
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DEEP FLEXQP: ACCELERATED NONLINEAR PRO-
GRAMMING VIA DEEP UNFOLDING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose an always-feasible “flexible” quadratic programming (QP) optimizer,
FlexQP, which is based on an exact relaxation of the QP constraints. If the original
constraints are feasible, then the optimizer finds the optimal solution to the origi-
nal QP. On the other hand, if the constraints are infeasible, the optimizer identifies
a solution that minimizes the constraint violation in a sparse manner. FlexQP
scales favorably with respect to the problem dimension, is robust to both feasi-
ble and infeasible QPs with minimal assumptions on the problem data, and can
be effectively warm-started. We subsequently apply deep unfolding to improve
our optimizer through data-driven techniques, leading to an accelerated version
called Deep FlexQP. By learning dimension-agnostic feedback policies for the pa-
rameters from a small number of training examples, Deep FlexQP generalizes to
problems with larger dimensions and can optimize for many more iterations than
it was initially trained for. Our approach outperforms two recently proposed state-
of-the-art accelerated QP approaches on a suite of benchmark systems including
portfolio optimization, classification, and regression problems. We provide guar-
antees on the expected performance of our deep QP optimizer through PAC-Bayes
generalization bounds. These certificates are used to design an accelerated SQP
solver that solves nonlinear optimal control and predictive safety filter problems
faster than traditional approaches. Overall, our approach is very robust and greatly
outperforms existing non-learning and learning-based optimizers in terms of both
runtime and convergence to the optimal solution across multiple classes of NLPs.

1 INTRODUCTION

Nonlinear programming (NLP) is a key technique for both large-scale decision making, where dif-
ficulty arises due to the sheer number of variables and constraints, as well as real-time embedded
systems, which need to solve many NLPs with similar structure quickly and robustly. Within NLP,
quadratic programming (QP) plays a fundamental role as many real-world problems such as op-
timal control (Anderson & Moore, 2007), portfolio optimization (Markowitz, 1952; Boyd et al.,
2013; 2017), and machine learning (Huber, 1964; Cortes & Vapnik, 1995; Tibshirani, 1996; Candes
et al., 2008) problems can be represented as QPs. Furthermore, sequential quadratic programming
(SQP) methods utilize QP as a submodule to solve much more complicated problems where the
objective and constraints may be nonlinear and non-convex, such as in nonlinear model predictive
control (Diehl et al., 2009; Rawlings et al., 2020), state estimation (Aravkin et al., 2017), and power
grid optimization (Montoya et al., 2019). SQP itself can even be used as a subproblem for solving
mixed-integer NLPs (Leyffer, 2001) and large-scale partial differential equations (Fang et al., 2023).

However, a common difficulty with SQP methods occurs when the linearization of the constraints
results in an infeasible QP subproblem, and a large amount of research has focused on how to repair
or avoid these infeasibilities, e.g., (Fletcher, 1985; Izmailov & Solodov, 2012), among others. A
significant advantage of SNOPT (Gill et al., 2005), one of the most well-known SQP-based methods,
is in its infeasibility detection and reduction handling. These considerations necessitate a fast yet
robust QP solver that works under minimal assumptions on the problem parameters.

To this end, we propose FlexQP, a flexible QP solver that is always-feasible, meaning that it can
solve any QP regardless of the feasibility of the constraints. Our method is based on an exact
relaxation of the QP constraints: if the original QP was feasible, then FlexQP will identify the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

optimal solution. On the other hand, if the original QP was infeasible, instead of erroring or failing
to return a solution, FlexQP automatically identifies the infeasibilities while simultaneously finding
a point that minimizes the constraint violation. This allows FlexQP to be a robust QP solver in and
of itself, but its power shines when used a submodule in an SQP-type method.

Dubins Vehicle with Five Obstacles
0

20

40

60

S
ol

ve
T

im
e

(s
) 29.77

1.84

SQP — OSQP

SQP — Deep FlexQP (Ours)

Figure 1: SQP with Deep FlexQP can solve
highly-constrained nonlinear optimizations over
15x faster than SQP with OSQP (averaged over
100 problems).

Moreover, through the relaxation of the con-
straints, multiple hyperparameters are intro-
duced that can be difficult to tune and have
a non-intuitive effect on the optimization. To
address this shortcoming, we use deep unfold-
ing (Monga et al., 2021) to design lightweight
feedback policies for the parameters based on
actual problem data and solutions for QP prob-
lems of interest, leading to an accelerated ver-
sion titled Deep FlexQP. Learning the param-
eters in a data-driven fashion avoids the labo-
rious process of tuning them by hand or de-
signing heuristics for how they should be up-
dated from one iteration to the next. Mean-
while, these data-driven rules have been shown
to strongly outperform the hand-crafted ones,
such as in the works by Ichnowski et al. (2021)
and Saravanos et al. (2025).

We thoroughly benchmark Deep FlexQP against traditional and learned QP optimizers on multi-
ple QP problem classes including machine learning, portfolio optimization, and optimal control
problems. Moreover, we certify the performance of Deep FlexQP through probably approximately
correct (PAC) Bayes generalization bounds, which provide a guarantee on the mean performance
of the optimizer. We propose a log-scaled training loss that better captures the performance of the
optimizer when the residuals are very small. Finally, we deploy Deep FlexQP to solve nonlinearly-
constrained trajectory optimization and predictive safety filter problems (Wabersich & Zeilinger,
2021). Overall, Deep FlexQP can produce an order-of-magnitude speedup over OSQP when de-
ployed as a subroutine in an SQP-based approach (Fig. 1), while also robustly handling infeasibili-
ties that may occur due to a poor linearization or an over-constrained problem.

2 RELATED WORK

Deep unfolding is a learning-to-optimize approach (Chen et al., 2022b) that has roots in the sig-
nal and image processing domains (Gregor & LeCun, 2010; Wang et al., 2015). It constitutes the
state-of-the-art approach for sparse recovery and video reconstruction (De Weerdt et al., 2024). Fur-
thermore, deep unfolding has been recently applied to accelerate QPs. Saravanos et al. (2025) use
an analogy to closed-loop control and learn feedback policies for the parameters of a deep unfolded
variant of the operator splitting QP (OSQP) solver (Stellato et al., 2020), which is a first-order
method based on the alternating direction method of multipliers (ADMM) (Boyd et al., 2011). Their
method can achieve orders-of-magnitude improvement in wall-clock time compared to OSQP, and
they also propose a decentralized version for quickly solving QPs with distributed structure. Their
idea is similar in vein to that of Ichnowski et al. (2021), who use reinforcement learning to train a
policy that outputs the optimal parameters for OSQP, with the goals of accelerating the optimizer.
Another related approach learns to warm-start a Douglas-Rachford splitting QP solver, with the goal
of improving convergence speed (Sambharya et al., 2023).

3 FLEXQP: AN ALWAYS-FEASIBLE QUADRATIC PROGRAM SOLVER

Our proposed QP optimizer, FlexQP, transforms the original QP constraints using an exact relaxation
and then solves the resultant optimization using an operator splitting inspired by OSQP (Stellato
et al., 2020). We will formalize what we mean by exact when referring to the relaxation of the
constraints and prove that FlexQP solves the original QP, if it was feasible.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

We will assume the reader is familiar with ADMM; a good overview is provided by Boyd et al.
(2011).

3.1 QUADRATIC PROGRAMMING

We are interested in solving QPs of the general form:

minimize
1

2
x⊤Px+ q⊤x, (1a)

subject to Gx ≤ h, Ax = b, (1b)

where x ∈ Rn is the decision variable. The objective is defined by the symmetric positive semidef-
inite quadratic cost matrix P ∈ Sn+ and the linear cost vector q ∈ Rn. The inequality constraints
are defined by the matrix G ∈ Rm×n and the vector h ∈ Rm. Similarly, the equality constraints are
defined by the matrix A ∈ Rp×n and vector b ∈ Rp.

Notably, throughout this work we will avoid making any assumptions on the rank of G or A, meaning
that the constraints may be redundant, and in the worst case, there may not exist a feasible x for the
optimization. This allows for a robust way to handle infeasibilities when optimizations of the form
Eq. (1) are embedded as a subproblem in, e.g., SQP.

3.2 ELASTIC FORMULATION

To make the inequality constraints easier to optimize, we start by expressing Eq. (1) in the equivalent
form

minimize
1

2
x⊤Px+ q⊤x, (2a)

subject to Gx+ s− h = 0, Ax− b = 0, (2b)
s ≥ 0, (2c)

by introducing slack variables s ∈ Rm. By Eq. (2b), s = −(Gx − h) ≥ 0, thus recovering the
original constraint Gx− h ≤ 0.

Next, we relax the set of equality constraints Eq. (2b) using ℓ1 penalty functions:

minimize
1

2
x⊤Px+ q⊤x+ µI ∥Gx+ s− h∥1 + µE ∥Ax− b∥1 , (3a)

subject to s ≥ 0, (3b)

with elastic penalty parameters µI , µE > 0. This relaxation approach is known as elastic program-
ming (Brown & Graves, 1975), and one of the most well-known SQP-based solvers, SNOPT, uses
this technique in order to reduce the infeasibility of a QP subproblem (Gill et al., 2005). This re-
laxation is also a fundamental step in the Sℓ1QP method of Fletcher (1985). Notably, if Eq. (1)
has a feasible solution and the elastic penalty parameters are sufficiently large, then the solutions
to Eq. (1) and Eq. (3) are identical — this is why the relaxation is “exact.” On the other hand, if
the original QP Eq. (1) is infeasible, then solving Eq. (3) finds a point that minimizes the constraint
violation (Nocedal & Wright, 2006). This is formalized through the following theorem, which also
describes what we mean by a “sufficiently large” penalty parameter.
Theorem 3.1. Let (x∗, y∗I , y

∗
E) solve Eq. (1). Let µ∗

I = ∥y∗I∥∞ and µ∗
E = ∥y∗E∥∞. Then, for all

µI ≥ µ∗
I and µE ≥ µ∗

E , the minimizers of Eq. (1) and Eq. (3) coincide.

This theorem is a generalization of prior results (Han & Mangasarian, 1979) that shows we can
select a different penalty parameter for the inequality vs. equality constraints. The proof, provided
in Appendix A relies on two simple facts: the optimality conditions of Eq. (1) and the convexity
of the objective. The proof also illuminates the fact that it is possible to select a vector of penalty
parameters, as long as each obeys the individual constraint µi ≥ |yi|.
What happens when the penalty parameters µ do not satisfy the conditions of Theorem 3.1?
Using the dual interpretation of the Lagrange multipliers yi representing a “cost” of a constraint i, if
µi ≥ yi then the penalty on violating constraint i in Eq. (3) is large enough such that Theorem 3.1
holds. On the other hand, if µi < yi, then this constraint i is not being penalized strong enough and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

so the solution to Eq. (3) will violate this constraint, with the amount of violation proportional to
the difference between µi and yi. We use this in Section 4 to design feedback policies that select the
best penalty parameters as a function of the optimizer state and enforce the condition µi ≥ yi during
learning using a supervised loss that includes the Lagrange multipliers (see also Theorem 3.2).

3.3 OPERATOR SPLITTING AND ADMM

The optimization in Eq. (3) has only simple bounds on the decision variables but is difficult to
optimize due to the Gx and Ax terms appearing in the ℓ1 penalties. Therefore, we express Eq. (3)
in a simpler form

minimize
1

2
x⊤Px+ q⊤x+ µI ∥zI∥1 + µE ∥zE∥1 , (4a)

subject to zI = Gx+ s− h, zE = Ax− b, (4b)
s ≥ 0, (4c)

by introducing extra decision variables zI ∈ Rm, zE ∈ Rp. These variables capture the constraint
violation and can therefore be viewed as a certificate of feasibility if z∗I = z∗E = 0 and infeasibility
if z∗I ̸= 0 or z∗E ̸= 0. While it may seem tempting to apply ADMM to this formulation, the resultant
updates will not have a closed-form solution no matter how the variable splitting is performed.
Therefore, we perform a final transformation for ADMM:

minimize
1

2
x̃⊤Px̃+ q⊤x̃+ II(x̃, s̃, z̃I) + IE(x̃, z̃E) + Is(s) + µI ∥zI∥1 + µE ∥zE∥1 , (5a)

subject to (x̃, s̃, z̃I , z̃E) = (x, s, zI , zE), (5b)

where II , IE , and Is are the indicator functions

II(x, s, zI) =
{
0 zI = Gx+ s− h,

+∞ otherwise,
IE(x, zE) =

{
0 zE = Ax− b,

+∞ otherwise,
(6a)

Is(s) =
{
0 s ≥ 0,

+∞ otherwise.
(6b)

The ADMM updates for solving Eq. (5) are given by

x̃k+1, s̃k+1, z̃k+1
I , z̃k+1

E = argmin
x̃,s̃,z̃I ,z̃E

1

2
x̃⊤Px̃+ q⊤x̃+ II(x̃, s̃, z̃I) + IE(x̃, z̃E)

+
σx

2

∥∥∥x̃− xk +
wk

x

σx

∥∥∥2
2
+

σs

2

∥∥∥s̃− sk +
wk

s

σs

∥∥∥2
2

+
ρI
2

∥∥∥z̃I − zkI +
ykI
ρI

∥∥∥2
2
+

ρE
2

∥∥∥z̃E − zkE +
ykE
ρE

∥∥∥2
2
,

(7a)

xk+1 = αx̃k+1 + (1− α)xk + σ−1
x wk

x, (7b)

sk+1 =
(
αs̃k+1 + (1− α)sk + σ−1

s wk
s

)
+
, (7c)

zk+1
I = SµI/ρI

(
αz̃k+1

I + (1− α)zkI + ρ−1
I ykI

)
, (7d)

zk+1
E = SµE/ρE

(
αz̃k+1

E + (1− α)zkE + ρ−1
E ykE

)
, (7e)

wk+1
x = wk

x + σx(x̃
k+1 − xk+1), (7f)

wk+1
s = wk

s + σs(s̃
k+1 − sk+1), (7g)

yk+1
I = ykI + ρI(z̃

k+1
I − zk+1

I), (7h)

yk+1
E = ykE + ρE(z̃

k+1
E − zk+1

E), (7i)

where σx, σs, ρI , ρE > 0 are the augmented Lagrangian penalty parameters, α ∈ (0, 2) is the
ADMM relaxation parameter, (s)+ = max(s, 0) is the rectified linear unit (ReLU) activation func-
tion, and Sκ(z) = (z − κ)+ − (−z − κ)+ is the soft thresholding operator, which is the proximal
operator of the ℓ1 norm (Boyd et al., 2011). Note that by Eqs. (7b) and (7f), we have that wk+1

x = 0

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

for all k ≥ 0, so the wx variable and the update Eq. (7f) can be disregarded. The first block up-
date Eq. (7a) is the most computationally-demanding step of the algorithm and requires the solution
of an equality-constrained QP. We show how to solve this QP using either a direct or indirect method
in Appendix B; the indirect method becomes the only suitable choice for large-scale problems where
the dimension can be very large. The final algorithm is summarized in Algorithm 1 of Appendix C.

The following theorem establishes the relationship between the FlexQP solution and the solution to
the original QP and can be proven using the definition of soft thresholding (Appendix D).

Theorem 3.2. For any µI > 0 and µE > 0, let (x̂, ŷI , ŷE) solve the relaxed QP Eq. (3) using
Algorithm 1. Then, ŷI,i ≤ µI and ŷE,i ≤ µE for all constraints i. Furthermore, let (x∗, y∗I , y

∗
E)

solve Eq. (1) if it is feasible. If the conditions of Theorem 3.1 hold, then (x̂, ŷI , ŷE) = (x∗, y∗I , y
∗
E).

Otherwise, for any infeasible constraint i with associated dual variable yi, the FlexQP solution
satisfies |ŷi| = µi.

Finally, we summarize the key roles of the different hyperparameters of our algorithm. These in-
sights are important for understanding the parameterization of our deep unfolded architecture pre-
sented in the next section.

Role of Elastic Penalty Parameters: The elastic penalty parameters µI and µE only appear in
a single step of the algorithm during the Eqs. (7d) and (7e) as part of the soft thresholding in the
second block ADMM updates. Larger elastic penalties µ result in a larger threshold, meaning that
a larger amount of constraint violation will be zeroed out. The choice of µ is key for satisfying the
conditions of Theorem 3.1.

Role of Augmented Lagrangian penalty parameters: The primary role of the parameter σx is to
regularize the quadratic cost matrix P , and allows the equality-constrained QP Eq. (7a) to admit a
unique solution even if P is not positive definite (P can even be zero to capture linear programs).
We tested multiple fixed values of σx along with adaptive and learned rules, but a fixed σx =
1e−6 appears to work very well in practice. This is similar to the choice of the σ parameter in
OSQP (Stellato et al., 2020).

The parameter σs plays the role of quadratic cost on the slack variable s when solving Eq. (7a). It
also plays a small role in regularizing the constraint matrix G. In practice, tuning this parameter is
the most difficult as the optimal value appears to depend strongly on the scaling of the objective and
the constraints. This motivates our adaptive data-driven approach described in Section 4.

The penalty parameters ρI and ρE are perhaps the most important, as they play two key roles in
the algorithm. First, they regularize the constraint matrices G and A so that Eq. (7a) is solvable
regardless of the rank of G or A. Second, they weight the noise level in the soft thresholding
operations Eqs. (7d) and (7e) playing an inverse role to µI and µE , where a larger ρ results in a
smaller threshold. Determining the optimal values of these parameters by hand is unintuitive as
they can have varying effects on the optimization, further motivating the deep unfolding approach
presented in the next section.

4 ACCELERATING QUADRATIC PROGRAMMING THROUGH DEEP
UNFOLDING

We focus our study on two recently proposed data-accelerated QP optimizers. The deep centralized
QP optimizer from Saravanos et al. (2025) is a version of deep-unfolded OSQP where the penalty
parameters ρ and relaxation parameter α are learned as feedback policies on the problem residuals
using an analogy to feedback control. In our comparisons, we refer to their method as Deep OSQP.
The main limitation of their approach is that only scalar penalty parameters are learned, but it could
be the case that different penalty parameters should be applied to different constraints to more ef-
fectively accelerate the optimizer. This was the main motivation for the deep QP method proposed
by Ichnowski et al. (2021), where a policy that outputs a vector of penalty parameters is learned
using reinforcement learning. The vector policy is applied across the constraint dimensions so it
is dimension-agnostic and generalizes across different problem classes. The authors show that the
vector policy outperforms the scalar one across a suite of QP benchmarks. However, unlike Sara-
vanos et al. (2025), the authors do not learn the relaxation parameter α, which can greatly improve
the convergence of ADMM (Boyd et al., 2011). We implement the approach from Ichnowski et al.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: One layer of our proposed Deep FlexQP architecture. We learn dimension-agnostic feed-
back policies for the parameters while the propagation from one layer to the next is defined by the
ADMM updates Eq. (7).

(2021) and train it using the supervised learning scheme from Saravanos et al. (2025), leading to the
baseline Deep OSQP — RLQP Parameterization. Finally, we implement a “best-of-both-worlds”
approach that learns a vector feedback policy for the penalty parameters ρ while also learning a
policy for the ADMM relaxation parameter α, which we call Deep OSQP — Improved.

4.1 DEEP FLEXQP ARCHITECTURE

Our proposed Deep FlexQP learns feedback policies for the algorithm parameters as a function of
the current state of the optimizer as well as the QP and ADMM residuals, see Fig. 2. Based on
the successes of the Deep OSQP methods discussed above, we learn separate policies πI , πE , and
πα for the parameters related to the inequality constraints, equality constraints, and the relaxation
parameter, respectively. Furthermore, the πI and πE policies are designed so that the resultant
architecture is independent of problem size and permutation by applying the policies in a batched
fashion per constraint coefficient. Note that the variables s, zI , ws and yI are one-to-one with µI ,
σs, and ρI , and that zE and yE are one-to-one with µE and ρE . We therefore use s, zI , ws, yI
along with their associated ADMM residuals, as well as the (relaxed) QP residual Gx+ s− h− zI
as inputs to the inequality policy πI . We also include the infinity norm of the QP dual residual
ζdual = Px + q + G⊤yI + A⊤yE as a scale-invariant measure of optimality. This leads to a total
of ten inputs and three outputs corresponding to the coefficients of µI , σs, and ρI . Likewise, the
equality constraint policy πE learns µE and ρE as a function of the variables zE and yE , along with
their associated ADMM residuals, the relaxed QP residual Ax− b− zE , and the dual residual ζdual,
leading to six total inputs. Finally, the policy πα learns the relaxation parameter α as a function of
the infinity norms of each of the QP and ADMM residuals, which provide a scale-invariant measure
of how well and fast the optimizer is converging. Full expressions for the residuals and policies are
given in Appendix E.

All policies are parameterized by long short-term memory (LSTM) networks (Hochreiter & Schmid-
huber, 1997), with the hypothesis that learning long-term dependencies can aid the selection of the
optimal parameters. This furthers the idea from Saravanos et al. (2025) that time-varying feedback
on the current “nominal” parameters can provide a large improvement. In our case, we are applying
feedback based on a latent state capturing the optimization history. Our results show that LSTMs
provide the most benefit for problems where the active constraints might change many times over
the course of the optimization, see Appendix J.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 SUPERVISED LEARNING

For training Deep OSQP variants, we adopt the supervised learning approach from Saravanos et al.
(2025). The training loss is the weighted sum of the optimality gaps between the iterates xk and the
true optimal solution x∗:

min
θ

K∑
k=1

γk
∥∥xk(θ)− x∗∥∥

2
, (8)

where γk = exp((k −K)/5) is a per-iteration scaling factor.

For training Deep FlexQP, we adopt a similar loss, but generalize it to incorporate the optimal
Lagrange multipliers based on the discussion in Section 3. We also use the normalized optimality
gaps instead of the unnormalized ones so that the scale is automatically determined based on the
distance from the optimal solution:

min
θ

K∑
k=1

∥∥ξk(θ)− ξ∗
∥∥
2
/ ∥ξ∗∥2 , (9)

where ξ = (x, yI , yE). Jointly taking the norm over all the variables x, yI , and yE keeps the
loss scale-invariant between the problem dimensions n, m, and p, as well as across the problem
classes themselves. Furthermore, by including the Lagrange multipliers here, we are able to enforce
the Deep FlexQP optimizer to select penalty parameters that meet the conditions of Theorem 3.1,
namely that µI ≥ ∥y∗I∥∞ and µE ≥ ∥y∗E∥∞. This is due to the fact that the Lagrange multipliers of
Deep FlexQP yI(θ) and yE(θ) are upper-bounded (in absolute value) by the current selection of µ
(see Theorem 3.2). An ablation studying the effect of this loss is provided in Appendix K.

4.3 PAC-BAYES GENERALIZATION BOUNDS

Recent approaches have been proposed for establishing generalization bounds for guaranteeing the
performance of learning-to-optimize methods, including a binary loss approach from Sambharya &
Stellato (2025) as well as a more informative “progress” metric by Saravanos et al. (2025), given as:

ℓ(θ) = min(∥xK(θ)− x∗∥2/∥x0(θ)− x∗∥2, 1). (10)

Figure 3: Log-scaled loss better
captures small errors when the
solution is close to the optimal.

These approaches can be used to construct PAC-Bayes general-
ization bounds on the mean performance of the optimizer that
hold with high probability. Nevertheless, a limitation of the re-
sulting PAC-Bayes bound from Eq. (10) is that it assumes that
the losses can fall anywhere within in the range [0, 1], despite the
fact that, in practice, most of the final optimality gaps fall very
close to 0 (on the order of 1e−2 and smaller). In other words,
the loss in Eq. (10) does not properly account for the scale of the
errors, and as a result, obtaining a meaningful bound might re-
quire exponentially more training samples. For example, Fig. 4a
shows that training for this generalization bound loss results in
a bound that is uninformative since it sits above even the vanilla
optimizers and does not capture the behavior well at very small
errors.

To address this issue, we propose a log-scaled loss that is zero
when the learner performs as well as or better than the optimal
solution, and increases linearly as the performance decreases on
a log-scale; see Fig. 3 for a visualization. Furthermore, we penal-
ize distance from the optimal solution with respect to the norm
of the QP residuals, which better takes into account the scale of
the problem:

ℓ(θ) = clip(1− log∥r(ξK(θ))∥2/ log∥r(ξ∗)∥2, 0.0, 1.0), (11)

where ξ = (x, yI , yE) and r(ξ) := (Px+ q+G⊤yI +A⊤yE ,max(Gx− h, 0), Ax− b) computes
the residuals of the original QP in Eq. (1). As intended, training for this loss better captures the
performance when the residuals are very small (Fig. 4b). Further results are presented in Appendix I.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 5 10 15 20

Iteration

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
O

p
ti

m
al

it
y

G
ap

L
os

s

OSQP

FlexQP (Ours)

Deep OSQP

Deep OSQP — RLQP Param.

Deep OSQP — Improved

Deep FlexQP (Ours)

Deep FlexQP Gen. Bound — Eq. (10)

(a) Deep FlexQP trained for the generalization
bound loss Eq. (10).

0 5 10 15 20

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

L
og

-s
ca

le
d

L
os

s

Deep FlexQP (Ours)

Deep FlexQP Gen. Bound — Eq. (11) (Ours)

(b) Deep FlexQP trained for our proposed gener-
alization bound loss Eq. (11).

Figure 4: Optimizer comparison on 1000 test LASSO problems. Training using our log-normalized
loss Eq. (11) results in a substantially more informative performance guarantee.

5 APPLICATIONS

0 5 10 15 20

Iteration

10−1

10−3

10−5

10−7

O
p

ti
m

al
it

y
G

ap

Random QPs

OSQP

FlexQP (Ours)

Deep OSQP

Deep OSQP — RLQP Param.

Deep OSQP — Improved

Deep FlexQP (Ours)

0 5 10 15 20

Iteration

100

10−3

10−6

10−9

Random QPs with Equalities

0 5 10 15 20

Iteration

100

10−2

10−4

10−6

10−8

Portfolio Optimization

0 5 10 15 20

Iteration

10−1

10−3

10−5

10−7

O
p

ti
m

al
it

y
G

ap

Support Vector Machines

0 5 10 15 20

Iteration

100

10−3

10−6

10−9

LASSO

0 5 10 15 20

Iteration

100

10−3

10−6

10−9

Huber Fitting

0 5 10 15 20

Iteration

10−1

10−2

10−3

10−4

O
p

ti
m

al
it

y
G

ap

Random Linear OCPs

0 5 10 15 20

Iteration

10−1

10−3

10−5

10−7

Double Integrator

0 5 10 15 20

Iteration

100

10−3

10−6

10−9

Oscillating Masses

Figure 5: Performance comparison of learned deep optimizers and their non-learned counterparts.
Our improved version of Deep OSQP outperforms the baselines, while Deep FlexQP consistently
surpasses the rest of the methods in terms of convergence to the optimal QP solution.

We apply our deep-unfolded methodology to a benchmark suite of QPs adapted from Stellato et al.
(2020) and Saravanos et al. (2025), with results presented in Fig. 5. These consist of various problem
classes, including synthetic QPs that are feasible by construction, portfolio optimization problems
from finance, classification and regression problems from machine learning, and linear optimal con-
trol problems. Details on the problem representations as well as the data generation processes are

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

provided in Appendix F. In all plots, OSQP is the best performing version of OSQP, found us-
ing a hyperparameter search over the following configurations: fixed parameters for all iterations,
adaptive penalty parameters using the OSQP rule, or adaptive penalty parameters using the ADMM
rule. Similarly, FlexQP is the best performing version of FlexQP, found using a hyperparameter
search over the following configurations: fixed parameters for all iterations, adaptive penalty pa-
rameters using an OSQP-like rule, or adaptive penalty parameters using the ADMM rule. Deep
OSQP is the approach from Saravanos et al. (2025), Deep OSQP — RLQP Parameterization is
the parameterization from Ichnowski et al. (2021), and Deep OSQP — Improved is an improved
“best-of-both-worlds” version of deep-unfolded OSQP, as described in Section 4. Finally, Deep
FlexQP is our proposed deep-unfolded FlexQP optimizer with LSTM policy parameterization and
trained using the loss Eq. (9). We also perform an extensive timing comparison and analysis between
all of the above optimizers, presented in Appendix H.

Solve Time (s) Success Rate (%)

6.04

49

1.51

84
SQP — OSQP

SQP — Deep FlexQP (Ours)

Safety Filter Time Collisions (↓) Successes (↑)

23.7 ms

36

61

16.9 ms
10

87Shield-MPPI

SQP — Deep FlexQP (Ours)

Figure 6: Comparison of our approach vs. traditional optimizer baselines on quadrotor trajectory
optimization problems (left) and nonlinear predictive safety filter problems (right). Ours is faster
than the baselines while vastly improving the task completion rate and safety.

Lastly, we use our Deep FlexQP optimizer as a submodule in SQP to solve two important classes
of nonlinear optimizations. These are nonlinear optimal control problems and predictive safety fil-
ter problems generated using control barrier functions. Training for generalization bounds Eq. (11)
yields a numerical certificate of performance that we use when designing the SQP method. The re-
sults are summarized in Fig. 1 and Fig. 6, with supplementary information provided in Appendix G.

6 CONCLUSION

We present FlexQP, a flexible QP solver that can solve any QP irregardless of any assumptions on the
constraints. FlexQP always returns a solution that minimizes the constraint violation, and thus can
be used as a robust QP solver in SQP. Our accelerated variant, Deep FlexQP, outperforms other tra-
ditional optimizers and learned approaches in terms of convergence, both in number of iterations and
solve time. Generalization bounds provide a numerical certificate of performance, and we use these
bounds to design SQP solvers for nonlinear optimal control and predictive safety filters. Using Deep
FlexQP as a submodule in SQP provides a substantial speedup over traditional approaches, while
also allowing for a graceful recovery when an infeasible QP subproblem is encountered. Some po-
tential future extensions include learning warm-starts for our solver and applying it to the distributed
QP setting explored in Saravanos et al. (2025).

REFERENCES

Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath, and
Paulo Tabuada. Control barrier functions: Theory and applications. In 2019 18th European
control conference (ECC), pp. 3420–3431. Ieee, 2019.

Brian DO Anderson and John B Moore. Optimal control: linear quadratic methods. Courier Cor-
poration, 2007.

Aleksandr Aravkin, James V Burke, Lennart Ljung, Aurelie Lozano, and Gianluigi Pillonetto. Gen-
eralized kalman smoothing: Modeling and algorithms. Automatica, 86:63–86, 2017.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Foundations and
Trends® in Machine learning, 3(1):1–122, 2011.

Stephen Boyd, Mark T Mueller, Brendan O’Donoghue, Yang Wang, et al. Performance bounds and
suboptimal policies for multi–period investment. Foundations and Trends® in Optimization, 1
(1):1–72, 2013.

Stephen Boyd, Enzo Busseti, Steve Diamond, Ronald N Kahn, Kwangmoo Koh, Peter Nystrup,
Jan Speth, et al. Multi-period trading via convex optimization. Foundations and Trends® in
Optimization, 3(1):1–76, 2017.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

G Brown and G Graves. Elastic programming: a new approach to large-scale mixed integer opti-
mization. In ORSA/TIMS Conference, Las Vegas, 1975.

Emmanuel J Candes, Michael B Wakin, and Stephen P Boyd. Enhancing sparsity by reweighted ℓ1
minimization. Journal of Fourier analysis and applications, 14(5):877–905, 2008.

Steven W Chen, Tianyu Wang, Nikolay Atanasov, Vijay Kumar, and Manfred Morari. Large scale
model predictive control with neural networks and primal active sets. Automatica, 135:109947,
2022a.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to optimize: A primer and a benchmark. Journal of Machine Learning
Research, 23(189):1–59, 2022b.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995.

Brent De Weerdt, Yonina C. Eldar, and Nikos Deligiannis. Deep unfolding transformers for sparse
recovery of video. IEEE Transactions on Signal Processing, 72:1782–1796, 2024. doi: 10.1109/
TSP.2024.3381749.

Moritz Diehl, Hans Joachim Ferreau, and Niels Haverbeke. Efficient numerical methods for non-
linear mpc and moving horizon estimation. In Nonlinear model predictive control: towards new
challenging applications, pp. 391–417. Springer, 2009.

Liang Fang, Stefan Vandewalle, and Johan Meyers. An sqp-based multiple shooting algorithm for
large-scale pde-constrained optimal control problems. Journal of Computational Physics, 477:
111927, 2023.

R Fletcher. An l1 penalty method for nonlinear constraints. Numerical optimization, 1984:26–40,
1985.

Philip E Gill, Walter Murray, and Michael A Saunders. Snopt: An sqp algorithm for large-scale
constrained optimization. SIAM review, 47(1):99–131, 2005.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proc. Interna-
tional Conference on Machine learning (ICML’10), 2010.

S-P Han and Olvi L Mangasarian. Exact penalty functions in nonlinear programming. Mathematical
programming, 17(1):251–269, 1979.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Peter J Huber. Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35
(1):73–101, 1964.

PJ Huber. Robust statistics. Wiley series in probability and mathematical statistics, 1981.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jeffrey Ichnowski, Paras Jain, Bartolomeo Stellato, Goran Banjac, Michael Luo, Francesco Borrelli,
Joseph E Gonzalez, Ion Stoica, and Ken Goldberg. Accelerating quadratic optimization with
reinforcement learning. Advances in Neural Information Processing Systems, 34:21043–21055,
2021.

Alexey F Izmailov and Mikhail V Solodov. Stabilized sqp revisited. Mathematical programming,
133(1):93–120, 2012.

Sven Leyffer. Integrating sqp and branch-and-bound for mixed integer nonlinear programming.
Computational optimization and applications, 18(3):295–309, 2001.

Anirudha Majumdar, Alec Farid, and Anoopkumar Sonar. PAC-Bayes control: learning policies that
provably generalize to novel environments. The International Journal of Robotics Research, 40
(2-3):574–593, 2021.

Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952. ISSN 00221082,
15406261. URL http://www.jstor.org/stable/2975974.

Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable, efficient deep
learning for signal and image processing. IEEE Signal Processing Magazine, 38(2):18–44, 2021.

Oscar Danilo Montoya, Walter Gil-González, and Alejandro Garces. Sequential quadratic program-
ming models for solving the opf problem in dc grids. Electric Power Systems Research, 169:
18–23, 2019.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 2006.

James Blake Rawlings, David Q Mayne, Moritz Diehl, et al. Model predictive control: theory,
computation, and design, volume 2. Nob Hill Publishing Madison, WI, 2020.

Francesco Sabatino. Quadrotor control: modeling, nonlinearcontrol design, and simulation. 2015.
URL https://api.semanticscholar.org/CorpusID:61413561.

Rajiv Sambharya and Bartolomeo Stellato. Data-driven performance guarantees for classical and
learned optimizers. Journal of Machine Learning Research, 26(171):1–49, 2025.

Rajiv Sambharya, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. End-to-end learning to
warm-start for real-time quadratic optimization. In Learning for dynamics and control conference,
pp. 220–234. PMLR, 2023.

Augustinos D Saravanos, Hunter Kuperman, Alex Oshin, Arshiya Taj Abdul, Vincent Pacelli, and
Evangelos Theodorou. Deep distributed optimization for large-scale quadratic programming. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=hzuumhfYSO.

Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Mobile Robots, pp.
469–521. Springer London, London, 2009. ISBN 978-1-84628-642-1. doi: 10.1007/
978-1-84628-642-1 11. URL https://doi.org/10.1007/978-1-84628-642-1_
11.

Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. Osqp: An
operator splitting solver for quadratic programs. Mathematical Programming Computation, 12
(4):637–672, 2020.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267–288, 1996.

Kim Peter Wabersich and Melanie N Zeilinger. A predictive safety filter for learning-based control
of constrained nonlinear dynamical systems. Automatica, 129:109597, 2021.

Zhaowen Wang, Ding Liu, Jianchao Yang, Wei Han, and Thomas Huang. Deep networks for im-
age super-resolution with sparse prior. In Proceedings of the IEEE international conference on
computer vision, pp. 370–378, 2015.

Ji Yin, Charles Dawson, Chuchu Fan, and Panagiotis Tsiotras. Shield model predictive path integral:
A computationally efficient robust mpc method using control barrier functions. IEEE Robotics
and Automation Letters, 8(11):7106–7113, 2023.

11

http://www.jstor.org/stable/2975974
https://api.semanticscholar.org/CorpusID:61413561
https://openreview.net/forum?id=hzuumhfYSO
https://openreview.net/forum?id=hzuumhfYSO
https://doi.org/10.1007/978-1-84628-642-1_11
https://doi.org/10.1007/978-1-84628-642-1_11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A PROOF OF THEOREM 3.1

First, we state an equivalent representation of the relaxed QP:
Lemma A.1. The relaxed QP in Eq. (3) can equivalently be expressed as the following optimization:

min
x

ϕ(x;µI , µE) :=
1

2
x⊤Px+ q⊤x+ µI ∥(Gx− h)+∥1 + µE ∥Ax− b∥1 . (12)

We will also require the optimality conditions for Eq. (1):
Lemma A.2. Let (x∗, y∗I , y

∗
E) solve Eq. (1). Then, the following conditions hold:

Px∗ + q +G⊤y∗I +A⊤y∗E = 0, (13a)

y∗I,i(g
⊤
i x

∗ − hi) = 0, ∀i = 1, . . . ,m, (13b)

Ax∗ − b = 0, (13c)
Gx∗ − h ≤ 0, (13d)

y∗I ≥ 0. (13e)

Proof Sketch. The sketch of the proof of Theorem 3.1 is as follows. We will show for any µI ≥
µ∗
I = ∥y∗I∥∞ and for any µE ≥ µ∗

E = ∥y∗E∥∞ that

1. if x∗ solves Eq. (1), then x∗ solves Eq. (12), and
2. if x̂ solves Eq. (12) then x̂ solves Eq. (1).

Step 1: Show that x∗ solves Eq. (12). To start, for any x ∈ Rn we have that

ϕ(x;µI , µE) =
1

2
x⊤Px+ q⊤x+ µI ∥(Gx− h)+∥1 + µE ∥Ax− b∥1 (14a)

=
1

2
x⊤Px+ q⊤x+ µI

m∑
i=1

(g⊤i x− hi)+ + µE

p∑
i=1

|a⊤i x− bi| (14b)

≥ 1

2
x⊤Px+ q⊤x+ ∥y∗I∥∞

m∑
i=1

(g⊤i x− hi)+ + ∥y∗E∥∞
p∑

i=1

|a⊤i x− bi| (14c)

≥ 1

2
x⊤Px+ q⊤x+

m∑
i=1

y∗I,i(g
⊤
i x− hi)+ +

p∑
i=1

y∗E,i|a⊤i x− bi| (14d)

≥ 1

2
x⊤Px+ q⊤x+

m∑
i=1

y∗I,i(g
⊤
i x− hi) +

p∑
i=1

y∗E,i(a
⊤
i x− bi) (14e)

=
1

2
x⊤Px+ q⊤x+

m∑
i=1

y∗I,i(g
⊤
i x

∗ − hi + g⊤i (x− x∗)) (14f)

+

p∑
i=1

y∗E,i(a
⊤
i x

∗ − bi + a⊤i (x− x∗))

=
1

2
x⊤Px+ q⊤x+

m∑
i=1

y∗I,ig
⊤
i (x− x∗) +

p∑
i=1

y∗E,ia
⊤
i (x− x∗) (14g)

=
1

2
x⊤Px+ q⊤x+ (G⊤y∗I +A⊤y∗E)

⊤(x− x∗) (14h)

=
1

2
x⊤Px+ q⊤x− (Px∗ + q)⊤(x− x∗) (14i)

=
1

2
x∗⊤Px∗ + q⊤x∗ +

1

2
(x− x∗)⊤P (x− x∗) (14j)

≥ 1

2
x∗⊤Px∗ + q⊤x∗ (14k)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

=
1

2
x∗⊤Px∗ + q⊤x∗ + µI ∥(Gx∗ − h)+∥1 + µE ∥Ax∗ − b∥1 (14l)

= ϕ(x∗;µI , µE). (14m)

The step from Eq. (14b) to Eq. (14c) follows from the assumption that µI ≥ ∥y∗I∥∞ and µE ≥
∥y∗E∥∞. Going from Eq. (14c) to Eq. (14d) follows from ∥y∗I∥∞ ≥ y∗I,i and (g⊤i x − hi)+ ≥ 0 for
all i = 1, . . . ,m, in addition to ∥y∗E∥∞ ≥ y∗E,i and |a⊤i x − bi| ≥ 0 for all i = 1, . . . , p. Obtaining
Eq. (14g) follows from the conditions in Eq. (13) and in particular, y∗I,i(g

⊤
i x

∗
i − hi) = 0 for all

i = 1, . . . ,m, and a⊤i x
∗
i − bi = 0 for all i = 1, . . . , p. Getting Eq. (14i) follows from Eq. (13a).

Finally, obtaining Eq. (14k) follows from (x− x∗)⊤P (x− x∗) ≥ 0 since P ∈ Sn+.

Thus, we have shown that ϕ(x∗;µI , µE) ≤ ϕ(x;µI , µE) for any x, which implies that x∗ minimizes
ϕ(x;µI , µE) and therefore solves Eq. (12).

Step 2: Show that x̂ solves Eq. (1). Next, let x̂ solve Eq. (12). If x∗ ̸= x̂ solves Eq. (1), then we
have that

ϕ(x̂;µI , µE) =
1

2
x̂⊤Px̂+ q⊤x̂+ µI ∥(Gx̂− h)+∥1 + µE ∥Ax̂− b∥1 (15)

≤ 1

2
x∗⊤Px∗ + q⊤x∗ + µI ∥(Gx∗ − h)+∥1 + µE ∥Ax∗ − b∥1 (16)

=
1

2
x∗⊤Px∗ + q⊤x∗. (17)

Now, assume that x̂ is not feasible for Eq. (1). Then

1

2
x̂⊤Px̂+ q⊤x̂ ≥ 1

2
x∗⊤Px∗ + q⊤x∗ + (Px∗ + q)⊤(x̂− x∗) (18)

=
1

2
x∗⊤Px∗ + q⊤x∗ −

m∑
i=1

y∗I,ig
⊤
i (x̂− x∗)−

p∑
i=1

y∗E,ia
⊤
i (x̂− x∗) (19)

=
1

2
x∗⊤Px∗ + q⊤x∗ −

m∑
i=1

y∗I,i(g
⊤
i x̂− hi − (g⊤i x

∗ − hi))−
p∑

i=1

y∗E,i(a
⊤
i x̂− bi − (a⊤i x

∗ − bi))

(20)

=
1

2
x∗⊤Px∗ + q⊤x∗ −

m∑
i=1

y∗I,i(g
⊤
i x̂− hi)−

p∑
i=1

y∗E,i(a
⊤
i x̂− bi) (21)

≥ 1

2
x∗⊤Px∗ + q⊤x∗ − µI

m∑
i=1

g⊤i x̂− hi − µE

p∑
i=1

a⊤i x̂− bi (22)

≥ 1

2
x∗⊤Px∗ + q⊤x∗ − µI

m∑
i=1

(g⊤i x̂− hi)+ − µE

p∑
i=1

|a⊤i x̂− bi|. (23)

Rearranging, we have that

1

2
x̂⊤Px̂+ q⊤x̂+ µI ∥(Gx̂− h)+∥1 + µE ∥Ax− b∥1 ≥

1

2
x∗⊤Px∗ + q⊤x∗, (24)

but either x̂ = x∗ or this contradicts the fact that x̂ minimized ϕ(·;µI , µE) in Eq. (17). Thus, x̂ is
feasible for Eq. (1).

Therefore, by Eq. (17) we have that

1

2
x̂⊤Px̂+ q⊤x̂ ≤ 1

2
x∗⊤Px∗ + q⊤x∗, (25)

so x̂ minimizes the objective Eq. (1a) and thus solves Eq. (1), completing the proof.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B FLEXQP — FIRST BLOCK ADMM UPDATE

The most computationally demanding step of FlexQP is the first block update Eq. (7a), which is an
equality-constrained QP:

minimize
1

2
x̃⊤Px̃+ q⊤x̃+ (σx/2)

∥∥x̃− xk
∥∥2
2
+ (σs/2)

∥∥s̃− sk + σ−1
s wk

s

∥∥2
2

+ (ρI/2)
∥∥z̃I − zkI + ρ−1

I ykI
∥∥2
2
+ (ρE/2)

∥∥z̃E − zkE + ρ−1
E ykE

∥∥2
2
,

(26a)

subject to z̃I = Gx̃+ s̃− h, (26b)
z̃E = Ax̃− b. (26c)

The optimality conditions for this QP are given by

Px̃+ q + σx(x̃− xk) +G⊤ν̃I +A⊤ν̃E = 0, (27a)

σs(s̃− sk) + wk
s + ν̃I = 0, (27b)

ρI(z̃I − zkI) + ykI − ν̃I = 0, (27c)

ρE(z̃E − zkE) + ykE − ν̃E = 0, (27d)
Gx̃+ s̃− z̃I − h = 0, (27e)

Ax̃− z̃E − b = 0, (27f)

where ν̃I ∈ Rm and ν̃E ∈ Rp are the Lagrange multipliers for the constraints Eq. (26b) and
Eq. (26c), respectively. Solving this QP as-is would be expensive since it requires solving a lin-
ear system of size n+ 3m+ 2p. However, we can eliminate s̃, z̃I , and z̃E using Eqs. (27b) to (27d)
above, so the linear system simplifies toP + σxI G⊤ A⊤

G −(σ−1
s + ρ−1

I)I 0
A 0 −ρ−1

E I

[x̃
ν̃I
ν̃E

]
=

 σxx
k − q

h− sk + σ−1
s wk

s + zkI − ρ−1
I ykI

b+ zkE − ρ−1
E ykE

 , (28)

with the eliminated variables recoverable using

s̃ = sk − σ−1
s wk

s − σ−1
s ν̃I , (29a)

z̃I = zkI − ρ−1
I ykI + ρ−1

I ν̃I , (29b)

z̃E = zkE − ρ−1
E ykE + ρ−1

E ν̃E . (29c)

The coefficient matrix in the linear system Eq. (28) is always full rank due to the positive parameters
σx, σs, ρI , and ρE introduced through the ADMM splitting. This linear system can be solved using
a direct method such as an LDL⊤ factorization requiring O((n+m+p)3) time, the same as OSQP
using the direct method. On the other hand, for large-scale QPs, i.e., when n+m+ p is very large,
factoring this matrix can be prohibitively expensive. In this case, we can use an indirect method to
solve the reduced system

(P + σxI + Ḡ⊤G+ Ā⊤A)x̃ = σxx
k − q + Ḡ⊤(h− sk + σ−1

s wk
s + zkI − ρ−1

I ykI)

+ Ā⊤(b+ zkE − ρ−1
E ykE),

(30)

where Ḡ = (σ−1
s + ρ−1

I)−1G and Ā = ρEA. This can be obtained by eliminating ν̃I and ν̃E from
the linear system Eq. (28). These variables are recoverable using

ν̃I = (σ−1
s + ρ−1

I)−1(Gx̃+ sk − σ−1
s wk

s − zkI + ρ−1
I ykI − h), (31a)

ν̃E = ρE(Ax̃− zkE + ρ−1
E ykE − b). (31b)

The coefficient matrix in Eq. (30) is always positive definite, so the linear system can be solved
using an iterative algorithm such as the conjugate gradient (CG) method. The linear system is of
size n, matching the complexity of OSQP using the indirect method. In this work, we consider a
supervised learning setting where we will need to compute derivatives of the solution x̃ with respect
to the parameters σx, ρI , etc. While each iteration of the CG method is very fast, it can require
many iterations to converge to a low-error solution. It would be very inefficient to backpropagate
through all these iterations of the CG method, the main issue being the high memory cost since

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

the entire compute graph needs to be stored and then differentiated through during the backward
pass. We instead adopt the approach from Saravanos et al. (2025, Theorem 2) using differentiable
optimization in order to compute these derivatives in a more efficient manner. In practice, this means
we can compute the derivatives by solving a new linear system with the same coefficient matrix but
different right-hand side during the backward pass.

C FLEXQP ALGORITHM

Algorithm 1: FlexQP
Input : Initialization x0, s0, z0I , z

0
E , w

0
s , y

0
I , y

0
E and parameters µI , µE , σx, σs, ρI , ρE > 0

Output: Solution x∗, y∗I , y
∗
E

while termination criterion not satisfied do
x̃k+1, ν̃k+1

I , ν̃k+1
E ← Solve the linear system Eq. (28)

s̃k+1 = sk − σ−1
s wk

s − σ−1
s ν̃k+1

I

z̃k+1
I = zkI − ρ−1

I ykI + ρ−1
I ν̃k+1

I

z̃k+1
E = zkE − ρ−1

E ykE + ρ−1
E ν̃k+1

E

xk+1 = αx̃k+1 + (1− α)xk

sk+1 =
(
αs̃k+1 + (1− α)sk + σ−1

s wk
s

)
+

zk+1
I = SµI/ρI

(
αz̃k+1

I + (1− α)zkI + ρ−1
I ykI

)
zk+1
E = SµE/ρE

(
αz̃k+1

E + (1− α)zkE + ρ−1
E ykE

)
wk+1

s = wk
s + σs(s̃

k+1 − sk+1)

yk+1
I = ykI + ρI(z̃

k+1
I − zk+1

I)

yk+1
E = ykE + ρE(z̃

k+1
E − zk+1

E)
end

D PROOF OF THEOREM 3.2

The proof follows from the definition of the soft thresholding operator. First, we consider the zI and
zE updates from Eq. (7d) and Eq. (7e) as well as the dual variable updates for yI and yE (Eq. (7h)
and Eq. (7i)). Assume w.l.o.g. that α = 1. These updates have the general form:

zk+1 = Sµ/ρ

(
z̃k+1 + yk/ρ

)
, (32)

yk+1 = yk + ρ(z̃k+1 − zk+1). (33)

Now, there are three cases the consider based on the output of the soft thresholding operation:

1. Positive constraint violation: If z̃k+1 + yk/ρ > µ/ρ, then zk+1 = z̃k+1 + yk/ρ − µ/ρ.
Substituting into Eq. (33) yields yk+1 = µ.

2. No constraint violation: If |z̃k+1 + yk/ρ| ≤ µ/ρ, then zk+1 = 0. This further implies
ρ|z̃k+1 + yk/ρ| ≤ µ and by Eq. (33) this implies |yk+1| ≤ µ.

3. Negative constraint violation: If z̃k+1 + yk/ρ < µ/ρ, then zk+1 = z̃k+1 + yk/ρ+ µ/ρ.
Substituting into Eq. (33) yields yk+1 = −µ.

Combining these three cases, we have that |yk+1| ≤ µ, for any z̃k+1, yk and therefore |ŷ| ≤ µ.
This proves the first and last statement of the theorem. Applying Theorem 3.1 shows the second
statement.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E DEEP FLEXQP POLICY PARAMETERIZATION

The residuals for Eq. (4) are given by

ζdual = Px+ q +G⊤yI +A⊤yE , (34a)
ζI = Gx+ s− h− zI , (34b)
ζE = Ax− b− zE . (34c)

The ADMM residuals for Eq. (5) are given by

ζ̄s = sprev − s, (35a)

ζ̄I = zprev
I − zI , (35b)

ζ̄E = zprev
E − zE , (35c)

ζ̃s = s̃− s, (35d)

ζ̃I = z̃I − zI , (35e)

ζ̃E = z̃E − zE , (35f)

where “bar” quantities denote the ADMM dual residuals and “tilde” quantities denote the ADMM
primal residuals (Boyd et al., 2011). We ignore the residuals corresponding to x since it is uncon-
strained in the second ADMM block (so the primal residual is not very meaningful) and we have
already captured the dual optimality through Eq. (34).

The policy πI : R10 → R3
+ is given by

µI , σs, ρI = πI(s, zI , ws, yI , ∥ζdual∥∞, ζI , ζ̄s, ζ̄I , ζ̃s, ζ̃I), (36)

where we have dropped the index by constraint i for clarity.

The policy πE : R6 → R2
+ is given by

µE , ρE = πE(zE , yE , ∥ζdual∥∞, ζE , ζ̄E , ζ̃E). (37)

The policy πα : R9 → (0, 2) is given by

α = πα(∥ζdual∥, ∥ζI∥, ∥ζE∥, ∥ζ̄s∥, ∥ζ̄I∥, ∥ζ̄E∥, ∥ζ̃s∥, ∥ζ̃I∥, ∥ζ̃s∥), (38)

where the norm used is the infinity norm.

Computationally, we log-scale any small positive inputs like the infinity norms of the residuals.
Following Ichnowski et al. (2021), we also predict log-transformed values logµI , log ρE , etc. and
then apply an exponential function so that it is easier to predict parameters across a wide scale of
values. We then clamp the parameters (besides α) to the range [1e−6, 1e6]; α ∈ (0, 2) is enforced
using a scaled sigmoid function.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

F FURTHER DETAILS ON PROBLEM CLASSES

A summary of the problem sizes and training parameters of the different classes is presented in
Table 1. We train all models for 500 epochs and evaluate using 1000 test samples. More training
samples are used for random QPs following the setup by Saravanos et al. (2025) since the shared
structure between these QPs is less clear and therefore harder to learn. All experiments were run on
a system with an Intel i9-13900K processor, 64GB of RAM, and an NVIDIA RTX 4090 GPU.

Table 1: QP problem sizes and number of samples used for training.

Problem Class n m p Train Samples
Random QPs 50 40 0 2000

Random QPs with Equalities 50 25 20 2000
Portfolio Optimization 275 250 26 500

Support Vector Machine 210 400 0 500
LASSO 510 10 500 500

Huber Fitting 310 200 100 500
Random Linear OCPs 128 256 88 500

Double Integrator 62 124 42 500
Oscillating Masses 162 324 132 500

Car with Obstacles (SQP) 253 455 153 500
Quadrotor (SQP) 812 400 612 500

Car Safety Filter (SQP) 253 50 153 500

F.1 RANDOM QPS

The first type of problems we study are random QPs of the form Eq. (1). These are helpful as we
can freely adjust the number of constraints as well as the sparsity of the problem directly in order to
benchmark the optimizers under different operating conditions.

Problem Instances: We adopt the problem generation procedure from Saravanos et al. (2025),
where P = M⊤M + αI with α = 1 and all elements of M , q, G, and A are standard normal
distributed, i.e., each element Mij , qi, Gij , Aij ∼ N (0, 1). The vectors h and b are generated using
h = Gξ and b = Aζ with ξ, ζ standard normal vectors.

We consider two classes of random QPs. The first class, Random QPs, contains only inequality
constraints generated by setting the problem dimensions as n = 50, m = 40, and p = 0. The
second class, Random QPs with Equalities contains a mix of inequality and equality constraints,
and is generated using n = 50, m = 25, and p = 20.

F.2 PORTFOLIO OPTIMIZATION

Portfolio Optimization is a foundational problem in finance where the goal is to maximize the
risk-adjusted return of a group of assets (Markowitz, 1952; Boyd et al., 2013; 2017). This can be
represented as the following QP (Boyd & Vandenberghe, 2004; Stellato et al., 2020):

max
x

µ⊤x− γ(x⊤Σx), (39a)

subject to 1⊤x = 1, (39b)
x ≥ 0, (39c)

where x ∈ Rn is the portfolio, µ ∈ Rn is the expected returns, γ > 0 is the risk aversion parameter,
and Σ ∈ Sn+ is the risk model covariance.

QP Representation: We assume that Σ = FF⊤ +D where F ∈ Rn×k is the rank-k factor loading
matrix with k < n and D ∈ Rn×n is the diagonal matrix specifying the asset-specific risk. Using
this assumption, the optimization problem can be converted into a more efficient QP representation:

min
x,y

x⊤Dx+ y⊤y − γ−1µ⊤x, (40a)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

subject to y = F⊤x, (40b)

1⊤x = 1, (40c)
x ≥ 0. (40d)

This new QP has n+ k decision variables, k + 1 equality constraints, and n inequality constraints.

Problem Instances: We use the problem generation described in Saravanos et al. (2025), setting
n = 250, k = 25, and γ = 1.0. The expected returns µ are sampled using µi ∼ N (0, 1). The
factor loading matrix F has 50% non-zero elements sampled through Fij ∼ N (0, 1). The diagonal
elements of D are generated as Dii ∼ U [0,

√
k].

F.3 SUPPORT VECTOR MACHINES

Support Vector Machines (SVMs) is a classical machine learning problem where the goal is to find
a linear classifier that best separates two sets of points (Cortes & Vapnik, 1995):

min
x

x⊤x+ λ

m∑
i=1

max(0, bia
⊤
i x+ 1), (41)

where bi ∈ {−1, 1} is the label and ai ∈ Rn is the set of features for point i.

QP representation: The SVM problem Eq. (41) can be converted into an equivalent QP represen-
tation (Stellato et al., 2020):

min
x,t

x⊤x+ λ1⊤t, (42a)

subject to t ≥ diag(b)Ax+ 1, (42b)
t ≥ 0. (42c)

This QP has n+m decision variables and 2m inequalty constraints.

Problem Instances: We generate random problems using the rules from Stellato et al. (2020) with
n = 10 features and m = 200 data points. The labels b are chosen using

bi =

{
+1 if i ≤ m/2,

−1 otherwise,
(43)

and the elements of A are chosen such that

Aij ∼
{N (+1/n, 1/n) if i ≤ m/2,

N (−1/n, 1/n) otherwise.
(44)

F.4 LASSO

LASSO (least absolute shrinkage and selection operator) is a fundamental problem in statistics
and machine learning (Tibshirani, 1996; Candes et al., 2008). The objective is to select sparse
coefficients of a linear model that best match the given observations:

min
x
∥Ax− b∥22 + λ ∥x∥1 , (45)

where x ∈ Rn, A ∈ Rm×n is the data matrix, b ∈ Rm are the observations, and λ > 0 is the
weighting parameter.

QP Representation: LASSO can be represented as a QP by introducing two extra decision variables
y ∈ Rm and t ∈ Rn which help simplify the objective (Stellato et al., 2020):

min
x,y,t

y⊤y + λ1⊤t, (46a)

subject to y = Ax− b, (46b)
− t ≤ x ≤ t. (46c)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Problem Instances: We use the data generation procedure from (Stellato et al., 2020), where A has
15% non-zero normally-distributed elements Aij ∼ N (0, 1) and b is generated through b = Av + ϵ
with

vi ∼
{
0 with probability p = 0.5,

N (0, 1/n) otherwise,
(47)

and ϵi ∼ N (0, 1). The parameter λ is chosen as λ = (1/5)∥A⊤b∥∞.

F.5 HUBER FITTING

Huber Fitting is a robust least squares problem where the goal is to perform a linear regression with
the assumption that outliers are present in the data (Huber, 1964; 1981):

min
x

m∑
i=1

ϕhub(a
⊤
i x− bi), (48)

where the penalty function ϕhub penalizes the residuals quadratically when they are large and linearly
when they are small:

ϕhub(u) =

{
u2 if |u| ≤ δ,

δ(2|u| − δ) if |u| > δ,
(49)

with δ > 0 representing the slope of the linear term.

QP Representation: This robust least squares problem can be represented in the following QP
form (Stellato et al., 2020):

min
x,u,r,s

u⊤u+ 2δ1⊤(r + s), (50a)

subject to Ax− b− u = r − s, (50b)
r, s ≥ 0. (50c)

This QP has n+ 3m decision variables, 2m inequalities, and m equalities.

Problem Instances: We follow Stellato et al. (2020) and generate A with 15% nonzero elements
with Aij ∼ N (0, 1) and set b = Av + ϵ where

ϵi =

{N (0, 1/4) with probability p = 0.95,

U [0, 10] otherwise.
(51)

We let M = 1 and choose the problem dimensions as n = 10 features and m = 10n = 100
datapoints.

F.6 LINEAR OPTIMAL CONTROL

The goal in linear optimal control is to stabilize the system to the origin subject to dynamical con-
straints as well as polyhedral constraints on the states and controls.

min
x,u

T−1∑
t=0

x⊤
t Qxt + u⊤

t Rut + x⊤
TQTxT , (52a)

subject to xt+1 = Adxt +Bdut, (52b)
Auut ≤ bu, (52c)
Axxt ≤ bx, (52d)
x0 = x̄0, (52e)

where T > 0 is the time horizon, Q ∈ Snx
+ is the running state cost matrix, R ∈ Snu

++ is the control
cost matrix, QT ∈ Snx

+ is the terminal state cost matrix, Ad ∈ Rnx×nx and Bd ∈ Rnx×nu define
the dynamics of the system, Au ∈ Rmu×nu and bu ∈ Rmu define the polyhedral input constraints,
Ax ∈ Rmx×nx and bx ∈ Rmx define the polyhedral state constraints, and x̄0 ∈ Rnx is the initial
state.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

We study three classes of linear optimal control problems (OCPs). The first, Random Linear OCPs,
consists of randomly generated stabilizable dynamics along with random costs, constraints, and
initial conditions. The second and third classes, Double Integrator and Oscillating Masses, are
adapted from Chen et al. (2022a) and contain dynamics with true physical interpretations. The
randomness in these problems is given by sampling varying initial conditions for the systems as in
Saravanos et al. (2025).

F.6.1 RANDOM LINEAR OCPS

We use the problem generation procedure similar to that in Stellato et al. (2020). We set the state
dimension nx = 8 and nu = 0.5nx. The dynamics are generated by Ad = X−1AX , where
A = diag(a) ∈ Rnx×nx such that ai ∼ U(−1, 1) and X ∈ Rnx×nx with elements generated by
Xij ∼ N (0, 1), and Bd ∈ Rnx×nu with (Bd)ij ∼ N (0, 1).

The running state cost Q ∈ Snx
+ is generated by Q = diag(q) where each element of the sparse

vector q is generated by

qi ∼
{U [0, 10] with probability p = 0.7,

0 otherwise,
(53)

so that q has 70% nonzero values. We fix the control cost R = 0.1Iu and the terminal cost QT

is determined by solving the discrete algebraic Riccati for the optimal cost of a linear quadratic
regulator applied to A,B,Q, and R. The state and control constraints are generated by

Ax =

[
Ix
−Ix

]
, bx =

[
xbound

−xbound

]
s.t. xbound

i ∼ U(1, 2), (54a)

Au =

[
Iu
−Iu

]
, bu =

[
ubound

−ubound

]
s.t. ubound

i ∼ U(0, 0.1). (54b)

Note that we use Ix and Iu as a shorthand for Inx and Inu . Finally, we sample the initial state from
x̄0 ∼ U [−0.5xbound, 0.5xbound].

F.6.2 DOUBLE INTEGRATOR

For the double integrator, adapted from Chen et al. (2022a), we have nx = 2, nu = 1, and T = 20
timesteps. The dynamics are fixed with

Ad =

[
1 1
0 1

]
, Bd =

[
0.5
0.1

]
. (55)

We use cost matrices Q = QT = Ix and R = 1.0. The state and control constraints have

Ax =

[
Ix
−Ix

]
, bx =

515
1

 , Au =

[
1
−1
]
, bu =

[
0.1
0.1

]
. (56)

The initial state is sampled from x̄0 ∼ U
([
−1
−0.3

]
,

[
1
0.3

])
.

F.6.3 OSCILLATING MASSES

For the oscillating masses problem, we have nx = 12, nu = 3, T = 10. For this problem, the
discrete time dynamics matrices Ad and Bd are obtained through the Euler discretization of the
continuous time dynamics of the oscillating masses system. That is,

Ad = Ix +Ac∆t, Bd = Bc∆t, (57)

where Ac ∈ Rnx×nx and Bc ∈ Rnx×nu are the continuous-time dynamics matrices. We use the
discretization ∆t = 0.5. These dynamics are given by

Ac =

[
06×6 I6

aI6 + c(L6 + L⊤
6) bI6 + d(L6 + L⊤

6)

]
, Bc =

[
06×3

F

]
, (58)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where c = 1, d = 0.1, a = −2c, b = 2, 0m×n is the zero matrix in Rm×n, Ln is the lower shift
matrix in Rn×n, and F = [e1 −e1 e2 e3 −e2 e3]

⊤, where e1, e2, and e3 are the standard
basis vectors in R3. We use cost matrices Q = QT = Ix and R = Iu. The state and control
constraints are given by

Ax =

[
Ix
−Ix

]
, bx = 4 · 1x, Au =

[
Iu
−Iu

]
, bu = 0.5 · 1u. (59)

Finally, we sample the initial state from x̄0 ∼ U [−1x,1x].

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

G NONLINEAR OPTIMIZATIONS USING SQP

G.1 NONLINEAR OPTIMAL CONTROL

We consider nonlinear constrained optimal control problems of the following form:

minimize
N−1∑
k=0

ℓ(xk, uk) + ϕ(xN), (60a)

subject to xk+1 = F (xk, uk), ∀k = 0, . . . , N − 1, (60b)
x0 = x̄0, (60c)
h(xk) ≤ 0, ∀k = 0, . . . , N, (60d)
g(uk) ≤ 0, ∀k = 0, . . . , N − 1, (60e)

where xk ∈ Rn and uk ∈ Rm are the state and controls. The function ℓ(xk, uk) : Rn ×Rm → R is
the running cost and ϕ(xN) ∈ Rn → R is the terminal cost. The time horizon and initial condition
are denoted as N and x̄0. The problem formulation in 60 includes control and state constraints as
represented by the functions h(xk) and g(uk). In the next two subsections, we provide the specific
nonlinear optimal control examples for the cases of the Dubins vehicle and quadrotor.

G.1.1 DUBINS VEHICLE

The Dubins vehicle is a dynamics model with a state x = (px, py, θ) ∈ R3, where px and py are the
vehicle’s position in the Cartesian plane and θ is its orientation. We use the unicycle formulation
of the continuous-time Dubins vehicle dynamics ẋ = f(x, u) adapted from Siciliano et al. (2009),
where the control is given by u = (v, ω) ∈ R2. Here, v is the forward velocity of the vehicle and ω
is the steering velocity of the vehicle.

−6 −4 −2 0 2 4
−6

−4

−2

0

2

4

Initial

Target

Obstacle

Figure 7: Visualization of a sample Dubins vehicle task. The goal is to reach the target state while
avoiding obstacles and respecting the dynamics and input constraints.

We formulate a nonlinear optimal control problem following Eq. (60). We discretize the continuous-
time dynamics using the Euler discretization xk+1 = F (xk, uk) = xk + f(xk, uk)∆t and use costs
ℓ(xk, uk) = x⊤

k Qxk + u⊤
k Ruk, ϕ(xN) = x⊤

NQNxN , where Q = diag(1.0, 1.0, 0.1), R = 0.1 · I ,
and QN = 100 ·Q. The initial and target state, x0 and xtarget, are sampled uniformly from U [−x̄, x̄]
where x̄ = (5.0, 5.0, π). The discretization of the dynamics uses ∆t = 0.033 and the time horizon
for trajectory optimization is N = 50 timesteps. We sample 5 circular obstacles uniformly at random
in the region between the vehicle’s initial and target positions, each with radius chosen uniformly
from U [rmin, rmax] where rmin = 0.01 · ∥xtarget − x0∥2 and rmax = 0.2 · ∥xtarget − x0∥2. Each
circular obstacle is then included in the optimization problem as a constraint given by

gi(xk) = r2i − ∥xk − ci∥22 ≤ 0, ∀k = 0, . . . , N (61)

where ri ∼ U [rmin, rmax] and ci ∈ R2 are the radius and position of the center, respectively, of
the ith obstacle. The controls are constrained by v ∈ [−10, 10] and ω ∈ [−5, 5]. This leads to

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

a nonlinear optimization problem with 253 variables, 455 inequality constraints, and 153 equality
constraints.

For generating the QP training data, we generate 500 QP subproblems by solving randomly gener-
ated Dubins vehicle problems with SQP using OSQP as the QP solver. For evaluation, we generate
100 random Dubins vehicle problems and solve them using SQP with OSQP or SQP with Deep
FlexQP. Each algorithm is allowed 50 SQP iterations. Furthermore, each QP solver runs until con-
vergence of 1e−3 is reached, with a max budget of 10 seconds and an unlimited number of iterations.

G.1.2 QUADROTOR

The quadrotor dynamics model consists of a state x ∈ R12 including the linear positions, angles,
linear velocities, and angular velocities. The system is actuated by a four controls: collective thrust
F and three torques, given by the vector u = [F τx τy τz]

⊤ ∈ R3. We use the continuous-time
dynamics model ẋ = f(x, u) adapted from Sabatino (2015).

Figure 8: Visualization of a sample quadrotor task. The goal is to reach the target state from the
initial state subject to dynamical constraints and input constraints.

Using the quadrotor dynamics model, we formulate a nonlinear optimal control problems as in
Eq. (60). We discretize the dynamics through the Euler discretization xk+1 = F (xk, uk) = xk +
f(xk, uk)∆t. The cost in Eq. (60) is defined by ℓ(xk, uk) = x⊤

k Qxk + u⊤
k Ruk and ϕ(xN) =

x⊤
NQNxN , where the cost matrices are given by

Q = diag(1.0, 1.0, 1.0, 0.1, 0.1, 0.1, 1.0, 1.0, 1.0, 0.1, 0.1, 0.1), (62a)

R = 0.01 · I , and QN = 1000 ·Q. The initial and target state are sampled uniformly from U [−x̄, x̄]
where x̄ = (5, 5, 5, 1, 1, 1, π, π/2, π, 1, 1, 1). The discretization of the dynamics uses ∆t = 0.05
and the time horizon for trajectory optimization is N = 50 timesteps. The controls are constrained in
the range F ∈ [0, 20] and τx, τy, τz ∈ [−10, 10]. We use m = 1.0 kg for the mass of the quadrotor,
Ix = Iz = Iy = 1.0 for its moments, and g = 9.81 for the acceleration due to gravity. This leads
to a nonlinear optimization problem with 812 variables, 400 inequality constraints, and 612 equality
constraints.

For generating the QP training data, we generate 500 QP subproblems by solving randomly gener-
ated quadrotor problems with SQP using OSQP as the QP solver. For evaluation, we generate 100
random quadrotor problems and solve them using SQP with OSQP or SQP with Deep FlexQP. Each
algorithm is allowed 50 SQP iterations and success in Fig. 6 (left) is achieved when the norm of the
SQP residuals falls below 1e−2. Each QP solver runs until convergence of 1e−3 is reached, with a
max budget of 10 seconds and an unlimited number of iterations.

G.2 NONLINEAR PREDICTIVE SAFETY FILTERS

Finally, we apply our proposed approach to accelerate a predictive safety filter for nonlinear model
predictive control. These methods are based on control barrier functions (CBFs) (Ames et al., 2019)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

and filter a reference control uref so that it better respects safety constraints (Wabersich & Zeilinger,
2021). The following optimization is solved at every MPC step:

minimize
N−1∑
k=0

∥∥uk − uref
k

∥∥2
2
, (63a)

subject to xk+1 = F (xk, uk), ∀k = 0, . . . , N − 1, (63b)
x0 = x̄0 (63c)
(1− β)h(xk)− h(xk+1) ≤ 0, ∀k = 0, . . . , N − 1, (63d)
g(uk) ≤ 0, ∀k = 0, . . . , N − 1, (63e)

where β ∈ (0, 1) is a parameter controlling the strength of the CBF constraint. This differs from
Eq. (60) because the discrete CBF constraint is defined between two consecutive states xk and xk+1

rather than assuming the state constraints are separable across time. Our method improves upon the
Shield-MPPI method proposed by Yin et al. (2023) because our optimization explicitly incorporates
the dynamics and input constraints while also minimizing the discrepancy from the reference control
trajectory. Furthermore, using our accelerated Deep FlexQP ensures that the optimization can be run
fast enough for real-time control. We use a version of Deep FlexQP with performance guarantees
from minimizing the generalization bound loss (see Appendix I). Sample trajectories of our approach
compared with Shield-MPPI are shown in Fig. 9.

G.2.1 SHIELD-MPPI

The method by Yin et al. (2023) approximately solves a nonlinear optimization at every MPC step
to generate safe controls given a trajectory from a high-level planner such as a model predictive path
integral (MPPI) controller. While the main motivation behind this approach is that it is computation-
ally fast, unfortunately, there are a few flaws in that the method has no real guarantees of safety and
that the MPPI trajectory is only used to warm-start this second optimization. The main bottleneck
preventing us from solving a more complex optimization in real-time is the solver speed. Therefore,
this is an application where accelerating optimizers using deep unfolding can shine.

G.2.2 RANDOMIZED PROBLEM SCENARIOS

100 random scenarios are generated by first sampling a random initial and target state uniformly
from U [(−5,−5,−π), (5, 5, π)]. An obstacle is randomly sampled so its position falls between the
initial and target state with a random radius r depending on the distance between the initial and
target state: r ∼ U [0.01, 2] ∗ max(|ptarget

x − pinit
x |, |ptarget

y − pinit
y |). The controls are constrained to

be bounded in the interval [(−10,−5), (10, 5)] enforced by clamping for Shield-MPPI and through
the constraints of Eq. (63) for our SQP-based method. Fig. 9 shows the problem setup and sample
trajectories for each algorithm.

The reference trajectory at every MPC step is given by running an MPPI controller that samples
10000 trajectories with a look-ahead horizon of 50 timesteps; with a dynamics discretization of
∆t = 0.05, this corresponds to a planning horizon of 2.5 seconds ahead. The system expe-
riences zero-mean Gaussian disturbances in its state at every MPC step with standard deviation
(0.05, 0.05, 0.01). Shield-MPPI is allowed to run up to 5 Gauss-Newton iterations per MPC step,
while our SQP safety filter is allowed to run up to 5 SQP iterations per MPC step. These thresh-
olds were determined by estimating the max number of iterations that would still allow for real-time
control of the system.

Collisions in Fig. 6 (right) are counted if the state violates the CBF constraint (i.e., intersects the
obstacle). Successes are counted if the vehicle reaches within a 0.1 radius of the target state.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

(a) Shield-MPPI (b) SQP Safety Filter — Deep FlexQP

Figure 9: Sample trajectories comparing safety filter approaches on a nonlinear car system. The
vehicle receives disturbances in the positions and orientation at every step. Our approach more ef-
fectively recovers from unsafe scenarios by better accounting for dynamic feasibility and constraints.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

H LEARNED OPTIMIZER PERFORMANCE COMPARISONS

The vanilla and learned optimizers are benchmarked on 1000 test QPs from each problem class with
the results summarized in Fig. 10. Problems are considered solved when the infinity norm of the QP
residuals reaches below an absolute tolerance of ε = 10−3. Optimizers are run with no limit on the
max number of iterations until a timeout of 1 second (1000 ms) is reached. Timings are compared
using the normalized shifted geometric mean, which is the factor at which a specific solver is slower
than the fastest one (Stellato et al., 2020). We also compare the average number of iterations required
to converge as well as the number of coefficient matrix factorizations required to converge to get a
sense of where the optimizers are spending the most time. All methods use the direct method
to solve their respective linear systems (i.e., equality-constrained QPs) at every iteration, and the
factorization from the previous iteration is reused if the parameters have not changed by more than
a factor of 5x following the heuristic used by OSQP (Stellato et al., 2020).

Key Takeaways:

1. Deep FlexQP and Deep OSQP — Improved solve QPs 2-5x faster than OSQP.
2. Deep FlexQP and Deep OSQP — Improved require upwards of 10x less iterations to con-

verge than OSQP and require a comparable amount of matrix factorizations.
3. Deep OSQP — RLQP Parameterization struggles on problems with optimal control struc-

ture. This is not observed with Deep OSQP — Improved. Learning the ADMM relaxation
parameter α seems to be crucial for these problems.

It is important to note that these results hold only when the direct method is used to solve the linear
system. When using an indirect method such as the conjugate gradient (CG) method, converging in
fewer iterations is actually a major benefit as each iteration across all the optimizers have roughly
the same computational complexity (see Appendix B for discussion). Thus, we hypothesize that
when using the indirect method, Deep FlexQP will substantially outperform OSQP.

(a) Random QPs

(b) Random QPs with Equalities

(c) Portfolio Optimization

Figure 10: Performance comparison of vanilla vs. learned optimizers. Legend: OSQP, FlexQP
(Ours), Deep OSQP, Deep OSQP — RLQP Parameterization, Deep OSQP — Improved, Deep
FlexQP (Ours).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(d) Support Vector Machines

(e) LASSO

(f) Huber Fitting

(g) Random Linear OCPs

(h) Double Integrator

(i) Oscillating Masses

Figure 10: Performance comparison of vanilla vs. learned optimizers. Legend: OSQP, FlexQP
(Ours), Deep OSQP, Deep OSQP — RLQP Parameterization, Deep OSQP — Improved, Deep
FlexQP (Ours).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

I SUPPLEMENTARY RESULTS FOR GENERALIZATION BOUNDS

0 5 10 15 20

Iteration

10−10

10−8

10−6

10−4

10−2

100
R

el
at

iv
e

O
p

ti
m

al
it

y
G

ap
L

os
s

OSQP

FlexQP (Ours)

Deep OSQP

Deep OSQP — RLQP Param.

Deep OSQP — Improved

Deep FlexQP (Ours)

Deep FlexQP Gen. Bound — Eq. (10)

0 5 10 15 20

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

L
og

-s
ca

le
d

L
os

s

Deep FlexQP (Ours)

Deep FlexQP Gen. Bound — Eq. (11) (Ours)

Figure 11: Generalization bounds for Deep FlexQP trained on 500 oscillating masses QPs. Follow-
ing Fig. 4, this is another case where the generalization bound using the loss Eq. (10) is uninforma-
tive.

We provide an overview of the generalization bounds training procedure described by Saravanos
et al. (2025), which in turn is adapted from the one described by Majumdar et al. (2021). Let
x = (P, q,G, h,A, b, x∗, y∗I , y

∗
E) ∼ D denote a single sample from data distribution D and let

S = {xi}Ni=1 be a dataset of N samples. Let ℓ(x, θ) ∈ [0, 1] be a bounded loss for hypothesis
θ ∼ P . The true expected loss is defined as

ℓD(P) = Ex∼DEθ∼P [ℓ(x, θ)], (64)

and the sample loss is

ℓS(P) = Eθ∼P

[
1

N

N∑
i=1

ℓ(xi, θ)

]
. (65)

We rely on the following PAC-Bayes bounds that hold with probability 1−δ (Majumdar et al., 2021,
Corollary 1):

ℓD(P) ≤ D−1

(
ℓS(P)||

DKL(P||P0) + log(2
√
N/δ)

N

)
≤ ℓS(P) +

√
DKL(P||P0) + log(2

√
N/δ)

2N
,

(66)

where D−1(p||c) = sup{q ∈ [0, 1]|DKL(B(p)||B(q) ≤ c} is the inverse KL-divergence for
Bernoulli random variables B(p) and B(q). The first bound is tighter and is therefore useful for
computing the generalization bounds as a numerical certificate of performance, while the second
bound has the nice interpretation of a training loss plus a regularization term that depends on the
size of the training set and penalizes being off from the prior P0. During training, we minimize the
second bound using either the loss Eq. (10) or Eq. (11).

During the evaluation of the tighter generalization bound (after training is complete), since it is
difficult to compute the expectation over θ ∼ P in Eq. (65), we instead estimate the sample loss
using a large number of samples {θj}Mj=1 from P∗:

ℓ̂S(P∗) =
1

NM

N∑
i=1

M∑
j=1

ℓ(xi, θj). (67)

The following sample convergence bound holds with probability 1− δ′:

ℓ̄S(P∗) ≤ D−1

(
ℓ̂S(P∗)|| 1

M
log(

2

δ′
)

)
. (68)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Combining these bounds results in a final version of the PAC-Bayes bound that holds with probabil-
ity 1− δ − δ′ (Majumdar et al., 2021):

ℓD(P∗) ≤ D−1

(
ℓ̄S(P∗)||DKL(P∗||P0) + log(2

√
N/δ)

N

)
. (69)

This is the final bound that we report in our experiments.

The prior P0 for all our models is a stochastic Deep FlexQP trained for 500 epochs on 500 QPs
generated from the Random QPs with Equalities problem class using the supervised learning setup
from Section 4. We train Deep FlexQP for the generalization bound loss using either Eq. (10) or
Eq. (11) with δ = 0.009. We fix a training set for the generalization bounds using 500 problems from
the class of interest and train the model for 1000 epochs. We evaluate Eq. (69) using M = 10000
model samples and δ′ = 0.001. Our bounds therefore hold with 99% probability. We report results
comparing Eq. (10) vs. Eq. (11) for LASSO in Fig. 4 and for Oscillating Masses in Fig. 11. The test
loss is computed over 1000 new samples from the target problem class. Overall, the loss Eq. (10)
results in a less informative bound as it is above all the optimizers, even though the performance in
practice can be much better.

Finally, we train Deep FlexQP on 500 QP subproblems generated from a nonlinear predictive safety
filter task described in Appendix G using the same procedure to minimize the generalization bound
through the loss defined in Eq. (11). We use this Deep FlexQP as the QP solver for the predictive
safety filter SQP approach described in Appendix G.2. This provides a numerical certificate on the
performance that would not hold for a traditional optimizer.

0 5 10 15 20

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

L
og

-s
ca

le
d

L
os

s

OSQP

FlexQP (Ours)

Deep OSQP

Deep OSQP — RLQP Param.

Deep OSQP — Improved

Deep FlexQP (Ours)

Deep FlexQP Gen. Bound — Eq. (11) (Ours)

Figure 12: Generalization bound for Deep FlexQP trained on 500 QP subproblems generated from
the nonlinear predictive safety filter task.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

J LSTM VS. MLP POLICY COMPARISON

This section presents an ablation analysis on the use of LSTMs to parameterize the policies in both
Deep OSQP and Deep FlexQP. The use of LSTMs further leverages the analogy between deep-
unfolded optimizers and RNNs, as discussed in Monga et al. (2021). Our hypothesis is that the
RNN hidden state can encode a compressed history or context from the past optimization variables
and residuals, thereby leading to a better prediction of the algorithm parameters to apply at the
current iteration. Using an MLP only provides access to information from the current iterate, which
could lead to a myopic choice of parameters.

Our results show that LSTMs enhance performance on several problem classes (Fig. 13). LSTMs
appear to help the most on problems where the active constraints might switch suddenly from one
iteration to the next. These types of problems include the machine learning ones, such as SVM,
LASSO, and Huber fitting, as well as some of the control problems, like the oscillating masses.

0 5 10 15 20

Iteration

10−7

10−5

10−3

10−1

O
p

ti
m

al
it

y
G

ap

Random QPs

Deep OSQP — Improved, MLP

Deep OSQP — Improved, LSTM

Deep FlexQP (Ours) — MLP

Deep FlexQP (Ours) — LSTM

0 5 10 15 20

Iteration

10−8

10−6

10−4

10−2

100

O
p

ti
m

al
it

y
G

ap

Random QPs with Equalities

0 5 10 15 20

Iteration

10−7

10−5

10−3

10−1

O
p

ti
m

al
it

y
G

ap

Portfolio Optimization

0 5 10 15 20

Iteration

10−6

10−4

10−2

100

O
p

ti
m

al
it

y
G

ap

Support Vector Machines

0 5 10 15 20

Iteration

10−8

10−6

10−4

10−2

100

O
p

ti
m

al
it

y
G

ap

LASSO

0 5 10 15 20

Iteration

10−8

10−6

10−4

10−2

100

O
p

ti
m

al
it

y
G

ap

Huber Fitting

Figure 13: Comparison of MLP vs. LSTM policies.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

0 5 10 15 20

Iteration

10−3

10−2

10−1

O
p

ti
m

al
it

y
G

ap

Random Linear OCPs

0 5 10 15 20

Iteration

10−7

10−5

10−3

10−1

O
p

ti
m

al
it

y
G

ap

Double Integrator

0 5 10 15 20

Iteration

10−9

10−7

10−5

10−3

10−1

O
p

ti
m

al
it

y
G

ap

Oscillating Masses

Figure 13: Comparison of MLP vs. LSTM policies.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

K ABLATION ANALYSIS ON THE USE OF LAGRANGE MULTIPLIERS IN THE
SUPERVISED LOSS

In Fig. 14, we compare the performance of Deep FlexQP on different problem classes using the
optimality gap loss from Eq. (8) and our proposed loss Eq. (9). It is evident that our loss including
the Lagrange multipliers outperforms the optimality gap loss in all cases, except for the oscillating
masses problem class. This could be simply due to the fact that the performance is already ap-
proacing 1e−10 at 20 iterations, and so small numerical differences play a bigger role. The overall
increase in performance using the new loss can be explained by a stronger gradient signal given to
Deep FlexQP to learn policies that ensure µI ≥ ∥y∗I∥∞ and µE ≥ ∥y∗E∥∞.

Surprisingly, however, the performance using both losses remains comparable. The ability of the
optimality gap loss to perform nearly as well as the Lagrange multiplier loss likely stems from the
coupling of µI with σs, ρI and that of µE with ρE in the Deep FlexQP architecture. That is, even
with a weaker gradient signal from the optimality gap loss, the respective networks are able to learn
a shared representation that allows effective learning of the penalty parameters µ as well.

0 5 10 15 20

Iteration

10−7

10−5

10−3

10−1

O
p

ti
m

al
it

y
G

ap

Random QPs

Deep FlexQP (Ours) — Optimality Gap Loss

Deep FlexQP (Ours) — Lagrange Multiplier Loss

0 5 10 15 20

Iteration

10−8

10−6

10−4

10−2

100

O
p

ti
m

al
it

y
G

ap

Random QPs with Equalities

0 5 10 15 20

Iteration

10−8

10−7

10−6

10−5

10−4

10−3

10−2

O
p

ti
m

al
it

y
G

ap

Portfolio Optimization

0 5 10 15 20

Iteration

10−7

10−6

10−5

10−4

10−3

10−2

10−1

O
p

ti
m

al
it

y
G

ap

Support Vector Machines

0 5 10 15 20

Iteration

10−8

10−6

10−4

10−2

100

O
p

ti
m

al
it

y
G

ap

LASSO

0 5 10 15 20

Iteration

10−8

10−6

10−4

10−2

100

O
p

ti
m

al
it

y
G

ap

Huber Fitting

Figure 14: Using Lagrange multipliers in the supervised loss helps Deep FlexQP learn a more stable
policy for the elastic penalty parameters µ.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

0 5 10 15 20

Iteration

10−3

10−2

10−1

O
p

ti
m

al
it

y
G

ap

Random Linear OCPs

0 5 10 15 20

Iteration

10−7

10−5

10−3

10−1

O
p

ti
m

al
it

y
G

ap

Double Integrator

0 5 10 15 20

Iteration

10−10

10−8

10−6

10−4

10−2

100

O
p

ti
m

al
it

y
G

ap

Oscillating Masses

Figure 14: Using Lagrange multipliers in the supervised loss helps Deep FlexQP learn a more stable
policy for the elastic penalty parameters µ.

33

	Introduction
	Related Work
	FlexQP: An Always-Feasible Quadratic Program Solver
	Quadratic Programming
	Elastic Formulation
	Operator Splitting and ADMM

	Accelerating Quadratic Programming through Deep Unfolding
	Deep FlexQP Architecture
	Supervised Learning
	PAC-Bayes Generalization Bounds

	Applications
	Conclusion
	Proof of thm:minimizers
	FlexQP — First Block ADMM Update
	FlexQP Algorithm
	Proof of Theorem 3.2
	Deep FlexQP Policy Parameterization
	Further Details on Problem Classes
	Random QPs
	Portfolio Optimization
	Support Vector Machines
	LASSO
	Huber Fitting
	Linear Optimal Control
	Random Linear OCPs
	Double Integrator
	Oscillating Masses

	Nonlinear Optimizations using SQP
	Nonlinear Optimal Control
	Dubins Vehicle
	Quadrotor

	Nonlinear Predictive Safety Filters
	Shield-MPPI
	Randomized Problem Scenarios

	Learned Optimizer Performance Comparisons
	Supplementary Results for Generalization Bounds
	LSTM vs. MLP Policy Comparison
	Ablation Analysis on the Use of Lagrange Multipliers in the Supervised Loss

