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Abstract

This paper introduces a model for incomplete
utterance restoration (IUR) called JET (Joint
learning token Extraction and Text generation).
Different from prior studies that only work on
extraction or abstraction datasets, we design a
simple but effective model, working for both
scenarios of IUR. Our design simulates the na-
ture of IUR, where omitted tokens from the
context contribute to restoration. From this, we
construct a Picker that identifies the omitted
tokens. To support the picker, we design two
label creation methods (soft and hard labels),
which can work in cases of no annotation data
for the omitted tokens. The restoration is done
by using a Generator with the help of the Picker
on joint learning. Promising results on four
benchmark datasets in extraction and abstrac-
tion scenarios show that our model is better
than the pretrained T5 and non-generative lan-
guage model methods in both rich and limited
training data settings.1

1 Introduction

Understanding conversational interactions through
NLP has become important with increasing connec-
tivity and range of capabilities. The applications
using natural conversations cover a wide range of
solutions including dialogue systems, information
extraction, and summarization. For example, Adi-
wardana et al. (2020); Su et al. (2020) aimed to
build the dialogue system where an intelligent vir-
tual agent answers human conversations and makes
suggestions in an open/closed domain. Bak and
Oh (2018); Karan et al. (2021) attempted to de-
tect decision-related utterances from multi-party
meeting recordings, while Tarnpradab et al. (2017)
applied extractive summarization for online fo-
rum discussions. These features allow users to
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to quickly catch up with the current situation, de-
cisions and next-action without having to follow
a lengthy or comprehensive dialogue. However,
utterances, the components of a conversation, are
generally not self-contained and are difficult to un-
derstand by their own. This comes from the nature
of multi-turn dialogue where each utterance con-
tains co-references, rephrases, and ellipses (Figure
1). Su et al. 2019 also showed that co-references
and ellipses occur in over 70% of utterances in
conversations. This is a ubiquitous problem in con-
versational AI, making the challenge for building
practical systems with conversations.

Incomplete Utterance Restoration (IUR) (Pan
et al., 2019) is one solution to restore semanti-
cally underspecified utterances (i.e., incomplete
utterances) in conversations. Figure 1 shows an
example of IUR, in which the model rewrites the
incomplete utterance to the reference. IUR is a
challenging task due to two reasons. Firstly, the
gold utterance (the reference) overlaps a lot of to-
kens with the pre-restored, incomplete utterance,
while it overlaps only a few tokens with utterances
in the context. We observed that for CANARD
(Elgohary et al., 2019), 85% of tokens in incom-
plete utterances were directly cited for rewriting,
while only 17% of tokens in context was cited for
rewriting. Secondly, it is important to detect omit-
ted tokens in incomplete utterances and to include
them in the restoration process. In actual cases
of IUR, no matter how fluent and grammatically
correct the machine’s generation is, it is useless as
long as important tokens are left out.

Recent studies used several methods for IUR.
It includes the extraction of omitted tokens for
restoration (PAC) (Pan et al., 2019), two-stage
learning (Song et al., 2020), seq2seq fine-tuning
(Bao et al., 2021), semantic segmentation (RUN-
BERT) (Liu et al., 2020), or the tagger to detect
which tokens in incomplete utterances should be
kept, deleted or changed for restoration (SARG)
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Figure 1: The sample data from CANARD. IUR models rewrite the incomplete utterance to be as similar as possible
to the reference. The blue tokens are omitted tokens (excluding stop words) in the incomplete utterance. The red
tokens are defined by our hard labeling approach as an important token.

(Huang et al., 2021). However, we argue that these
methods can only work on neither extractive nor
abstractive IUR datasets. For example, SARG and
seq2seq achieve promising results on Restoration
200k (Pan et al., 2019) where omitted tokens can
be directly extracted from the context (extraction).
But they are not the best on CANARD (Elgohary
et al., 2019), which requires more abstraction for
restoration. In Figure 1,2 we can observe that the
output of SARG and seq2seq are worse than that of
our JET. Text editing strategy by SARG is limited
in its ability to generate abstractive rewriting while
seq2seq has the problem in picking omitted tokens.
As the result, the generality of these methods is still
an open question.

We introduce a simple but effective model to
deal with the generality of IUR methods named
JET (Joint learning token Extraction and Text gen-
eration). The model is designed to work widely
from extractive to abstractive scenarios. To do that,
we first address the problem of identifying omitted
tokens from the dialogue context by introducing a
picker. The picker uses a new matching method for
dealing with various forms of tokens (Figure 1) in
the extraction style. We next consider the abstrac-
tion aspect of restoration by offering a generator.
The generator utilizes the power of the pre-trained
T5 model to rewrite incomplete utterances. The
picker and generator share the T5’s encoder and
are jointly trained in a unified model for IUR. This
paper makes three main contributions:

2The performance of RUN-BERT is limited on CANARD.

• We propose JET, a simple but effective model
based on T5 for utterance restoration in multi-
turn conversations. Our model jointly opti-
mizes two tasks: picking important tokens
(the picker) and generating re-written utter-
ances (the generator). To our best knowledge,
we are the first to utilize T5 for the IUR task.

• We design a method for identifying important
tokens for training the picker. The method fa-
cilitates IUR models in actual cases, in which
there are no (a few) existing gold labels.

• We demonstrate the validity of the model by
comparing it to strong baselines from multi-
ple perspectives such as limited data setting
(Section 5.2), human evaluation (Section 5.4)
and output observation (Section 5.5).

2 Related Work

Sentence rewriting IUR can be considered to
be similar to the sentence rewriting task (Xu and
Veeramachaneni, 2021; Lin et al., 2021; Chen and
Bansal, 2018; Cao et al., 2018). Recent studies
have been addressed the IUR task with various so-
phisticated methods. For example, Pan et al. 2019
introduced a pick-then-combine model for IUR.
The model picks up omitted tokens which are com-
bined with incomplete utterances for restoration.
Liu et al. 2020 proposed a semantic segmentation
method that segments tokens in an edit matrix then
applied an edit operation to generate utterances.



Figure 2: The proposed model (JET) for utterance restoration. The left is the picker and the right is the generator.
The model jointly optimizes two tasks for doing restoration. The input format for our model is described in 3.2.1

Huang et al. 2021 presented a complicated model
which uses a tagger for detecting kept, deleted, or
changed tokens for restoration. We share the idea
of using a tagger with Huang et al. 2021 for IUR.
However, we design a more simple but effective
model which includes a picker (picking omitted
tokens) and a generator for the restoration of in-
complete utterances.

Text generation IUR can be formulated as text
generation by using the seq2seq model (Pan et al.,
2019; Huang et al., 2021). For the generation, sev-
eral well-known pre-trained models have been ap-
plied (Lewis et al., 2020; Brown et al., 2020; Raffel
et al., 2020) with promising results. We employ the
T5 model (Raffel et al., 2020) as the main compo-
nent to rewrite utterances. To address the problem
of missing important tokens in model’s rewriting,
we enhance T5 by introducing a Picker and two
labeling methods (Section 3.2).

3 The Utterance Restoration Model

3.1 Problem Statement

This work focuses on the incomplete utter-
ance restoration of conversations. Let H =
{h1, h2, ..., hm} be the history of the dialogue (con-
text), U = {u1, u2, ..., un} is the incomplete utter-
ance that needs to be re-written. The task is to
learn a mapping function f(H,U |Θ) = R, where
R = {r1, r2, ..., rk} is the re-written version of U .
The learning of Θ is composed by only using utter-
ance generation (the generator) or the combination
of two tasks: important token identification (the

picker) and utterance generation (the generator).

3.2 The Proposed Model

Our model is shown in Figure 2. The Picker
receives the context to identify omitted tokens.
The Generator receives incomplete utterances for
restoration. The model jointly learns to optimize
the two tasks. Our model distinguishes in three
significant differences compared to PAC (Pan et al.,
2019) and SARG (Huang et al., 2021). First, our
model bases on a sing pre-trained model for both
picker and generator while other models (i.e. PAC
and SARG) use different architectures for the two
steps. This makes two advantages for our model.
(i) Our design can be easily adapted to create a new
unified model for different tasks by using a single
generative LM (Paolini et al., 2021). (ii) Our model
can work well in several scenarios: extraction vs.
abstraction (data characteristics) and full vs. lim-
ited training data (Section 5). Second, we design a
joint training process to implicitly take into account
the suggestion from the picker to the generator in-
stead of using a two-step model as PAC which
explicitly copes extracted tokens from the Pick for
generation. Our joint training model can reduce
the error accumulation compared to the two-step
framework. Finally, we design a heuristic approach
to build important tokens, which enable the model
to work on a wider range of datasets and scenarios.

3.2.1 Input representation

As shown in Figure 2, we introduced three kinds of
special tokens into the input text; [X1], [X2] and



<\s>. [X1] and [X2] are our newly defined spe-
cial tokens and <\s> is the EOS token in the T5’s
vocabulary. We inserted [X1] at the end of each
utterance in the context, [X2] after the incomplete
utterance and <\s> at the end of whole input. [X1]
and [X2] convey two pieces of useful information
to the model; the signal indicating the switch of
speakers and the cue to distinguish whether the
utterance is from context or incomplete utterance.

The embedding of each token in the entire in-
put sequence S = {w1, w2, ..., wl} was obtained
as xi = WE(wi) + PE(wi). Here, WE is word
embedding initialized from a pretrained model
by using a wordpiece vocabulary. PE is relative
position embedding representing the position of
each token in the sequence. These embeddings
were fed into the L stacked Encoder of T5; El =
EncoderBlock(El−1) where E0 = {x1, . . . , xl}.
EL is the contextual representation of the whole in-
put used by Picker and Generator in next sections.

3.2.2 The Picker
It is possible to directly use T5 (Raffel et al., 2019)
for IUR. However, we empower T5 with a Picker
to implicitly take into account information from
important tokens. The idea of selecting important
tokens was derived from Pan et al. (2019), in which
the authors suggested the use of important tokens
contributes the performance of utterance restora-
tion. We extend this idea by designing an end-to-
end model which includes important token identifi-
cation and generation, instead of using the two-step
framework as Pan et al. (2019).

Given the context and the incomplete utterance,
the Picker identifies tokens that are included in
context utterances but omitted in the incomplete
utterance. We call these tokens as important tokens.
However, no important tokens are originally pro-
vided except for Restoration 200k in four datasets
(please refer to Table 1). Besides, the form of im-
portant tokens could change after restoration such
as from plural to singular or nouns to verbs (Fig-
ure 1). To overcome this issue, we introduce a
label creation method that automatically identifies
important tokens from the context for restoration.

Important token identification Since building
a set of important tokens is time-consuming and
important tokens are usually not defined in prac-
tical cases, we introduce a heuristic strategy to
automatically construct important tokens. In the
following processing, stop words in the context,

incomplete utterances, and gold references are re-
moved in advance, assuming that stop words are
the out of scope of important tokens. In addition,
we applied lemmatization and stemming, the pro-
cess of converting tokens to their base or root form,
to alleviate the spelling variants.

First, we extracted tokens, called “clue tokens",
that exist in gold but not in incomplete utterances.
If some tokens in context are semantically simi-
lar to some of the clue tokens, we can naturally
presume that these tokens in the context are cited
as important tokens for the rewriting. Therefore,
we performed scoring by the distance dij between
the word representations of i-th token in context hi
and j-th clue tokens cj ; dij = cosine_sim(hi, cj)
where cosine_sim() is the score of Cosine similar-
ity. We used word representations of hi and cj
from fastText (Bojanowski et al., 2017) trained on
Wikipedia as a simple setting of our model.

According to the distance dij , we introduce two
types of labels for the Picker, softi as soft labels
and hardi as hard labels.

softi = max
j

dij

hardi =

{
1 maxj dij = 1

0 otherwise

Here, the max operation was applied based on
the assumption that at most one clue token corre-
sponds to a token in the context.

Intuitively, the soft label method takes into con-
sideration the cases that could not be handled by
lemmatization and stemming, such as paraphrasing
by synonyms, and reflects them as the importance
score in the range of 0 to 1. On the other hand, the
hard label is either 0 or 1 where an important token
is defined only when there is an exact matching be-
tween the context tokens and the clue tokens in the
form after lemmatization and stemming. We pro-
vide the two methods to facilitate important token
identification.

Important token selection The Picker takes en-
coded embeddings EL = {EL

1 , ..., E
L
l } and pre-

dicts the scores of the soft label or hard label corre-
sponding to each input token.

p(yi|EL
i ) = softmax(FNN(EL

i ))

where FNN() is the vanilla feedforward neural net-
work, which stands for projecting encoded embed-
ding to the soft label or hard label space. Then



cross-entropy was adopted as the loss function.

Lpicker = −
l∑

i=1

qi log p(yi|EL
i )

where qi is the picker’s label for the i-th input to-
ken. To optimize loss function Lpicker is equal to
minimize the KL Divergence if the label is a soft
label. In the hard labeling case, we assign three
types of tags for tokens by following the BIO tag
format as a sequence tagging problem.

3.2.3 The Generator
We explore the restoration task by using Text-to-
Text Transfer Transformer (T5) (Raffel et al., 2019).
This is because T5 provides promising results for
the text generation task. We initialized transformer
modules from T5-base, which uses 12 layers, and
fine-tuned it for our IUR task.

For restoration, encoder’s representation EL

was fed into a L stacked decoder with cross at-
tention. Dl

i = DecoderBlock(Dl−1
i , EL) where

D0
i = R<i, with R<i = {< s >, r1..., ri−1} and

< s > is the SOS token. The probability p of a
token t at the time step i was obtained by feeding
the decoder’s output DL into the softmax layer.

p(t | R<i, H, U) = softmax(linear(DL
i )) · v(t)

Here, v(t) is a one-hot vector of a token t with
the dimension of vocabulary size. The objective is
to minimize the negative likelihood of conditional
probability between the predicted outputs from the
model and the gold sequence R = {r1, r2, ..., rk}.

Lgenerator = −
k∑

i=1

log p(ri | R<i, H, U)

3.2.4 Joint learning
JET aims to optimize the Picker and the Generator
jointly as a setting of Multi-Task Learning. Differ-
ent from PAC (Pan et al., 2019) that directly copies
extracted tokens to generation, JET can implicitly
utilize knowledge from the Picker, in which the
learned patterns of the Picker to identify important
tokens can be leveraged by the Generator. It can
reduce error accumulation in the two-step frame-
work as PAC. The final loss of the proposed model
is defined as follows.

L = αLpicker + Lgenerator

where the hyperparameter α balances the influence
of the task-specific weight. Our simple setting en-
ables us to implement minimal experiments to eval-
uate how much important token extraction makes
the contribution to generation.

4 Settings and Evaluation Metrics

Data We conducted all experiments on four well-
known datasets of utterance rewriting in Table 1.

Table 1: Four conversational datasets. ext is extraction
and abs is abstraction. CN: Chinese; EN: English.

Data train dev test type lang
Restoration 200k 194k 5k 5k ext CN
REWRITE 18k 0 2k ext CN
TASK 2.2k 0 2k ext EN
CANARD 32k 4k 6k abs EN

Restoration 200k (Pan et al., 2019) and
REWRITE (Su et al., 2019) include Chinese con-
versations. TASK (Quan et al., 2019) and CA-
NARD (Elgohary et al., 2019) are in English, in
which CANARD includes English questions from
QuAC (Choi et al., 2018). The datasets range from
extraction to abstraction challenging UIR models.

Settings For running JET, we used AdamW with
β1 = 0.9, β2 = 0.999 and a weight decay of 0.01
with a batch size of 12 and learning rate of 5e−5.
We used 3 FFN layers (dimension as 768, 256,
64) with ReLu as the activation function. The final
dimension is 1 for soft labeling and 3 for hard label-
ing. We set α = 1 for the loss function. We applied
beam search with the beam size of 8. For picker’s
label creation, we used stop words from NLTK
for English and from stopwordsiso3 for Chinese.
For lemmatization and stemming, NLTK’s Word-
NetLemmatizer and PorterStemmer were adopted
for English, while lemmatization and stemming
were skipped for Chinese. The pre-trained model
was T5-base (English4 and Chinese5). In the full
training data setting (Section 5.1), the epoch size
of 6 was used for Restoration200k and CANARD
and 20 for REWRITE and TASK. In the limited
training data setting (Section 5.2), the epoch size
of 20 was used for all four datasets (Table 1). All
models were trained on a single Tesla P100 GPU.

3https://pypi.org/project/stopwordsiso/
4https://huggingface.co/t5-base
5https://huggingface.co/lemon234071/t5-base-Chinese



Table 2: The comparison of JET and T5. Bold numbers show statistically significant improvements with p ≤ 0.05.
Underline is comparable (applied to Tables 3 and 4). The results come from the hard label method.

Data Method ROUGE-1 ROUGE-2 BLEU-1 BLEU-2 f1 f2 f3
Restoration
200k

T5-base 92.7 86.1 91.4 88.9 61.3 51.2 44.8
JET 93.1 86.9 92.0 89.6 63.0 53.3 47.1

REWRITE
T5-base 95.5 90.3 92.8 90.5 89.0 82.1 77.2
JET 95.8 90.6 93.5 91.2 89.8 82.7 77.5

TASK
T5-base 95.8 91.7 93.9 92.6 76.2 71.2 68.1
JET 96.1 91.8 94.3 93.0 76.3 72.1 69.6

CANARD
T5-base 83.9 70.2 77.8 70.8 56.2 44.6 39.3
JET 84.3 71.1 78.8 72.0 57.3 45.9 40.7

Table 3: The comparison of JET and strong baselines; For Restoration 200k, results were derived from Liu et al.
(2020) and Huang et al. (2021). For CANARD, we reproduced strong baselines which output promising results on
Restoration 200k. The results of RUN-BERT on CANARD were derived from the code of Liu et al. (2020). The
results of JET come from hard labels.

Data Method ROUGE-1 ROUGE-2 BLEU-1 BLEU-2 f1 f2 f3

Restoration
200k

Syntactic 89.3 80.6 84.1 81.2 47.9 38.8 32.5
CopyNet 89.0 80.9 84.7 81.7 50.3 41.1 34.9
T-Ptr 90.1 83.0 90.3 87.4 51.0 40.4 33.3
PAC 91.6 82.8 89.9 86.3 63.7 49.7 40.4
s2s-ft 91.4 85.0 90.8 88.3 56.8 46.4 39.8
RUN 91.0 82.8 91.1 88.0 60.3 47.7 39.3

RUN-BERT RUN-BERT 92.4 85.1 92.3 89.6 68.6 56.0 47.7
SARG 92.1 86.0 92.2 89.6 62.4 52.5 46.3
JET 93.1 86.9 92.0 89.6 63.0 53.3 47.1

CANARD

s2s-ft 83.1 69.0 78.6 71.2 55.1 43.2 37.9
RUN-BERT 80.6 62.7 70.2 61.2 44.2 30.5 24.9
SARG 80.3 63.7 70.5 62.7 42.7 30.5 25.9
JET 84.3 71.1 78.8 72.0 57.3 45.9 40.7

Evaluation metrics We followed prior work
(Pan et al., 2019; Elgohary et al., 2019; Liu et al.,
2020; Huang et al., 2021) to use three different
metrics for evaluation, including ROUGE-scores,
BLUE-scores, and f-scores.

5 Results and Discussion

5.1 Full Training Data Setting

We provide two scenarios of comparison with full
training data: comparison with T5 and comparison
with non-generative LM models.

Comparison with T5 We first compare our
model against a strong pre-trained T5 model used
for the generator as the first scenario. This scenario
ensures fair comparison among strong pre-trained
models for text generation and also shows the con-
tribution of the Picker. Results in Table 2 show
that JET is consistently better than T5 across all
metrics on all four datasets. This is because the

picker can pick up important omitted tokens, which
are beneficial for restoration. These results prove
joint learning can implicitly supports to capturing
the hidden relationship between the picker and gen-
erator. Also, the promising results show that our
labeling method can work in both extraction and
abstraction datasets. The results of T5 are also com-
petitive. The reason is that T5 (Raffel et al., 2019)
was trained with a huge amount of data by using
the generative learning process, which mimics the
text generation task. As the result, it is appropriate
for the restoration.

For other strong pre-trained models for text gen-
eration, we also test our joint learning framework
with ProphetNet (Qi et al., 2020) but the results
are not good to report. We leave the comparison
with UniLM (Dong et al., 2019) and ERNIGEN
(Xiao et al., 2020) as a minor future task due to no
pre-trained models for Chinese.



Comparison with non-generative LM models
We next challenge JET to strong baselines which
do not directly use generative pre-trained LMs, e.g.
T5 for restoration. This is the second scenario that
ensures the diversity of our evaluation. We leave
the comparison of our model with BERT-like meth-
ods (e.g. SARG and RUN-BERT by using the T5
encoder) as a minor future task. For Restoration
200k and CANARD, we use the following base-
lines. Syntactic is the seq2seq model with attention
(Kumar and Joshi, 2016). CopyNet is a LSTM-
based seq2seq model with attention and the copy
mechanism (Huang et al., 2021). T-Ptr employs
transformer layers for encoder-decoder for restora-
tion (Su et al., 2019). PAC is the two-stage model
for utterance restoration (Pan et al., 2019). s2s-ft
leverages specific attention mask with several fine-
tuning method (Bao et al., 2021). RUN-BERT is
an IUR model by using semantic segmentation (Liu
et al., 2020). SARG is a semi autoregressive model
for multi-turn utterance restoration (Huang et al.,
2021).

Table 3 shows that JET outputs promising re-
sults compared to strong baselines. For Restora-
tion 200k, JET is competitive with RUN-BERT,
the SOTA for this dataset. For CANARD, JET is
consistently better than the baselines. The improve-
ments come from the combination of the picker and
generator. It is important to note that RUN-BERT
and SARG are behind our model significantly on
the abstractive scenario (CANARD). It supports
our statement in Section 1, in which the current
strong models for IUR is overspecific for extractive
datasets and their generality is limited.

We next report the comparison on REWRITE
and TASK in another table due to a small number
of evaluation metrics. Following Liu et al. (2020),
we compare our model with RUN and two new
methods: GECOR1 and GECOR2.

Results from Table 4 are consistent with the
results in Tables 2 and 3. It indicates that our
model outperforms the baselines on both TASK
and REWRITE. For REWRITE, the EM (exact
match) score of our model is much better than the
baselines. It shows that the model can correctly re-
store incomplete utterances. These results confirm
that our model can work well in the two scenarios
over all four datasets.

Important token ratio We observed how many
important tokens are included in prediction on
Restoration 200k. To do that, we defined two

Table 4: The comparison of JET and strong baselines on
REWRITE and TASK; EM is exact match, B is BLEU,
and R stands for ROUGE.

Data Method EM B4 R2 f1

REWRITE

RUN 53.8 79.4 85.1 NA
T-ptr+BERT 57.5 79.9 86.9 NA
RUN-BERT 66.4 86.2 90.4 NA
JET 69.1 86.6 90.6 89.8

TASK

GECOR1 68.5 83.9 NA 66.1
GECOR2 66.2 83.0 NA 66.2
RUN 69.2 85.6 NA 70.6
JET 79.6 90.9 91.8 76.3

metrics, pickup ratio and difference. pickup ra-
tio indicates the ratio of predictions that contains
important tokens on test datasets. difference indi-
cates the difference the character length between
the prediction and the gold. Ideally, larger pickup
ratio with smaller difference is desirable.

Table 5: The pickup ratio and difference of T5 and JET
on Restoration 200k.

pickup ratio (%) difference
T5 29.0 1.28
Defined 29.9 1.30
Soft 26.6 1.28
Hard 30.4 1.21

Table 5 shows JET with hard labeling achieves
better results on both metrics compared to single
T5. This supports our hypothesis that the Picker
contributes the Generator for the IUR task.

5.2 Limited Training Data Setting

We challenge our model in the limited training data
setting. This simulates actual cases in which only a
small number of training samples is available. We
trained three strong methods: SARG (Huang et al.,
2021), T5, and JET on 10% of training data by
using sampling. We could not run RUN-BERT due
to errors in the original code.

As shown in Table 6, JET is consistently better
than SARG with large margins. This is because
JET is empowered by T5 which helps our model to
work with a small number of training samples. This
point is essential in actual cases. JET is also bet-
ter than T5, showing the contribution of the Picker.
SARG is good at ROUGE-scores and BLUE-scores
but worse at f-scores, e.g. on REWRITE. The
reason is that SARG uses the pointer generator



Table 6: The comparison with limited training data.

Data Method R2 B2 f1 f2

Restoration
200k

SARG 82.8 87.4 52.4 40.1
T5 84.5 87.2 53.8 37.2
JET 84.6 88.0 56.5 39.2

REWRITE
SARG 57.9 50.0 0.00 0.00
T5 77.3 73.7 71.0 61.3
JET 77.7 74.9 72.1 62.4

TASK
SARG 76.4 44.5 12.0 0.14
T5 86.0 85.8 52.7 48.3
JET 87.0 86.9 55.7 51.2

CANARD
SARG 58.6 46.4 41.8 25.9
T5 68.5 70.0 54.1 42.2
JET 69.2 71.3 55.9 43.6

network, that directly copies input sequences for
generation, but it learns nothing.

5.3 Soft Labels vs. Hard Labels

We investigated the efficiency of our labeling
method in Section 3.2.2. We run JET with soft
and hard labeling methods. We also include the
results of the JET on defined labels of Restoration
200k because this dataset originally provides labels
of important tokens.

Table 7: Soft vs. hard labeling methods. Defined is the
ground truths. T5 does not use the labeling methods.

Data Method R2 B2 f1 f2

Restoration
200k

T5 86.1 88.9 61.3 51.2
Defined 85.7 89.3 61.5 51.9
Soft 86.2 87.9 57.4 47.7
Hard 86.9 89.6 63.0 53.3

CANARD
T5 70.4 71.1 56.7 44.8
Soft 70.8 71.4 57.1 45.5
Hard 71.1 71.8 57.6 45.6

From Table 7 we can see the hard labeling
method performs well on both datasets. Interest-
ingly, the hard labeling method is even better than
the one with defined labels on Restoration 200k.
Although defined labels were manually created,
Restoration 200k defines at most one important
token in one sample even though some samples
actually contain two or more omitted tokens. We
found the hard label method detects 164k omitted
tokens while the originally defined tokens are about
120k, and tokens detected by hard labeling cover
42% of defined tokens. This suggests the hard la-
bel method extensively picks up important tokens

even some important tokens are missing, and it can
contribute to the enhancement of the JET.

For the soft labeling method, it contributes to the
f-scores on CANARD (=abstractive) while it exac-
erbates accuracy on Restoration 200k (=extractive).
This implies soft label does not function well in the
distinction case between important and unimpor-
tant tokens is clear as in Restoration 200k. The soft
labeling method would need more exploration on
abtractive scenarios that require more synonymous
paraphrasing or creative summarization.

5.4 Human Evaluation

We report human evaluation with strong methods
on CANRD because it is much more challenging
than others. We asked three annotators who are
well skilled in English and data annotation from
the annotation team in our company. For the evalu-
ation, we randomly selected 300 outputs from four
models. Each annotator read each output and gave
a score (1: bad; 2: acceptable; 3: good). Following
Kiyoumarsi (2015) we adopted Text flow and Un-
derstandability as our criteria. Text flow shows
how the restoration utterance is correct grammati-
cally and easy to understand. Understandability
shows how much the predictions are similar to ref-
erence semantically.

Table 8: Human evalution on CANARD.

SARG s2s-ft T5 JET
Text flow 2.583 2.887 2.925 2.933
Understand 2.168 2.451 2.458 2.496

As shown in Table 8, JET obtains the highest
scores on two criteria over other methods. It is con-
sistent with the results of automatic evaluation in
Tables 2 and 3. This is because our model utilizes
strong pre-trained weights which provide the abil-
ity of text generation on unseen tokens, especially
for abstractive data. The scores of JET also show
the contribution of the Picker compared to the T5
for restoration.

5.5 Output Observation

We observed the restoration outputs of different
models in Figure 1. There exist 9 omitted tokens
between the incomplete utterance and the reference.
The SARG and s2s-ft can restore only 2 important
tokens. T5 can restore 8 the important tokens out
of 9 but generates unnecessary words. Our pro-
posed model also can restore 8 important tokens



and have the same semantic meaning as the gold
utterance. This suggests our model learns to use
only the tokens picked up by Picker as additional
tokens for rewriting.

Table 9: The average BLEU score on CANARD.

Length < 100 100 ≤ 200 200 <
SARG 55.53 45.46 38.96
s2s-ft 63.89 54.94 48.39
T5 65.03 55.69 51.25
JET 64.94 56.56 52.84

We also examined the ability of strong methods
with different input lengths on CANARD. Results
in Table 9 show that our model can deal with longer
input sequences. Compared to SARG and seq2seq,
the performance of our model is much better. This
is because the implicit suggestion from the Picker
combined with the ability to deal with long se-
quences of T5 increase the score.

6 Conclusion

This paper introduces a simple but effective model
for incomplete utterance restoration. The model is
designed based on the nature of conversational ut-
terances, where important omitted tokens should be
included in restored utterances. To do that, we in-
troduce a picker with two labeling methods for sup-
porting a generator for restoration. We found that
the picker contributes to improve the generality of
the model on four benchmark datasets. The model
works well in English and Chinese, from extractive
to abstractive scenario in both full and limited train-
ing data settings. The future work will investigate
the behavior of the model in other domains and
the potential application of JET, e.g. combining
utterance extraction and utterance restoration for
information extraction from dialogue.
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