
Under review as a conference paper at ICLR 2024

DIFFERENTIABLE TRAJECTORY OPTIMIZATION AS A
POLICY CLASS FOR REINFORCEMENT AND IMITATION
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces DiffTOP, a new policy class for reinforcement learning and
imitation learning that utilizes differentiable trajectory optimization to generate
the policy actions. Trajectory optimization is a powerful and widely used algo-
rithm in control, parameterized by a cost and a dynamics function. The key to our
approach is to leverage the recent progress in differentiable trajectory optimiza-
tion, which enables computing the gradients of the loss with respect to the parame-
ters of trajectory optimization. As a result, the cost and dynamics functions of tra-
jectory optimization can be learned end-to-end, e.g., using the policy gradient loss
in reinforcement learning, or using the imitation loss in imitation learning. When
applied to model-based reinforcement learning, DiffTOP addresses the “objective
mismatch” issue of prior algorithms, as the dynamics model in DiffTOP is learned
to directly maximize task performance by differentiating the policy gradient loss
through the trajectory optimization process. When applied to imitation learning,
DiffTOP performs test-time trajectory optimization to compute the actions with
a learned cost function, outperforming prior methods that only perform forward
passes of the policy network to generate actions. We benchmark DiffTOP on
15 model-based RL tasks, and 13 imitation learning tasks with high-dimensional
image and point cloud inputs, and show that it outperforms prior state-of-the-art
methods in both domains.

1 INTRODUCTION

Recent works have shown that the representation of a policy can have a substantial impact on the
learning performance (Chi et al., 2023; Florence et al., 2022; Amos et al., 2018; Seita et al., 2023).
Prior works have explored the use of feed-forward neural networks (Seita et al., 2023), energy-based
models (Florence et al., 2022), diffusion (Chi et al., 2023), or linear-quadratic regularizer (Amos
et al., 2018) as the policy representation in the setting of imitation learning. In this paper, we
propose DiffTOP, a new policy class which leverages Differentiable Trajectory OPtimization to
generate actions for reinforcement learning (RL) and imitation learning (IL).

Trajectory optimization is an effective and widely used algorithm in control, usually defined with
a cost function and a dynamics function. In this paper, we view trajectory optimization as a pol-
icy class, where the parameters of the policy specify the cost function and the dynamics function,
e.g., as neural networks. Given the learned cost and dynamics functions as well as the input state
(e.g., images, point clouds, robot joint states), the policy then computes the actions by solving the
trajectory optimization problem.

To apply such a policy to either RL or IL, we need to compute the gradients of the actions with
respect to the policy parameters, which requires back-propagating through the trajectory optimiza-
tion process. In this work, we leverage a recently developed software library, Theseus (Pineda et al.,
2022), which is an efficient application-agnostic open source library for differentiable nonlinear least
squares (DNLS) optimization built on PyTorch, to reliably differentiate through the trajectory opti-
mization process. With Theseus, we are able to scale up DiffTOP to very high-dimensional states
such as images and point clouds.

1

Under review as a conference paper at ICLR 2024

When applied to RL, DiffTOP computes the policy gradient loss on the generated actions from
trajectory optimization. DiffTOP then differentiates through the trajectory optimization process to
learn the dynamics and cost functions. This addresses the “objective mismatch” issue (Lambert
et al., 2020; Eysenbach et al., 2022) of current model-based RL algorithms, i.e. models that achieve
better training performance (e.g., lower MSE) in learning a dynamics model are not necessarily
better for control. DiffTOP addresses this issue, as the latent dynamics and reward models are both
optimized to maximize the task performance by back-propagating the policy gradient loss through
the trajectory optimization process. We show that DiffTOP outperforms prior state-of-the-art model-
based RL algorithms on 15 tasks from the DeepMind Control Suite (Tassa et al., 2018) with high-
dimensional image inputs.

We also apply DiffTOP to imitation learning, which trains using a loss between the policy actions
and the expert actions. Instead of outputting the policy actions directly, DiffTOP performs imita-
tion learning by learning a cost function and performing test-time optimization with it. Using this
approach, DiffTOP outperforms other types of policy classes that only perform forward passes of
the policy network at test time. Relatedly, prior work (Florence et al., 2022) has explored learning
an energy-based model for test-time optimization; however, we observe that our training proce-
dure using differentiable trajectory optimization leads to better performance compared to the EBM
approach used in prior work, which can suffer from training instability due to the requirement of
sampling high-quality negative examples (Chi et al., 2023). We also outperform diffusion-based ap-
proaches (Chi et al., 2023) due to our procedure of learning a cost function that we optimize at test
time. We show that DiffTOP achieves state-of-the-art performance for imitation learning across 13
different tasks on two widely used benchmarks, Robomimic (Mandlekar et al., 2021) (with image
inputs) and Maniskill1 (Mu et al., 2021) and Maniskill2 (Gu et al., 2023) (with point cloud inputs).

In summary, the contributions of our paper are as following:

• We propose DiffTOP, a new policy class that uses differentiable trajectory optimization for
reinforcement learning and imitation learning.

• We conduct extensive experiments to compare DiffTOP against prior state-of-the-art meth-
ods on 15 tasks for model-based RL and 13 tasks for imitation learning with high-
dimensional sensory observations, and show that DiffTOP achieves state-of-the-arts results
in both domains.

• We perform analysis and ablations of DiffTOP to provide insights into its learning proce-
dure and performance gains.

2 RELATED WORKS

Model-based reinforcement learning: Compared to model-free RL, model-based RL usually has
higher sample efficiency since it is solving a simpler supervised learning problem when learning the
dynamics model. Recently, researchers have identified a fundamental problem for model-based RL,
known as “objective mismatch” (Lambert et al., 2020). Some recent works have proposed a joint
objective for model and policy learning in model-based RL, and the proposed objective is a lower
bound on the true return of the policy (Eysenbach et al., 2022; Ghugare et al., 2022). In contrast to
these works, we use Theseus (Pineda et al., 2022) to analytically compute the gradient of the true
objective for updating the model.

From another view, we are treating the trajectory optimization procedure as an implicit policy. End-
to-end MPC (Amos et al., 2018; Amos & Yarats, 2020) has been explored before as well, but they
only test it in the imitation learning setting, and only on very low-dimensional control problems.

Policy architecture for imitation learning: Imitation learning can be formulated as the supervised
regression task of learning to map observations to actions from demonstrations. Some recent work
explores different policy architectures (e.g., explicit policy, implicit policy (Florence et al., 2022),
diffusion policy (Chi et al., 2023)) and different action representations (e.g., mixtures of Gaus-
sian (Bishop, 1994; Mandlekar et al., 2021), spatial action maps (Wu et al., 2020), action flow (Seita
et al., 2023), or parameterized action spaces (Hausknecht & Stone, 2015)) to achieve more accu-
rate learning from demonstrations, to model the multimodal distributions of demonstrations, and to
capture sequential correlation. Our method distinguishes itself from the explicit or diffusion pol-
icy approaches in that we employ test-time optimization. In comparison with the implicit policy,

2

Under review as a conference paper at ICLR 2024

which also employs test-time optimization, we use a different and more stable training objective and
procedure via differentiable trajectory optimization.

3 BACKGROUND

3.1 DIFFERENTIABLE TRAJECTORY OPTIMIZATION

In robotics and control, trajectory optimization solves the following type of problems:

min
a0,...,aT

T−1∑
t=0

c(st, at) + C(sT)

s.t. st+1 = d(st, at)

(1)

where c(st, at) and C(sT) are the cost functions, and st+1 = d(st, at) is the dynamics function.
In this paper, we consider the case where the cost function and the dynamics functions are neural
networks parameterized by θ: cθ(st, at), Cθ(sT), and dθ(st, at).

Let a0(θ), ..., aT (θ) be the optimal solution to the trajectory optimization problem, which is a func-
tion of the model parameters θ. Differentiable trajectory optimization is a class of method that
enables fast and reliable computation of the gradient of the actions with respect to the model param-
eters ∂at(θ)

∂θ . Specifically, in this paper we use Theseus (Pineda et al., 2022), which is an efficient
application-agnostic open source library for differentiable nonlinear least squares optimization. The-
seus works well with high-dimensional states, e.g., images or point clouds, along with using neural
networks as the cost and dynamics functions.

3.2 MODEL-BASED RL PRELIMINARIES

We use the standard MDP formulation: ⟨S,A,R, T , γ⟩ where S is the state space, A is the action
space, R(s, a) is the reward function, T (·|s, a) is the transition dynamics function, and γ ∈ [0, 1)
is the is the discount factor. The goal is to learn a policy π to maximize the expected return:
Est,at∼π[

∑∞
t=1 γ

tR(st, at)]. In this paper we work on problems where the state space S are high-
dimensional sensory observations, e.g., images or point clouds. Model-based RL algorithms first
learn a dynamics model, and then use it for learning a policy. When applied to model-based RL, our
method builds upon TD-MPC (Hansen et al., 2022), a recently proposed model-based RL algorithm
which we review briefly here. TD-MPC consists of the following components: first, an encoder
hθ, which encodes the high-dimensional sensory observations, e.g., images, into a low-dimensional
state zt = hθ(st). In the latent space, a latent dynamics model dθ is also learned: zt+1 = dθ(zt, at).
A latent reward predictor Rθ is learned which predicts the task reward r: r̂ = Rθ(zt, at). Finally,
a value predictor Qθ learns to predict the Q value: Q̂ = Qθ(zt, at). Note that we use θ to denote
all learnable parameters including the encoder, the latent dynamics model, the reward predictor, and
the Q value predictor. These models are trained jointly using the following objective:

LTD−MPC(θ; τ) =

t+H∑
i=t

λi−tLTD−MPC(θ; τi) , (2)

where τ ∼ B is a trajectory (st, at, rt, st+1)t:t+H sampled from a replay buffer B, λ ∈ R+ is a
constant that weights near-term predictions higher, and the single-step loss is:

LTD−MPC(θ; τi) =c1∥Rθ(zi, ai) − ri∥2
2︸ ︷︷ ︸

reward

+ c2∥Qθ(zi, ai) −
(
ri + γQθ− (zi+1, πθ(zi+1))

)
∥2
2︸ ︷︷ ︸

value

+ c3∥dθ(zi, ai) − hθ− (si+1)∥2
2︸ ︷︷ ︸

latent state consistency

(3)

where θ− are parameters of target networks that are periodically updated using the parameters of the
learning networks. As shown in Equation 3, the parameters θ is optimized with a set of surrogate
losses (reward prediction, value prediction, and latent consistency), rather than directly optimizing
the task performance, known as the objective mismatch issue. At test time, model predictive path
integral (MPPI) (Williams et al., 2016) is used for planning actions that maximize the predicted
rewards and Q functions in the latent space. A policy πψ is further learned in the latent space using
the latent Q-value function, which is used to generate action samples in the MPPI process.

3

Under review as a conference paper at ICLR 2024

Inference
Training

TD-MPC DiffTOP (Ours)

Figure 1: Overview of DiffTOP for model-based RL. In contrast to prior work in model-based
RL Hansen et al. (2022) that uses non-differentiable MPPI (left), we utilize differentiable trajectory
optimization to generate actions (right). DiffTOP computes the policy gradient loss on the gener-
ated actions and back-propagates it through the optimization process, which optimizes the encoder
as well as the other latent space models (latent reward predictor and latent dynamics function) to
maximize task performance.

4 METHOD

4.1 OVERVIEW

The core idea of our method DiffTOP is to use trajectory optimization as the policy πθ, where θ rep-
resents the parameters for the dynamics and cost functions. Given a state s, DiffTOP generates the
actions a(θ) by solving the trajectory optimization problem in Equation 1 with s0 = s. To optimize
the policy parameters θ, we use differentiable trajectory optimization to compute the gradients of
the loss L(a(θ)) with respect to the policy parameters: ∂L(a(θ))

∂θ , where the exact form of the loss
depends on the problem setting.

An overview of applying DiffTOP to model-based RL is shown in Figure 1. Existing model-based
RL algorithms such as TD-MPC suffer from the objective mismatch issue: the latent dynamics and
reward (cost) functions are learned to optimize a set of surrogate losses (as in Equation 3), instead
of optimizing the task performance directly. DiffTOP addresses this issue: by computing the policy
gradient loss on the optimized actions from trajectory optimization and differentiating through the
trajectory optimization process, the dynamics and cost functions are optimized directly to maximize
the task performance. We describe DiffTOP for model-based RL in Section 4.2.

We also apply DiffTOP to imitation learning; an overview is shown in Figure 2. In contrast to
explicit policies that generate actions at test-time by forward passes of the policy network, DiffTOP
generates the actions via test-time trajectory optimization with a learned cost function. This is in the
same spirit of implicit behaviour cloning (Florence et al., 2022) which learns an energy function and
optimizes with respect to it to generate actions at test-time. However, we observe that our training
procedure using differentiable trajectory optimization leads to better performance compared to the
EBM approach used in prior work, which can suffer from training instability due to the requirement
of sampling high-quality negative examples (Chi et al., 2023). We describe DiffTOP for imitation
learning in detail in Section 4.3.

4.2 DIFFERENTIABLE TRAJECTORY OPTIMIZATION APPLIED TO MODEL-BASED RL
We build DiffTOP on top of TD-MPC for model-based RL. Similar to TD-MPC, DiffTOP consists of
an encoder hθ, a latent dynamics model dθ, a reward predictor Rθ, and a Q-value predictor Qθ (see
Sec. 3.2). Note that we use θ to denote all learnable model parameters to be optimized in DiffTOP,
including the parameters of the encoder hθ, the latent dynamics model dθ, the reward predictor Rθ,
and the Q value predictor Qθ. As shown in Figure 1, the key to DiffTOP is to change the non-
differentiable MPPI planning algorithm in TD-MPC to a differentiable trajectory optimization, and
include the policy gradient loss on the generated actions to optimize the model parameters θ directly
for task performance.

Formally, given a state st, we use the encoder hθ to encode it to the latent state zt, and then construct
the following trajectory optimization problem in the latent space:

a(θ) = argmax
at,...,at+H

H−1∑
l=t

γl−tRθ(zt, at) + γHQθ(zH , aH)

s.t. zt+1 = dθ(zt, at)

(4)

4

Under review as a conference paper at ICLR 2024

𝑜

𝑎

Explicit Policy

𝜋!(𝑜)

𝑜

𝑎

Implicit Policy

𝑎!"!#

𝑎 = argmin
!

𝐸"(𝑜, 𝑎)

𝑜

𝑎

Diffusion Policy

𝜀!(𝑜, 𝑎)

∇ 𝐸(𝑎)

𝑎

𝐾
iter

𝑜

𝑎

DiffTOP (Ours)

𝑎!"!#

𝑎 = argmin
!

𝐸"(𝑜, 𝑎)

differentiable trajectory
optimization

Figure 2: Overview of our method on Imitation Learning. DiffTOP (right) learns a cost function
via differentiable trajectory optimization and performs test-time optimization with it, which is dif-
ferent from prior work (left) that uses an explicit policy or diffusion without test-time optimization.
Although implicit policy shares the same spirit as DiffTOP, we observe that the training procedure
of DiffTOP using differentiable trajectory optimization leads to better performance compared to the
EBM approach used in prior work Florence et al. (2022), which can suffer from training instability.

where H is the planning horizon. In this paper we leverage Theseus (Pineda et al., 2022) to
solve Equation 4 in a differentiable way. Since Theseus only supports solving non-linear least-
square optimization problems without constraints, we remove the dynamics constraints in the above
optimization problem by manually rolling out the dynamics into the objective function. For exam-
ple, with a planning horizon of H = 2, we turn the above optimization problem into the following
one:

a(θ) = argmax
at,at+1,at+2

Rθ(zt, at) +Rθ(dθ(zt, at), at+1) +Qθ(dθ(dθ(zt, at), at+1), at+2) (5)

We set the values of H following the schedule as in TD-MPC, and we use the Levenberg–Marquardt
algorithm in Theseus to solve the optimization problem. Following TD-MPC, we also learn a policy
πψ in the latent space using the learned Q-value predictor Qθ, and the output from the policy is used
as the action initialization for solving Equation 4.

Let a(θ) be the solution of the above trajectory optimization problem, obtained using Theseus as de-
scribed above. DiffTOP is learned with the following objective, which jointly optimizes the encoder,
latent dynamics model, latent reward model, and the Q-value predictor:

LRL
DiffTOP (θ; τ) =

t+H∑
i=t

λi−t (LTD−MPC(θ; τi) + c0LPG(θ; τi))

LPG(θ; τi) = Q̃ϕ(si, a(θ))

(6)

where Q̃ϕ is the Q function learned via Bellman updates (Watkins & Dayan, 1992) which is used
to compute the deteministic policy gradient (Lillicrap et al., 2015), and c0 is the weight for this
loss term. Q̃ϕ is learned in the original state space S instead of the latent space to provide accurate
policy gradients. The key idea here is that we can backpropagate through the policy gradient loss
LPG, which backpropagates through a(θ) and then through the differentiable trajectory optimization
procedure of Equation 4 to update θ.

4.3 DIFFERENTIABLE TRAJECTORY OPTIMIZATION APPLIED TO IMITATION LEARNING

We also use DiffTOP for model-based imitation learning. A comparison of DiffTOP to other types
of policy classes used in prior work is shown in Figure 2. In this approach, DiffTOP consists of
an encoder hθ and a latent dynamics function dθ, as before. However, in the setting of imitation
learning, we do not assume access to a reward function R(s, a). Instead, we generate actions by
solving the following trajectory optimization problem:

a(θ) = argmax
at,...,at+H

H∑
l=t

γl−tfθ(zt, at)

s.t. zt+1 = dθ(zt, at),

(7)

in which fθ(zt, at) is a function over the latent state zt and actions at that we will optimize using
the imitation learning loss, as described below. Similarly, We use θ to denote all learnable model

5

Under review as a conference paper at ICLR 2024

parameters to be optimized in DiffTOP, which includes the parameters of the encoder hθ, the latent
dynamics model dθ, and the function fθ in the imitation learning setting.

In imitation learning, we assume access to an expert dataset D = {(si, a∗i)}Ni=1 of state-action pairs
(si, a

∗
i). In the most basic form, the loss L for DiffTOP can be the mean square error between the

the expert actions a∗i and the actions a(θ) returned from solving Equation 7:

LBC(θ) =

N∑
i=1

||a(θ)− a∗
i || (8)

The key idea here is that we can backpropagate through the imitation loss LBC , which backprop-
agates through a(θ) and then through the differentiable trajectory optimization procedure of Equa-
tion 7 to update θ. This enables us to learn the function fθ(zt, at) used in the optimization Equation 7
directly by optimizing the imitation loss LBC(θ). Because this loss is optimized through the trajec-
tory optimization procedure (Equation 7), we will learn a function fθ(zt, at) such that optimizing
Equation 7 returns actions that match the expert actions.

Multimodal DiffTOP: The loss in Equation 8 will not be able to capture multi-modal action dis-
tributions in the expert demonstrations. To address this, we use a Conditional Variational Auto-
Encoder (CVAE) (Sohn et al., 2015) as the policy architecture, which has the ability to capture a
multi-modal action distribution (Zhao et al., 2023). The CVAE encodes the state si and the expert
action a∗i into a latent vector zi; the decoder takes as input a sampled latent zi and the state si to
decode the action a(θ).

The key idea in our our approach is that the decoder takes the form of a trajectory optimization
algorithm, given by Equation 7. This algorithm takes as input the latent zi and the state si and
uses differentiable trajectory optimization (e.g., Theseus) to decode the action a(θ). Because this
trajectory optimization is differentiable, we can backpropagate through it to learn the parameters θ
for the encoder, dynamics dθ, and the function fθ used in Equation 7. See Appendix D for further
details.

Action refinement: We also note that DiffTOP provides a natural way to perform action refine-
ment on top of a base policy. Given an action from any base policy, we can use this action as the
initialization of the action variables for solving the trajectory optimization problem; the trajectory
optimizer will iteratively refine this action initialization with respect to the optimization objective of
Equation 7. In our experiments, we find DiffTOP always outperforms the base policies when using
their actions as the initialization, and it also outperforms other ways of performing action refinement,
such as residual learning.

5 EXPERIMENTS

5.1 MODEL-BASED REINFORCEMENT LEARNING

We conduct experiments on 15 DeepMind Control suite tasks, which involve simulated locomotion
and manipulation tasks, such as making a cheetah run or swinging a ball into a cup. All tasks use
image observations and the control policy does not have direct access to the underlying states.

We compare to the following baselines: TD-MPC (Hansen et al., 2022), a state-of-the-art model-
based RL algorithm, which DiffTOP builds on. Dreamer-v2 (Hafner et al., 2020), another state-
of-the-art model-based RL algorithm that has an image reconstruction loss when learning the latent
state space. Dreamer-v3 (Hafner et al., 2023), an upgraded version of Dreamer-v2 with better
results on many tasks. DrQ-v2 (Yarats et al., 2021), a state-of-the-art model-free RL algorithm.

Figure 3 shows the learning curves for all methods on all tasks. The top-left subplot shows the nor-
malized performance averaged across all 15 tasks, which is computed as the achieved return divided
by the max return from any algorithm. As shown, DiffTOP (red curve) outperforms all compared
baselines, and establishes a new state-of-the-art performance for RL on DeepMind Control Suite.
We especially note that the performance of DiffTOP is much higher than TD-MPC, which DiffTOP
builds on, showing the benefit of adding the policy gradient loss and directly differentiating through
it to optimize the learned latent spaces. Compared to Dreamer-v3, the state-of-the-art model-based
RL algorithm that has been heavily tuned, DiffTOP learns faster in early stages and achieves similar
final performance. We also note that Dreamer-v3 uses a more complicated network architecture (i.e.,

6

Under review as a conference paper at ICLR 2024

the recurrent state space model (RSSM (Hafner et al., 2019)) than DiffTOP, which uses a simpler
latent space model inherited from TD-MPC. We leave incorporating DiffTOP with more advanced
latent space models as future work, which we believe might further boost the performance. We
present results on computational efficiency (return vs wall-clock time) of DiffTOP in Appendix A.1.

We also perform ablation studies to examine how each loss term in Equation 6 contributes to the
final performance of DiffTOP. The results are shown in Figure 4. We find that removing the reward
prediction loss causes DiffTOP to completely fail. Removing the dynamics loss, or not using the
action initialization from the learned policy πψ for solving the trajectory optimization, both lead to
a decrease in the performance. These shows the necessity of using all the loss terms in DiffTOP for
learning a good latent space to achieve strong performance.

DiffTOP (Ours)Dreamer-v2TD-MPCDrQ–v2 Dreamer-v3

Cartpole Swingup Sparse Cheetah Run Cup CatchAverage

Environment steps (×1e6) Environment steps (×1e6) Environment steps (×1e6) Environment steps (×1e6)

Ep
iso

de
 re

tu
rn

Finger Spin Finger Turn Easy Hopper StandFinger Turn Hard

Pendulum Swingup Quadruped Run Quadruped Walk Reacher Easy

Reacher Hard Walker Run Walker Stand Walker Walk

Ep
iso

de
 re

tu
rn

Ep
iso

de
 re

tu
rn

Ep
iso

de
 re

tu
rn

Figure 3: Performance of DiffTOP, in comparison to 4 prior state-of-the-art model-based and model-
free RL algorithms, on 15 tasks from DeepMind control suite. DiffTOP achieves the best perfor-
mance when averaged across all tasks, and learns faster in early stages compared to Dreamer-v3.
Results are averaged with 4 seeds, and the shaded regions represent the standard deviation.

DiffTOP (Ours)w/o action initializationw/o dynamic loss w/o reward loss

Cheetah Run Cup Catch Finger Turn Easy Reacher Easy

Environment steps (×1e6) Environment steps (×1e6)

Ep
iso

de
 re

tu
rn

Environment steps (×1e6) Environment steps (×1e6)

Figure 4: Ablation study of DiffTOP to examine the contribution of each loss terms towards the final
performance, on a subset of 4 tasks. We find the reward prediction loss, action initialization, and
dynamics prediction loss are all essential for DiffTOP to achieve good performance.

5.2 IMITATION LEARNING

5.2.1 ROBOMIMIC

Robomimic (Mandlekar et al., 2021) is a large-scale benchmark designed to study imitation learning
for robot manipulation. The benchmark encompasses a total of 5 tasks with two types of demonstra-
tions: collected from proficient humans (PH) or a mixture of proficient and non-proficient humans.

7

Under review as a conference paper at ICLR 2024

We use the PH demonstrations, and evaluate on three of the most challenging tasks: Square, Trans-
port, and ToolHang. We use image-based observations and the default velocity controller for all the
tasks. In addition to Robomimic, we compare to another task, Push-T from the diffusion policy (Chi
et al., 2023) task set, to demonstrate that we can learn multimodal cost functions by using the CVAE
training loss.

IBC BC-RNN Residual
+BC-RNN

DiffTOP (Ours)
+ BC-RNN Diffusion IBC

+ Diffusion
Residual
+ Diffusion

DiffTOP (Ours)
+ Diffusion

Square 0.04±0.00 0.82±0.00 0.84±0.01 0.90±0.02 0.88±0.03 0.68±0.05 0.88±0.02 0.92±0.01
Transport 0.00±0.00 0.72±0.03 0.74±0.03 0.83±0.02 0.93±0.04 0.08±0.03 0.92±0.01 0.96±0.01
ToolHang 0.00±0.00 0.67±0.04 0.72±0.03 0.82±0.00 0.90±0.00 0.06±0.01 0.90±0.00 0.92±0.01

Push-T 0.11±0.01 0.70±0.02 0.72±0.02 0.75±0.02 0.91±0.00 0.08±0.01 0.91±0.00 0.91±0.01

Table 1: Comparison of DiffTOP with all other mehtods on the Robomimic tasks. DiffTOP achieves
the best performances on all tasks when using diffusion policy as the base policy.
We compare to the following baselines: IBC (Florence et al., 2022): An implicit policy that learns
an energy function conditioned on both action and observation using the InfoNCE loss (Oord et al.,
2018). BC-RNN (Mandlekar et al., 2021): A variant of BC that uses a Recurrent Neural Network
(RNN) as the policy network to encode a history of observations. This is the best-performing base-
line in the original Robomimic (Mandlekar et al., 2021) paper. Residual + BC-RNN: We use a
pretrained BC-RNN as the base policy, and learn a residual policy on top of it. The residual policy
takes as input the action from the base policy, and outputs a delta action which is added to the base
action. This is the most standard and simple way of doing residual learning. Diffusion Policy (Chi
et al., 2023): A policy that uses the diffusion model as the policy class. It refines noise into actions
via a learned gradient field. IBC + Diffusion: A version of IBC that uses the action from a pre-
trained Diffusion Policy as the action initialization in the test-time optimization process. Residual
+ Diffusion: Similar to Residual + BC-RNN, but using a pre-trained Diffusion Policy as the base
policy. For DiffTOP, we compare two variants of it: DiffTOP + BC-RNN and DiffTOP + Diffu-
sion Policy, which uses a pre-trained BC-RNN or a pre-trained diffusion policy as the base policy
to generate the initialization action for solving the trajectory optimization problem. In Appendix
A.2, we also present results of DiffTOP with zero initialization or random initialization, instead of
initializing the action from a base policy.

The results are shown in Table 1. We find that DiffTOP+Diffusion Policy achieves the highest
success rates consistently across all tasks. Furthermore, irrespective of the base policy used —
whether BC-RNN or Diffusion Policy — DiffTOP always brings noticeable improvement in the
performance over the base policy. While learning a residual policy does lead to improvements upon
the base policy, DiffTOP shows a significantly greater performance boost. In addition, by comparing
DiffTOP+Diffusion Policy with IBC+Diffusion Policy, we find that using the same action initializa-
tion for IBC is considerably less effective than using the same action initialization in DiffTOP. In
many tasks, even when the base Diffusion Policy already exhibits high success rates, IBC+Diffusion
Policy still results in poor performances, indicating the training objective used in IBC actually dete-
riorates the base actions.

Note that for the three tasks in Table 1 from Robomimic, we use the default velocity controller from
Robomimic. We note the use of the velocity controller leads to a small decline in the performance of
the Diffusion Policy compared to its performance in the original paper where a positional controller
is used. Results for using the positional controller can be found in the appendix, where our method
performs on par or slightly better than diffusion policy, since the performance of diffusion policy
has almost saturated with a positional controller. The Push-T task still uses the default position
controller as in the diffusion policy paper.

We also show the benefit of using a CVAE architecture for DiffTOP, which enables DiffTOP to
capture multimodal action distributions. In our case, with different latent samples from CVAE,
we get different objective functions fθ(z, a) and dynamics functions dθ(z, a), allowing DiffTOP to
generate different actions from the same state. Figure 5 illustrates the multimodal objective function
learned by DiffTOP (right), and the resulting multimodal actions (left). The left subplot shows that
when starting from the same action initialization ainit, with two different latent samples, DiffTOP
optimizes ainit into two different actions, â1 and â2 that move in distinct directions. The trajectory
optimization procedure that iteratively updates the action is represented by dashed lines transitioning
from faint to solid. From these two actions, two distinct trajectories are subsequently generated to
push the T-shape object towards its goal. The middle and right subplots show the objective function

8

Under review as a conference paper at ICLR 2024

Goal
Object

Figure 5: By using a CVAE, DiffTOP can learn multimodal objectives functions via sampling differ-
ent latent vectors from CVAE (right). By performing trajectory optimization with these two different
objective functions, DiffTOP can generate multimodal actions (left).

landscapes for the 2 different samples, as well as the initial action ainit, and the final optimized
action â1 and â2. We note the two landscapes are distinct from each other with different optimal
solutions, demonstrating that DiffTOP can generate multimodal objective functions and thus capture
multimodal action distributions. We note that the learned objective function f is not necessarily a
“reward” function as those learned via inverse RL Ng et al. (2000). It is just a learned “objective
function”, such that optimizing it with trajectory optimization would yield actions that minimize the
imitation learning loss with respect to the expert actions in the demonstration. We leave exploring
the connections with inverse RL for future work.

5.2.2 MANISKILL

ManiSkill (Mu et al., 2021; Gu et al., 2023) is a unified benchmark for learning generalizable robotic
manipulation skills with 2D & 3D visual input. It includes a series of rigid body tasks (e.g., Pick-
Cube, PushChair) and soft body tasks (e.g., Fill, Pour). We choose 9 tasks (4 soft body tasks and
5 rigid body tasks) from ManiSkill1 (Mu et al., 2021) and ManiSkill2 (Gu et al., 2023) and use 3D
point cloud input for all the tasks. We use the end-effector frame as the observation frame (Liu et al.,
2022) and use the PD controller with the end-effector delta pose as the action.

We build our method on top of the strongest imitation learning baseline in ManiSkill2, which is
a Behavior Cloning (BC) policy with PointNet (Qi et al., 2017) as the encoder. Again, we also
compare to BC+residual, which learns a residual policy that takes as input the action from the BC
policy and outputs a delta correction. The results are shown in Table 2. As shown, DiffTOP + BC
consistently outperforms both baselines on all tasks, demonstrating the strong effectiveness of using
differentiable trajectory optimization as the policy class.

PickCube Fill Hang Excavate Pour OpenCabinet
Drawer

OpenCabinet
Door PushChair MoveBucket

BC 0.19±0.03 0.72±0.04 0.76±0.02 0.25±0.02 0.13±0.01 0.47±0.03 0.35±0.04 0.12±0.01 0.10±0.01
BC + residual 0.21±0.04 0.75±0.02 0.75±0.02 0.27±0.03 0.12±0.01 0.49±0.02 0.36±0.03 0.15±0.02 0.10±0.01

DiffTOP(Ours) + BC 0.32±0.02 0.82±0.01 0.85±0.03 0.29±0.01 0.17±0.02 0.53±0.02 0.45±0.02 0.20±0.02 0.15±0.02

Table 2: Comparison of all the methods on the Maniskill2 baseline. DiffTOP consistently outper-
forms both baselines on all tasks.

6 CONCLUSION AND DISCUSSION

We introduce DiffTOP, a new policy class for reinforcement learning and imitation learning that
uses differentiable trajectory optimization to generate the policy actions. The key to our approach
is to utilize the recent progress in differentiable trajectory optimization to enable computing the
gradients of the loss with respect to the parameters of trajectory optimization, and learn the cost
and dynamics functions of trajectory optimization end-to-end. When applied to model-based rein-
forcement learning, DiffTOP addresses the “objective mismatch” issue of prior methods, since the
dynamics model in DiffTOP is learned to directly maximize task performance by differentiating the
policy gradient loss through the trajectory optimization process. When applied to imitation learning,
DiffTOP performs test-time trajectory optimization to compute the actions with a learned objective
function, achieving better performances than prior methods that only perform forward passes of the
policy network to generate actions. We benchmark DiffTOP on 15 model-based RL tasks, and 13
imitation learning tasks with image and point cloud inputs, and show that it greatly outperforms
prior state-of-the-art methods in both domains.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Brandon Amos and Denis Yarats. The differentiable cross-entropy method. In International Con-
ference on Machine Learning, pp. 291–302. PMLR, 2020.

Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots, and J Zico Kolter. Differentiable mpc for
end-to-end planning and control. Advances in neural information processing systems, 31, 2018.

Christopher M Bishop. Mixture density networks. 1994.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

Benjamin Eysenbach, Alexander Khazatsky, Sergey Levine, and Russ R Salakhutdinov. Mismatched
no more: Joint model-policy optimization for model-based rl. Advances in Neural Information
Processing Systems, 35:23230–23243, 2022.

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In
Conference on Robot Learning, pp. 158–168. PMLR, 2022.

Raj Ghugare, Homanga Bharadhwaj, Benjamin Eysenbach, Sergey Levine, and Ruslan Salakhutdi-
nov. Simplifying model-based rl: learning representations, latent-space models, and policies with
one objective. arXiv preprint arXiv:2209.08466, 2022.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone
Tao, Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified benchmark for generalizable manip-
ulation skills. arXiv preprint arXiv:2302.04659, 2023.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. arXiv preprint arXiv:2203.04955, 2022.

Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parameterized action space.
arXiv preprint arXiv:1511.04143, 2015.

Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra. Objective mismatch in
model-based reinforcement learning. arXiv preprint arXiv:2002.04523, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Minghua Liu, Xuanlin Li, Zhan Ling, Yangyan Li, and Hao Su. Frame mining: a free lunch for
learning robotic manipulation from 3d point clouds. arXiv preprint arXiv:2210.07442, 2022.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n. What matters in learning from offline
human demonstrations for robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang, Xuanlin Li, Stone Tao, Zhiao Huang, Zhi-
wei Jia, and Hao Su. Maniskill: Generalizable manipulation skill benchmark with large-scale
demonstrations. arXiv preprint arXiv:2107.14483, 2021.

10

Under review as a conference paper at ICLR 2024

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, vol-
ume 1, pp. 2, 2000.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Luis Pineda, Taosha Fan, Maurizio Monge, Shobha Venkataraman, Paloma Sodhi, Ricky TQ Chen,
Joseph Ortiz, Daniel DeTone, Austin Wang, Stuart Anderson, et al. Theseus: A library for differ-
entiable nonlinear optimization. Advances in Neural Information Processing Systems, 35:3801–
3818, 2022.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017.

Daniel Seita, Yufei Wang, Sarthak J Shetty, Edward Yao Li, Zackory Erickson, and David Held.
Toolflownet: Robotic manipulation with tools via predicting tool flow from point clouds. In
Conference on Robot Learning, pp. 1038–1049. PMLR, 2023.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems, 28, 2015.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model predictive path integral control
using covariance variable importance sampling. arXiv preprint arXiv:1509.01149, 2015.

Grady Williams, Paul Drews, Brian Goldfain, James M Rehg, and Evangelos A Theodorou. Aggres-
sive driving with model predictive path integral control. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pp. 1433–1440. IEEE, 2016.

Jimmy Wu, Xingyuan Sun, Andy Zeng, Shuran Song, Johnny Lee, Szymon Rusinkiewicz,
and Thomas Funkhouser. Spatial action maps for mobile manipulation. arXiv preprint
arXiv:2004.09141, 2020.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous con-
trol: Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

11

Under review as a conference paper at ICLR 2024

Appendix

A ADDITIONAL RESULTS

A.1 MODEL-BASED REINFORCEMENT LEARNING

In model-based reinforcement learning, the key distinctions between DiffTOP and TD-
MPC (Hansen et al., 2022) are: 1) TD-MPC employs the Model Predictive Path Integral
(MPPI (Williams et al., 2015)) in the planning stage, whereas we utilize trajectory optimization.
2) In addition to the original loss used in TD-MPC, we use an additional policy gradient loss and
back-propagate it through the differentiable trajectory optimization process to update the model pa-
rameters. Figure 6 shows that the improvement of DiffTOP over TD-MPC comes from the addition
of the policy gradient loss, instead of purely changing MPPI to trajectory optimization. To be more
specific, we compare TD-MPC with DiffTOP (w/o backward), a variant of DiffTOP that removes
the policy gradient loss for updating the model parameters. The results indicate that TD-MPC and
the DiffTOP (w/o backward) variant perform comparably, suggesting that using MPPI or trajectory
optimization at test-time for action generation have similar performances. With the inclusion of
the policy gradient loss, DiffTOPsignificantly outperforms both TD-MPC and the DiffTOP (w/o
backward) variant, demonstrating the efficacy of adding the policy gradient loss in DiffTOP.

DiffTOP (Ours)TD-MPC DiffTOP (w/o backward)

Cartpole Swingup Sparse Cheetah Run Cup CatchAverage

Environment steps (×1e6) Environment steps (×1e6) Environment steps (×1e6) Environment steps (×1e6)

Ep
iso

de
 re

tu
rn

Pendulum Swingup Quadruped Run Quadruped Walk Reacher Easy

Reacher Hard Walker Run Walker Stand Walker Walk

Finger Spin Finger Turn Easy Hopper StandFinger Turn Hard

Ep
iso

de
 re

tu
rn

Ep
iso

de
 re

tu
rn

Ep
iso

de
 re

tu
rn

Figure 6: Performance of DiffTOP, in comparison to TD-MPC and DiffTOP (w/o backward) on 15
tasks from DeepMind control suite.

In addition to comparing the sample efficiency of DiffTOP to prior methods, we also compare
the computational efficiency of DiffTOP versus TD-MPC on some of the environments. This is
shown in Figure 7, where the y-axis is the return, and the x-axis is the wall-clock time used to train
DiffTOP and TD-MPC for 1M environment steps. As shown, it takes more wall-clock time for
DiffTOP to finish the training. In terms of computational efficiency, the results are environment-
dependent. DiffTOP achieves better computational efficiency on reacher-hard and cup-catch. On
pendum-swingup, TD-MPC converges to a sub-optimal value in the early training stage and DiffTOP
outperforms it within 24 hours of training time. DiffTOP has similar computational efficiency on
cartpole-swingup-sparse, reacher-easy, and finger-spin, and slightly worse computational efficiency

12

Under review as a conference paper at ICLR 2024

DiffTOP (Ours)TD-MPC

Figure 7: Return vs wall-clock time of DiffTOP and TD-MPC on some of the RL environments. The
x-axis is the training time in days (24 hours), and the y-axis is the return. Both methods are trained
for 1M environments steps. The training takes a long time (a few days on some environments)
because the policy observation is high-dimensional images.

on cheetah-run and walker-stand compared to TD-MPC. The gap is larger on hopper-stand. The ma-
jor reason for DiffTOP to take longer time for training is that solving and back-propagating through
the trajectory optimization problem in Equation 4 is slower than doing MPPI as used in TD-MPC.
As a reference, to infer the action at one time step, it takes 0.052 second to use Theseus to solve
and differentiate through the trajectory optimization problem in Equation 4, and 0.0092 second for
using MPPI in TD-MPC. However, we also want to note that the community is actively developing
better and faster algorithms/software libraries for differentiable trajectory optimization, which could
improve the computation efficiency of DiffTOP. For example, in all our experiments, we used the
default CPU-based solver in Theseus. Theseus also provides a more advanced solver named BaS-
paCho, which is a batched sparse Cholesky solver with GPU support. When we switch from the de-
fault CPU-based solver to BaSpaCho, the time cost of solving the trajectory optimization problem in
Equation 4 is reduced by 22% from 0.052 second to 0.041 second. With better libraries/algorithms
in the future for differentiable trajectory optimization, we believe the computational efficiency of
DiffTOP would further improve.

A.2 IMITATION LEARNING

We also present results of DiffTOP with zero initialization or random initialization, where instead of
initializing the action from a base policy, the action is initialized to be 0, or randomly sampled from
N (0, 1), on RoboMimic and Maniskill.

The results on RoboMimic is shown in Table 3. We notice a drop in performance of DiffTOP with
zero or randomly-initialized actions, possibly due to the convergence to bad local minima during
nonlinear trajectory optimization without a good action initialization. We note this would not be a
drawback of applying DiffTOP in practice for imitation learning: one could always first learn a base
policy using any behavior cloning algorithm, and then use DiffTOP to further refine the actions.

The results on Maniskill is shown in Table 4. Again, if we use zero or random action initialization
with DiffTOP, the performance drops to be similar to or slightly worse than vanilla BC. Therefore,

13

Under review as a conference paper at ICLR 2024

we think a good practice of using DiffTOP for imitation learning would be to always try to pro-
vide it with a good action initialization, e.g., by first training a BC policy and use its action as the
initialization in DiffTOP.

IBC BC-RNN Residual
+BC-RNN

DiffTOP (Ours)
+ BC-RNN Diffusion IBC

+ Diffusion
Residual
+ Diffusion

DiffTOP (Ours)
+ Diffusion

DiffTOP (Ours)
+ zero init.

DiffTOP (Ours)
+ random init.

Square 0.04±0.00 0.82±0.00 0.84±0.01 0.90±0.02 0.88±0.03 0.68±0.05 0.88±0.02 0.92±0.01 0.84±0.02 0.80±0.00
Transport 0.00±0.00 0.72±0.03 0.74±0.03 0.83±0.02 0.93±0.04 0.08±0.03 0.92±0.01 0.96±0.01 0.42±0.01 0.36±0.04
ToolHang 0.00±0.00 0.67±0.04 0.72±0.03 0.82±0.00 0.90±0.00 0.06±0.01 0.90±0.00 0.92±0.01 0.00±0.00 0.00±0.00

Push-T 0.11±0.01 0.70±0.02 0.72±0.02 0.75±0.02 0.91±0.00 0.08±0.01 0.91±0.00 0.91±0.01 0.62±0.04 0.57±0.02

Table 3: Comparison of DiffTOP with all other mehtods on the Robomimic tasks. DiffTOP achieves
the best performances on all tasks when using diffusion policy as the base policy. If zero or random
initialization are used in DiffTOP, the performance drops, possibly due to the convergence to bad
local minima during nonlinear trajectory optimization without a good action initialization.

PickCube Fill Hang Excavate Pour OpenCabinet
Drawer

OpenCabinet
Door PushChair MoveBucket

BC 0.19±0.03 0.72±0.04 0.76±0.02 0.25±0.02 0.13±0.01 0.47±0.03 0.35±0.04 0.12±0.01 0.10±0.01
BC + residual 0.21±0.04 0.75±0.02 0.75±0.02 0.27±0.03 0.12±0.01 0.49±0.02 0.36±0.03 0.15±0.02 0.10±0.01

DiffTOP(Ours) + BC 0.32±0.02 0.82±0.01 0.85±0.03 0.29±0.01 0.17±0.02 0.53±0.02 0.45±0.02 0.20±0.02 0.15±0.02
DiffTOP (Ours)

+ zero init. 0.20±0.03 0.76±0.03 0.72±0.02 0.25±0.01 0.04±0.00 0.50±0.04 0.34±0.04 0.04±0.01 0.06±0.00

DiffTOP (Ours)
+ random init. . 0.18±0.02 0.68±0.03 0.67±0.01 0.19±0.04 0.04±0.00 0.39±0.04 0.30±0.02 0.00±0.00 0.05±0.01

Table 4: Comparison of all the methods on the Maniskill2 baseline. DiffTOP consistently outper-
forms both baselines on all tasks with action initialization from the BC policy. If zero or random
initialization are used in DiffTOP, the performance drops, possibly due to the convergence to bad
local minima during nonlinear trajectory optimization without a good action initialization.

In the original Diffusion Policy (Chi et al., 2023) paper, it was observed that the use of positional
controllers yielded superior results for Diffusion Policy compared to the default velocity controller
on Robomimic (Mandlekar et al., 2021) tasks. We evaluate Diffusion Policy, which is the strongest
baseline, and DiffTOP on the most difficult three tasks with ph (proficient-human demonstration)
and mh (multi-human demonstration) demonstrations using positional controller. The results with
the positional controller are presented in Table 5. Diffusion Policy already achieves nearly the
maximal possible performance on most tasks with the positional controller. DiffTOP, however, is
able to achieve similar or even higher performances on most of these tasks.

Square (ph) Square (mh) Transport (ph) Transport (mh) ToolHang (ph)

Diffusion 0.98±0.01 0.97±0.02 1.00±0.00 0.88±0.02 0.95±0.02
DiffTOP + Diffusion 0.98±0.01 0.96±0.02 1.00±0.00 0.91±0.01 0.96±0.01

Table 5: Performance Comparison of DiffTOP and Diffusion Policy using Positional Controllers on
Robomimic Tasks.

Additionally, we do ablation experiments on the planning horizon H for imitation learning, with the
results presented in Table 6. We observe that simply increasing the planning horizon H in imitation
learning does not necessarily enhance performance. As the horizon increases from H = 1 to H = 3,
the performance remains nearly the same; however, when H is increase to 5, we observe a slight
decline in the performance.

B IMPLEMENTATION DETAILS

In this section, we describe the implementation details of DiffTOP for the model-based RL ex-
periments. For the imitation learning part, the code structure is very similar to this model-based
RL implementation. For more detailed information, please refer to the code we will release upon
acceptance of the paper. We implement DiffTOP on top of the open-source implementation of
TD-MPC (Hansen et al., 2022) from the authors. Below we show the pseudo-code of the training
function in DiffTOP.

14

Under review as a conference paper at ICLR 2024

Square (ph) Transport (ph) ToolHang (ph) Push-T

H = 1 0.92±0.01 0.96±0.01 0.92±0.01 0.91±0.01
H = 3 0.92±0.01 0.94±0.02 0.92±0.00 0.88±0.02
H = 5 0.91±0.01 0.94±0.01 0.90±0.00 0.88±0.01

Table 6: Ablation experiments for the planning horizon H in imitation learning.

def train():
"""
Training code
"""
for step in range(total_steps):

obs = env.reset()
Differentiable trajectory optimization and update model
action, info = agent.plan_theseus_update(obs)
Env step
obs, reward, done, _ = env.step(action.cpu().numpy())
collect data in buffer and update model (TD-MPC loss)
replay_buffer += (obs, action, reward, done)
agent.update(replay_buffer)

Then, we demonstrate how the policy gradient loss is computed by differentiable trajectory opti-
mization in DiffTOP with PyTorch-like pseudocode:

def plan_theseus_update(obs):
"""
Differentiable trajectory optimization and update model using policy
gradient loss.
h, R, Q, d: model components.
c0: loss coefficients.
"""
import theseus as th

Encode first observation
z = self.model.h(obs)

Get initialization action from pi
init_actions = self.model.pi(z)

Theseus variable
actions = th.Vector(tensor=actions, name="actions")
obs = th.Variable(obs, name="obs")

Cost Function and Objective
cost_function = th.AutoDiffCostFunction([obs], [action]

,value_cost_fn)
objective = th.Objective().add(cost_function)

Trajectory optimization optimizer
theseus_optim = th.TheseusLayer(th_optimizer)

Theseus layer forward
theseus_inputs = {"actions": init_actions, "obs": obs}
updated_inputs, info = theseus_optim.forward(theseus_inputs)
updated_actions = updated_inputs[’actions’]

Update model using policy gradient losss
a_loss = - torch.min(*self.model.Q_s(obs, updated_actions[0]))*c0
a_loss.backward()
optim_a.step()

15

Under review as a conference paper at ICLR 2024

For model-based reinforcement learning, We provide the network details for the added networks
we used upon TD-MPC, which are the twin Q networks Q̃ϕ learned in the original state space for
computing the deterministic policy gradient.

(Q_s1): Sequential(
(0): Linear(in_features=S, out_features=256)
(1): ELU(alpha=1.0)
(2): Linear(in_features=256, out_features=Z))
(3): Linear(in_features=Z+A, out_features=512)
(4): LayerNorm((512,), elementwise_affine=True)
(5): Tanh()
(6): Linear(in_features=512, out_features=512)
(7): ELU(alpha=1.0)
(8): Linear(in_features=512, out_features=1))

(Q_s2): Sequential(
(0): Linear(in_features=S, out_features=256)
(1): ELU(alpha=1.0)
(2): Linear(in_features=256, out_features=Z))
(3): Linear(in_features=Z+A, out_features=512)
(4): LayerNorm((512,), elementwise_affine=True)
(5): Tanh()
(6): Linear(in_features=512, out_features=512)
(7): ELU(alpha=1.0)
(8): Linear(in_features=512, out_features=1))

For Imitation Learning, The default network details are as follows. Note that for Robomimic (Man-
dlekar et al., 2021) and Push-T tasks, we use the RNN-encoder from Robomimic; for ManiSkill (Mu
et al., 2021; Gu et al., 2023) tasks, we use the PointNet encoder from ManiSkill2 Gu et al. (2023).

(ho): Sequential(
(0): Linear(in_features=S, out_features=256)
(1): ELU(alpha=1.0)
(2): Linear(in_features=256, out_features=256)
(3): ELU(alpha=1.0)
(4): Linear(in_features=256, out_features=Zs))

(ha): Identity
(hl): Sequential(

(0): Linear(in_features=Zs+A, out_features=256)
(1): ELU(alpha=1.0)
(2): Linear(in_features=256, out_features=256)
(3): ELU(alpha=1.0)
(4): Linear(in_features=256, out_features=128))

(R): Sequential(
(0): Linear(in_features=Zs+A+64, out_features=512)
(1): ELU(alpha=1.0)
(2): Linear(in_features=512, out_features=512)
(3): ELU(alpha=1.0)
(4): Linear(in_features=512, out_features=1))

(d): Sequential(
(0): Linear(in_features=Zs+A+64, out_features=512)
(1): ELU(alpha=1.0)
(2): Linear(in_features=512, out_features=512)
(3): ELU(alpha=1.0)
(4): Linear(in_features=512, out_features=Zs+64))

Hyperparameters used for DiffTOP for both model-based RL and imitation learning are shown in
Tab 7. In model-based RL, we use the same parameters with TD-MPC (Hansen et al., 2022) when-
ever possible.

C ENVIRONMENT DETAILS

For model-based reinforcement learning evaluation, we use 15 visual continuous control tasks from
Deepmind Control Suite (DMC). For imitation learning, we use 13 tasks (detailed information can

16

Under review as a conference paper at ICLR 2024

Hyperparameter Value

Model-based RL

Max planning iterations 100 (50)
Planning step size 1e-4 (5e-3)
Discount factor 0.99
Action loss coefficient (c0) 1
optimizer Adam(β1 = 0.9, β2 = 0.999)
Gradient Norm 10
Planning horizon schedule 1 → 5 (25k steps)
Batch size 256
Latent dimension 50
Sampling technique PER(α = 0.6, β = 0.4)
Learning rate 1e-3

Imitation Learning

Max planning iterations 100
Planning step size 1e-4
Planning horizon schedule 1
Latent dimension 50
Posterior Gaussian dimension 64
KL coefficien 1
Learning rate 3e-4
GMM Num Modes 5
RNN Seq Len 16
RNN Hidden Dim 1000
Point Cloud Sampled Points (ManiSkill) 1200

Table 7: Hyperparameters used in DiffTOP.

be found in Table 8) from Robomimic (Mandlekar et al., 2021), IBC (Florence et al., 2022), Man-
iSkillp (Mu et al., 2021), and ManiSkill2 (Gu et al., 2023).

Task Source Obs. Type Ac Dim Object Demo Task Description

Square Robomimic Img 7 Rigid 200 Pick a square nut and place it on a rod.
Transport Robomimic Img 14 Rigid 200 Transfer a hammer from a container to a bin
ToolHang Robomimic Img 7 Rigid 200 assemble a frame consisting of a base and hook
Push-T IBC Img 2 Rigid 200 Push a T-shaped object to a specified position
OpenCabinetDrawer ManiSkill1 Point Cloud 13 Rigid 300/obj. Open a specific drawer of the cabinet
OpenCabinetDoor ManiSkill1 Point Cloud 13 Rigid 300/obj. Open a specific door of the cabinet
PushChair ManiSkill1 Point Cloud 22 Rigid 300/obj. Push the swivel chair to the target position
MoveBucket ManiSkill1 Point Cloud 22 Rigid 300/obj. Move a bucket and lift it onto a platform
PickCube ManiSkill2 Point Cloud 7 Rigid 1000 Pick up a cube and move it to a goal position
Fill ManiSkill2 Point Cloud 7 Soft 200 Fill clay from a bucket into the target beaker
Hang ManiSkill2 Point Cloud 7 Soft 200 Hang a noodle on a target rod
Excavate ManiSkill2 Point Cloud 7 Soft 200 Lift a amount of clay to a target height
Pour ManiSkill2 Point Cloud 7 Soft 200 Pour liquid from a bottle into a beaker

Table 8: Imitation Learning Tasks Summary.

We visualize the keyframes of the imitation learning tasks in Fig 8.

D MORE IMPLEMENTATION DETAILS ON USING CVAE FOR IMITATION
LEARNING

We provide more details on how we instantiate DiffTOP with CVAE in imitation learning, in which
the goal is to reconstruct the expert actions conditioned on the state. The CVAE encoder is composed
of three networks: the first network is a state encoder hoθ that encodes the state into a latent feature
vector zs = hoθ(si), which is the conditional information in our case. The second is an action
encoder haθ that encodes the expert action into a latent feature vector za = haθ(a

∗
i). The last is a

17

Under review as a conference paper at ICLR 2024

fusing encoder hlθ(z
s, za) that takes as input the concatenation of the state and action latent features,

and outputs the mean µ and variance σ2 of the posterior Gaussian distribution N (·|µ, σ2). During
training, the final latent state z for state si used in Equation 7 is the concatenation of a sampled
vector z̃ from the posterior Gaussian distribution N (·|µ, σ2), and the latent state feature vector zs:
z = [z̃, zs], z̃ ∼ N (·|µ, σ2).

The latent state z will then be used as input for the decoder, which consists of the reward function Rθ,
and the dynamics function dθ. Trajectory optimization is performed with the reward and dynamics
function in the decoder to solve Equation 7 to generate the reconstructed action a∗(θ; si). The loss
for training the CVAE is the evidence lower bound (ELBO) on the demonstration data:

LILDiffTOP (θ) =
N∑
i=1

||a(θ; si)− a∗i ||22 − β · KL(N (·|µ, σ2)|N (0, I)), (9)

where KL(P ||Q) denotes the KL divergence between distributions P and Q. At test time, only
the decoder of the CVAE is used for generating the actions. Given a state s, the latent state z
is the concatenation of the encoded latent state feature zs, and a sampled vector z̃ from the prior
distribution N (0, 1).

18

Under review as a conference paper at ICLR 2024

Sq
ua
re

Tr
an

sp
or

t
To

ol
 H

an
g

Pu
sh

 T
O

pe
nC

ab
in

et
D

oo
r

O
pe

nC
ab

in
et

D
ra

w
er

Pu
sh

 C
ha

ir
M

ov
e

Bu
ck

et
Pi

ck
 C

ub
e

Fi
ll

H
an

g
Ex

ca
va

te
Po

ur

Figure 8: Visualization of the tasks for imitation learning.

19

	Introduction
	Related Works
	Background
	Differentiable Trajectory Optimization
	Model-Based RL preliminaries

	Method
	Overview
	Differentiable trajectory optimization applied to model-based RL
	Differentiable Trajectory Optimization applied to imitation learning

	Experiments
	Model-based Reinforcement Learning
	Imitation Learning
	Robomimic
	ManiSkill

	Conclusion and Discussion
	Additional results
	Model-based Reinforcement Learning
	Imitation Learning

	Implementation Details
	Environment Details
	More implementation details on using CVAE for imitation learning

