Potential-based reward shaping
for learning to play text-based adventure games

Anonymous ACL submission

Abstract

Text-based games are a popular testbed for
language-based reinforcement learning (RL).
In previous work, deep Q-learning is commonly
used as the learning agent. Q-learning algo-
rithms are challenging to apply to complex
real-world domains due to, for example, their
instability in training. Therefore, in this pa-
per, we adapt the soft-actor-critic (SAC) algo-
rithm to the text-based environment. To deal
with sparse extrinsic rewards from the envi-
ronment, we propose a potential-based reward
shaping technique to provide more informa-
tive (dense) reward signals to the RL agent.
We apply our method to play difficult text-
based games. Our SAC method achieves higher
scores than the Q-learning methods on many
games with only half the number of training
steps. This shows that it is well-suited for text-
based games. Moreover, we show that the re-
ward shaping technique helps the agent to learn
the policy faster and achieve higher scores.

1 Introduction

Language-based interactions are an integral part of
our everyday life. Reinforcement learning (RL)
is a promising technique for developing agents
that acting in real-life scenarios such as dialog sys-
tems. However, training these agents is difficult
due to missing feedback or reward signals. Be-
cause of this, text-based adventure games are an
ideal benchmark for developing language-based
agents (Hausknecht et al., 2020). In games, the
players receive automatic rewards from the game
environment and we can use the final game score
for comparing performances of different agents.
Figure 1 illustrates the problem setup for this pa-
per. One main difference between text-based adven-
ture games and other RL scenarios is the large and
discrete action space. In contrast to other games
(e.g., ATARI games), each action is characterized
by a sentence or word (e.g., climb tree). Also,
the action space is not fixed. For example, if the

’

agent is in front of the house, the action “open door’
is available, whereas if the agent is in the forest,
other actions are possible, e.g. “climb tree”, but
not “open tree”. Therefore, in addition to the action
space, there is the space of valid actions in the cur-
rent state (see Figure 1 for an example of gameplay
in the game zork3). This space is much smaller
than the space of all actions but can be significantly
different in each step. In general, this space of
valid actions is unknown to the agent, but a com-
mon simplification is to let the agent have the list
of valid actions as input. A number of prior works
in this domain focused on the above-mentioned
challenges (Yao et al., 2020; Ammanabrolu and
Hausknecht, 2020; Ammanabrolu et al., 2020; Guo
et al., 2020; Xu et al., 2020). Most of those works
used deep Q-learning as a learning agent.

Deep Q-learning has several drawbacks. As an
off-policy algorithm, it suffers from high variance,
and the performance can be unstable (Sutton and
Barto, 2018). Other online, policy-based learn-
ing algorithms are also unsuitable for our scenario
since the agent needs to reuse experiences from the
training history. Therefore, in this paper, we de-
velop a learning agent based on the soft actor critic
(SAC) algorithm (Haarnoja et al., 2018), which
combines both value-based and policy-based learn-
ing. Additionally, the maximum entropy technique
encourages stability and exploration. SAC was
originally designed for continuous action spaces;
however, with slight modifications, it is applicable
for discrete action spaces (Christodoulou, 2019).
Nevertheless, it has never been applied to text-
based adventure games before.

A problem that text-based adventure games have
in common with many other RL problems is the
sparseness of rewards. Especially at the begin-
ning of training, the agent needs to perform many
actions before receiving feedback. In text-based
adventure games, this problem is even more se-
vere due to the large and context-dependent action

Valid actions:[‘turn off lamp', 'put down lamp', 'west', 'throw west at lamp', 'east', 'northwest', ‘southwest’]
(Probabilities approximated by RL agent:[3.0096e-03, 6.7729¢-03, 9.4636e-01, 5.8703e-04, 1.3716e-02, 2.3227e-02, 6.3283e-03])
Location: CIliff.

Info: This is a remarkable spot in the dungeon. Perhaps two hundred feet above you is a gaping hole in the earth's surface through which
pours bright sunshine! A few seedlings from the world above, nurtured by the sunlight and occasional rains, have grown into giant trees,
making this a virtual oasis in the desert of the Underground Empire. To the west is a sheer precipice, dropping nearly fifty feet to jagged
rocks below. The way south is barred by a forbidding stone wall, crumbling from age. There is a jagged opening in the wall to the
southwest, through which leaks a fine mist. The land to the east looks lifeless and barren.A rope is tied to one of the large trees here and is

fresh bread lying beneath one of the other trees.
Action(Selected by RL agent): West
Reward: 0, Score: 0

lamp off cliff', ‘southwest’]

Location:Cliff Ledge.

Action(Selected by RL agent): down

Reward: 1, Score:1

dangling over the side of the cliff, reaching down to the shelf below. It seems as if somebody has been here recently, as there is some

Valid actions: [’turn off lamp', 'take waybread', 'down', 'jump across cliff', 'put down lamp', 'east', 'throw trees at lamp', ‘throw

(Probabilities approximated by RL agent: [0.0147,0.0343, 0.7961, 0.0229, 0.0370, 0.0525, 0.0066, 0.0069, 0.0290])

Info: This is a rock-strewn ledge near the base of a tall cliff. The bottom of the cliff is another fifteen feet below. You have little hope of
climbing up the cliff face, but you might be able to scramble down from here (though it's doubtful you could return). A long piece of rope
is dangling down from the top of the cliff and is within your reach. A large chest, closed and locked, is lying among the boulders.

Figure 1: This figure shows an example of gameplay for the game zork3. The RL agent receives the valid action
space, state information, reward, and score from the Jericho environment. The agent then needs to predict the action

and move to the next state.

space. To speed up the convergence, it is therefore
desirable to have a denser reward function. A pop-
ular way to achieve this is through reward shaping.
However, finding a good reward function is difficult
and requires significant manual effort, background
information, or expert knowledge. A well-known
reward shaping technique, circumventing the need
for external knowledge, is potential-based reward
shaping (Ng et al., 1999) which has strong theoret-
ical guarantees. This enables faster convergence
at the beginning of training which we show for
several of the difficult games.

2 Related work

Text-based adventure games Hausknecht et al.
(2020) built the Jericho Interactive Fiction environ-
ment which includes 57 different games that are cat-
egorized into possible, difficult, and extreme games.
In this work, we focus on the difficult games that
were compared by Hausknecht et al. (2020) be-
cause they tend to have sparser rewards than the
possible games. The difficult games still include
several games where no method has been able to
achieve a score higher than a random agent to date.

In general, for text-based adventure games, there
are choice-based agents and parser-based agents
(Hausknecht et al., 2020). Parser-based agents

(Narasimhan et al., 2015) generate actions using
verb-object combinations, whereas choice-based
agents choose an action from a pre-generated list of
actions. Other related work focuses not on the RL
agent but on action generation (Ammanabrolu and
Hausknecht, 2020; Yao et al., 2020; Ammanabrolu
et al., 2020; Xu et al., 2020; Guo et al., 2020)'.
In this work, we follow the line of choice-based
agents which is a simplification that allows us to
concentrate on the RL part of our method.

We compare our experimental results with the
Deep reinforcement relevance network (DRRN)
(He et al., 2016) agent. DRRN is one of the widely
used frameworks for choice-based and parse-based
agents. The basic idea behind DRRN is to encode
the actions and states into embedding vectors sep-
arately, and then use the state and its correspond-
ing action embeddings as inputs into a neural net-
work to approximate the Q-values of all possible
actions Q(sy,al). The action at each time step
is selected by a; = argmaz i (Q(st, al)). NAIL
(Hausknecht et al., 2019) is an agent, which is not
choice-based, that is trained to play any unseen
text-based game without training or repeated inter-
action and without receiving a list of valid actions.

"Note that Ammanabrolu and Hausknecht (2020) uses
Actor-to-Ceritic, but they focus on action generation.

We compare both DRRN (and variants) and NAIL
in our experiments, but only DRRN has the ex-
act same experimental setup and handicaps as our
agent. NAIL serves as a baseline of scores possible
without any simplifications of gameplay.

Another baseline, Yao et al. (2021) investigate
whether the RL agent can make a decision without
any semantic understanding. They evaluate three
variants based on DRRN: a) only location informa-
tion is available as observation b) observations and
actions are hashed instead of using the pure text c)
inverse dynamic loss based vector representations
are used. Their results show that the RL agent can
achieve high scores in some cases, even without
language semantics. In concurrent work, building
on Yao et al. (2021), Gu et al. (2022) point out the
RL agent can achieve higher scores when combin-
ing semantic and non-semantic representations.

Tuyls et al. (2022) proposes a new framework
that includes two stages: the exploitation phase
and the exploration phase. The exploitation policy
uses limitation learning to select the action based
on previous trajectories. The goals of the second
exploration policy are to explore the actions to find
rewards and reach new states. In this work, relevant
actions are manually added into the valid action
space.

Soft-actor-critic (Haarnoja et al., 2018) com-
bines both advantages of value-based and policy-
based learning. The drawback of value-based learn-
ing like deep Q learning is the instability of the
performance because the policy can have high vari-
ance (Sutton and Barto, 2018). The SAC algorithm
includes three elements. The first is separate pre-
dict and critic neural networks, the second is that
offline learning can reuse the past collections via
replay buffer, which is the same as deep Q learning,
and the third is that the entropy of the policy is
maximized to encourage exploration. The optimal
policy aims to find the highest expected rewards
and maximize the entropy term H (7 (.|s¢)):

T
7* = arg max Z E (s a0)~pn [7(5t5 A1)+
T =0

aH(m(.[st))]

where, s; and a; denote the state and action at time
step t and p denotes the state-action marginals of
the trajectory distribution induced by a policy 7.
The temperature parameter o controls the degree
of exploration. The original SAC is evaluated on
several continuous control benchmarks. Since we

are dealing with discrete text data, we base our
method on the framework for discrete action spaces
by Christodoulou (2019). The key difference be-
tween continuous and discrete action spaces is the
computation of the action distribution. For dis-
crete action spaces, it is necessary to compute the
probability of each action in the action space. The
actor policy is changed from 74 (a¢|s;), a distribu-
tion over the continuous action space, to wg(s¢), a
discrete distribution over the discrete action space.

Potential-based reward shaping Introduced in
the seminal work of Ng et al. (1999), potential-
based reward shaping (PBRS) is one of the most
well-studied reward design techniques. The shaped
reward function is obtained by modifying the re-
ward using a state-dependent potential function.
The technique preserves a strong invariance prop-
erty: a policy 7 is optimal under shaped reward
iff it is optimal under extrinsic reward. Further-
more, when using the optimal value function V'*
under the original reward function as the potential
function, the shaped rewards achieve the maximum
possible informativeness. In a large number of
prior studies interested in PBRS, Wiewiora et al.
(2003) propose the state-action potential advice
methods, which not only can estimate a good or
bad state, but also can advise action. Grze$ and
Kudenko (2010) evaluate the idea of using the on-
line learned value function as a potential function.
Moreover, Harutyunyan et al. (2015) introduce an
arbitrary reward function by learning a secondary
Q-function. They consider the difference between
sampled next state-action value and the expected
next state-action value as dynamic advice. Based
on Harutyunyan et al. (2015), Brys et al. (2015) de-
velop the policy transfer to learn the policy from a
source task. Devidze et al. (2021) propose a reward
design framework, EXPRD, which interprets two
key criteria of a reward function: informativeness
and sparseness.

Reward in NLP based RL agent One of the
challenges of using RL to solve natural language
processing (NLP) tasks is the difficulty of design-
ing reward functions. There could be more than
one factor that affects the rewards, such as seman-
tic understanding and grammatical correctness. Li
et al. (2016) define reward considering three factors:
ease of answering, information flow, and semantic
coherence for dialogue generation tasks. Reward
shaping techniques have also been used in other
NLP-based RL tasks, for example, Lin et al. (2018)

use knowledge-based reward shaping for a multi-
hop knowledge graph reasoning task. The core
difference to our model is that we do not pre-define
any function or knowledge as a reward signal, in-
stead shaping the rewards automatically.

3 Problem setting and background

The experiment agent An environment is de-
fined as a Markov Decision Process (MDP) M :=
(8, A,T,v,R), where the set of states and ac-
tions are denoted by S and A respectively. T :
S xS x A — [0,1] captures the state transi-
tion dynamics, i.e., T'(s' | s,a) denotes the prob-
ability of landing in state s’. The reward R and
terminal signal d come from the game environ-
ment, and -y is the discount factor. The stochas-
tic policy 7 : S — A(A) is a mapping from a
state to a probability distribution over actions, i.e.,
> o m(als) = 1 parameterized by a neural network.
Notice that the valid action space size is vari-
able at each time step. Following Hausknecht et al.
(2020), we differentiate between game state s and
observation o, where the observation refers only
to the text that is output by the game whereas the
state corresponds to the locations of players, items,
monsters, etc. Our agent has only knowledge of the
observations and not of the complete game state.

3.1 SAC for discrete action spaces

The SAC algorithm has a separate predictor (actor)
and critic. In the following, we first describe the
two crucial equations for updating the critic and
then the actor policy update.

In the critic part, following the original SAC
definition (Haarnoja et al., 2018) and adaptation to
the discrete setting by Christodoulou (2019), the
targets for the Q-functions are computed by:

y(r, 8,7 d) =r+ 7(1 - d)

(1min (04,) — g ()
(1

where in our scenario the target Q-values and the
policy distribution range over the set of valid ac-
tions A,qi4(s’) (Hausknecht et al., 2020). As was
proposed by Haarnoja et al. (2018), we use two
Q-functions and two Q target functions, and ¢ is
the index of the Q-function. +y is a discount factor
and d € {0,1} is 1 if the terminal state has been
reached.

The critic optimization is the same as in the orig-
inal SAC algorithm, learning to minimize the dis-
tance between the target soft Q-function and the Q
approximation with stochastic gradients:

Viq(0) =
VEaNﬂ'(S),SND (Qd)l (S) - y(?", 8/7 d))2)

where D is the replay buffer and i € {1,2}. If
using double Q-functions, the agent should learn
the loss functions of both Q-neural networks.

As proposed by Christodoulou (2019) the update
of the actor policy is given by:

Vir(¢) =
VE;.p [Wt(S)T[Oé log mg(s) — Qa(s)]] -

where Qg(s) denotes the actor value by the Q-
function (critic policy), and log74(s) and m(s)
are the expected entropy and probability estimate
by the actor policy.

As shown in Algorithm 1 in lines 10 and 11,
Equations 2 and 3 constitute the basic SAC algo-
rithm without reward shaping, where critic and
actor are updated in turn. In the next section, we
will explain the reward shaping in lines 2-9 of the
algorithm.

2

3

4 Method

The original SAC equation is given in Equation 1.
In the following we describe how we are modifying
it through reward shaping. The whole algorithm is
given by Algorithm 1. We start by reward shaping
in line 2. The shaping reward function F' : S x
A x S — R (Ngetal., 1999) is given by

F(s,a,5') = y®(s") — @(s),)

where s’ is the target state and s refers to the source
state. As mentioned in Section 2, when using the
optimal value-function V* under original reward
as the potential function, i.e., ®(s) = V*(s) , the
shaped rewards achieve the maximum possible in-
formativeness.

Dynamic reward shaping

Since we do not have access to the optimal value
function V*, we use the idea of dynamic reward
shaping. In particular, Grze$ and Kudenko (2010)
generalized the form in Equation 4 to dynamic po-
tentials, and empirically showed an advantage in
helping the agent. The idea is that the RL agent
uses the current approximation of the value func-
tion as a potential function. More precisely, the

Algorithm 1 SAC with potential-based reward shaping

Require: policy 7; Q-functions 61, 62, §1, ég; replay buffer D; roll-out N

1: for step = 1... max step do
> Update the critic:
if Reward Shaping is True then

Vstep(s) < m(s)T |:(Qéi(8) — alog(w(s)))] (Equation 7)

2

3

4: fori=1...N do:

5: Vistep(s) < (1

6 end for

7 lfstep(s, a, 5/) — 'YVstep(Sl) -

8

9 end if

10: Update Q-function (Equation 2)
> Update the actor:

11: Update policy (Equation 3)

12: end for

Vistep(s) (Equation 5)
R(s,a) < R(s,a) + Fstep(s, a, s’) (Equation 6)

> Compute soft state value

—) Vstep(s) + a(r + 7' Viiep(s')) (Equation 8) > Update value function

> Compute shaping function
> Compute reshaped reward

shaped function Fj at learning time step / can be
represented as follows (Algorithm 1, line 7):

ﬂ(sv a, 5/) = ’Y‘/I(S,) - W(S)v (5)

where ®(s) from Equation 5 is given by V;(s) and
superscript [denotes the learning time step. Hence,
the new shaped reward R : A x S — R at learning
time step [is defined as

R(s,a) := R(s,a) + Fi(s,a,8), (6)

where R(s, a) is the original extrinsic reward from
the environment (Algorithm 1, line 8).

To shape reward signals, we use the soft state
value function instead of the plain value function.
This allows us to use reward shaping without a sep-
arate neural network for the reward function. Ex-
perimentally, we found this also to perform similar
to using a plain value function approximated us-
ing a neural network (see Section 5.3.2). Haarnoja
et al. (2018) also mention that it is in principle not
necessary to add a separate approximator for the
state value although they find it to stabilize results
in practice. More precisely, we directly utilize the
original form of the soft value function as given
in the SAC algorithm for discrete action spaces
(Christodoulou, 2019):

V(s) = 7(s)" [(@y,(5) — alog(n(s))], ()

where () denotes the target Q-functions. The soft
value has two terms, the expected Q-value at the
given state and the entropy regularized probability
of all possible actions. The Q-function aims to

update the policy to maximize the expected reward.
The maximum entropy policy brings the agent into
the states with less knowledge while still satisfying
the side information (Ziebart et al., 2010).

Using Equation 7, the value function V'(s) is
updated inspired by the batch RL idea (Sutton and
Barto, 2018; Lange et al., 2012) and the N-steps
Q iteration algorithm (Ernst et al., 2005). Instead
of using the sample once to learn the TD, we can
repeat the sample N times to estimate the TD value
(see Algorithm 1, lines 4-6).

V(is)=(1—-a)V(s)+alr++'V(s)) (¥
Now, we can rewrite the target Equation 1 by
incorporating Equation 5:
y(r,s',d) =
[r+ (V") = V()] +v(1 =)V (s)
This concludes the description of our reward shap-

ing algorithm which relies on the soft value func-
tion and utilizes an N-step update.

©)

S5 Experimental results

5.1 Datasets

The experiments are run on the Jericho environ-
ment (Hausknecht et al., 2020)?, which categorizes
the games into three groups: possible games, diffi-
cult games, and extreme games. In the following
experiments, we focused on the difficult games,
which have sparser rewards and require a higher
level of long-term decision-making strategies than
the possible games.

Zhttps://github.com/microsoft/jericho

(Hausknecht et al., 2020) (Yao et al., 2021) Ours
Game Max RAND DRRN NAIL | MIN-OB HASH INV-DY SAC SAC+RS
advent 350 36 36 36 - - - 36.0040.00 36.0040.00
balances 51 10 10 10 10 10 10 10.00£0.00 9.98+0.01
deephome | 300 1 1 13.3 8.5 58 57.6 | 28.91 £0.474 22.52 +0.389
gold 100 0 4.1 3 - - - 5.98+1.16 7.74 + 0.79
jewel 90 0 1.6 1.6 - - - 5.89 +1.64 7.70+1.99
karn 170 0 2.1 1.2 - - - 0.01£0.01 0.83+1.45
ludicorp 150 13.2 13.8 8.4 11.6 14.8 13.5 14.89+0.40 15.73 +0.09
yomomma 35 0 04 0 - - - 0.16 +0.02 0.13 +0.06
zenon 20 0 0 0 - - - 0.00£0.00 0.00£0.00
zork1 350 0 32.6 10.3 29 35.5 43.1 | 30.74 £5.57 32.72 +£7.33
zork3 7 0.2 0.5 1.8 0 0.4 04 2.69+0.05 2.72+0.04

Table 1: The average score of the last 100 episodes is shown for three repetitions of each game with standard
deviation. The maximum number of training steps is 50,000 for our method.

5.2 Experimental settings

We built a choice-based agent. The agent predicts
one of the possible actions from the action space
distribution based on the observation of the cur-
rent time step and the previous action from the last
time step. The agent receives the valid action space
identified by the world-change detection handicap
from the Jericho game environments. Using the
same handicaps as the DRRN method, we also use
the Load, Save handicap to receive information on
inventory and location without changing the game
state. As shown in Table 1, we ran the main ex-
periments in two variants. In Figure 5 we compare
two additional variants: a) SAC: This is the basic
RL agent using the SAC algorithm. b) SAC+RS:
Here we use the reward shaping technique in com-
bination with SAC. This is our main algorithm as
given in Algorithm 1. ¢) SAC+1S_RS: This variant
is the same as SAC+RS except that N = 1 instead
of N = 32. This means reward shaping is done
without the N-step repetition of the TD update. d)
SAC+NN_RS: In this variant we replace line 3 of
Algorithm 1 with a neural network that estimates
the plain value function. In Appendix A, we show
the details of the architectures and parameters for
the neural networks and the RL agent.

Input representation Following Hausknecht
et al. (2020), the state s includes three elements:
(observation, inventory, look) at the current time
step. The representation of the elements in the state
and the action are tokenized by a SentencePiece
(Kudo and Richardson, 2018) model and then use
seperate GRUs to learn the embeddings. The em-
bedding size is 128. During training, the agent
randomly samples the data from the replay buffer.

5.3 Results

We compare our results with the previous choice-
based agents using deep Q-learning in Section
5.3.1. The effect of reward shaping and variants
thereof is discussed in Section 5.3.2.

5.3.1 Comparison to Q-learning methods

Table 1 shows the game score of the SAC-based
learning agent and SAC with reward shaping
(SAC+RS). In comparison with DRRN and Yao
et al. (2021), which are deep-Q learning-based RL
agents, four of the SAC agent-based games can
achieve notably higher scores. Three games got
the same scores, and zork1 achieves similar results
to DRRN (which is the closest baseline) but only
uses half of the training steps. Only the scores
of yomomma and karn are lower than those us-
ing the Deep-Q-learning agent. Same as for the
baselines, we compute the average of the last 100
episodes for each run of the game. Each game is
run three times and the mean and standard devia-
tion are shown. For each run of one game, eight
environments are run in parallel and the average
score is computed. The results of the baselines
are taken directly from the respective papers. The
training progress is shown in Figure 2 where the
game score is plotted over training episodes. We
can see that the method converges well except for
two games, yomomma and karn, where the agent
is not able to learn (see Section 6 for a possible
explanation). Overall, the results indicate that SAC
is well-suited to solve text-based games.

5.3.2 Reward shaping

Figure 2 shows the game score over training
episodes. We can see that shaping the original re-

10.1 — SAC SAC+RS

I
<]
3
@

10.0
9.8-

9.7-

9.6-

9.5-

—— SAC - SAC+RS

©
| Score

N w B w o ~
w. \\

' Episode . . . Egisode Episode
0 100 200 300 400 500 0 100 200 360 0 10 20 0
(a) balances (b) deephome (c) gold
© — SAC SAC+RS o e S0 0 — SAC SAC+RS
108 : 258 162
. 2.0- 14-
. 15-
Lo 12-
v 05— 10- |
: A
2 0.0-
a-
0- . v . . Episode =05- v) \Episode \) .) . Episode
0 100 200 300 400 500 0 50 100 150 0 100 200 300 400 500
(d) jewel (e) karn (f) ludicorp
089 — SAC SAC+RS 40y — SAC ~ SAC+RS 30w — SAC ~ SAC+RS
3 s S .
06 2.0
15-
0.4-
1.0-
0.2- 05-
: ' 0.0- .
. .) . . Episode . . . Episode Episode
0 20 40 60 8 100 0 100 200 300 400 500 0 100 200 300 400 500
(g) yomomma (h) zorkl (i) zork3

Figure 2: This figure shows the development of the game scores over training episodes where shaded areas
correspond to standard deviations. Compared is the SAC agent with and without reward shaping. You can see that
reward shaping leads to faster convergence at the beginning of training for b) deephome, d) jewel, f) ludicorp and 1)
zork3. The end score is higher with reward shaping for four of the nine games. Shown are only the games where the

agents learn something (advent and zenon are excluded).

wards (SAC+RS) leads to faster convergence than
without reward shaping (SAC). As mentioned in
Section 4, the soft state value can achieve a similar
performance as the state value while using fewer
parameters. To experimentally prove this point,
we run an additional variate of our method fol-
lowing Grze$ and Kudenko (2010) to reshape the
reward using the state value. The state values are
approximated by a multi-layer neural network. The
input of the neural network is the state. The tar-
get value is estimated by Gy = ry + YV (S¢41),
and the neural network updates by minimizing the
MSE loss function of TD error at each time step:
L = MSE(Gt — V(S)). We show the results
in Appendix C. As expected, the neural network-
based value approximation (SAC+NN_RS) can

reach similar performance as directly using the soft
state value from the critic policy. We sometimes
even get better performance using the soft value
function.

We also empirically investigate the effect of the
N-step update described in Section 4 and Algo-
rithm 1, lines 4-6. In Figure 5 in Appendix C we
compare the update with N = 32 steps (SAC+RS)
to the update with only one step (SAC+1S_RS). As
the figure shows, the method converges to a similar
final score, but exhibits much higher variance. In
the case of zork3, the convergence is also slower.
Therefore, we can conclude that the N-step update
is beneficial for stabilizing training.

Overall, the final score of SAC with reward shap-
ing is higher or the same for seven of the eleven

'Walkthrough:
'search furniture’ (+5 _pointsg, 'learn rezrov', 'rezrov box’,, 'search oats’Q 5 points),, learn
bozbar', 'bozbar tortoise’ (+5 points), 'get chewed scroll’,...., ’examine book’, * caskly chewed

scroll’ (+5 points),....

RL trajectories:

[‘examine furniture’ (+5 points), ‘west’, ‘north’, ‘examine oats’(+5 points),’south’, ‘east’, ‘put scroll
down’, examine scroll’, ‘examine spell’, ‘examine book’, ‘examine book’,’put all down’....]

Action: examine spell
Info: Which do you mean, the gnusto spell, the frotz spell, the yomin spell or the rezrov spell?

'Valid actions: ['take up', 'take scroll', 'put book down', 'put burin down', 'put coin down', 'put box down',|
'put all down', 'examine book', 'examine scroll', 'examine spell’]

Action: examine book

Info: My Spell Book. gnusto spell: copy a scroll into your spell book. frotz spell: cause an object to
give off light. yomin spell: mind probe. rezrov spell: open even locked or enchanted objects. bozbar
spell: cause an animal to sprout wings.

'Valid actions: ['west', 'take scroll', 'put book down', 'put burin down', 'put coin down', 'put box down',
'put all down', 'examine book', 'examine scroll', 'examine spell']

Figure 3: Game balances: The walkthrough and RL
agent trajectory are shown. The relevant actions, shown
in red, are not in the valid action space.

games as shown in Table 1. Only for one game,
deephome, does SAC+RS reduce the score. How-
ever, as shown in Appendix C, in this case the
SAC+1S_RS and SAC+NN_RS methods are bet-
ter than SAC only. We also observe that in many
cases the standard deviation is lower when reward
shaping is used than when it is not used.

6 Limitations and future work

As shown in Table 1, the SAC-based agent im-
proves the state of the art on several games, but
not all of them. We manually checked the agent-
predicted trajectories and the games’ walkthroughs
and found two main limitations.

The first limitation are the incomplete valid ac-
tion spaces. An important part of the game balances
is understanding and using different spells. How-
ever, those spells, such as ’bozbar tortoise’ and
caskly chewed scroll, are not included in the valid
action space. As shown in Figure 3 the agent can
only repeat meaningless actions and is unable to
reach higher scores as the required actions, shown
in red, are not included in the valid action space.

One solution to overcome the imperfection of
the valid action space handicap is manually adding
some relevant actions from game walkthroughs
Tuyls et al. (2022). In future work, we plan to adapt
our method to play without the valid action hand-
icap. We will apply the SAC agent and potential-
based reward shaping technique to the action space
generation task. Action generation is a critical chal-
lenge of playing text-based games which requires
a high level of language understanding.

The second limitation is that the agent performs
poorly when receiving a large valid action space.
Compared to ludicorp or jewel, the game karn often

State: -Location: console room; -Look: the console room is the heart of operations of the
tardis.....; -Inventory: you are carrying: a tweed jacket, an incredibly long scarf,

Valid Actions: [‘west', 'take card’, 'take key’, 'take yo’, 'take all', 'take off hat’, 'take off jacket’,
“east’, 'put hat down’, 'put scarf down’, 'puf jacket down’, 'put on scarf”, ‘pull lever’, 'open
drawer]

Action: west; Reward: 0 ; Reshaped Reward: Action: put jacket down; Reward: 0 ; Reshaped
-0.0441 Reward: -0.049

Next state: -Location: Rocky clearing;
-Look: you're standing on a relatively flat
piece of ground on the side of a mountain.
rocky outgrowths stand like walls all around

Next state: You take off the tweed jacket.
Dropped. -Location: console room; -Look:

you......; -Inventory: you are carrying: a the console room is the heart of operations of
tweed jacket, an incredibly long scarf, the the tardis......; -Inventory: you are carrying: an
TARDIS key, incredibly long scarf,

Next state valid actions: ['take jacket', 'take
card', 'take off scarf', 'take off hat', 'east', 'put
scarf down', 'put yo down', 'put hat down', 'put
key down', 'put all down', 'put on jacket', 'pull
lever', 'open drawer']

Next state valid actions: ['take off hat’, 'take
off scarf’, ‘east', 'take on northwest’, 'take on
tardis’, 'close tardis’, 'put hat down’, 'put card
down’, 'put scarf down’, 'put yo down’, 'put
Jjacket down’, 'put all down', put on

Jacket' 'put hat in tardis’, ‘put card in
tardis',')put scarf in tardis','put yo in tardis',
'put jacket in tardis’, 'put all in tardis’]

Figure 4: Game karn: Most of the actions in the valid
action spaces do not lead the agent to a new location
and significantly change reward signals. (In the right
column, choosing the action ’put jacket down,” labeled
in yellow, the agent is still in the same location. In the
left column, when the agent moves "west,” labeled in
red, the agent goes to a new location.)

receives action spaces with many possible actions
at a state. We built a toy example to see the inside
of the critic during training as shown in Figure 4.
The player’s inventory includes a jacket, hat, and
scarf. The agent gets stuck in the same location and
repeats the same actions: ’put jacket down’, ’take
off jacket’, "take off hat’, "take card’. The distri-
butions and reshaped rewards change only slightly.
We assume the agent tends to try uncertain actions,
requiring more steps to find valuable actions.

One possible solution, inspired by the masked
language model and Huang and Ontafién (2020),
is masking the irrelevant actions to reduce the size
of the action space. It is necessary to pay more
attention to the exploration-exploitation trade-off
and the reward technique to speed up the learning
process in the future.

7 Conclusion

We propose a SAC-based RL agent to play text-
based adventure games. The results show that
the SAC-based agent achieves significantly higher
scores than deep-Q learning for some difficult
games while using only half the number of training
steps. Furthermore, we use a reward-shaping tech-
nique to deal with sparse rewards. This allows us to
learn intermediate rewards, which speeds up learn-
ing at the beginning of training for some games and
leads to higher scores than without reward shaping
for many games. Our analysis reveals two key limi-
tations involving the valid action space that will be
addressed in future work.

References

Prithviraj Ammanabrolu and Matthew Hausknecht.
2020. Graph constrained reinforcement learning for
natural language action spaces. In International Con-
ference on Learning Representations.

Prithviraj Ammanabrolu, Ethan Tien, Matthew
Hausknecht, and Mark O Riedl. 2020. How to
avoid being eaten by a grue: Structured explo-
ration strategies for textual worlds. arXiv preprint
arXiv:2006.07409.

Tim Brys, Anna Harutyunyan, Matthew E Taylor, and
Ann Nowé. 2015. Policy transfer using reward shap-
ing. In Proceedings of the 2015 International Confer-
ence on Autonomous Agents and Multiagent Systems,
pages 181-188.

Petros Christodoulou. 2019.
for discrete action settings.
arXiv:1910.07207.

Soft actor-critic
arXiv preprint

Rati Devidze, Goran Radanovic, Parameswaran Ka-
malaruban, and Adish Singla. 2021. Explicable re-
ward design for reinforcement learning agents. Ad-
vances in Neural Information Processing Systems,

34:20118-20131.

Damien Ernst, Mevludin Glavic, Pierre Geurts, and
Louis Wehenkel. 2005. Approximate value iteration
in the reinforcement learning context. application
to electrical power system control. International
Journal of Emerging Electric Power Systems, 3(1).

Marek Grze$ and Daniel Kudenko. 2010. Online learn-
ing of shaping rewards in reinforcement learning.
Neural networks, 23(4):541-550.

Yi Gu, Shunyu Yao, Chuang Gan, Joshua B Tenenbaum,
and Mo Yu. 2022. Revisiting the roles of" text" in
text games. arXiv preprint arXiv:2210.08384.

Xiaoxiao Guo, Mo Yu, Yupeng Gao, Chuang Gan, Mur-
ray Campbell, and Shiyu Chang. 2020. Interactive
fiction game playing as multi-paragraph reading com-
prehension with reinforcement learning. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing, pages 7755-7765,
Online. Association for Computational Linguistics.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. 2018. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with
a stochastic actor. In Proceedings of the 35th Inter-
national Conference on Machine Learning (ICML
2018), Stockholmsmdissan, Stockholm, Sweden, July
10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 1856—1865. PMLR.

Anna Harutyunyan, Sam Devlin, Peter Vrancx, and
Ann Nowé. 2015. Expressing arbitrary reward func-
tions as potential-based advice. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 29.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-
Alexandre Co6té, and Xingdi Yuan. 2020. Interactive
fiction games: A colossal adventure. In Proceedings
of the AAAI Conference on Artificial Intelligence,
pages 7903-7910.

Matthew Hausknecht, Ricky Loynd, Greg Yang, Adith
Swaminathan, and Jason D Williams. 2019. Nail:
A general interactive fiction agent. arXiv preprint
arXiv:1902.04259.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Li-
hong Li, Li Deng, and Mari Ostendorf. 2016. Deep
reinforcement learning with a natural language ac-
tion space. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1621-1630, Berlin,
Germany. Association for Computational Linguistics.

Shengyi Huang and Santiago Ontafién. 2020. A closer
look at invalid action masking in policy gradient al-
gorithms. arXiv preprint arXiv:2006.14171.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71.

Sascha Lange, Thomas Gabel, and Martin Riedmiller.
2012. Batch reinforcement learning. In Reinforce-
ment learning, pages 45-73. Springer.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016. Deep re-
inforcement learning for dialogue generation. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1192—
1202, Austin, Texas. Association for Computational
Linguistics.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2018. Multi-hop knowledge graph reasoning with
reward shaping. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3243-3253.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzi-
lay. 2015. Language understanding for text-based
games using deep reinforcement learning. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1-11,
Lisbon, Portugal. Association for Computational Lin-
guistics.

Andrew Y. Ng, Daishi Harada, and Stuart Russell. 1999.
Policy invariance under reward transformations: The-
ory and application to reward shaping. In Proceed-
ings of the Sixteenth International Conference on Ma-
chine Learning (ICML 1999), Bled, Slovenia, June
27 - 30, 1999, pages 278-287. Morgan Kaufmann.

Richard S Sutton and Andrew G Barto. 2018. Reinforce-
ment learning: An introduction. MIT press.

https://openreview.net/forum?id=B1x6w0EtwH
https://openreview.net/forum?id=B1x6w0EtwH
https://openreview.net/forum?id=B1x6w0EtwH
https://doi.org/10.18653/v1/2020.emnlp-main.624
https://doi.org/10.18653/v1/2020.emnlp-main.624
https://doi.org/10.18653/v1/2020.emnlp-main.624
https://doi.org/10.18653/v1/2020.emnlp-main.624
https://doi.org/10.18653/v1/2020.emnlp-main.624
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
https://doi.org/10.18653/v1/P16-1153
https://doi.org/10.18653/v1/P16-1153
https://doi.org/10.18653/v1/P16-1153
https://doi.org/10.18653/v1/P16-1153
https://doi.org/10.18653/v1/P16-1153
https://doi.org/10.18653/v1/D16-1127
https://doi.org/10.18653/v1/D16-1127
https://doi.org/10.18653/v1/D16-1127
https://doi.org/10.18653/v1/D15-1001
https://doi.org/10.18653/v1/D15-1001
https://doi.org/10.18653/v1/D15-1001

Jens Tuyls, Shunyu Yao, Sham M. Kakade, and Karthik
Narasimhan. 2022. Multi-stage episodic control for
strategic exploration in text games. In The Tenth In-

ternational Conference on Learning Representations,
ICLR 2022. OpenReview.net.

Eric Wiewiora, Garrison W Cottrell, and Charles Elkan.
2003. Principled methods for advising reinforcement
learning agents. In Proceedings of the 20th interna-
tional conference on machine learning,(ICML-03),

pages 792-799.

Yungiu Xu, Meng Fang, Ling Chen, Yali Du,
Joey Tianyi Zhou, and Chengqi Zhang. 2020. Deep
reinforcement learning with stacked hierarchical at-
tention for text-based games. Advances in Neural
Information Processing Systems, 33:16495-16507.

Shunyu Yao, Karthik Narasimhan, and Matthew
Hausknecht. 2021. Reading and acting while blind-
folded: The need for semantics in text game agents.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 3097-3102, Online. Association for Computa-
tional Linguistics.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and
Karthik Narasimhan. 2020. Keep CALM and ex-
plore: Language models for action generation in
text-based games. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing, pages 8736-8754, Online. Association
for Computational Linguistics.

Brian D. Ziebart, J. Andrew Bagnell, and Anind K.
Dey. 2010. Modeling interaction via the principle
of maximum causal entropy. In Proceedings of the
27th International Conference on Machine Learning
(ICML 2010), June 21-24, 2010, Haifa, Israel, pages
1255-1262. Omnipress.

A Appendix

Experimental settings:

Neural networks and parameters The policy
neural network includes three linear layers with two
hidden dimensions D7 = 512 and Dy = 128, each
hidden layer connects with the ReLLU activation
function, and the categorical distribution is on top
to ensure that the sum of action probabilities is
one. The Q-function neural network has also three
linear layers with ReLU activation functions. Both
policy and Q-function update at each step, and the
target Q-functions update the weights from the Q-
function every two steps.

The RL agent parameters were set as follows:
the batch size is 32, and the learning rate of both
policy and Q-function neural networks is 0.0003.
Epsilon-Greedy action selection and a fixed entropy

10

regularization coefficient were used in all of the ex-
periments. For each game, we ran 8 environments
in parallel to get the average score of the last 100
episodes, and each model ran three times to com-
pute the average scores. The maximum number of
training steps per episode is 100.

Since the RL agent interacts with the game envi-
ronments, the training time depends on the game
implementation in the Jericho framework. For ex-
ample, zorkl, and zork3 are comparably fast to
train, whereas gold takes an extremely long time
compared to the rest of the games. Because of this,
we only trained gold for 4,000 steps, yomomma
for 10,000 steps, and karn for 10,000 steps. Our
comparison methods also use varying step sizes
for these games (but they use more training steps
than we do). Most of the previous work trained the
agent in a maximum of 100,000 steps, whereas the
maximum number of training steps for our method
is only 50,000 in all experiments.

Computing infrastructure We ran the exper-
iments on Intel(R) Xeon(R) Gold 6154 CPU @
3.00GHz and the Nvidia GPUs (can be one of
GeForce RTX 2080 or Tesla V100).

B Supplementary material

Our experiments are based on the publicly accessi-
ble Jericho environment (Hausknecht et al., 2020)
that provides the environment for playing all games
in our experiments. Our code is attached as a sup-
plement.

C Additional results

In Figure 5 we compare the update with SAC
only (SAC), N = 32 steps (SAC+RS), update
with only one step (SAC+1S_RS), and the neu-
ral network-based reward shaping(NN_RS). As
the figure shows, convergence is faster with the
reward-shaping technique for most games. Fig-
ure 6 presents the results of three possible games
detective, pentari, and omniquest.

We use the same parameters for all of the games;
however, we recommend trying different values for
parameters such as learning rate, reward shaping
update steps N, or the layers of the neural network
for individual games to achieve higher scores.

https://openreview.net/forum?id=Ek7PSN7Y77z
https://openreview.net/forum?id=Ek7PSN7Y77z
https://openreview.net/forum?id=Ek7PSN7Y77z
https://doi.org/10.18653/v1/2021.naacl-main.247
https://doi.org/10.18653/v1/2021.naacl-main.247
https://doi.org/10.18653/v1/2021.naacl-main.247
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://icml.cc/Conferences/2010/papers/28.pdf
https://icml.cc/Conferences/2010/papers/28.pdf
https://icml.cc/Conferences/2010/papers/28.pdf

—— SAC - SACHRS —-- SAC+ISRS —:- SACHNN_RS —— SAC - SACHRS --- SAC+ISRS —:- SACHNNRS

. , . Egisode Episode Episode
0 100 200 300 0 100 200 300 400 500 0 100 200 300 400 500

(a) deephome (b) ludicorp (c) zorkl

sAC SACHRS SAC+1SRS —:- SACHNN_RS 1010 % SACHRS === SACHISRS —-= SACHNN_RS

97-
9.6-
0.0-] \ \ . , Episode 0- . . . Episode 9.5 . . \ . . Episode
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
(d) zork3 (e) jewel (f) balances
— < SCHS - SACHISRS —- SACHNNRS GG o SACHRS - SACHISAS — - SACHNN RS GG e SACHRS - SACHISRS —- SACPNN RS
08¢ ¢ 85
A 258 &
7
0.6- 2.0
6-
15
0.4- 5-
4
0.2 3
0.0- S z
0 . . . , Episode, =05-] . , . Episode) . , . Episode
0 20 40 60 80 100 120 0 25 50 75 100 12 150 0 10 20 30 40
(g) yomomma (h) karn (i) gold

Figure 5: This figure compares the SAC agent with and without reward shaping (RS), N-step repetition (1S_RS),
and state-value-based RS (NN_RS). We can see that NN_RS can perform similarly as directly using soft-value as
reward signals, and 1S_RS results in higher variances.The shaded areas correspond to standard deviations. Shown
are only the games where the agents learn something (advent and zenon are excluded).

G SACHRS - SCHSRS — SACHN RS e e SACHS - SACHSRS —- SACHNRS e o SGHS - SACHSRS —- SACHNNRS
785
g
(2]
6
r \
5- e
i
13
i
4]
' s \ . . Episode \ . . | . Episode .\ | . \ . Episode
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
(a) detective (b) pentari (c) omniquest

Figure 6: Additionally, we randomly chose three possible games. For each game, we ran eight environments in
parallel to get the average score of the last 100 episodes, and each model ran two times to compute the average
scores.The maximum number of training steps is 100,000.

11

	Introduction
	Related work
	Problem setting and background
	SAC for discrete action spaces

	Method
	Experimental results
	Datasets
	Experimental settings
	Results
	Comparison to Q-learning methods
	Reward shaping

	Limitations and future work
	Conclusion
	Appendix
	Supplementary material
	Additional results

