
ML for Computer Architecture and Systems (MLArchSys), ISCA 2024

FuseMax: Leveraging Extended Einsums to
Optimize Attention Accelerator Design

Nandeeka Nayak∗, Xinrui Wu†, Toluwanimi O. Odemuyiwa‡,
Michael Pellauer§, Joel S. Emer¶§, Christopher W. Fletcher∗

∗University of California, Berkeley. nandeeka@berkeley.edu,cwfletcher@berkeley.edu
†Tsinghua University. xr-wu20@mails.tsinghua.edu.cn ‡University of California, Davis. todemuyiwa@ucdavis.edu

§NVIDIA. mpellauer@nvidia.com ¶Massachusetts Institute of Technology. emer@csail.mit.edu

Abstract—Attention for transformers is a critical workload
that has recently received significant ‘attention’ as a target
for custom acceleration. Yet, while prior work succeeds in
reducing attention’s memory-bandwidth requirements, it creates
load imbalance between attention operators (resulting in severe
compute under-utilization) and requires on-chip memory that
scales with sequence length (which is expected to grow over time).

This paper ameliorates these issues, enabling attention with
nearly 100% compute utilization, no off-chip memory traffic
bottlenecks, and on-chip buffer size requirements that are inde-
pendent of sequence length. The main conceptual contribution is
to use a recently proposed abstraction—the cascade of Einsums—
to describe, formalize and taxonomize the space of attention
algorithms that appear in the literature. In particular, we show
how Einsum cascades can be used to infer non-trivial lower
bounds on the number of passes a kernel must take through its
input data, which has implications for either required on-chip
buffer capacity or memory traffic. We show how this notion can
be used to meaningfully divide the space of attention algorithms
into several categories and use these categories to inform our
design process.

Based on the above characterization, we propose FuseMax—a
novel mapping of attention onto a spatial array-style architecture.
On attention, in an iso-area comparison, FuseMax achieves an
average 6.7× speedup over the prior state-of-the-art FLAT [16]
while using 80% of the energy. Similarly, on the full end-to-
end transformer inference, FuseMax achieves an average 5.3×
speedup over FLAT using 85% of the energy.

I. INTRODUCTION

Over the past few years, transformers [31] have emerged as
the model architecture of choice for a wide range of machine
learning applications, from natural language processing [11],
[18], [29], [30] to computer vision [12], [20] to speech
recognition [3], [14]. This rise has been accompanied by a
corresponding wave of proposals for accelerating transformers
in both software [7], [9], [10] and hardware [16], [34].

Fortunately, many of the layers (projections, fully connected
layers, etc.) used by transformers look very similar to prior
generations of machine learning models. Its resource-intensive
tensor products can be described and evaluated with existing
tensor algebra accelerator modeling tools [17], [22], [26],
and many of the other layers (e.g., layer normalization) have
negligible impact on performance and can be safely ignored.

However, attention [31]—usually described as a ma-
trix multiplication, a softmax, and then another matrix
multiplication—does not fit into either of these boxes. For

example, the softmax is both memory intensive (featuring low
algorithmic reuse) and compute intensive (featuring exponen-
tiation and division). Furthermore, attention’s characteristics
preclude many “free lunches” often used to improve efficiency
for other DNN models. For example, because all tensors are
a function of the model inputs, there is no opportunity to
amortize memory access costs with an increased batch size.
Additionally, since none of the operands can be computed
before the inputs are given, compression/strength reduction
techniques (e.g., quantization [13], [33], sparsity [21], [28],
[32], etc.) must be applied dynamically, leading to more
complicated algorithms and hardware designs.

To illustrate the difficulty in accelerating attention, consider
the state-of-the-art accelerator for attention: FLAT [16]. FLAT
uses fusion to reduce attention memory bandwidth bottlenecks
on a spatial architecture (e.g., a TPU [15]). Specifically, FLAT
maps attention’s matrix multiplications to the 2D spatial array
and softmax operations to a separate 1D array. While FLAT’s
design does make attention compute bound, it becomes com-
pute bottlenecked in the 1D array (the softmax), causing
severe under utilization of the 2D array. While one could add
additional PEs to the 1D array, this results in commensurate
area costs.

Making matters worse, FLAT requires that the entire vector
over which the softmax is performed be buffered on chip.
This vector is proportional to the sequence length, which is
growing rapidly with time (e.g., Google reports 10 million
length sequences in research, which would require 100s of
MegaBytes to buffer [1]). When the vector/sequence length
grows beyond allowable buffer capacity, FLAT is forced
to spill, which contributes significantly to attention energy
consumption and can even make attention memory-bandwidth
bound.

This paper. We address the above challenges by propos-
ing a novel spatial architecture – FuseMax – to accelerate
attention, with particular emphasis on removing bottlenecks
imposed by the softmax. Our architecture addresses all of
the aforementioned issues associated with FLAT. FuseMax
is compute bound, but provides almost 100% utilization of
both the 2D and 1D arrays throughout the attention operation,
without adding additional PEs to the 1D array. Additionally,
FuseMax’s on-chip memory requirements are invariant to se-
quence length and require no extra spills to memory regardless

1

mailto:nandeeka@berkeley.edu
mailto:cwfletcher@berkeley.edu
mailto:xr-wu20@mails.tsinghua.edu.cn
mailto:todemuyiwa@ucdavis.edu
mailto:mpellauer@nvidia.com
mailto:emer@csail.mit.edu


of sequence length.
The technical core of the paper is two parts.
First, Section III uses the recently proposed cascade of

Einsums abstraction [22] to describe, formalize and taxono-
mize the space of numerically stable attention proposals that
appear in the literature. In a nutshell, an Einsum defines an
iteration space over tensors and what computation is done on
and between tensors at each point in the iteration space. A
cascade of Einsums is a sequence of dependent Einsums that
can be used to describe and specify a larger kernel.

While prior work [22], [25] provides a precise definition
for Einsums, a major contribution in our work is to show
how this definition can be leveraged to inform accelerator
design. Specifically, we recognize that Einsums make explicit
precisely what compute the cascade performs. We show how
this can be used to inform trade-offs in designing the com-
plicated, compute-intensive softmax kernel. Additionally, we
recognize that the Einsum cascade makes explicit precisely
what dependencies there are between Einsums. We show
how this can be used to make non-trivial deductions about a
kernel’s allowed fusion granularity and algorithmic minimum
per-tensor live footprint. The relationship between the live
footprint and the buffer capacity, in turn, has implications for
the required data movement. Given that an Einsum cascade is
mapping/scheduling agnostic, both of the above observations
provide insight given any possible scheduling of the cascade
onto hardware.

In more detail, the latter provides insight into the number of
times a given element of the an input must be revisited after
visiting every other element of the input. Normally, one strives
to choose a dataflow that exploits maximal reuse in a given
element (or tile of elements) to avoid having to come back
to it later. However, some algorithms preclude this strategy.
For example, in a naı̈ve implementation of attention, one
must traverse the entire softmax input to build the softmax
denominator and only after that can one revisit and scale each
input (softmax numerator) by the denominator. Section III-C
formalizes and generalizes this notion and shows that one can
meaningfully divide the space of attention approaches based
on the number of passes each cascade must perform, i.e., the
number of times each element is (re)visited.

We note, our lower bounds on passes hold for all mapping
choices, including application of fusion. For example, despite
using fusion, FLAT employs a 3-pass cascade and its reliance
on large on-chip buffering is a symptom of trying to avoid
3 passes-worth of DRAM traffic. Obviously, fewer passes is
preferable; although, interestingly, we find that cascades with
fewer passes can increase the required compute.

In the second part of the techical core (Section IV), we use
the insights from Section III as a starting point to develop a
novel mapping for attention that can be lowered to a spatial
architecture. We call our architecture FuseMax. FuseMax
adopts the attention cascade used in FlashAttention-2 [9].
However, despite using the cascade from FlashAttention-2,
mapping this cascade to a spatial architecture instead of a
GPU is non-trivial. We overcome the differences between the

architectures and demonstrate a novel mapping for the cascade
that achieves high utilization for entire transformer layers.
Our architecture requires only minimal changes to a standard
spatial architecture and is performance/energy robust to long
sequence lengths (e.g., 1M tokens and beyond).

Finally, we evaluate FuseMax on BERT [11], TrXL [8],
T5 [30], and XLM [18] and demonstrate a 6.7× speedup on
attention with 80% of the energy and a 5.3× speedup on the
full end-to-end inference with 85% of the energy relative to
FLAT.

II. BACKGROUND

In this section, we describe the concepts and terminology
used in the remainder of the paper. This paper focuses on
algebraic computations on tensors, where a tensor is a multidi-
mensional array. A tensor’s rank refers to a specific dimension
of the tensor, while the tensor’s shape is the set of valid
coordinates for each of the tensor’s ranks. We use the same
symbol for the name and shape of the rank, i.e., the rank M
has shape M . A fiber is a set of points in a tensor with the
same coordinate in all ranks except one.

An Einsum defines a computation on a set of tensor
operands using an iteration space that specifies the set of
points where the computations are performed [22], [25]. For
example, we describe matrix-matrix multiplication (GEMM)
computation with the following Einsum:

Zm,n = Ak,m ×Bk,n (1)

We follow the operational definition for Einsums given in
[22]. In this work, we leverage the Extended General Einsums
notation (EDGE) [25] (first developed for graph algorithms)
to express the complex non-linear operations required for
transformers.

TeAAL [22] introduces the concept of cascades of Einsums,
which expresses directed acyclic graphs (DAG) of Einsum
expressions as a sequence of sub-Einsums. For example, a
matrix multiplication can be split into two Einsums, as follows:

Tk,m,n = Ak,m ×Bk,n

Zm,n = Tk,m,n

An Einsum specifies the computation, while a mapping
indicates how computation occurs in space and time on an ac-
celerator [6], [26]. Mapping specifications include aspects such
as loop order, partitioning, and work scheduling (sequential vs.
parallel operations) [22]. Einsums in a cascade may be mapped
independently or fused together to improve performance.

Transformer models generally follow the architecture de-
fined in [31]. In this work, which addresses the impact of
long sequence lengths during self-attention, we focus on the
encoder architecture. Figure 1a gives an overview. As the
sequence length grows, the relative importance of the different
operations changes. Figure 1b shows that at shorter sequence
lengths, the weight-times-activation “linear” layers are a larger
fraction of the total required compute, while at long sequence
lengths, the attention dominates. All additional required com-
putation has negligible impact. In the next section, we focus

2



Proj Proj Proj

Attention

FFN

Add & Norm

...
Deprojection

MatMul

Softmax

MatMul

Add & Norm

Q K V

(a) Encoder architecture

1K 4K 16K 64K 256K 1M
Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 C
om

pu
te Attn

Linear
Other

(b) Required compute

Fig. 1: Overview of transformer encoder inference.

on describing attention more precisely, and use our analysis
to understand prior work on efficient implementations.

III. TAXONOMIZING ATTENTION AS EINSUM CASCADES

Our first contribution is to show how cascades of Einsums
can be used to describe, taxonomize, and highlight trade-offs
in the space of attention algorithms. The key insight is that
cascades of Einsums provide a precise description of a kernel’s
compute requirements, the algorithmic minimum live footprint
for each tensor, and the number of passes the algorithm must
make through this live footprint.

A. Redefining Attention’s “Matrix Multiplications”

In the original transformer paper [31], the kernel was
described with the following equation:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

However, this equation says almost nothing about what the
inputs Q, K, and V look like or what iteration space needs to
be traversed. We clarify these points by rewriting Equation 2
as a cascade of Einsums, with the exception of the softmax,
whose cascade we will explore in Section III-B:

QKm,p =
1√
E

×Qe,p ×Ke,m (3)

Am,p = softmax(QKm,p) (4)
AVf,p = Am,p × Vf,m (5)

Here, Equations 31 and 5 look like matrix multiplications.
Taking Equation 5 as an example, for each point in the iteration
space F ×M×P , we perform a multiplication using elements
from two 2-tensors (Am,p and Vf,m) to produce a 2-tensor
output (AVf,p), which requires reducing across the inputs’
shared rank M .

Equations 3-5 can be modified to refer to the full batched,
multi-head self attention [31] by adding B and H ranks to
all tensors. This changes the characteristics of the kernel.
Adding the B and H ranks means that Equations 3 and 5
behave like many independent matrix multiplications instead

1In Equation 3, we also substitute E for dk following the notation defined
in Section II, where the shape of a rank is also its rank name.

of one monolithic matrix multiplication. The challenges with
attention, described in Section I, follow clearly from this
modification. Because all tensors contain a B rank, the matrix
multiplications are all unique to the specific batch’s inputs.
Therefore, none of these tensors can be computed before
the inputs are given, and there is no data sharing between
the different elements in the batch. To simplify notation, we
assume the presence of the B and H ranks but omit writing
them throughout the rest of paper.

B. Softmax as a Cascade of Einsums

We now apply the same precise notation to the softmax. A
softmax [4] over a 1-tensor is traditionally expressed with the
following equation:

Am =
eIm∑
k e

Ik
(6)

In the context of attention, this operation becomes two dimen-
sional and can be expressed using the following cascade with
input QKm,p:

SNm,p = eQKm,p (7)
SDp = SNm,p (8)
Am,p = SNm,p/SDp (9)

For each point in the iteration space (m, p), we exponentiate
QKm,p to generate the softmax numerator (SNm,p in Equa-
tion 7), reduce SNm,p with addition to produce the softmax
denominator (SDp in Equation 8), and finally, divide the
numerator and denominator to produce the final result (Am,p

in Equation 9).
1) Improving Numerical Stability: Because eQKm,p can

easily become extremely large, the above formulation suffers
from overflow. Therefore, practical implementations [2], [27]
often prefer the numerically stable variant that replaces Equa-
tion 7 with:

GMp = QKm,p ::
∨
m

max(∪) (10)

SNm,p = eQKm,p−GMp (11)

and drop the 1√
E

term when computing QKm,p
2. To compute

the global maximum3 GMp, we reduce QKm,p with the oper-
ator max (instead of +)4. Notice that subtracting GMp from
QKm,p in the exponent is equivalent to dividing by eGMp , and
because the 1

eGMp
term appears in both the numerator (SNm,p

via Equation 11) and denominator (SDp via Equation 8),
the result (Am,p) stays the same. This construction improves
numerical stability by bounding the values of the softmax
numerator SNm,p (i.e., before the division) to the range (0, 1].

2The 1√
E

term was introduced to bound the magnitude of SNm,p [31].
Because the numerically stable softmax variant already accomplishes this, the
scaling is often omitted [7], [9], [10].

3“Global” here refers to over the entire M fiber.
4We use the reduction notation defined in [25]

3



C. Optimizing Softmax Live Footprint and Memory Traffic

Einsums make explicit the dependencies between values
produced and consumed across tensors in a cascade. We
show how these dependencies can be used to make non-
trivial deductions about a kernel’s allowed fusion granularity
and algorithmic minimum per-tensor live footprint. Because
these deductions are made using only the cascade, they hold
regardless of the choice of mapping or buffer capacity.

As a simple example, let us look at the softmax cascade
Equations 7-9. If we want to minimize data traffic of SNm,p,
we need to choose a dataflow for each Einsum that keeps
SNm,p stationary and fuses the three Einsums together. In
other words, the dataflow must finish using the first element of
SNm,p before moving onto the next. However, such a dataflow
does not exist for this cascade. Any implementation must visit
every element of a given M fiber of SNm,p to compute SDp

before it can revisit any element of that fiber to compute Am,p.
We define a pass a cascade performs over a particular

fiber of a particular rank and tensor to be a traversal of
every element of that fiber. Each time an element must be
revisited after visiting every other element of that fiber, there
is an additional pass. For example, Equations 7-9 perform two
passes over the M rank of SNm,p.

The number of passes a cascade performs is relevant be-
cause it restricts fusion schedules possible. While Einsums
within a pass can be fused at will, producing and consuming
a tile of the intermediate at a time, the two passes cannot
be fused on the M rank. Any implementation must visit all
elements of an M fiber of SN to produce SD before it can
visit any of the elements of that fiber to produce A.

This analysis also provides a non-trivial lower bound on
the tensors’ live footprints. For example, the algorithmic
minimum live footprint for tensor SN is M . In other words,
an architecture must either have enough buffer space to hold
an entire M fiber of SN or spill and reload that fiber, incurring
memory traffic proportional to the shape of M . We note that
this analysis is mapping independent. There is no dataflow for
this cascade that enables a smaller live footprint.

3-pass 2-pass 1-pass
PyTorch [27] Tileflow [34] FlashAttention [10]

TensorFlow [2] Choi et al. [7] FlashAttention-2 [9]
FLAT [16]

E.T. [5]

TABLE I: Classifying prior attention algorithms.

We find that existing approaches to numerically stable
attention can be classified as either 3-pass, 2-pass, or 1-pass
cascades, where an N -pass cascade performs N passes of a
given M fiber. See Table I.

D. FuseMax Cascade Walkthrough

Next, we describe FuseMax’s cascade (Cascade 1)—first
proposed for FlashAttention-2. Note, despite the evidently
increased compute relative to the 3-pass cascade, we will
carefully design a mapping in Section IV to hide these
overheads on a spatial architecture.

Initialization:

BQKm1,m0,p = QKm1×M0+m0,p (12)
BVf,m1,m0 = Vf,m1×M0+m0 (13)

RMm1:m1=0,p = −∞ (14)
RDm1:m1=0,p = 0 (15)

RNVm1:m1=0,p = 0 (16)

Extended Einsums:

LMm1,p = BQKm1,m0,p ::
∨
m0

max(∪) (17)

RMm1+1,p = max(RMm1,p, LMm1,p) (18)

SLNm1,m0,p = eBQKm1,m0,p−RMm1+1,p (19)
SLDm1,p = SLNm1,m0,p (20)

SLNVf,m1,p = SLNm1,m0,p ×BVf,m1,m0 (21)

PRMm1,p = eRMm1,p−RMm1+1,p (22)
SPDm1,p = RDm1,p × PRMm1,p (23)
RDm1+1,p = SLDm1,p + SPDm1,p (24)

SPNVf,m1,p = RNVf,m1,p × PRMm1,p (25)
RNVf,m1+1,p = SLNVf,m1,p + SPNVf,m1,p (26)

AVf,p = RNVf,M1,p/RDM1,p (27)
⋄ : m1 ≡ M1 + 1 (28)

Einsum Cascade 1: foo

We will start by expressing the partitioning of both of the
inputs QKm,p and Vf,m into M1 chunks of M0 elements each
(Equations 12-13). This allows us to perform operations like
maximum on individual M0 fibers, rather than on the whole
tensor (Equation 17). The problem is, of course, that the local
maximum is not necessarily the same for all M0 fibers and
so will not just cancel nicely like the global maximum.

We resolve this by instead using the running maximum
(RMm1,p)—the global maximum of all inputs seen so far—
instead of the local maximum. We recognize that M1 can also
serve as an iterative rank, and iteratively build up RMm1,p.
After initializing RM0,p to −∞ (Equation 14), we compute
a new running maximum RMm1+1,p using the running maxi-
mum computed in the previous iteration RMm1,p and the new
local maximum LMm1,p (Equation 18).

We can now use the running maximum to compute a local
numerator SLNm1,m0,p (Equation 19), a local denominator
SLDm1,p (Equation 20), and even the dot product result
SLNVf,m1,p (Equation 21) using the partitioned BVf,m1,m0

(Equation 13).
Now consider the softmax denominator. Eventually, we

would like to reduce SLDm1,p into a 0-tensor, but because
its values may have been computed with different maximums,
we cannot simply use addition. Instead, by introducing a new
running denominator RDm1,p with iterative rank M1, we
can correct the old denominator RDm1,p to the new running

4



maximum RMm1+1,p and then perform the addition. Again,
because M1 acts as an iterative rank for RDm1,p, we must ini-
tialize the running denominator at the start of the computation
to 0 (Equation 15). Then, at each point m1, the correction
factor PRMm1,p allows us to correct the previous running
denominator RDm1,p with the new maximum (Equation 23).
In other words, RDm1,p is downscaled by eRMm1,p . SPDm1,p

“switches” the downscaling factor on RDm1,p to eRMm1+1,p

by multiplying RDm1,p by eRMm1,p

eRMm1+1,p
(PRMm1,p). Once

SLDm1,p and SPDm1,p have the same maximum, they can be
combined to produce the new running denominator RDm1+1,p

(Equation 24). We can do the same to compute the running
numerator-times-V (Equations 16, 25-26).

Finally, AVf,p can be computed by dividing the final
numerator-times-V by the final denominator. By construction,
at this point, RNVf,M1,p and RDM1,p are both downscaled
by the same maximum RMM1,p (conveniently, also the global
maximum) and can be correctly combined.

IV. MAPPING ATTENTION ONTO A SPATIAL ARRAY

Based on the framework from Section III, we now describe
FuseMax, an efficient mapping of a 1-pass attention cascade
to a spatial array-style architecture. In this work, we use the
same cascade as FlashAttention-2 [9].

The goal when mapping a cascade onto hardware is to
fully utilize all available compute units. In our evaluation of
prior work (Figure 4 and Section V), we observe that at short
sequence lengths, the 2D PE array is under-utilized because
it must wait for the 1D PE array to compute the softmax. At
longer sequence lengths, both arrays are under-utilized since
the workload becomes memory-bandwidth limited.

FuseMax’s mapping addresses these issues to achieve full
utilization on both the 1D and 2D PE arrays. We do so by (1)
sharing the operations beyond multiply/accumulate (max/exp)
between the 1D and 2D arrays and (2) ensuring that the
workload is never memory-bandwidth limited by deeply fusing
all Einsums in the cascade to restrict the live footprint to only
what can be buffered on-chip. No matter the sequence length,
our dataflow is never forced to spill any of its intermediates
off-chip.

Architecture. We assume a standard spatial array-style
architecture for our mapping. See Figure 2. We set parameters
to match the cloud configuration in prior work [16]. Note,
although both the 1D and 2D PE arrays perform exponentia-
tion, we implement exponentiation with 6 sequential multiply-
accumulate operations [24], [32] and therefore do not require
a dedicated exponentiation unit.

Fusion and Partitioning. Prior attention accelerators [16],
[34] explore fusing many of attention’s loop nests together.
However, because these accelerators all use multi-pass cas-
cades, the algorithmic minimum live footprint of some tensors
(e.g., QKm,p) is O(M), meaning that for long sequence
lengths, intermediates cannot be buffered on chip.

FuseMax leverages fusion in conjunction with the 1-pass
cascade to eliminate the memory traffic of these tensors,
regardless of the sequence length. Specifically, we partition

Fig. 2: Spatial array architecture assumed for FuseMax.

on both M and P (forming M1,M0 and P2, P1, P0), and
maximally fuse all levels in the attention loopnest.

Parallelization and Spatial Reduction. While prior work
implementing attention in hardware [16], [34] does utilize the
2D spatial array for the tensor products, it fails to do so for the
softmax, choosing instead to use the 1D array. However, be-
cause there are far fewer total PEs in the 1D array than the 2D
array, the softmax becomes a bottleneck. FuseMax improves
utilization of the 2D spatial array by using it for both the
tensor products and the exponentiation operator in the softmax.
FuseMax parallelizes across the M0 and P0 ranks throughout
the attention kernel. We set M0 × P0 = # 2D Array PEs.
The large spatial reductions required when parallelizing across
the M0 rank are easily handled by the low-cost inter-PE
communication network.

Pipelining. The dependencies between different Einsums
in our cascade necessitate fine-grain pipeline parallelism to
achieve high utilization of both the 1D and 2D spatial arrays.
Figure 3 shows the waterfall diagram for FuseMax in the
steady state. Time is broken into epochs. Each epoch performs
the same set of tile-granular operations at specific tile-relative
coordinates (given by a, b, c, d in the figure). Across all epochs,
the kernel evaluates all tiles and each Einsum is mapped to
either the 2D or 1D array for all epochs (as shown in the
figure).

A major design consideration when pipelining the mapping
is how to overcome the latency of fills and drains to/from the
spatial array. Without careful interleaving, the kernels suffers
from low utilization due to long latency spatial reductions,
whose results are required for future Einsums.

We address the above issues with two levels of interleaving.
First, we interleave the construction of dependent tiles across
epochs. This is reminiscent of software pipelining. For exam-
ple, in Figure 3 the d-th tile of BQK and LM are completed
in Epoch i (as they correspond to a fill followed by a drain and
can be easily pipelined). The RM (which has to wait for the
drain) for tile d takes place in a later epoch. Instead, Epoch i
computes an earlier tile’s running maximum RM [c].

Second, we interleave the construction of certain tiles within
an epoch at a fine (e.g., cycle-by-cycle) granularity. See the
notation ‘A|B’ in Figure 3. This is to ensure high utilization
of both the 2D and 1D PE arrays at all times. In each cycle,

5



Fig. 3: FuseMax pipelining at a glance. Each tensor name (e.g., SLNV ) corresponds to the Einsum used to compute that tensor (see Cascade 1). a, b, c
and d denote tile-relative coordinates where a < b < c < d. If epoch i produces tiles with coordinates a, b, c, d, epoch i+ 1 produces tiles with identifiers
a+ 1, b+ 1, c+ 1, d+ 1. And so on. ‘A|B’ denotes ‘computing tile A is interleaved with computing tile B.’ ‘A → B’ denotes ‘computing tile A is done
before computing tile B.’ The green and blue time periods making up an epoch take almost the same number of cycles.

a given PE in the 2D array computes a value for either BQK
or SLNV and this alternates cycle by cycle. Each neighbor-
neighbor link in the array is active in every cycle—carrying
data for one of the two operation types. By interleaving
SLNV with BQK, the 1D PEs can concurrently compute
RNV .

Putting everything together, as Section V will show, the
above enables high utilization of all 2D and 1D array PEs.

V. EVALUATION

In this section, we demonstrate how the FuseMax dataflow
achieves improvements in both performance and energy rela-
tive to the state of the art, for both attention and the end-to-end
transformer inference.

A. Experimental Set-Up

First, we present the experimental set-up details common to
all following subsections.

Workloads. We evaluate all accelerators and configurations
using the same transformer models used by FLAT [16]: BERT-
Base [11] (BERT), TrXL-wt103 [8] (TrXL), T5-small [30]
(T5), and XLM [18]. We omit FlauBERT [19] because it uses
the same hyperparameters as TrXL. We also note that though
T5 is an encoder-decoder model, we only evaluate the encoder
in this work. Following FLAT, we use a batch size B = 64
for all evaluations.

Modeling with Timeloop. We perform our evaluation
using the tensor algebra accelerator modeling and design
space exploration too Timeloop [26]. We use these tools to
build models of the accelerator architectures and evaluate
each Einsum individually. Results from individual Einsums
are combined using heuristics presented in prior work for
evaluating full cascades [22].

Unfused Baseline. We build the unfused baseline by com-
bining the costs of three phases: QK (Equation 3), the 3-pass
softmax (Equations 10-11 and 8-9), and AV (Equation 5).
Because this baseline is unfused, each phase can be scheduled
independently, but proceed sequentially and require outputs
to be written to memory between phases. We use Timeloop
to search for efficient mappings to perform QK and AV .

Additionally, we model the softmax for the unfused baseline
by allowing the accelerator to load the M fibers of the input
on-chip one-by-one (spilling if there is not enough space)
before performing the compute. We model the memory traffic,
compute, and energy required to perform all Einsums required
for attention.

FLAT Baseline. Our main baseline is the state-of-the-art
attention accelerator FLAT [16] (cloud architecture). Though
we started with the FLAT authors’ original code, we found and
corrected a number of bugs with confirmation from the original
authors. Beyond correcting the FLAT codebase, we created
and validated a Timeloop model that reproduces the FLAT
authors’ (corrected) code to within < 1% error. However,
the FLAT codebase does not model the cost to perform the
softmax. Specifically, their model ignores the cost of data
transfers (between any levels of the memory hierarchy) and
uses 230 1D PEs. When comparing FuseMax and FLAT in
this work, we augment our Timeloop model to model softmax
correctly per the 3-pass cascade implicitly assumed by FLAT.

Hardware parameters. Figure 2 shows the selected hard-
ware parameters, which were chosen to match FLAT’s cloud
accelerator. Also following FLAT, we use a 940 MHz fre-
quency. We use Accelergy to confirm that, despite the changes
to the PEs’ functional units, the area difference between FLAT
and FuseMax is < 0.01%.

B. Evaluating Attention

We now evaluate FuseMax to demonstrate the benefits it
provides on the attention kernel by comparing it to the two
baselines.

Utilization. Figure 4 shows the utilization of the 2D PE
array. Because of the large amount of compute required for
the softmax, both baselines achieve very poor utilization of
this array. On the other hand, at long sequence lengths,
FuseMax achieves almost 100% utilization. We observe that
both baselines do achieve slightly higher utilization on XLM,
which can be attributed to the higher intensity caused by a
larger embedding dimension (E/F ).

Speedup. Figure 5 shows that FuseMax achieves an average
speedup of 10× over the unfused baseline and 6.7× over

6



1K 4K 16K 64K 256K 1M
 BERT

0.0

0.5

1.0
Ut

iliz
at

io
n 

2D

1K 4K 16K 64K 256K 1M
 TrXL

1K 4K 16K 64K 256K 1M
 T5

1K 4K 16K 64K 256K 1M
 XLM

Accelerator
Unfused
FLAT
FuseMax

Fig. 4: Utilization of the 2D PE arrays on the unfused baseline, FLAT, and FuseMax.

1K 4K 16K 64K 256K 1M
 BERT

0

5

10

Sp
ee

du
p

1K 4K 16K 64K 256K 1M
 TrXL

1K 4K 16K 64K 256K 1M
 T5

1K 4K 16K 64K 256K 1M
 XLM

Accelerator
Unfused
FLAT
FuseMax

Fig. 5: Speedup of attention for FLAT and FuseMax over an unfused baseline.

1K 4K 16K 64K 256K 1M
 BERT

0

5

10

Sp
ee

du
p

1K 4K 16K 64K 256K 1M
 TrXL

1K 4K 16K 64K 256K 1M
 T5

1K 4K 16K 64K 256K 1M
 XLM

Accelerator
Unfused
FLAT
FuseMax

Fig. 6: Speedup of transformer inference on FLAT and FuseMax over an unfused baseline.

FLAT. We note FuseMax achieves lower speedup on XLM
only because the baselines are able to achieve higher utilization
of the 2D array on this transformer (Figure 4). An energy
analysis can be found in the full paper [23].

C. Evaluating Transformer Inference

To evaluate the benefits of FuseMax on end-to-end trans-
former inference, we include the other required linear layers
(Section II). We use Timeloop to search for optimal mappings
for these linear layers and use the same mappings for all three
accelerator configurations. The attention modeling remains the
same as Section V-B.

Figure 6 shows the performance improvement achieved
by FuseMax. Across the sequence lengths tested, FuseMax
achieves an average speedup of 7.6× over the unfused baseline
and 5.3× over FLAT. As discussed in Section II, as sequence
length grows, attention becomes a larger fraction of the total
required compute. Therefore, at 1M tokens, FuseMax achieves
an average 10× speedup over the unfused baseline and 7.5×
speedup over FLAT. An energy analysis can be found in the
full paper [23].

REFERENCES

[1] “Our next-generation model: Gemini 1.5,” https://blog.google/
technology/ai/google-gemini-next-generation-model-february-
2024/#context-window.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[3] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: a
framework for self-supervised learning of speech representations,” in
Proceedings of the 34th International Conference on Neural Information
Processing Systems, ser. NIPS ’20. Red Hook, NY, USA: Curran
Associates Inc., 2020.

[4] J. S. Bridle, “Probabilistic interpretation of feedforward classification
network outputs, with relationships to statistical pattern recognition,”
in NATO Neurocomputing, 1989. [Online]. Available: https://api.
semanticscholar.org/CorpusID:59636530

[5] S. Chen, S. Huang, S. Pandey, B. Li, G. R. Gao, L. Zheng, C. Ding, and
H. Liu, “E.t.: Re-thinking self-attention for transformer models on gpus,”
in SC21: International Conference for High Performance Computing,
Networking, Storage and Analysis, 2021, pp. 1–14.

[6] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in ISCA’16.

[7] J. Choi, H. Li, B. Kim, S. Hwang, and J. H. Ahn, “Accelerating
transformer networks through recomposing softmax layers,” in 2022
IEEE International Symposium on Workload Characterization (IISWC),
2022, pp. 92–103.

[8] A. CONNEAU and G. Lample, “Cross-lingual language model
pretraining,” in Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates,
Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper
files/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf

[9] T. Dao, “Flashattention-2: Faster attention with better parallelism and

7

https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/#context-window
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/#context-window
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/#context-window
https://www.tensorflow.org/
https://api.semanticscholar.org/CorpusID:59636530
https://api.semanticscholar.org/CorpusID:59636530
https://proceedings.neurips.cc/paper_files/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf


work partitioning,” 2023.
[10] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention: Fast

and memory-efficient exact attention with io-awareness,” 2022.
[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training

of deep bidirectional transformers for language understanding,” in North
American Chapter of the Association for Computational Linguistics,
2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:
52967399

[12] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” in 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. [Online]. Available:
https://openreview.net/forum?id=YicbFdNTTy

[13] C. Guo, J. Tang, W. Hu, J. Leng, C. Zhang, F. Yang, Y. Liu,
M. Guo, and Y. Zhu, “Olive: Accelerating large language models via
hardware-friendly outlier-victim pair quantization,” in Proceedings of
the 50th Annual International Symposium on Computer Architecture,
ser. ISCA ’23. ACM, Jun. 2023. [Online]. Available: http:
//dx.doi.org/10.1145/3579371.3589038

[14] W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdinov, and
A. Mohamed, “Hubert: Self-supervised speech representation learning
by masked prediction of hidden units,” IEEE/ACM Trans. Audio,
Speech and Lang. Proc., vol. 29, p. 3451–3460, oct 2021. [Online].
Available: https://doi.org/10.1109/TASLP.2021.3122291

[15] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Wal-
ter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance
analysis of a tensor processing unit,” in ISCA ’17.

[16] S.-C. Kao, S. Subramanian, G. Agrawal, A. Yazdanbakhsh, and
T. Krishna, “Flat: An optimized dataflow for mitigating attention
bottlenecks,” ser. ASPLOS 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 295–310. [Online]. Available:
https://doi.org/10.1145/3575693.3575747

[17] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Kr-
ishna, “Understanding reuse, performance, and hardware cost of DNN
dataflow: A data-centric approach,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO.
ACM, 2019, pp. 754–768.

[18] G. Lample and A. Conneau, “Cross-lingual language model pretraining,”
ArXiv, vol. abs/1901.07291, 2019. [Online]. Available: https://api.
semanticscholar.org/CorpusID:58981712

[19] H. Le, L. Vial, J. Frej, V. Segonne, M. Coavoux, B. Lecouteux,
A. Allauzen, B. Crabbé, L. Besacier, and D. Schwab, “Flaubert:
Unsupervised language model pre-training for french,” CoRR, vol.
abs/1912.05372, 2019. [Online]. Available: http://arxiv.org/abs/1912.
05372

[20] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), 2021, pp. 9992–10 002.

[21] L. Lu, Y. Jin, H. Bi, Z. Luo, P. Li, T. Wang, and Y. Liang, “Sanger: A
co-design framework for enabling sparse attention using reconfigurable
architecture,” MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, 2021. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:239012114

[22] N. Nayak, T. O. Odemuyiwa, S. Ugare, C. Fletcher, M. Pellauer,
and J. Emer, “Teaal: A declarative framework for modeling sparse
tensor accelerators,” in Proceedings of the 56th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’23.
New York, NY, USA: Association for Computing Machinery, 2023,
p. 1255–1270. [Online]. Available: https://doi.org/10.1145/3613424.
3623791

[23] N. Nayak, X. Wu, T. O. Odemuyiwa, M. Pellauer, J. S. Emer, and C. W.
Fletcher, “Fusemax: Leveraging extended einsums to optimize attention
accelerator design,” in arXiv, 2024.

[24] P. Nilsson, A. U. R. Shaik, R. Gangarajaiah, and E. Hertz, “Hardware
implementation of the exponential function using taylor series,” in
2014 NORCHIP. IEEE, oct 2014, pp. 1–4. [Online]. Available:
https://doi.org/10.1109/NORCHIP.2014.7004740

[25] T. O. Odemuyiwa, J. S. Emer, and J. D. Owens, “The EDGE
language: Extended general einsums for graph algorithms,” CoRR, vol.
abs/2404.11591, 2024. [Online]. Available: https://doi.org/10.48550/
arXiv.2404.11591

[26] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop:
A systematic approach to dnn accelerator evaluation,” in 2019 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2019, pp. 304–315.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, PyTorch: an imperative style, high-
performance deep learning library. Red Hook, NY, USA: Curran
Associates Inc., 2019.

[28] Z. Qu, L. Liu, F. Tu, Z. Chen, Y. Ding, and Y. Xie, “Dota:
detect and omit weak attentions for scalable transformer acceleration,”
in Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 14–26. [Online]. Available:
https://doi.org/10.1145/3503222.3507738

[29] A. Radford and K. Narasimhan, “Improving language understanding
by generative pre-training,” 2018. [Online]. Available: https://api.
semanticscholar.org/CorpusID:49313245

[30] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” vol. 21, no. 1, jan 2020.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., vol. 30. Curran Associates, Inc., 2017.

[32] H. Wang, Z. Zhang, and S. Han, “Spatten: Efficient sparse
attention architecture with cascade token and head pruning,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, Feb. 2021. [Online]. Available: http:
//dx.doi.org/10.1109/HPCA51647.2021.00018

[33] A. H. Zadeh, I. Edo, O. M. Awad, and A. Moshovos, “Gobo:
Quantizing attention-based nlp models for low latency and energy
efficient inference,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, Oct. 2020. [Online].
Available: http://dx.doi.org/10.1109/MICRO50266.2020.00071

[34] S. Zheng, S. Chen, S. Gao, L. Jia, G. Sun, R. Wang, and Y. Liang,
“Tileflow: A framework for modeling fusion dataflow via tree-based
analysis,” in Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO ’23. New York, NY,
USA: Association for Computing Machinery, 2023, p. 1271–1288.
[Online]. Available: https://doi.org/10.1145/3613424.3623792

8

https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://openreview.net/forum?id=YicbFdNTTy
http://dx.doi.org/10.1145/3579371.3589038
http://dx.doi.org/10.1145/3579371.3589038
https://doi.org/10.1109/TASLP.2021.3122291
https://doi.org/10.1145/3575693.3575747
https://api.semanticscholar.org/CorpusID:58981712
https://api.semanticscholar.org/CorpusID:58981712
http://arxiv.org/abs/1912.05372
http://arxiv.org/abs/1912.05372
https://api.semanticscholar.org/CorpusID:239012114
https://api.semanticscholar.org/CorpusID:239012114
https://doi.org/10.1145/3613424.3623791
https://doi.org/10.1145/3613424.3623791
https://doi.org/10.1109/NORCHIP.2014.7004740
https://doi.org/10.48550/arXiv.2404.11591
https://doi.org/10.48550/arXiv.2404.11591
https://doi.org/10.1145/3503222.3507738
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
http://dx.doi.org/10.1109/HPCA51647.2021.00018
http://dx.doi.org/10.1109/HPCA51647.2021.00018
http://dx.doi.org/10.1109/MICRO50266.2020.00071
https://doi.org/10.1145/3613424.3623792

	Introduction
	Background
	Taxonomizing Attention as Einsum Cascades
	Redefining Attention's ``Matrix Multiplications''
	Softmax as a Cascade of Einsums
	Improving Numerical Stability

	Optimizing Softmax Live Footprint and Memory Traffic
	FuseMax Cascade Walkthrough

	Mapping Attention Onto A Spatial Array
	Evaluation
	Experimental Set-Up
	Evaluating Attention
	Evaluating Transformer Inference

	References

