion term for the velocity field. As the EoS, we chose an ideal gas equation with no
influence of energy or temperature, as the general NNTI approach only predicts changes in position
and not in energy. For the diffusion term, we chose the approach of Price (2012), although the exact
choice of diffusion term does not matter for our evaluations. Finally, we chose a periodic domain
and a simulation region of Ω = [−1, 1] as boundary conditions.

To set up the initial conditions, we use a two-step process where we first create a random density
profile for a fixed domain of [−1, 1] and then place a set number of particles (2048) such that their
summation density ρi =

∑
j mjWij is identical to the random density profile. To produce the

initial density profile, we utilize Perlin noise (Perlin, 1985), a perceptually isotropic gradient noise
commonly used for procedural generation. Perlin noise, in general, is based on a pseudo-random
process based on a seed s that generates an n-dimensional noise texture of frequency f along each
dimension, defined as Pf : Rn → [−1, 1]. A common technique is to combine multiple Perlin noise
textures of increasing frequency to generate a so-called Octave noise using several octaves nOctave,
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Figure 13: Visualization of the training dataset for test case I consisting of 32 simulations of 2048
timesteps each. Each plot represents a simulation from the dataset, with simulation time on the
x (from 0 to 2.048s) axis and particle index on the y axis (from 0 to 2048), with color mapping
indicating particle velocity (blue for up and red for down). The initial conditions were randomly
generated with identical simulation parameters, e.g., viscosity, across all simulations.

a lacunarity l denoting the increase in frequency per Octave and a mixing factor α, as

Octavef (x) =
noctave−1∑

i=0

αiPf ·li(x). (56)

To generate our dataset, we set noctave = 4, α = 3
4 and l = 2. As the noise is in the range [−1, 1],

we need to modify the noise amplitude by scaling the noise by 1
4 and adding an offset of 2, meaning

the density field is a pseudo-random periodic density field in the domain
[
1 + 3

4 , 2 +
1
4

]
.

While it is possible to use this octave noise as the density field directly, this would lead to disconti-
nuities at the boundaries. One technique to sample periodic noise is embedding a regular structure
into a higher dimensional noise function. By embedding a circle, which has constant curvature,
into a two-dimensional Perlin-noise function and then using a parametric description of a circle, i.e.,
x = [r cos θ, r sin θ] for θ ∈ [−π, π), we can generate a periodic one-dimensional noise.
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This density field is then sampled on a discrete grid, with 2048 grid points, yielding a discrete Prob-
ability Density Function (PDF). We then compute a discretized Cumulative Density Function (CDF)
by integrating the discrete PDF. This discrete CDF can then be used to construct an approximate in-
verse CDF by building a linear interpolation using the discrete CDF as x-coordinates and a regularly
spaced range from [−1, 1] as the y-coordinates. We then regularly sample the domain [0, 1] using
nparticles points and sample the inverse CDF using these locations to find the initial particle locations.

After sampling the particles, we initialize the simulation with a constant initial velocity of 0, a
particle size a = 1

nparticles
, a support radius h = 4 ∗ a, diffusion coefficients α = 1 and β = 2, a

stiffness coefficient κ = 10, a numerical speed of sound cs = 10, particle rest density ρ0 = 1000
and with a fixed timestep of ∆t = 10−3. We utilize 36 random initial conditions to generate our
dataset and evaluate 2048 timesteps each. Out of these, we use 32 (chosen randomly) as the training
set, see Fig. 13, and the remaining 4 as the testing set, see Fig. 12.

For the training task, we compute a multi-step update, i.e., for each timepoint in the simulation, we
compute the average velocity vprior

t over the prior s = 16 timesteps and the next s = 16 timesteps
vnext
t . The network’s goal is to predict vnext

t based on vprior
t and the particle area, which are the

only quantities that influence the particle behavior in the underlying simulation. During training, we
compute the L2 difference between ground truth and network prediction for a batch size of 4 without
temporal unrolling, where each batch is the result of picking 4 random samples across the entire
training dataset where each training timestep is used at-most-once. Our training consists of 5 epochs,
each consisting of 1000 weight updates, with an initial learning rate of 10−3 that is halved after every
epoch. To evaluate the test error, we utilize all four test simulations and evaluate the L2 difference
between ground truth and prediction for the time points t = [0 + s, 128 + s, 256 + s, 1024 + s]

For the simulation and training on this dataset, we utilized a naı̈ve neighbor search that computes the
distance of all particles to all particles, with a computational complexity of O(n2) and calculated the
distance of particles using floating point modulo operations to implement the distance checks. Due
to this implementation, the positions of particles may lie outside of the domain [−1, 1], and a modulo
operation needs to be applied to find the actual position of a particle within the simulation domain.
Furthermore, this means that the number of particles in the simulation stays constant, and no ghost
particles are utilized to implement the periodic boundary condition. Accordingly, the position is
consistent, i.e., particles are never mapped into or out of existence based on where they are in the
simulation, and their position is the direct result of the integrated velocity.

B.2 TOY PROBLEMS

SPH simulations are generally built on interpolation operations using either the kernel function or
the gradient of the kernel function. Accordingly, if a neural network is supposed to learn an entire
simulation computed using SPH, then the network should be capable of learning interpolation and
gradient interpolation tasks. Conversely, if a network cannot learn either operation, the likelihood of
the network learning an entire simulation step is low. Consequently, we devise a simple set of two
toy problems to evaluate the network’s ability to learn these tasks.

As the basis of these evaluations, we utilize the first test case, i.e., the one-dimensional compressible
simulation data set, with a modified learning task. In general, an SPH interpolation is defined as

⟨Ai⟩ =
∑
j∈Ni

Aj
mj

ρj
Wij , (57)

with A being some quantity, m being the mass of a particle, ρ being the density of a particle
computed using an SPH interpolation, and Wij = W (xj − xi, h) is a Gaussian-like kernel func-
tion (Monaghan, 2005). The most straightforward SPH interpolation, then, is a density estimate that
can be computed by setting A = ρ, i.e., (Koschier et al., 2019)

ρi =
∑
j∈Ni

mjWij , (58)

which can be modified to computing the number density δi =
ρi

ρ0
(Solenthaler & Pajarola, 2008)

δi =
∑
j∈Ni

ajWij, (59)
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with a = m
ρ0

being the area of a particle. This number density can be interpreted as a quantity
that depends on a single message-passing step using a cutoff radius of h, a vertex feature a, and a
symmetric convolutional filter function W . Note that in SPH, the magnitude of the kernel function
scales inversely with the particle scale. Accordingly, it is convenient to use a vertex feature of 1 and
treat aWij as a single term. The first learning task is to learn a convolutional filter function gΘ as∑

j∈Ni

ajWij =
∑
j∈Ni

1 · gΘ(xj − xi, h). (60)

In addition to the SPH interpolation, we also consider an SPH gradient interpolation, which, in its
most naı̈ve formulation, can be defined simply as (Koschier et al., 2019)

⟨∇iAi⟩ =
∑
j∈Ni

Aj
mj

ρj
∇iWij, (61)

where ∇i denotes the spatial derivative with respect to the position of particle i. Note that many
more advanced formulations for gradient interpolations are commonly used in SPH, which, e.g., are
accurate for constant fields (Price, 2012), but for our toy problem, a naı̈ve formulation suffices. We
then derive a learning target analogous to the previous one as

∇iδi =
∑
j∈Ni

aj∇iWij . (62)

This task is, again, a single message-passing step; however, this time, the convolutional filter func-
tion to be learned has to have odd symmetry instead of even symmetry for the kernel interpolation.

For both toy problems, we evaluate the performance of a single message-passing step continuous
convolutional network with no activation functions being used, as we want to investigate how the
basis functions can work as interpolators for the SPH interpolations. In addition to the CConv
approach, we consider more generic GNNs where we still utilize only a single message-passing
step. Otherwise, the training setup is identical to the one in test case I.

B.3 TEST-CASE II: TWO-DIMENSIONAL WEAKLY-COMPRESSIBLE SPH

The focus of our second test case is quantifiability within a CFD-oriented context. Existing test cases
often focus on the visual appearance, e.g., collisions of random blobs with challenging to-quantify
behavior. In contrast, our test case setup can be adjusted and has clearly quantifiable behavior.

We use a closed two-dimensional domain Ω ∈ [−1, 1]2 with a no-slip boundary condition and a
random initial velocity field to set up our test case. However, using a random per-particle velocity
would not be very useful as this would lead to an arbitrary amount of divergence in the first timestep
that can readily lead to problems for numerical solvers. Accordingly, the random-velocity field
needs to be divergence-free at initialization; however, this is easier said than done.

The initial particle configuration for all of our simulations is a regular spaced grid of 64×64 particles
such that the summation density of all particles at t = 0 is equal to the rest density. This sampling
means that there exists a regular grid with cell centers identical to the particle positions, which
makes the initialization more straightforward. The initial velocity field is then computed using curl
noise (Bridson et al., 2007) sampled on the grid and then resampled back to the particle set.

The idea behind curl noise is that the gradient of the curl of a random potential field can be used
to create a velocity field that, by definition, is divergence-free. The initial potential field is sampled
based on a two-dimensional Octave noise field, using Perlin-noise, as this smooth, relatively low-
frequency noise leads to large structures that can be easily simulated using direct numerical solvers.
However, this potential field would still create issues in the actual simulation as it does not respect
the boundary conditions. As we utilize a no-slip boundary condition, the most straightforward way
is to ensure that the potential field is constant at the boundary, e.g., 0, such that the curl is also
0. Based on the suggestions by Bridson et al. (2007), this can be ensured by linearly blending the
potential field to be 0 at the boundary and using a gradient along the boundary normals to blend the
potential field from its actual value with 0 based on the boundary distance.

The next step is to compute the curl of the potential field, which is done on the grid representation
of the simulation domain using a first-order central difference scheme. This curl is then directly
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Figure 14: Visualization of the initial conditions of the 36 initial conditions used for the training
dataset for test case II. The simulations here are run using a weakly compressible SPH model with an
initially divergence-free velocity field with solid boundary conditions outside the shown areas. Color
mapping indicates velocity magnitude, and streamlines indicate the flowfield at t = 0 computed by
mapping the particle velocities to a regularly sampled grid using SPH interpolants.

mapped to the particles, where we utilize an SPH gradient interpolation to evaluate the initial veloc-
ities of all particles. Note that it is crucial to compute the gradient using an SPH gradient operator
as, otherwise, the divergence of the velocity field is not quite zero.

We can then generate our dataset. To make the test cases more interesting, we use a lower fre-
quency potential field, i.e., the test simulations have larger structures that are not seen as such during
training. Overall, we generate 32 training samples, see Fig. 14, and 4 testing samples, see Fig. 15.

The simulations are then performed using a δ-SPH method (Marrone et al., 2011) with a Runge-
Kutta time integration scheme of fourth order (Antuono et al., 2012). Each simulation contains
2048 timesteps where the learning task is to compute the position of a particle for s = 4 timesteps
at once. Note that the underlying δ-SPH simulation uses a so-called continuum density formulation,
i.e., the density of any given particle is not the result of an SPH interpolation, as in test case I, but
is integrated over time using the continuity equation. However, we only provide the velocity of
particles as features, making the learning task ambiguous and more complex, thus making it more
interesting. Furthermore, due to a combination of the multi-step prediction task, the RK-4 time
integration, and the particle scaling, the receptive field of the particles in the simulation covers the
entire domain, i.e., each particle influences all other particles; however, we utilize the architecture of
Ummenhofer et al. (2019), which only uses 4 rounds of message-passing. As such, the problem is
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Figure 15: Visualization of the initial conditions of the 4 initial conditions used for the test dataset
for test case II. The simulations use a weakly compressible SPH model with an initially divergence-
free velocity field with solid boundary conditions outside the shown areas. Color mapping indicates
velocity magnitude, and streamlines indicate the flowfield at t = 0 computed by mapping the particle
velocities to a regularly sampled grid using SPH interpolants. Note that the frequencies are lower
than the training samples to better evaluate generalization.

made even more difficult as the networks are not provided with all seemingly necessary information.
All of these limitations make the learning task here exceedingly difficult as the network has (a) not all
necessary features, (b) a receptive field that is too small, and (c) the testing samples are out-of-band.

A further complication arises from the nature of the simulation. Vortices in SPH can be challenging
to simulate as they often lead to the formation of holes, i.e., regions of the simulation domain with no
particles. While we avoid this during the simulation through particle shifting (Rastelli et al., 2022),
the network must also learn this correction on top of the physics update. However, this is made more
challenging as the dataset only considers already corrected particle positions, i.e., the network never
sees a correction explicitly and, thus, has to implicitly learn this behavior.

We compute various metrics to evaluate this dataset and focus on metrics calculated on a regular
grid that spans the closed simulation domain. This regular grid data can be computed by performing
an SPH interpolation for all grid centers, e.g., for velocity and density. The regularized data has
the advantage of not overly punishing particle swaps, i.e., two particles may be located at each
other’s location in relation to the ground truth, leading to a significant per-particle error even though
the underlying velocity field is accurately predicted. We compute the L2 of the density, velocity,
and divergence field on the regularized data, where the latter is calculated using an SPH gradient
interpolation on the cell centers. Finally, we also compute a Power Spectrum Density (PSD) on the
grid velocity field to compare the overall structures, irrespective of their spatial location.

For training, we utilize 20 epochs, each consisting of 1000 weight updates, with an initial learning
rate of 10−3 that is halved after every five epochs. We start the training with an initial rollout length
of 1, which is increased every second epoch by 1, up to a maximum unroll length during training
of 10. Evaluations are computed on all test samples from the dataset for frames [s, 512 + s, 1024 +
s, 2175 + s] for an inference length of 64, where s is the prediction distance chosen as 16. During
training, we use a batch size of 2 and augment all samples by including a random jitter for the
particle positions, set to be normally distributed with a standard deviation of 0.01h, and a random
rotation (Brandstetter et al., 2022a). Note that we do not apply noise during the unroll while training
and only use the augmentation on the first step, similar to Prantl et al. (2022).

B.4 TEST-CASE III: TWO-DIMENSIONAL INCOMPRESSIBLE SPH

Our other test cases so far consisted only of particle distributions where particle neighborhoods were
always fully occupied. However, one of the significant advantages of SPH-based simulations is the
ability to handle deforming free surfaces where particle neighborhoods are not fully occupied. Ac-
cordingly, it is essential that our methods are also applicable in simulations involving free surfaces.
A common task for this problem is the collision of two or more blobs of liquid in free space, and
while these simulations can be visually impressive, they are often not very challenging in their dy-
namics. Our dataset aims to be a more challenging variation of such test cases by increasing the
difficulty of the physical setup and using a more accurate solver.

Generating the initial conditions in this test case is much more straightforward than the prior two test
cases as we only generate two spheres of liquid, with a larger one located at the origin and a smaller
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Figure 16: Visualization of the training dataset for test case III showing all 64 constellations. Each
initial condition is chosen by randomly placing a smaller sphere around a larger sphere with random
offsets, causing generally similar but different behavior. Color mapping indicates particle velocity
from low (blue) to high (yellow) after 32 timesteps.

Figure 17: Visualization of the testing dataset for test case III showing all 4 constellations. Each
initial condition is chosen by randomly placing a smaller sphere around a larger sphere with random
offsets, causing generally similar but different behavior. Color mapping indicates particle velocity
from low (blue) to high (yellow) after 32 timesteps. Training samples are chosen as in-band, relative
to the training samples, but with unseen rotations and offsets.

one randomly placed orbiting the larger one. We then give the orbiting sphere an initial velocity
towards the origin and apply an offset in an orthogonal direction of the velocity to offset the impact
location to generate more variety. We then move the smaller sphere to collide with the larger sphere
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after a small number of timesteps, where this number of timesteps is consistent across all samples.
Based on this setup, we now generate 68 simulations, with 4 random simulations, see Fig. 17, used
as in-band testing samples and the remaining 64 used for training, see Fig. 16.

As the underlying solver we utilize a divergence-free SPH solver set to 0.001% maximum density
error and 0.01% maximum divergence error, resulting in, on average, 64 substeps per simulation
timestep. We base this solver on a summation density approach and use a simple kinematic viscosity
formulation with a low viscosity coefficient to stabilize the simulation. Time integration is done
using an RK-4 scheme with diffusion freezing. Note that no boundaries exist in this simulation, i.e.,
no boundary treatment is necessary, and no such provisions are included in the network.

We then add a potential gravity field that is based on the distance d and direction r of a particle
relative to the origin, i.e., |x| and x, respectively as

dv

dt
= −1

2
g2x |x|2 , (63)

for some gravitational constant g. This gravitation is applied to the current velocity as an advection
velocity, see Sec. 2.1, where the network task is to predict a particle’s position change for a single
timestep. Note that in contrast to the prior scenarios, we train a single timestep prediction here as
the scenario is already challenging as is. We then train all networks for 20 epochs, each consisting
of 1000 weight updates with a batch size of 4. We start the training with an initial rollout length of
1 and increase the rollout every second epoch by 1. Finally, we start with an initial learning rate of
10−3 and decrease it every 100 iterations to reach 10−5 at the end of training.

B.5 TEST-CASE IV: THREE-DIMENSIONAL TOY PROBLEMS

To expand our evaluations to three dimensions, we chose to create a simple setup to verify the
findings from one and two dimensions. Accordingly, this dataset is designed to serve as a straight
forward test case for SPH kernel and gradient interpolations, similar to the problems in test case I, but
in a three-dimensional space. Generating the data was performed by creating a regular grid of 163 =
4096 particles on a regular grid spanning the unit cube [−1, 1]3, with an initial volume per particle of
v = 8/4096 and a support radius such that each particle has 32 neighbors in this initial constellation
under periodic boundary conditions. For the dataset we apply a random three dimensional periodic
Perlin noise to the volume of each particle by multiplying the particle volume with a random scaling
in [−1, 1]. While this does result in negative volumes, this is mathematically not an issue as the
SPH interpolant and gradient work regardless of particle volume, albeit they only make physical
sense with positive masses. We then add an additional normal distributed offset N (0, 0.05h) to
each particle position to add more variation to the dataset. This results in a configuration as shown
in Fig. 18, where we generate 1024 such configurations for training and 4 for testing. For each of
these configurations we then compute the SPH density and the gradient of the density using a naı̈ve
gradient formulation, analogous to the toy problems for test case I.

In the training setup, we utilize 4000 weight updates, i.e., approximately 4 epochs, with a learning
rate set initially as 10−2 and ending at 10−4 with a reduction in learning rate every 25 weight
updates. We perform no data augmentation for this toy problem and utilize as features either the
particle density ρi, evaluated using a standard SPH interpolant, or a normalized volume V̂i = Vi

h3 ,
chosen such that if a window function identical to the ground truth kernel function was used, the
ideal network weights would be 1 for a linear basis.

C ABLATION STUDIES / EVALUATION

This section will discuss the various ablation studies we performed as part of our research and
summarize the respective results. We will also provide more in-depth data for all the experiments
discussed in the paper, both numerically and visually. See Table 1 for an overview of all experiments.

C.1 TOY-PROBLEMS

Our first set of evaluations focused on test case I, see Appendix B.1, where we wanted to investigate
how different basis functions could learn a simple symmetric and antisymmetric task. In addition
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Figure 18: Visualization of the setup for test case IV showing initial particle volume (left), resulting
particle density (middle) and a slice through the density field within the simulation domain. Color
mapping indicates, respectively, volume, density and density, with purple indicating low values and
yellow high values.

to the evaluations shown in the main paper, we provide additional results for the basis function
approaches in the form of tables and an additional ablation study for MLP-based approaches. The
latter primarily serves to verify that our implementations of the MLP-based approaches can learn
something and how they relate in performance to the basis function approaches. It is important
to note, however, that a direct comparison in this case of basis function approaches and MLP on a
parameter count basis would not be a fair comparison as the inductive biases built into basis function
approaches would result in parameter counts that are orders of magnitude different in a test case
specifically in-tune with the inductive biases. Section C.1.1 will discuss the results for learning the
kernel function, and Section C.1.2 will discuss the results for learning the kernel gradient. Numerical
results are provided in Table 2 and 3.

C.1.1 SPH KERNEL INTERPOLATION

Within SPH, kernel interpolations are an important and central aspect, and hence, we investigate
learning these interpolations as a fundamental and central task. To investigate the ability of different
basis functions and network architectures to learn an SPH kernel interpolation, we set up a simple
toy problem, as discussed in Appendix B.1. We now performed two separate ablation studies, one
focused on basis convolutions and one focused on MLP-based approaches.

Basis Convolutions: Continuous Convolutions using basis functions are inherently built around
inductive biases that SPH exhibits, and, accordingly, they should perform relatively well in this
setup. To perform our evaluations, we evaluate 10 different basis terms for a single message-passing
step architecture with no activation functions or normalization. The goal here is to determine which
basis functions best work to approximate an SPH kernel, and accordingly, the expectation would be
that symmetric and smooth methods should perform ideally. Note that we used no window function
as using a window function, especially if it is identical to the SPH kernel function, would make the
learning problem trivial.

Baseline Methods: We evaluated a few baseline methods in this problem, i.e., LinCConv,
SplineConv, DMCF and also a naı̈ve network build using nearest neighbor interpolation. We ob-
served that the best-performing basis in this case was LinCConv as this approach yielded an L2 error
of 2.5 ·10−5, which is lower than either SplineConv (5.13 ·10−4) and Nearest Neighbor (4.3 ·10−4),
while DMCF was not able to learn anything in this task due to its inherent antisymmetric nature.
Furthermore, we observed that the number of basis terms significantly impacted the results, i.e., us-
ing only 4 basis terms resulted in a noticeably worse result than using 32 terms due to the inherent
lack of smoothness for these basis functions.

Fourier Methods: Using a Fourier-basis resulted in a much better result than the baseline methods;
however, it becomes apparent that increasing the parameter count yielded a worse network perfor-
mance. This effect is primarily due to the nature of a Fourier Series, as higher term counts do not
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Figure 19: This figure evaluates the correlation between the hidden layer architecture of MLP-based
graph networks and the ability of a single-layer message-passing network to learn an SPH kernel
function for various basis functions. The x-axes correspond to the number of features per hidden
layer, and the y-axis corresponds to the L2 error evaluated using the test dataset from test case I for 4
different frames t = [0, 0.512, 1.024, 2.048], with color indicating the number of hidden layers. The
plots show the behavior of the MLPCConv (top left), Message Passing PDE (top right), PointNet
(bottom left), and GNS (bottom right) network architectures.

improve the smoothness of the convolution but include higher and higher frequency terms. As the
underlying kernel function here is relatively low in frequency, including high-frequency terms re-
quires the network to learn that they have zero contribution, which is difficult to achieve. This is
supported by the fact that the Fourier series itself, with two terms by harmonic, shows an apparent
behavior of decreasing in performance for every two terms added, i.e., every time a new harmonic is
added, the performance decreases, while the Fourier series only consisting of even symmetry terms
decreases in performance for every term added. Finally, the Fourier series consisting only of odd
symmetry terms was not able to learn only a very coarse result in this task due to its inherent anti-
symmetry; however, the result is much better than the DMCF approach as the first term is a constant
term that is still symmetric.

Chebyshev Basis: The Chebyshev basis variant performed reasonably well in this case but did not
show much improvement as more terms were included; however, it still managed to outperform
LinCConv for most parameter counts due to the inherent smoothness.

MLP-based methods: Considering the results for the MLP-based GNNs, see Figure 19, we can
make several observations. Firstly, the PointNet approach fails to learn anything meaningful for any
architecture, which is somewhat expected as this architecture does not consider the interconnectivity
of the particles and is only provided the position and area of each particle, which is not enough in-
formation to reconstruct an SPH kernel interpolation. Secondly, both GNS and MP-PDE performed
somewhat comparably with a clear trend that highlights that increasing the number of hidden lay-
ers beyond two does not provide much benefit while increasing the number of neurons per hidden
layer shows a clear and noticeable impact on the results. This is in line with the recommendations
of Sanchez-Gonzalez et al. (2020) to use a hidden architecture that is shallow, i.e., with 2 hidden
layers, and wide, i.e., with 128 neurons per layer. Finally, MLPCConv performed better than all
other MLP-based approaches primarily due to its inductive bias of representing convolutions.
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Table 2: This table shows the results of an ablation study to find the optimal number of basis terms for learning a purely symmetric SPH kernel interpolation. The
results were obtained as the L2 loss for a simple SPH kernel interpolation evaluated on the test dataset of test case I at 4 different timepoints for 4 different network
initialization seeds. Each column represents a different number of basis terms, with the best behavior for each number of basis terms highlighted in bold.

n 1 2 3 4 5 6 7 8 16 32
Basis

Nearest Neighbor 7.07·10−3 7.06·10−3 3.38·10−3 1.81·10−3 1.79·10−3 1.45·10−3 1.20·10−3 1.73·10−3 1.16·10−3 4.31·10−4

LinCConv 7.08·10−3 7.08·10−3 2.64·10−3 1.65·10−3 8.47·10−4 8.40·10−4 3.33·10−4 2.73·10−4 2.50·10−5 8.40·10−5

DMCF 4.01 4.01 4.01 4.01 4.01 4.01 4.01 4.01 4.01 4.01
SplineConv 7.08·10−3 7.07·10−3 6.71·10−3 5.94·10−3 5.02·10−3 4.16·10−3 3.69·10−3 2.66·10−3 5.22·10−4 5.13·10−4

SFBC 7.08·10−3 1.61·10−8 1.61·10−8 8.56·10−8 8.56·10−8 4.00·10−7 4.00·10−7 7.15·10−7 1.30·10−5 8.06·10−3

Fourier (even) 7.08·10−3 1.61·10−8 8.67·10−8 3.16·10−7 9.40·10−7 2.81·10−6 3.93·10−6 9.55·10−6 1.80·10−5 6.20·10−5

Fourier (odd) 7.07·10−3 7.07·10−3 7.07·10−3 7.07·10−3 7.07·10−3 7.07·10−3 7.07·10−3 7.08·10−3 7.07·10−3 7.07·10−3

Chebyshev 7.08·10−3 7.07·10−3 3.65·10−5 3.64·10−5 2.46·10−5 2.43·10−5 1.09·10−4 1.00·10−4 2.26·10−4 6.90·10−5

Table 3: This table shows the results of an ablation study to find the optimal number of basis terms for learning a purely antisymmetric SPH gradient interpolation.
The results were obtained as the L2 loss for a simple SPH gradient interpolation evaluated on the test dataset of test case I at 4 different timepoints for 4 different
network initialization seeds. Each column represents a different number of basis terms, with the best behavior for each number of basis terms highlighted in bold.

n 1 2 3 4 5 6 7 8 16 32
Basis

LinCConv 1.00·10−1 1.47·10−1 1.51·10−1 1.24·10−1 1.30·10−1 1.19·10−1 1.32·10−1 1.23·10−1 1.14·10−1 9.30·10−2

DMCF 9.82·10−2 2.07·10−3 8.36·10−4 9.02·10−4 5.28·10−4 2.34·10−4 2.42·10−4 7.51·10−4 1.86·10−3 3.50·10−4

SplineConv 1.00·10−1 1.00·10−1 1.06·10−1 1.20·10−1 1.16·10−1 1.07·10−1 1.04·10−1 1.07·10−1 9.73·10−2 9.17·10−2

SFBC 1.00·10−1 4.13·10−3 4.13·10−3 1.42·10−3 1.48·10−3 1.50·10−4 4.37·10−4 4.63·10−4 4.99·10−4 6.63·10−3

Fourier (even) 1.00·10−1 1.00·10−1 1.00·10−1 1.00·10−1 1.01·10−1 1.01·10−1 1.01·10−1 1.01·10−1 1.01·10−1 1.14·10−1

Fourier (odd) 1.00·10−1 4.13·10−3 1.44·10−3 1.09·10−4 1.38·10−4 2.38·10−4 2.88·10−4 3.15·10−4 2.57·10−4 2.06·10−4

Chebyshev 1.00·10−1 9.89·10−2 9.89·10−2 9.53·10−3 2.02·10−1 1.93·10−1 3.11·10−2 2.81·10−2 5.40·10−2 8.66·10−2
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Figure 20: This figure evaluates the correlation between the hidden layer architecture of MLP-based
graph networks and the ability of a single-layer message-passing network to learn an SPH kernel
gradient for various basis functions. The x-axes correspond to the number of features per hidden
layer, and the y-axis corresponds to the L2 error evaluated using the test dataset from test case I for
4 different frames t = [0, 0.512, 1.024, 2.048], with color indicating the number of hidden layers.
The plots show the behavior of the Message Passing PDE (top left), PointNet (top right), MLPCConv
(bottom left), and GNS (bottom right) network architectures.

C.1.2 SPH KERNEL GRADIENT INTERPOLATION

In addition to kernel interpolations, gradient interpolations are another vital aspect of SPH simu-
lation and, accordingly, if a method is not able to learn these terms on their own, then the method
might not be well suited to learn an overall SPH simulation as, e.g., physical forces generally rely
on such gradient terms. Overall, the setup is equivalent to the first toy problem.

Baseline Methods: Compared to the first toy problem, the results here, see Fig. 2 and Table 3,
are notably different. On the one hand, for the kernel interpolation, all baseline methods were
able to learn something; in this case, both LinCConv and SplineConv were not able to learn any
reasonable approximation of the gradient interpolation. On the other hand, DMCF, which was
unable to learn anything in the prior task, can perform as well as the Fourier-based approaches
due to the inherent antisymmetry of this basis. These results indicate that learning to represent an
antisymmetric interaction is very challenging without an inductive bias to help the network. Note
that the performance of DMCF did not improve with very high numbers of base terms, i.e., the
best performance was achieved with 6 terms, indicating that smoothness in this problem is not as
necessary as for the first toy problem.

Chebyshev Basis: While this basis performed well for the first toy problem, it cannot learn any-
thing meaningful in this task, even though this method exhibits inherent symmetries. However, it
is essential to note that the fourth term is antisymmetric and clearly performs better than using one
more or fewer term, which still indicates that including antisymmetry is important.

Fourier Methods: In this toy problem, the Fourier-based methods still performed better than all
other compared results; however, the difference between the Fourier methods and other methods is
not nearly as significant. A crucial observation is that some behaviors observed for the previous
toy problem, especially the stepped change in performance, are still exhibited here but in an inverse
relationship relative to before. As such, we can clearly observe that the Fourier basis improves
notably as higher harmonics are included and that the performance peaks after including the third
harmonic terms. Another important observation is that the oddly symmetric Fourier basis does not
degrade in performance as notably as the complete Fourier basis.

MLP-based Methods: While for the previous toy problem GNS, MP-PDE and MLPCConv were
able to learn the task, in this problem only MP-PDE shows promising results. This clearly highlights
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Figure 21: This figure shows the relationship of features per layer (x-axis) and message passing steps
(color coded) to the ability to learn a single-step physics update. The L2 error is evaluated using the
test dataset from test case I for 4 different frames t = [0, 0.512, 1.024, 2.048] and across 4 random
network initializations, errors bars indicating the lower 5-th to upper 95-th percentile. The DMCF
approach is shown on the left, and our proposed Fourier basis approach is shown on the right.

that this problem is much more challenging to learn, especially without the inclusion of several in-
ductive biases. While MLPCConv did not perform well, it exhibited some learning behavior for
larger architectures. Overall, only GNS was able to perform well as the inclusion of several in-
ductive biases, i.e., providing physical quantities to all MLP operations, did not aid the MP-PDE
approach but rather added further additional terms that made the task more challenigng to learn.
This highlights an important avenue of future research for basis convolutions as the usage of ver-
tex MLPs with physical quantities as additional inputs might also be helpful in those architectures;
however, this is beyond the scope of our current research.

C.2 TEST-CASE I

Learning the physics update, i.e., training an NNTI, is significantly more challenging than learning
a simple SPH kernel or kernel gradient. The underlying simulation also requires multiple steps, e.g.,
to compute particle density and pressure forces, and, accordingly, we utilize a multiple message-
passing architecture here. We are now interested in how different methods perform, especially
with regard to network size, and if there is a clear and significant difference between methods that
incorporate symmetry and those that do not.

Network Scaling: Regarding network scaling, we varied the number of message-passing steps and
the number of features per layer; see Figure 3. On the one hand, the results indicate that the number
of message-passing steps, once the number of steps is at least 3, does not significantly impact perfor-
mance. However, for some feature per layer sizes, there is still a trend, e.g., for 4 features per layer.
On the other hand, the number of features per layer has a much more pronounced impact on the
network’s performance and appears to be the driving force of the network performance. Overall, we
still see the expected behavior insofar as larger networks perform better than smaller ones. Accord-
ingly, we focus the further discussions on a network with 6 message-passing steps and 32 features
per layer. We also investigated the number of basis terms and found that, like the antisymmetric
case, 6 terms perform optimally.

Baseline Methods: Compared to the toy problems, the only baseline method that performs reason-
ably well is DMCF, which is also the only baseline method that performed well for the antisymmetric
case and the only baseline method that includes antisymmetric terms. This result supports our prior
observations, i.e., that antisymmetry is an essential property for convolutions and that most baseline
methods struggle with learning this aspect.

Chebyshev Basis: The Chebyshev-based convolution, in this case, performs worse than all other
methods and, notably, performs worse with larger networks. This generally poor performance is pri-
marily due to the difficulty in training these networks, i.e., the initialization significantly influences
the final network performance, and most initialization does not lead to a well-converging network.
Accordingly, further investigations of the initialization of these methods are an important part of
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Table 4: This figure shows the quantitative results for an ablation study of basis terms in test case
II. All entries are computed by initializing 4 networks for each case at all 4 testing samples from
the dataset at 4 different time points and then performing 64 inference steps while computing the
density, velocity, divergence, and PSD errors on a grid resampling of the particle quantities and
finally computing the mean across the inference period. Bold indicates the lowest value per row.

Configuration Window: Müller Window: None
Dens. ↓ Vel. ↓ Div. ↓ PSD ↓ Dens. ↓ Vel. ↓ Div. ↓ PSD ↓

Basis

Nearest Neighbor 0.040 0.126 2.31 56 0.170 0.261 5.13 148
LinCConv 0.041 0.130 3.44 45 0.089 0.147 2.32 80
DMCF 0.052 0.124 2.75 52 0.422 0.496 8.62 285
SplineConv 0.043 0.129 2.47 55 0.258 0.285 2.41 152
SFBC 0.031 0.106 2.46 34 0.035 0.098 1.29 41
Chebyshev 0.051 0.135 3.23 73 0.468 0.332 4.20 123
Chebyshev (2nd) 0.058 0.142 3.48 75 0.418 0.296 3.55 106
Gaussian Kernel 0.312 0.377 5.81 203 0.491 0.326 3.60 104
Müller Kernel 0.683 0.637 5.81 354 0.493 0.344 3.96 126
Wendland-2 0.057 0.133 2.53 62 0.489 0.329 3.71 106
Quartic Spline 0.045 0.151 2.20 82 0.397 0.417 3.99 259
Spiky 0.113 0.165 1.49 74 0.170 0.199 2.42 111
Bump RBF 0.480 0.433 2.49 125 0.530 0.432 3.48 170

future research, especially for physical simulations. Note that these observations align with prior
observations in pattern recognition, e.g., by He et al. (2022).

Fourier Methods: In this scenario, the complete Fourier Series approach performed better than all
other methods and outperforms DMCF across a broad range of network sizes, with a more signif-
icant gap for smaller network sizes. Interestingly, the oddly symmetrical Fourier Series performs
better than all methods except for DMCF, but still significantly worse than the complete Fourier
Series. This indicates that simply using an antisymmetric basis may work for some basis functions,
including symmetric terms, which can significantly improve the overall network performance.

MLP-based: Finally, for the MLP-based GNNs, we saw performance comparable to most base-
lines, e.g., LinCConv, but notably worse performance than the antisymmetric basis convolutions.
This, again, indicates a significant boost to the learning capabilities of a network by including use-
ful inductive biases at the core of the method. Furthermore, these networks required significantly
more parameters for these networks, as discussed in Section 4.2. An important final note is the
performance of PointNet. While PointNet did not perform well for either toy problem, it performs
surprisingly well for this problem and even outperforms MLPCConv, even though it does not con-
sider graph connectivity explicitly. This indicates that while this problem is challenging, basing a
guess for the new particle velocity on the current position and velocity, due to the smooth nature of
the simulation, can already give reasonable performance.

C.3 TEST-CASE II

While the main paper already discussed this test case in-depth, the results shown here provide a more
quantifiable foundation for our conclusions. In this section, we will discuss all the ablation studies
and provide numerical results in tables and bar charts, as well as visualizations of the inference
behavior. The latter serves as a helpful visualization of the difference of the basis functions on top
of the quantifiable metrics. Finally, we will expand on some evaluations, e.g., we include a separate
section regarding network initialization stability and how different basis functions perform when
evaluated using different time points in the test simulation to verify that our results are representative.

C.3.1 BASIS FUNCTION EVALUATION

Basis functions are an essential part of our proposed basis convolution methodology, and accord-
ingly, evaluating a broad set of potential basis functions is a crucial part of the evaluation. As our
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Figure 22: This figure shows the inference stability for an ablation study of basis terms in test case
II. The lines are evaluated by initializing the network at all 4 testing samples from the dataset at 4
different time points and then performing 64 inference steps while computing the (f.l.t.r.) density,
velocity, divergence, and PSD errors on a grid resampling of the particle quantities, with error bars
indicating lower 5-th to upper 95-th percentile. Note that 4 network initialization seeds are used here
as well. The color here indicates different basis terms, with the top row showing behavior for using
no window function and the bottom row showing the results when using the Spiky window function.
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Figure 23: This figure shows the quantitative results for an ablation study of basis terms in test case
II. All entries are computed by initializing 4 networks for each case at all 4 testing samples from
the dataset at 4 different time points and then performing 64 inference steps while computing the
(f.l.t.r.) density, velocity, divergence, and PSD errors on a grid resampling of the particle quantities
and finally computing the behavior across the inference period. The color indicates the basis term,
and error bars indicate the lower 5-th to upper 95-th percentile. The top row indicates the results of
not using a window function, and the bottom row indicates the results of using the Spiky window.
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formulation is generic and can be used to implement a broad range of methods, we focus on the
most intuitively interesting methods that represent several classes of methods, see Appendix A.4.
The first group of methods is piece-wise bases, which include LinCConv, an important prior base-
line to compare against, and a naı̈ve Nearest Neighbor based approach as a useful baseline. The
second group of methods is Gaussian bases consisting of SplineConv, using a cubic B-Spline basis,
a quartic B-spline basis, the polynomial Müller Kernel, the SPH-based Wendland-2 Kernel, and a
Gaussian, where we chose the methods to represent a broad set of choices common in SPH litera-
ture. The third group of methods are generic Radial Basis Functions, which include the Bump RBF
and the Spiky Kernel, neither of which is Gaussian-shaped. The fourth and final group are bases
with inherent symmetries and include our Fourier basis, Chebyshev bases of first and second kind,
and the DMCF basis. For our evaluations here we consider the inference behavior, see Fig. 22, as
well as the average performance over an inference length of 64 steps both numerically, see Table 4,
and regarding their distributions, see Fig. 23.

Piece-Wise Bases: Regarding piece-wise bases, we see a notable difference between nearest neigh-
bor and linear interpolation; however, this difference is heavily reliant on the choice of window
function. When not using a window function, linear interpolation exhibits a lower error in all
metrics compared to nearest neighbor, which is strongly influenced by the nearest neighbor basis
becoming unstable for some experiments. However, when using the Müller window function, the
nearest neighbor basis exhibits a lower error than the linear basis for all metrics besides the PSD er-
ror. Notably, all errors for the nearest neighbor interpolation with a window function are below the
values for the linear basis without a window function. Overall, this indicates that nearest neighbor
interpolation is useful due to its simplicity but relies heavily on external biases to perform stably. In
contrast, linear interpolation performs reasonably well even without a window function.

Gaussian Bases: Regarding these basis functions, the most crucial observation is that none of these
methods work without a window function, i.e., they all exhibit density errors that are an order of
magnitude worse than the best method. However, some of these methods perform comparably well
without a window function, while others do not. Interestingly, both B-Spline bases and the very
similar Wendland-2 basis perform well, while the polynomial Müller basis and Gaussian kernels
do not. This difference indicates that similar to SPH literature (Dehnen & Aly, 2012), there are
significant differences between kernel functions that might not be apparent from their shapes, i.e.,
the Müller basis is very similar in shape to the cubic B-Spline but works notably worse. Furthermore,
these results indicate that the compactness of the basis function is still a valuable property, as the
non-compact Gaussian basis does not work well.

Generic RBFs: Regarding generic basis functions, we did not see strong behavior in any case,
which indicates that these functions are not ideal bases for our formulation. However, this is hardly
surprising as RBF interpolation does not solely adjust the weights for each basis function but instead
shifts the centroids and modifies the shapes of the basis terms, neither of which we include in our
network. These additions pose an interesting direction for future work; however, optimizing them
as part of a neural network may be challenging as these terms are non-linear.

Symmetric Bases: For symmetric without a window function, we find that only our proposed
Fourier-based approach remains stable while all other options quickly become unstable. This is
not very surprising as, on the one hand, the Chebyshev basis is not compact, and, as seen for the
Gaussian basis, compactness appears to be a useful property. On the other hand, the Fourier basis
contains terms that decay towards zero at the outside edges. Furthermore, with a window function,
all of these bases become stable and show behavior comparable to all other methods, with our pro-
posed Fourier-based network performing better than all other bases. Finally, while the divergence
error only increases for the Fourier-based method, all other symmetric bases exhibit a lower error;
however, do note that none of the other bases were stable without a window function.

Conclusions: Overall, we could clearly observe behavior that is consistent for different classes of
functions where our proposed network architecture outperforms all other bases in all but a single
metric. Moreover, these evaluations indicate that other base terms, such as nearest neighbor inter-
polation, can still be useful even though they appear less capable than more complex bases, such as
cubic B-Splines. Finally, regarding the inference behavior, we observed that methods were either
stable, i.e., they remained at a low error the entire inference period or steadily got worse over time
with no method randomly becoming unstable late into the inference period.
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Table 5: This figure shows the quantitative results for an ablation study of window functions in test
case II. All entries are computed by initializing 4 networks for each case at all 4 testing samples
from the dataset at 4 different time points and then performing 64 inference steps while computing
the density, velocity, divergence, and PSD errors on a grid resampling of the particle quantities and
finally computing the mean across the inference period. Bold indicates the lowest value per row.

Basis LinCConv Ours
Dens. ↓ Vel. ↓ Div. ↓ PSD ↓ Dens. ↓ Vel. ↓ Div. ↓ PSD ↓

window

None 0.080 0.137 2.11 67 0.038 0.103 1.24 44
Müller 0.041 0.130 3.44 45 0.031 0.106 2.46 34
Spiky Kernel 0.056 0.180 4.81 87 0.031 0.113 3.06 29
Cubic Spline 0.038 0.135 3.11 54 0.032 0.113 3.11 31
Quartic Spline 0.044 0.150 3.53 63 0.034 0.117 3.36 35
1− x 0.037 0.119 2.31 43 0.026 0.097 2.04 32
1− x2 0.063 0.147 3.13 67 0.025 0.095 1.87 31

C.3.2 ABLATION STUDY: WINDOW FUNCTIONS

Window functions are a strong inductive bias in CConv approaches built on the ideas of SPH. These
window functions aim to (a) ensure compactness, (b) ensure smoothness, and (c) as a bias towards
the underlying simulation. Compactness is, generally, ensured by defining window functions such
that they are equal to 0 for |q| = 1, e.g., f(q) = 1 − |q|, smoothness is, generally, enforced
by using higher order polynomials, e.g.,., cubic B-splines, and the bias is achieved by using SPH
kernels as window functions. Accordingly, it makes sense to evaluate the strength of these individual
motivations by evaluating a set of basis functions that exhibit varying levels of smoothness and
similarity to the underlying SPH simulation, which, for this problem, is the cubic B-Spline kernel.

LinCConv: For this approach, we observe that the best-performing window function, overall, is a
simple linear window, which only ensures compactness but does not impose any further restrictions
on smoothness. The second best kernel function is the cubic B-Spline kernel, indicating that the
third motivation, e.g., similarity to the underlying SPH kernel, is also an important effect. Still,
this additional bias might introduce other effects that are not desirable. Finally, the other kernel
functions, especially the smoother quartic B-Spline kernel, perform worse than the cubic B-Spline.
A crucial observation here, however, is that the best method regarding the divergence error is not
using any window function, which clearly indicates that using a window function is not a universally
beneficial choice and, instead, opens up the ability to fine-tune the network based on the task.

Fourier: Contrary to the LinCConv approach, the results for our proposed basis are much closer
to each other, e.g., the deviation for the density is ±0.06 for our approach while for LinCConv
the spread is ±0.21, indicating that the method is inherently more capable as it outperforms the
LinCConv base regarding all metrics with all basis functions. Furthermore, barring the divergence
error, the worst choice of window function for each metric for our proposed basis still performs
as well, or better, than LinCConv with the respective best choice. For our proposed basis, we also
observe that the linear window performs very close to the best window function regarding all metrics
except for divergence, while not using a window function still results in the lowest divergence.

Based on the results observed here, we conclude that not using a window function is an important
choice to consider, as not using a window function leads to the lowest divergence error in all cases;
see also Appendix C.3.1. Furthermore, simple choices such as a linear window can outperform more
complex and intuitive window functions when choosing an actual basis function. In contrast, some
SPH kernels, such as the Spiky window, do not perform as well as others.

C.3.3 ABLATION STUDY: COORDINATE MAPPINGS

Coordinate systems play an essential role in many systems and can encode useful information
through their definitions. For example, SPH is built on rotationally symmetric kernel functions,
i.e., functions that solely depend on the distance and not the angle of two particles. Accordingly,
using polar coordinates is useful in defining SPH interactions, and using the same coordinate sys-
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Figure 24: This figure shows the quantitative results for an ablation study of window functions in test
case II. All entries are computed by initializing 4 networks for each case at all 4 testing samples from
the dataset at 4 different time points and then performing 64 inference steps while computing the
(f.l.t.r.) density, velocity, divergence, and PSD errors on a grid resampling of the particle quantities
and finally computing the behavior across the inference period. The color indicates window function,
and error bars indicate lower 5-th to upper 95-th percentile. The top row indicates results for the
LinCConv basis, and the bottom row indicates results of using our Fourier basis.

Table 6: This figure shows the quantitative results for an ablation study of coordinate mappings in
test case II. All entries are computed by initializing 4 networks for each case at all 4 testing samples
from the dataset at 4 different time points and then performing 64 inference steps while computing
the density, velocity, divergence, and PSD errors on a grid resampling of the particle quantities and
finally computing the mean across the inference period. Bold indicates the lowest value per row.

Window: None Window:Spiky
Dens. ↓ Vel. ↓ Div. ↓ PSD ↓ Dens. ↓ Vel. ↓ Div. ↓ PSD ↓

Map Basis

Cart. LinCConv 0.099 0.159 2.88 85 0.035 0.129 3.16 49
NN 0.166 0.291 6.78 150 0.026 0.107 1.49 31
SFBC 0.033 0.097 1.17 35 0.033 0.114 3.19 29

Pol. LinCConv 0.028 0.095 1.91 28 0.026 0.105 2.33 30
NN 0.125 0.206 3.81 115 0.025 0.108 1.50 33
SFBC 0.059 0.162 0.99 62 0.051 0.172 1.63 49

Pres. LinCConv 0.281 0.312 6.36 168 0.043 0.138 3.13 64
NN 0.172 0.257 5.14 120 0.027 0.110 1.64 32
SFBC 0.036 0.099 1.35 44 0.034 0.119 3.31 36

tem for a neural network that is to learn an SPH simulator would also make sense. Furthermore,
coordinate systems can be used to make the use of coefficients more efficient, as proposed by Um-
menhofer et al. (2019), as using a regular grid in higher dimensions is not ideal for spherically
limited interactions as some weights will have reduced, or even no, influence. However, as we focus
our evaluations on two-dimensional systems, there is merit in re-evaluating these biases on our spe-
cific problems. Accordingly, we evaluate the influence of choosing no coordinate mapping, polar
coordinates or a volume-preserving mapping for the LinCConv approach, our proposed approach
and a nearest neighbor interpolation approach as a baseline for no window function and the Spiky
window function, see Fig. 25 and Table 6.

LinCConv: For the LinCConv approach, we saw the best results without a window function for the
polar coordinate mapping and the worst outcomes for the volume preserving mapping, while when
using a window function, the results are only marginally different. These results indicate a clear
benefit to changing the coordinate mapping in some cases, i.e., without a window function. Still,
when using a window function, the differences are negligible. While this is somewhat contrary to
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Figure 25: This figure shows the quantitative results for an ablation study of coordinate mappings in
test case II. All entries are computed by initializing 4 networks for each case at all 4 testing samples
from the dataset at 4 different time points and then performing 64 inference steps while computing
the (f.l.t.r.) density, velocity, divergence, and PSD errors on a grid resampling of the particle quanti-
ties and finally computing the behavior across the inference period. Color here indicates coordinate
mapping and window function combinations and error bars indicating lower 5-th to upper 95-th per-
centile. From top to bottom, the subplots represent using a Nearest Neighbor Basis, LinCConv and
SFBC.

Table 7: This figure shows the quantitative results for an ablation study of Fourier terms in test
case II. All entries are computed by initializing 4 networks for each case at all 4 testing samples
from the dataset at 4 different time points and then performing 64 inference steps while computing
the density, velocity, divergence, and PSD errors on a grid resampling of the particle quantities and
finally computing the mean across the inference period. Bold indicates the lowest value per row.

Configuration Window: None Window: Spiky
Density Vel. Div. PSD Density Vel. Div. PSD

Basis

SFBC 0.046 0.118 1.65 57 0.029 0.109 2.90 28
Fourier (4-Terms) 0.072 0.126 2.33 67 0.026 0.105 2.46 27
Fourier (5-Terms) 0.041 0.125 2.56 55 0.028 0.106 2.64 30
Fourier (even) 0.373 0.369 5.50 212 0.308 0.336 4.97 177
Fourier (odd) 0.095 0.188 3.81 87 0.032 0.113 3.10 37
Fourier (odd) + x 0.829 0.523 3.87 NaN 0.328 0.278 2.96 101
Fourier (odd) + sgn(x) 0.896 0.561 5.46 NaN 0.431 0.306 3.39 104

prior work, the volume-preserving mapping is mostly intended for three-dimensional applications
and not two-dimensional tasks.

Fourier Basis: Similar to observations regarding the window function, see Appendix C.3.2, there
is only a very small difference between different choices of coordinate mappings. This indicates
that (a) the influence of different hyperparameters is very low for our proposed basis, and (b) ideal
performance can often be achieved while removing inductive biases from the network.

Overall, as we saw very little difference with a window function and for our method in general, we
propose to remove this inductive bias in most cases from network architectures but still include it as
it can be helpful in corner cases, e.g., without window functions for LinCConv.
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Figure 26: Visualization of some Fourier basis setups we evaluated as part of our ablation studies.

C.3.4 ABLATION STUDY: FOURIER TERMS

Fourier Series have a long and rich history of over 200 years of research, but at the core, a Fourier
series is a sequence of alternative sine and cosine terms of increasing frequencies with an additional
constant function added on top. As such, a Fourier series can be defined as

bFourier
i (p) =


1, i = 0,
1√
π
cos

(
π
[
⌊ i−1

2 ⌋+ 1
]
p
)
, iodd,

1√
π
sin

(
π
[
⌊ i−1

2 ⌋+ 1
]
p
)
, ieven.

(64)

However, while for an infinite Fourier series, equally many cosine and sine terms exist, this is not
necessarily true for a finite sequence of terms of a Fourier Series. For an odd number n of terms the
constant term and (n − 1)/2 harmonics of a sine and cosine term each can be utilized. However, a
common choice in baseline methods, e.g., LinCConv (Ummenhofer et al., 2019), is using only four
terms, which is even and, accordingly, some term needs to be excluded. As representative choices,
we investigate either excluding the second harmonic sine term (an odd symmetry term) or the first
harmonic cosine term (an even symmetry term). Furthermore, we investigate four more series that
consists of (a) only even symmetry terms, (b) only odd symmetry terms with an additional constant
term, (c) only odd symmetry terms with the constant term replaced by p, and (d) only odd symmetry
terms with the constant term replaced by sgn(p). Note that many more choices exist, e.g., an odd
symmetry series with no offset term at all, but we chose to limit ourselves to this set of 8 series.

Complete Series: Considering the definition from Eqn. 64, we evaluate this series with 4 and 5
terms, see Fig. 26a, where the 4 term variant drops the second harmonic sine term. As such, we
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Figure 27: This figure shows the quantitative results for an ablation study of Fourier terms in test
case II. All entries are computed by initializing 4 networks for each case at all 4 testing samples from
the dataset at 4 different time points and then performing 64 inference steps while computing the
(f.l.t.r.) density, velocity, divergence, and PSD errors on a grid resampling of the particle quantities
and finally computing the behavior across the inference period. The color indicates Fourier term
combinations and error bars indicate lower 5-th to upper 95-th percentile. The top row indicates the
results of not using a window function, and the bottom row indicates the results of using the Spiky
window function.

would expect the 5 term variant to perform notably better regarding symmetric quantities, such as
density error, but comparable for antisymmetric quantities. Considering the results in Table 7 and
Fig. 27, we observed the expected behavior when not using a window function, whereas without a
window function, the results are much closer to another.

Ours: As antisymmetry is an essential aspect of physical systems, including antisymmetric terms
should improve the performance, and their behavior should dominate the overall learned behav-
ior. Accordingly, removing the first harmonic even symmetry term and trading this off with a sec-
ond harmonic symmetric term is an interesting choice; see Fig. 26a. For a four-term basis, the
two-dimensional series consists of 8 symmetric and 8 antisymmetric terms, whereas the alternative
choice consists of 10 symmetric and 6 antisymmetric terms. Using this series, we observe a signif-
icantly improved behavior regarding all quantities without a window function, whereas without a
window function, this choice of terms performs worse in all quantities. A crucial observation here
is that the divergence error of this formulation increases by 75% when using a window function,
whereas the divergence error only increases by 6% for the alternate formulation. However, as this
formulation leads to the lowest overall divergence and better behavior without a window function,
we used this function as the basis for our approach.

Symmetric Series: Using only even terms, i.e., the constant term and cosine terms of increas-
ing harmonics, see Fig. 26c leads to 16 symmetric and 0 antisymmetric terms, whereas using the
constant term and sine terms of increasing harmonics, see Fig. 26d leads to 10 symmetric and 6
antisymmetric terms. Note that with our separable basis formulation, it is not easily possible to only
construct antisymmetric terms. Regarding the even variant and the modified odd variants, we saw
no stable behavior regardless of whether a window function was used. This indicates that neither
basis is a useful choice overall. In contrast, the results regarding the even basis indicate that using
a purely symmetric basis is not a useful choice for learning physical behavior. However, for the
odd series with the constant term, we saw reasonable behavior with and without a window function;
however, the results were worse than using a modified Fourier Series. This is primarily due to the
antisymmetric terms, see Fig. 26 being only for the sole x and y terms, i.e., none of the mixed terms
are antisymmetric. This indicates that having antisymmetry alone is insufficient and that having a
reasonable ratio of antisymmetric to symmetric terms is essential.
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Figure 28: This figure shows the quantitative results for an ablation study of network initialization
stability in test case II. All entries are computed by initializing 32 networks for each case at all 4
testing samples from the dataset at 4 different time points and then performing 64 inference steps
while computing the (f.l.t.r.) density, velocity, divergence, and PSD errors on a grid resampling of
the particle quantities and finally computing the behavior across the inference period. The color
indicates the basis term, and error bars indicate the lower 5-th to upper 95-th percentile. The top
row indicates the results of not using a window function, and the bottom row indicates the results of
using the Spiky window function.

Table 8: This figure shows the quantitative results for an ablation study regarding network initial-
ization stability in test case II. All entries are computed by initializing 32 networks for each case at
all 4 testing samples from the dataset at 4 different time points and then performing 64 inference
steps while computing the density, velocity, divergence, and PSD errors on a grid resampling of the
particle quantities and finally computing the mean across the inference period.

Configuration Window: None Window: Spiky
Density Vel. Div. PSD Density Vel. Div. PSD

Basis

LinCConv 0.114 0.193 3.86 103 0.043 0.147 3.57 74
SFBC 0.037 0.103 1.30 41 0.031 0.112 3.04 30
Nearest Neighbor 0.160 0.266 5.42 150 0.030 0.115 1.67 41
DMCF 0.435 0.479 7.58 268 0.370 0.426 6.52 213
SplineConv 0.260 0.327 3.27 194 0.364 0.732 8.14 332
Chebyshev 0.409 0.351 5.80 157 0.038 0.123 2.86 51

C.3.5 ABLATION STUDY: NETWORK INITIALIZATION

Network initialization and training stability are important aspects in machine learning tasks and are
especially important for repeatability. To investigate the influence of network initialization and our
training setup, we performed two separate ablation studies where we first evaluated 32 different
initialization seeds for a set of core methods. Secondly, we investigate if our choice of test frames
influences the result, i.e., if the performance of NNTIs is significantly different when applied starting
at timestep 0 of a simulation or much later in the simulation and if by choice of this starting point,
our results were biased towards specific methods.

Random Initialization: Considering random initialization, see Fig. 28 and Table 8, we did not
observe any significant differences between this broad set of evaluations and the narrower choice
of seeds in the respective ablation studies. While this does indicate that our training setup and
initialization process results in a repeatable and fair evaluation, we can still observe that the spread
of some methods, especially the Chebyshev basis, is much greater than the other methods, indicating
that some base functions are more difficult to initialization. We already observed a similar behavior
before, e.g., in test case I, where the Chebyshev bases did not perform as well as many other methods
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Figure 29: This figure shows the quantitative results for an ablation study of network initialization
stability in test case II. All entries are computed by initializing 4 networks for each case at all
4 testing samples from the dataset at a single time point and then performing 64 inference steps
while computing the (f.l.t.r.) density, velocity, divergence, and PSD errors on a grid resampling of
the particle quantities and finally computing the behavior across the inference period. The color
indicates the basis term, and error bars indicate the lower 5-th to upper 95-th percentile. Each row
indicates a different initial timestamp in the simulation where the inference was started.

in most cases, partially due to the initialization. In the future, we hope to address the initialization
of Chebyshev-based convolutional networks in more depth, but this is beyond our current scope.

Testing Frame Dependence: When considering the initial frame choice, see Fig. 29, we did not
observe a strong dependence of the initial frame choice to the performance of the network, i.e., if a
network performed poorly, it performed poorly regardless of the initial frame. However, a crucial
observation to be made here is how the errors increase differently based on initial frame choice, e.g.,
when considering the density error, the increase of error per inference step is much lower the further
into the simulation the inference is started. This behavior is likely due to the underlying SPH data,
especially during initialization. As mentioned before, see Appendix B.3, particles in this test case are
initialized on a rectangular grid of particles with even spacing, whereas particle distributions become
disordered and chaotic during the simulation. Accordingly, few training samples include the regular
particle sampling from the beginning of simulations, while most of the training samples are during
the more random stages of the simulation. Note that this particle disorder is a general SPH problem
often addressed by particle shifting (Rastelli et al., 2022), a process that aims to regularize particle
distributions during a simulation to improve numerical accuracy. Regarding the inference behavior,
we observed that several methods very quickly diverge away from the ground truth solution but
that the error metrics stabilize after some time, where this stabilization happens significantly after
the training rollout period. This kind of behavior could indicate that the methods find new stable
equilibriums that change depending on the basis function and may be due to the inherent numerical
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Table 9: This table shows an ablation study performed in test case III to find the optimal number of
basis terms. These numbers were computed using 4 differently initialized networks, training them to
overfit to a single training sample and evaluating the point-wise distance based solely on this single
training sample. The columns indicate the number of basis terms, with lower values being better.

n 4 6 8
Configuration

LinCConv @ Spiky 0.054923 0.050374 0.049219
SFBC @ None 0.052832 0.050328 0.050279
SFBC @ Spiky 0.045858 0.042443 0.040794

Table 10: This table shows the result of an ablation study performed on test case 3 in an overfitting
setup to find an optimal network layout and show the point-wise distance for our proposed Fourier-
based architecture with no window function for different network layouts. Note that all values are
premultiplied by 102 for legibility, with the lowest value per column being boldened.

Steps 1 2 3 4 5 6 7 8 16 32
Features

1 6.07 5.88 5.83 5.77 5.99 6.02 6.07 6.15 6.37 6.61
2 5.99 5.76 5.57 5.45 5.37 5.31 5.24 5.21 5.07 4.97
4 5.77 5.35 5.22 5.09 5.06 4.92 4.90 4.83 4.70 4.92
8 5.63 5.18 4.93 4.85 4.71 4.66 4.61 4.48 4.35 4.54
16 5.42 4.90 4.65 4.46 4.37 4.32 4.31 4.30 4.27 4.42
32 5.34 4.75 4.53 4.40 4.22 4.24 4.20 4.20 4.31 4.36
64 5.17 4.55 4.33 4.24 4.25 4.27 4.94 4.38 4.30 5.27

properties of each basis function. However, investigating this complex relationship is beyond the
scope of our work but an interesting direction for future, more theoretical, research.

C.4 TEST-CASE III

This section will provide additional details regarding the architecural ablations for the final test case.
The main goal of these results is to show how the network can be scaled for better performance and
quantify the differences. Finally, we provide results for methods not discussed in the main paper,
e.g., DMCF without a window function to provide additional context.

C.4.1 ABLATION STUDY: BASIS TERM COUNT

Analogously, to test case I, we investigated the influence of the number of basis terms on the perfor-
mance of the networks. To simplify this ablation study, we focused solely on evaluating LinCConv
and our Fourier-based approach, with and without a window. Furthermore, we limited the training
to a simple overfitting case as we were only concerned with the learning abilities in this problem,
not the generalization capabilities. To set up this overfitting test, we chose a random frame from
the training set and trained a neural network with 4 message-passing steps and 32 features per layer
with an otherwise identical training setup to the other evaluations.

In this evaluation, we saw a minor improvement when increasing the base terms for the LinCConv
approach improved by 9% from 4 to 6 base terms and by 2% from 6 to 8 terms. For our Fourier-
based approach without a window function, performance only increased by 4% from 4 to 6 base
terms but only by 0.1% from 6 to 8 terms, see Table 11. Accordingly, we used 6 base terms for all
further evaluations. A crucial observation here is that 6 base terms also was the choice for optimal
behavior in the one-dimensional compressible test case, which indicates that this choice is an overall
beneficial choice for improving the learning behavior of basis convolutions.
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Figure 30: This figure shows the result of an ablation study performed on test case 3 in an over-
fitting setup to find an optimal network layout. From left to right, the subplots represent using the
LinCConv approach with a window function, our modified Fourier basis without and with a window
function, and using an proper Fourier basis without and with a window function. The x-axes repre-
sent the number of message-passing steps, and the y-axes the number of features per layer. The color
indicates the point-wise distance error from high (white) to low (black), with lower being better.

C.4.2 ABLATION STUDY: NETWORK LAYOUT

The following ablation study we performed was regarding the network layout, similar to the ablation
study performed in test case I; however, we used the same overfitting setup as for the prior ablation
study due to the complexity of this training task. For this ablation study, we evaluated three basis
functions, i.e., LinCConv, a complete Fourier Series, and our modified Fourier series from test case
II with a removed first harmonic cosine term, as well as with no window and with a window for
the Fourier based methods, see Table 10 and Fig. 30. Note that these results were obtained using a
single initialization seed, and, accordingly, there might be some notable outliers in the data that are
not representative of the overall behavior; however, the general trends still hold.

LinCConv: For the LinCConv approach, we saw a clear and expected trend, i.e., improving the
number of message-passing steps and increasing the features per layer improves performance. Con-
trary to the results in the one-dimensional case, however, increasing the number of message-passing
steps to more than two still significantly improves performance. This difference is primarily due
to the inherently increased complexity of the problem, i.e., the underlying physical system has a
much larger receptive field and requires significantly more SPH interpolants per simulation step.
Consequently, increasing both has a notable benefit for the network’s performance.

Fourier Methods: Regarding the Fourier-based methods, we observed a similar behavior as for
LinCConv; however, the overall performance of the Fourier-based networks is notably better at all
sizes of network, especially when not using a window function. Furthermore, for this problem, using
a complete Fourier Series for small network architectures significantly improves over the modified
Fourier Series, indicating that including the symmetric first harmonic term is beneficial. However,
as the performance is only marginally different for larger networks, we continued using this Series.

These ablations show that a network with 6 message-passing steps and 32 features per layer, provides
reasonable performance for all tested methods without requiring excessive parameter counts. The
similarities with test case I indicate that there are general trends in learning behaviors that are worth
considering when setting up a neural network for a given learning task.

C.4.3 BASIS FUNCTION EVALUATION

As the final ablation study, we considered the influence of different basis functions for test case III
regarding inference performance. To do this, we trained the respective networks on the entire test
case III dataset with an incremental rollout of up to ten timesteps during training, a batch size of
four, and a decreasing learning rate. As basis functions, we chose the five most important baselines
and proposed configurations, i.e., LinCConv, DMCF and Nearest Neighbor as well as Fourier and
Chebyshev Series based networks. For the comparisons, we chose the point-wise distance, i.e., the
mean distance of each particle in the prediction relative to the closest ground truth particle, regarding
temporal inference behavior, see Fig. 31, and as an average over an inference length of 96 timesteps.
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Table 11: Quantiative results for the different basis functions evaluated in test case 3 when learning
the physics update. Each value is computed for 4 different network initializations evaluated on all 4
testing samples for 4 different timesteps using an inference length of 96 steps and then computing
the mean point-wise distance across the inference period. Lower values are better, and the lowest
value per column is boldened.

window Müller None Spiky
Basis

LinCConv 2.739·10−3 3.047·10−3 9.014·10−3

Chebyshev 2.871·10−3 3.508·10−3 2.941·10−3

DMCF 2.899·10−3 3.618 5.534·10−1

Nearest Neighbor 3.221·10−3 3.298·10−3 6.197·10−3

SFBC 2.850·10−3 2.876·10−3 3.224·10−3
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Figure 31: This figure shows the inference stability for test case 3 when learning the physics update.
Each line represents 4 different network initializations evaluated on all 4 testing samples for 4 dif-
ferent timesteps using an inference length of 96 steps and computing the point-wise distance to the
ground truth data after every inference step. The color indicates the basis function, style indicates
the window function and error bars indicate the lower 5-th to upper 95-th percentile.

LinCConv: Contrary to the prior test cases, the basic approach by Ummenhofer et al. (2019) per-
formed better than all other approaches, on average; however, during the first 40 inference steps, the
performance is slightly worse than our proposed Fourier-based approach. An important observation
here is the apparent strong influence of the window function on the performance of the basis func-
tion, i.e., changing from the Spiky window to the Müller window improved performance by a factor
of 3.3, mostly due to instabilities during longer inference periods, see Fig. 31.

DMCF: The approach by Prantl et al. (2022) performed very close to the other baselines when the
Müller window was used; however, when using the Spiky window as suggested, the performance
decreased by two orders of magnitude. Furthermore, not using a window function in this case did
not lead to stable prediction behavior for any sees. These observations highlight that while the
inductive bias of antisymmetry can be helpful in many cases, it does not guarantee stable behavior
and clearly demonstrates how this approach is susceptible to hyperparameter changes.

Nearest Neighbor: This basis function performs somewhat similar to LinCConv as the choice of
window function notably impacts the performance, but overall, performance is pretty comparable.

Fourier-based: While our proposed Fourier-based approach outperformed all other bases in most
other comparisons, even regarding the overfitting behavior in this test case, there is no significant
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Figure 32: Results of the ablation study for the density (left) and density gradient (right) toy prob-
lems in test case IV. Base function color coded.

benefit in this test case. However, our proposed technique still performs better than all other ap-
proaches without a window function and, regarding average behavior, is only marginally worse than
LinCConv. Furthermore, during the first 40 inference steps, our proposed technique outperforms
LinCConv, highlighting that there still is a benefit to choosing our proposed technique.

Chebyshev: While the Chebyshev basis struggled in many prior test cases, in this case, it demon-
strates performance in line with all other approaches. Furthermore, it shows the best behavior with
the Spiky window function, which also exhibits better performance than not using a window function
for this approach. This clearly highlights that while this method is useful, its performance is still
dependent on hyperparameter choices such as window functions.

C.5 TEST CASE IV

This section provides the results of our evaluations in the three dimensional problems in test case IV
regarding SPH kernel and gradient interpolation. Section C.5.1 will discuss results for single-layer
networks, setup analogous to Sections C.2, and Section C.5.2 will discuss results regarding three
and four-layer networks to evaluate overparametrization, i.e., how the networks learn for a task that
requires fewer message passing steps in the ground truth than the network uses.

C.5.1 SINGLE-LAYER NETWORKS

In this toy problem we want to evaluate the ability of different base functions to learn a simple SPH
kernel and gradient interpolation using a single-layer network setup with no bias, analogous to the
one-dimensional toy problem, see Fig. 32.

Kernel Interpolation: Comparing the results with the results from test case I, see Fig. 2, we observe
a significant overlap in behavior. For small numbers of terms, i.e., 1 term per axis, all basis functions
perform equally poorly with an improvement as the number of terms increases, except for the odd
Fourier basis. While this was expected in the one dimensional test case, the three dimensional
basis of an odd Fourier basis contains many terms that are symmetric, however, none of the terms
along a cardinal direction are symmetric, which prevents the network from learning any reasonable
behavior. Similarly, the even Fourier basis performs better than the full Fourier basis for 3 terms, due
to the inclusion of more symmetric terms, and, analogous to the one dimensional problem, the full
Fourier basis outperforms the even basis for larger numbers of terms, e.g., for n = 8. Furthermore,
LinCConv performs better than the nearest neighbor basis for most configurations, whilst both are
significantly outperformed by SFBC. However, it is important to note that the overall achieved loss
terms here are much higher than in the one-dimensional case, i.e., the lowest loss here is on the
order of magnitude of 10−3, whereas in the one-dimensional case the lowest loss was on the order
of magnitude of 10−8.

Gradient Interpolation: Comparing the results with the results from test case I, see Fig. 2, we
can also observe a significant overlap in behavior. However, whilst for the one-dimensional case
the odd Fourier basis performed better than all other methods, in this case it performs much worse
than the full Fourier basis. This, similar to the kernel interpolation task, is due to the three dimen-
sional odd Fourier basis containing a significant number of symmetric product terms and is not a
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Figure 33: Results of the ablation study for the gradient (left) and density (right) toy problems in
test case IV for a network with 2 hidden layers using 32 features each. Base function color coded.
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Figure 34: Results of the ablation study for the gradient (left) and density (right) toy problems in
test case IV for a network with 3 hidden layers using 32 features each. Base function color coded.

purely antisymmetric basis. Furthermore, while SFBC outperforms LinCConv for some parame-
ters, the difference is much smaller than for the one-dimensional case and the overall loss terms are
significantly worse than for the one-dimensional case for a comparable network setup.

Overall, we can observe a significant overlap between the one-dimensional and three-dimensional
toy problems, indicating that the insights can be transferred readily across dimensionalities. Further-
more, similar to the two-dimensional evaluations, separable bases cannot be fully antisymmetric,
leading to a notably worse performance for purely antisymmetric tasks, whereas symmetric tasks
are still straight forward to learn.

C.5.2 MULTI-LAYER NETWORKS

Thus far we only considered the performance of networks in cases in which the perceptual field, and
number of message passing steps, between the ground truth and the graph network were identical, for
the toy problems, or cases in which the network is significantly reduced compared to the simulation,
for all other problems. However, it is useful to evaluate how the networks perform if they are
overparametrized in this regard, i.e., what kind of behavior can be observed if the graph network
performs more message-passing steps than necessary. To evaluate this behavior we utilize the same
setup as for the single layer toy problem, see Appendix C.5.1, but utilize a network set up with 2, see
Fig. 33, and 3, see Fig. 34, additional layers using 32 features each. As network inputs we consider
two variants using either just the normalized particle volume or the normalized particle volume and
particle density, where in the latter case the particle density input is not required to compute the
ground truth and serves to highlight behavior in case an unneeded feature is provided, i.e., how well
a network can reject a false signal.
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Two-Layer Network: For the Kernel interpolation we see a significant drop in performance com-
pared to the single Layer case where for two and four base function terms only SFBC was able to
learn the correct behavior, and reached a similar loss to the single-layer setup. For eight base func-
tion terms all networks perform comparably well, but with a loss that is notably worse than for the
single-layer setup. For the gradient interpolation we observed a notably lower error for four base
terms for SFBC (by approximately an order of magnitude), showing that this problem might be more
straight forward to learn with a deeper network with non-linearities, through activation functions,
than with a single-layer linear setup. However, this only holds for SFBC for four basis terms as no
other method was capable of learning any useful behavior. For eight base function terms LinCConv,
SFBC and DMCF all out performed the single-layer performance, whereas the Nearest Neighbor
base function did not learn any meaningful output.

Three-Layer Network: The overall behavior observed here is very similar to the two-layer network
regarding SFBC, i.e., the performance in all cases is as good, or better, than for the single-layer
network. However, while for the two-layer setup LinCConv and was still able to learn plausible be-
havior for four and eight base terms, for the three-layer setup LinCConv did not learn any meaningful
behavior for the kernel interpolation.

Additional Inputs: When we add the particle density as an unneeded input to the network can
clearly observe that for the kernel interpolation only SFBC is able to learn the correct behavior (for
two and four basis terms), whereas for eight basis terms only the Nearet Neighbor method learns
any meaningful output. For the gradient interpolation we furthermore observed that no configuration
was able to learn the gradient for a two-layer setup and eight terms, whilst for a three-layer setup
and eight terms only DMCF changed from learning to not reliably learning (as indicated by the large
error bar) the problem task. For four terms only SFBC was able to learn any meaningful behavior,
consistent with not having the additional input.

Based on these evaluations we can observe that SFBC is more resilient to less-than-ideal learning
setups that utilizes either suboptimal, i.e., too deep, network architectures or utilize unneeded net-
work inputs. While some methods, e.g., LinCCOnv show some resilience to these changes, they are
not as resilient. Finally, while the three-layer setup with density as an additional feature is not a,
mathematically, optimal setup for learning the density, SFBC showed a lower loss for both two and
four basis terms by up to an order of magnitude.

C.6 COMPUTATIONAL PERFORMANCE

So far we only considered the performance of all models regarding their learning efficacy without
discussing computational requirements, which are of vital importance for applications in scientific
machine learning. To evaluate the computational performance of our method, and baselines, we
first constructed a set of dummy data points, i.e., 4096 particles in 1D, 642 = 4096 particles in
2D sampled on the unit square and 163 = 4096 particles in 3D sampled on the unit cube. We
then computed a support radius for all particles such that each particle, under periodic boundary
conditions, has 32 neighbors and added a random offset to the particle positions. Based on this set
of particles we then sampled a random feature per particle using a unit normal distribution, N (0, 1),
and a respective random ground truth per particle using a unit normal distribution as well. For
each set of hyperparameters we then constructed a respective neural network and fed the dummy
features in, performed a forward pass, compute a loss against the ground truth and performed a
backward pass and updated the weights of the network. For each such weight update we computed
the computational cost of the forward and backwards pass, as well as the entire weight update
process. We also evaluated these updates for a single-layer architecture and an architecture with
one and two hidden layers of 32 features each and used 64 measurements per hyperparameter set
(totaling 401, 600 timed weight updates in total across all constellations). All measurements were
done on a system with an Nvidia RTX A5000 GPU with 24 GiB of VRAM and an Intel Xeon
6242R CPU with 754 GiB of RAM. We then evaluated (a) the computational scaling for different
basis functions, numbers of basis terms and dimensionality, (b) the computational cost of coordinate
mapping and (c) the computational cost of using a window function.

To investigate the computational scaling we evaluated a set of basis functions in one, two and three
dimensions using identity, polar and preserving coordinate mappings and using the Müller window
function, as well as using no window function, see Fig. 35 and 36 for the results for the forward
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Figure 35: Performance evaluation of the forward pass of various basis functions and approaches
using an identity coordinate mapping and no window function in one, two, and three spatial dimen-
sions. Basis function color mapped and row indicating dimensionality, shown for a network using
a single layer (left), a single hidden layer with 32 features (middle), and two hidden layers with 32
features each (right). All measurements in milliseconds.

and backward passes. Considering the forward and backward passes, overall, we observed no sig-
nificant difference in overall behavior but did measure a slightly faster backward pass than forward
pass, which is the expected behavior as the backwards pass also involves the same convolutions, but
transposed and in reverse, but can reuse some results from the forward pass. Consequently, we will
not consider the passes separately for all remaining discussions. Regarding the aggregate results,
see Fig. 38 left, we see very small difference in performance in all dimensions between the basis,
with the only significant outlier being the DMCF method in two dimensions. Otherwise, all aggre-
gate values are within ±6%, indicating only a small difference in performance between methods.
Looking at the influence of basis terms on computational performance, see Fig. 36, we can observe
that most configurations for eight and fewer base terms perform very similarly, i.e., within measure-
ment accuracy for most measurements, with the only outlier being the DMCF method. For larger
networks, i.e., in three dimensions, and for the network with two hidden layers, we see an increase
based on the number of basis terms that is approximately cubic, i.e., O(n3), which is expected as
the number of weights increases with O(n3). However, it is important to note that for smaller num-
bers of base terms, e.g., 8 and fewer the scaling is sublinear due to the GPU being underutilized for
smaller term counts. Similarly, we observe that in one dimension only SFBC and Chebyshev show
a significant increase in computational requirements for large numbers of base terms as they are the
only bases that require a measurable increase as all other methods are bottle-necked in performance
based on other parts of the network.

Regarding computational requirements of the coordinate mapping, see Fig. 37, we see a clear but
marginal increase in computational requirements in two dimensions and three dimensions for all
numbers of basis terms. Considering the aggregate results, see Fig. 38 middle, the overall differ-
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Figure 36: Performance evaluation of the backward pass of various basis functions and approaches
using an identity coordinate mapping and no window function in one, two, and three spatial dimen-
sions. Basis function color mapped and row indicating dimensionality, shown for a network using
a single layer (left), a single hidden layer with 32 features (middle), and two hidden layers with 32
features each (right). All measurements in milliseconds.
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Figure 37: Performance evaluation of a weight update for different coordinate mappings for SFBC
and no window function in two and three spatial dimensions. Coordinate Mapping color mapped,
results aggregate over all three network architectures, and both window functions tested. All mea-
surements in milliseconds.

ence in computational cost between different coordinate mappings is relatively low at 7% in two
dimensions and 0.4% in three dimensions.
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Figure 38: Performance evaluation of a weight update as aggregate results across all relevant hyper-
parameters for one, two, and three dimensions (indicated on the x-axis). Color mapping indicates
the basis function (left), coordinate mapping (middle), and window function (right). Note that for
one dimension, we only evaluated an identity coordinate mapping. All measurements in millisec-
onds.
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Figure 39: Performance evaluation of a weight update for different window functions for SFBC
and an identity coordinate mapping in two and three spatial dimensions. Window function color
mapped, values aggregated over all coordinate mappings and architectures. All measurements in
milliseconds.

Regarding computational requirements of window functions, see Fig. 39, we observed that for one
dimensional networks there is a slight, but consistent, overhead imposed by the window function.
However, this increase is relatively small and disappears for two and three dimensions, resulting
in a mean difference of performance of at most ±0.7%, with two and three-dimensional networks
showing a difference of less than ±0.3%.

Based on these results, there is no notable overhead of using our SFBC approach, compared to
LinCConv, for any network architecture used in our other evaluations. Furthermore, there is no
significant overhead imposed by using either a coordinate mapping or window function.

D CONCLUDING THOUGHTS

In our appendix, we provided a broad range of data regarding many different ablation studies to high-
light the strengths and weaknesses of several methods. Overall, our proposed Symmetric Fourier
Basis Convolution (SFBC) approach performs either ideally or close to ideally across a broad range
of problems and scenarios regardless of the hyperparameters chosen, indicating that our method is a
versatile and useful method overall. We hope that our evaluations and datasets inspire future research
and help with developing novel and exciting solutions to these challenging physical problems.
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