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ABSTRACT

Inspired by the great success of unsupervised learning in Computer Vision and
Natural Language Processing, the Reinforcement Learning community has re-
cently started to focus more on unsupervised discovery of skills. Most current
approaches, like DIAYN or DADS, optimize some form of mutual information
objective. We propose a different approach that uses reward functions encoded
by neural networks. These are trained iteratively to reward more complex be-
havior. In high-dimensional robotic environments our approach learns a wide
range of interesting skills including front-flips for HALF-CHEETAH and one-legged
running for HUMANOID. In the pixel-based Montezuma’s Revenge environment
our method also works with minimal changes and it learns complex skills that
involve interacting with items and visiting diverse locations. A web version of
this paper which shows animations for the different skills is available in https::
//as.inf.ethz.ch/research/open_ended_RL/main.html

1 INTRODUCTION

Deep reinforcement learning (RL) has proven to be very successful in many challenging tasks (Mnih
et al.| 2015; [Silver et al.l 2017b} Berner et all 2019). These were considered intractable just a
few years ago. However, current methods require enormous amounts of compute to achieve great
performance in individual tasks. This compute just goes to waste very often when new tasks are
considered, even if the environment does not change. Not long ago this was also the case in Computer
Vision and Natural Language Processing, until unsupervised learning took off. By using task agnostic
pre-training schemes, generalist models have revolutionized both fields (Caron et al., 2021; Tenney
et al., 2019; Brown et al.l [2020). They can solve most tasks with minimal or even no fine-tuning,
Unsupervised Reinforcement Learning aims to bring similar successes to the Reinforcement Learning
community. By discovering a wide range of skills that cover diverse behaviours in an environment,
we will be able to solve new tasks, beyond what could be imagined when the model was trained, with
minimal or even no training.

Here, we propose a new method for open-ended, unsupervised skill discovery. We devise an iterative
process which creates pairs of neural reward functions together with policies that can solve the
corresponding reward function. Each policy corresponds to a skill that the agent has learnt. The
neural reward function is a neural network that maps the current observation to a scalar reward. In
each iteration, the neural reward function is modified to differ from the previous one. This results in
increasing the complexity of the encoded task. Then, a new skill is learnt that optimizes this reward
function. We devise several techniques to transfer the knowledge from previously learnt skills. These
mechanisms enable learning of the most complex reward functions that our method creates. In fact,
we show that some of the functions are impossible to learn from scratch.

We empirically test our framework in a diverse set of environments. First, we apply it to a simple 2d
navigation task. This lets us perform experiments quickly and gain a solid empirical understanding of
the different components of our method. Then, we apply it to three robotic environments where we
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have continuous high-dimensional observations and actions. Finally, we apply it on the challenging
Montezuma’s Revenge Atari game which has visually rich pixel based observations and discrete
actions. Despite their differences, our method manages to learn useful and interesting skills in all
of them. This shows that neural reward functions are equipped to encode meaningful tasks in very
diverse environments. We highlight the most important findings of this paper:

* Solve a 2d maze that cannot be solved by using random exploration.

* Acquire complex skills including performing front- and back-flip in the HALF-CHEETAH,
running in all directions in ANT and HUMANOID, standing and jumping on one leg in
HUMANOID.

* Learn to run as fast in HUMANOID as a supervised RL agent trained for tens of millions of
steps.

 Achieve a higher Particle-Based Mutual Information Metric (Gu et al.,|2021) than approaches
that use expert knowledge for feature engineering.

* Collect the first key and reach several rooms in Montezuma’s Revenge.

2 RELATED WORK

Our work fits best into the unsupervised skill discovery literature (Mohamed & Rezendel 2015}
Gregor et al.,2016; [Florensa et al.,[2017a; |Achiam et al.,|2018; Eysenbach et al., [2018; |Sharma et al.,
2019; [Chot et al.| [2021). Compared to DIAYN (Eysenbach et al., 2018) and similar approaches,
we do not set the number of skills to be learnt at the beginning of training. This allows us to learn
new skills in an open-ended fashion. On top of that, maximizing mutual information can lead to
degenerate behaviours in high-dimensional environments. By manipulating a small subset of the
dimensions, a lot of information can be encoded, without exploring the rest of the state space.

Open-ended learning (Wang et al., 2019; Campero et al., 2020; Dennis et al., 2020; [Wang et al., |2020;
Ecoffet et al., 2021} |Stooke et al.||2021) is closely related to unsupervised skill discovery. However,
most approaches require either a parameterizable environment (Wang et al.| 2019; 2020), some fixed
encoding of tasks (Stooke et al.,|2021)) or self-competition (Silver et al.,[2017a; Baker et al.,|2019).
This limits the applicability to environments that are engineered with these restrictions in mind. In
contrast, neural networks are universal function approximators and thus, our approach can encode
any possible task in any possible environment, as long as the input is chosen appropriately.

Another related line of research to our approach is intrinsic motivation. (Stadie et al.,|2015; Bellemare
et al., 2016; [Pathak et al., 2017; [Burda et al., [2018bja; Raileanu & Rocktaschel, 2020). These
approaches have managed great success in hard-exploration Atari games. However, these approaches
do not learn discrete skills that can be composed or fine-tuned for fast learning of new tasks. This has
limited their applicability to robotic environments where exploration is not usually the limiting factor.

There has been previous work using neural networks to output reward to RL agents. Compared to
our work, they use supervision to train the reward function. Many of them train a reward function
trained with states/trajectories labeled by supervisors in some fashion (Abbeel & Ng, |[2004; |Fu et al.,
2017;|Singh et al., 20195 |Li et al., 2021)). Other approaches train auxiliary rewards with meta-learning
(Zheng et al.| 2018} Du et al.l 2019} [Veeriah et al.| [2019) to enhance the learning of the original
reward function.

Another approach to train multiple behaviours is goal-conditioned learning (Kaelbling} 1993} |Schaul
et al., 2015;|Andrychowicz et al.,[2017; Rauber et al.,[2017; Nair et al., | 2018};|Veeriah et al., [2018};
Warde-Farley et al., [2018; [Pong et al., [2019;|Choi et al.} [2021). In automated curriculum learning
(Bengio et al.| 2009; |[Florensa et al., 2017bj [Forestier et al., 2017} |Graves et al.| 2017} |Sukhbaatar
et al., 2017 [Florensa et al., 2018} [Matiisen et al.,[2019 Narvekar et al., 2020; [Portelas et al.| 2020aib;
Zhang et al.,[2020), a sequence of goals is created such that each of them is not too hard nor too easy
for the current agent. These approaches mostly rely on low-dimensional goal embeddings. When
dealing with high-dimensional observations, they must use dimensionality reduction techniques.
These techniques can introduce instabilities or destroy relevant information from the input. Our
approach, on the other hand, can deal with high-dimensional inputs directly. On top of that, goals
encode a narrow region of the state space, while each of our reward functions can be rewarding in a
large region. This speeds-up the exploration in ’easy’ regions of the state space.
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3 METHOD

We introduce a method that performs open-ended, unsupervised skill discovery. It iteratively creates
pairs of neural reward functions R, and policies 7y trained to maximize the corresponding R,;.
Our proposed method alternates between increasing the complexity of the reward function R, and
leveraging the previously learnt skills to learn a policy 7y that can solve the new Ry,. This yields a
general learning procedure that learns complex skills in a diverse set of environments. See Figure|[T]
for a high level overview.

Train 7y Uaap toeslllzs; Update Ry, with

3.1 INCREASING THE COMPLEXITY OF Ry [> tooptimize By, [ Positiveand B o samples j

negative samples

The reward function in a fully observable

Markov Decision Process (MDP) is by definition  Figure 1: Main steps of our algorithms open-ended
a function of the current observation, the next training loop.

one and the action that was performed. However,

in many cases this can be reduced to a function of just the current observation and because of this, we
opt for these simpler reward functions as the basis of our I2;,. In our method, the reward function
Ry is a neural network which takes observations o; as input and outputs a single scalar value, the

instantaneous reward r;’b .

Assume that we already have a policy 7y that can reach states in the MDP which are rewarding under
Ry, To increase the complexity of the reward function, we want to do the following:

* Decrease the reward of states which are visited by 7y, as we already have a policy that can
reach these states. We will create a dataset O,,.4 of such states, which we will refer to as
negative samples.

* Increase the reward of states that can almost be reached by the current policy. This will
allow us to leverage 7 to learn the new reward function. We will create a dataset O, of
such states, which we will refer to as positive samples.

To generate the negative samples, we run 7y for a given number of steps (ideally until it reaches
rewarding states) and store the visited states. To then generate positive samples, we change to
performing random actionsﬂ for a fixed number of steps. To ensure that the new reward function is
different from all previous ones, we also keep track of all the negative samples that we have collected
for all skills in a dataset Opeg_qir-

Finally, we set target values a and —a for the positive and negative samples respectively, and train the
reward network using standard supervised learning on the following loss:

Ry (0) + a)? Ry (0) + a)? Ry (0) — a)?
PV eIV el Vi

0€O0peg 0€0peg.all 0€O0pos

This loss ensures that positive samples that have never been seen before, will have positive reward in
the next R, while all other samples that have been seen before will decrease their reward. In the
Reinforcement Learning phase we clip rewards to the [0, a] range. This ensures that the agent seeks
only positive samples, rather than less negative ones.

3.2 FORWARD TRANSFER FOR 7y

Given the procedure presented in Section we create increasingly complex reward functions.
While this is great for open-ended learning, it eventually leads to skills that are too complex and
cannot be learnt from scratch. In order to learn these skills, we must leverage previous knowledge
about the environment. In this section we present several forward transfer mechanisms that are
necessary for the most complex skills.

Our method so far can be combined with any standard Reinforcement Learning (RL) technique but
we will focus on Actor-Critic methods like Advantage Actor-Critic (Mnih et al.||2016) or Proximal

'In MDPs with discrete actions we sample actions u.a.r. and in the continuous case, we keep the mean of 7y
and increase the standard deviation.
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Policy Optimization (Schulman et al.,2017) for learning 7. These methods have a value network
that’s separate from the policy one which will allow us to transfer the most knowledge from the
previous agent. Also, these approaches work both for continuous and discrete action spaces, allowing
us to use the same technique for robotic environments or for 2d navigation tasks. Finally the learnt
policies are stochastic, which increases the diversity of negative samples and speeds up the skill
discovery process. See Section[d.1.2]

We present our three forward transfer mechanisms below. They all exploit the similarity between
consecutive reward functions to ensure that even very complex reward functions can be solved by the
RL agent in a reasonable amount of environment interactions.

* Value Reuse: Initialize the value network to the final value network of the previous agent.
While two consecutive reward functions are different, both still reward close-by regions of
the state space. Thus, by keeping the previous value function, the policy network will be
nudged towards that region of the state space from the very first gradient updates.

* Policy Feature Reuse: Initialize the policy network to the final policy of the previous agent
but setting the weights of the final layer to 0. This keeps the features learnt before, but
outputs a uniform policy over all actions (or mean 0 and a fixed standard deviation in the
continuous case), which allows for proper learning and exploratiorﬂ

* Guiding Policy: Act with the previous policy for a random number of steps at the beginning
of each episode. This heavily simplifies the exploration problem. The agent will start
exploring from states that are much closer to the rewards defined by R,,. This is because the
previous policy could already solve the previous reward function. In contrast to the other
two mechanisms, this one does not rely on initialization. This means that it is the most
effective in very sparse reward functions that will need many parameter updates to be learnt.

In Section[d.1.1 we individually evaluate these three techniques and show that their combination is
necessary in complex environments.

Putting everything together we get an algorithm that can both, learn reward functions that encode
increasingly complex behaviours and learn RL agents that solve those reward functions. Figure|T]
illustrates the main steps of our training loop and Algorithm [T|shows the steps in more detail.

4 EXPERIMENTS

We now proceed to experimentally test our method. First, in Section we thoroughly test all
different components of our model in a 2d navigation task. This task allows us to verify the function
of each component and also to explicitly visualize what each reward function is encoding.

Then, in Section 4.2} we move to BRAX robotic environments (Freeman et al.,|2021). These have the
most flexibility and thus allow the agent to learn very complex tasks. In these tasks, we evaluate the
complexity of our skills by measuring their zero-shot transfer ability to the environment rewards. In
the HUMANOID environment, our unsupervised skills outperform supervised agents trained for tens
of millions of time steps. We also compute the one dimensional particle-based mutual information
metric that has been proposed in the literature before (Gu et al.,|2021) and show that our method
outperforms previous approaches, even when other approaches only consider handcrafted feature
dimensions in their objective.

Finally, in Section we apply our method to Montezuma’s Revenge. We show that the learnt
reward functions keep getting increasingly complex and we are mostly limited by the amount of
compute that it takes to learn each new reward function.

4.1 2D NAVIGATION TASK

The task consists of a 32 by 32 maze with several walls and a ’danger zone”. pppThe observation is
given as a 32x32x1 image with all values set to 0, except a 1 in the current position of the agent. The
agent always starts in the top left corner and can always perform 5 actions, either move in one of

ZPolicies at the end of learning can be very deterministic, which slows-down or completely stops learning of
new reward functions.
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the cardinal directions or stay in the current position. If the agent moves into a wall it will stay at its
current position instead. If the agent is in the ”danger zone” and moves up, moves down or stays, the
episode is terminated and the agent is moved back to the starting position. Figure [2 shows the layout
of the maze. The danger zone” ensures that random exploration will not work to reach many parts
of the environment and lets us easily test both the increasing complexity of the reward functions and
the importance of forward transfer. We computed the expected number of steps to reach the bottom
right corner with a random walk using Dynamic Programming. In expectation, 7 - 10?7 episodes are
needed to do so. This shows that this maze is difficult to navigate.

To train our agent we use the Advantage Actor Critic (A2C) (Mnih et al., [2016)) algorithm. To
learn the rewards we use the full algorithm presented in Section [3] We use the same architecture
for the reward, policy and value networks, but do not share any parameters. The architecture is
a ReLU network with 2 convolutional layers followed by 2 fully connected layers. For the exact
hyper-parameters see Table 3]in Appendix [B] Figure 2] plots the most visited locations for each skill
of one run of our algorithm. The first few skills visit points near the origin, later skills start moving to
harder to reach parts of the state space. After roughly 40 iterations they reach the bottom right part.
As stated before, this would take unreasonably long when using only random exploration.

—

4.1.1 FORWARD TRANSFER OF SKILLS

As pointed out in Section [3.2] our reward functions be-
come too complex to be learned from scratch with random
exploration in a reasonable number of steps. When this
happens, our agent must rely on transferring knowledge
from previous generations. Our navigation task is specifi-
cally designed to test this transfer ability, as random explo-
ration would never reach the bottom right corner (7 - 1027
episodes in expectation).

e N

Figure 2: 40 skills discovered by our

We experimentally evaluate the three forward transfer
mechanisms proposed in Section[3.2} Value reuse, Policy
feature reuse and Guiding policy. The reward functions
from Figure [2] serve as tasks, sorted according to creation
order. We train ablations of the three mechanisms sequen-
tially on these tasks. This allows us to ignore the skill
discovery process and only measure the forward transfer
of skills. We repeat each experiment three times. The
agent with all mechanisms, always manages to solv all
reward functions. On the other hand, the Policy, Value and
Guiding ablations fail to learn after solving 29.3 + 9.5,
18.7 £ 11.6 and 19 = 8.5 reward functions, respectively.

method in the 2d maze environment. The
circles represent the average position of
the most visited locations for each skill.
Colors change from early skills in purple
to late skills in red. Consecutive reward
functions are connected by a line. The
agent learns increasingly complex skills,
until it reaches the bottom right corner of
the maze; the hardest part to reach in the
whole maze. The black bars represent
the walls in the maze and the dotted line
represents the danger zone.

4.1.2 SPEEDING-UP DEEP EXPLORATION

One key parameter when training actor critic methods is entropy regularization. In our method,
policies with a lot of entropy will generate a diverse set of negative samples. Diverse negative
samples lead to reward functions that evolve more in each generation. This is especially beneficial in
environments where many steps are necessary to reach certain states, like in this 2D navigation task
or Montezuma’s Revenge. We empirically verify this claim by training a set of agents with varying
levels of entropy regularization. Figure[6]shows the coverage of the state space after 60 generations
as a function of the entropy regularization. We observed that higher entropy leads to a faster coverage
of the state space up to a certain threshold. However, too much entropy leads to poor policies that do
not learn to reach the rewarding states when these are far enough from the origin. Observe that this
problem arises independent of the training procedure as the entropy regularization changes what the
optimal policy is.

In order to have policies that gather diverse samples to change the reward function and that can also
be deterministic in dangerous parts of the trajectory that already have no reward, we use adaptive
entropy regularization. That is, we apply a small entropy regularization term everywhere. We increase

3We consider a reward function as solved if the agent manages to find positive reward.
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the entropy regularization in states where the reward function is positive (states in which we want to
decrease the reward function). By doing this, we manage to consistently visit all states in the maze.
This technique was necessary to create the reward functions from Figure 2}

4.2 ROBOTIC ENVIRONMENTS

Quantitatively measuring Unsu-
pervised Reinforcement Learning ;] .

. \r
progress remains an open problem / \j TNV Y’ /
and active area of research. Because 2 \ . L\T’ - ; i /’\» e
of this, it is still important to visualize = = .
and qualitatively study the learned X/ N OW “‘B '% Ko~ T“O 4'\\0
skills. We do this in Section E.2.1] -

In the next two Sections, F.2.2] and %\. g
M.23] we quantitatively measure “o @ @ ﬁ
7 / / T /< ©/

the performance of our algorithm

£ ==K

on downstream task performance é'\ e .

and with the so-called particle- R @T/ Q j /@ /&/ ) gi )
based mutual information metric, & 74‘ s / >4 ()/ - / /
respectively.

In contrast to the previous experi- Figure 3: Visualizatiqn of four l'earned robotic ski'll's. One of
ments, the action space is continuous the legs is tracked with a red circle Whgn it is visible. The
and the input modality is now a vec- HAIidF-CHE.ETAH learqs to do a front-flip. The ANT does a
tor of features, like relative position, Partial rotation around its torso and then starts running. The
angle and speed of the different joints. UPPer HUMANOID also does a part@l rotation and then runs
We do not use adaptive entropy here, backwards. The lower HUMANOID jumps on one leg while

as we need deterministic policies to moving forward.

maximize the downstream task perfor-

mance and the mutual information metric. Given that the environments do not have far away regions
to reach, we did not implement the guiding algorithm here. Note that the agent does not see the z-y
position. Hyperparemeters and architecture can be found in Appendix [C]

4.2.1 QUALITATIVE ANALYSIS

In Figure 3] we illustrate a selection of particularly interesting skills. In Figure ] we see how the
velocity of learnt skills in ANT and HUMANOID evolve over training. See Appendix [E| for the
other runs. One can see that consecutive skills slightly change the direction and speed of moving.
However, it is important to realize that the observations contain tens to hundreds of dimensions and
thus, the skills can encode much more complex behaviors than speed/direction of movement. For
example, Figure 3] shows that the skill involves keeping one leg in the air on top of moving in the
right angle/speed.

ANT HumANoOID

4.2.2 ZERO-SHOT TRANSFER

After discovering 50 unsupervised skills, we
identify the skill that aligns best with the re- = ¢
ward given by the environment. We report this
zero—shoﬂ performance in Table m As a base-
line, we train an agent from scratch and measure oS0 s 6 P o

how long it takes it to reach an equivalent per- el el
formance. We use the Optuna hyperparameter
optimizer (Akiba et al., 2019) to find hyperpa-
rameters which maximize the speed of learning
beforehand. The exact procedure can be found

on Appendix

y-vel

Figure 4: Scatter-plots of the z- and y-velocity
of the states visited by the first 13 skills of one
run in ANT and HUMANOID. The second half of
the trajectory is shown. Colors change from early
skills in purple to late skills in red.

“Technically, we query the true reward function to identify the skills, but we do not perform any training on
it.
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The simplest environment, HALF-CHEETAH ,

benefits the least from unsupervised learning,

while the hardest one, HUMANOID, benefits the most. This is in line with what is observed in
Computer Vision and Natural Language Processing, of more complex tasks benefiting the most from
a longer pre-training phase.

4.2.3 PARTICLE-BASED MUTUAL INFORMATION METRIC

Measuring how well the agent can control rel-
evant state dimensions is another way to track
progress in Unsupervised Reinforcement Learn-
ing. This is measured using the mutual informa-
tion between state dimensions and skills. While
high-dimensional estimation of mutual informa-
tion an active area of research, sampling can
be an effective form of estimation in the 1-
dimensional case, c.f. Algorithm 1 in (Guetall Cheetah 1094 + 1130 340K + 50K
2021). We report the particle-based mutual in-  Ant 2506+ 511 1.2M +0.24M
formation for the z-velocity in Table Q], using  Humanoid 9092 + 1063 55M + 27M
the same bucketing strategyE] as in (Gu et al.}
2021).

Table 1: Zero-shot environment reward of our al-
gorithm and the number of steps a supervised PPO
agents needs to match it. Both columns averaged
over 10 repetitions.

Task Zero-shot Steps from
reward scratch

Our method far outperforms DIAYN, when both methods look at the whole observation state.
DIAYN achieves diversity by learning a set of skills that can be correctly labeled by a neural network.
In high-dimensional spaces this is easy to do by relying on a small subset of all state dimensions.
This leads to non-diverse behaviours across most state dimensions. Even when expert knowledge
about relevant dimensions is supplied to other methods, i.e. only taking the x- and y-velocity into
account, our method still fares well. Particularly, in the most complex environment, HUMANOID, our
method comes on top. We believe the fact that our method does not partition the space, leads to a
narrower coverage of the state space per skill (see Figure ). Also the iterative increase in complexity
leads to better coverage of hard to reach regions of the state, e.g. high velocity. With all this, our
approach achieves greater controllability of the x-velocity without any kind of feature engineering.

4.3 MONTEZUMA’S REVENGE

To show the generality of our approach Table 2: Particle-based mutual information metric for
we evaluate it on the notoriously hard the z-velocity. Results are averaged over 10 runs. Algo-
Montezuma’s Revenge Atari game. In rithms with feature engineering only consider z-y veloci-
this game, the agent controls a charac- ties. Baselines taken from (Gu et al., 2021

ter in a complex 2d world with several

rooms. Appendix [G] shows the initial  Task Method Feature MI(s, 2)
room and various items with which the Engineering

agent may interact. Same as in (Mnih

et al.l |2015)), the observation is a stack Cheetah Ours X 1.40 £0.21
o Cheetah DIAYN X 0.49 +0.16
of the last 4 frames. This gives the agent
information about speed and direction of Cheetah DIAYN, v 1.82 + 0.20
movement. This is done for all networks, Cheetah GCRL v 1.63+0.16
that is, the value, policy and neural re-  Ant Ours X 1.33+0.11
ward networks. We use the same sim-  Ant DIAYN X 0.03 £ 0.01
ple CNN architecture as in (Mnih etal.,  Ant DIAY N, v 1.12 £0.27
2015) for all three networks. For exact  Ant GCRL v 1.22 4+ 0.19
learning details see Appendix [H| Humanoid Ours X 1.29 + 0.25
Our algorithm uses finite episode lengths ~ Humanoid =~ DIAYN X 0.07+=0.01
because once it reaches a rewarding state, ~Humanoid DIAY N, v 0.93£0.13
the agent can stay there forever. Because =~ Humanoid GCRL v 0.77£0.15

>We split the dimension in 1000 bins in the [—10, 10] range. As in (Gu et al.,[2021), we only take the second
half of each trajectory. The initial state is independent of the skill and thus the beginning of the trajectory does
not tell anything about the gained controllability.
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of this, we reset the environment every
500 steps.

One of the main difficulties when dealing with Montezuma’s Revenge is that it cannot be simulated
as fast as the other studied environments. On top of that, an agent can learn hundreds of different
skills without ever leaving the first room. Finally, skills learnt by our agent evolve from simple to
very complex and extended in time. In the beginning, the agent just needs to stay close to the initial
position. By the end of training, the agent learns to collect a key, open the door, avoid several enemies
and visit four different rooms. In the most complex skills, it takes the agent several hundred steps to
reach a rewarding state. This means that experiments can take several days to visit a different room.

In order to save computation, we adapt the number of training steps to ensure the agent has learnt
each skill. See Appendix [F]for details.

We found out that the first thing the agent learns is to get the life counter to 0. Then it starts exploring
the room, with O lives already. This is because losing a life happens very easily during random
exploration and because once the agent reaches 0 lives, all future positive samples will have 0 lives.
This has two side effects. On the one hand, the initial 100 — 200 steps of an episode are spent losing
lives. On the other hand, exploration is harder, as the agent will reach a terminal state very easily.
Because of this, we cut out the part of the image that shows the remaining lives, see Appendix [G]

Figure [5(a)| visualizes different skills. The first observations which get the maximum possible reward
are overlaid. All the shown skills go to the bottom and kill the skull first. Then, they move to a specific
location. It can be seen that later skills explore states further and further away from the initial state.
Figure [5(b)| shows that the skill receives no reward for many steps. Only after the agent has killed
the skull, being on the ladder becomes rewardinéﬂ This shows that both the reward network and
the agent have learnt a lot of the concepts that are necessary to tackle Montezuma’s Revenge. This
includes controlling the agent in the 2d environment, killing enemies and interacting with different
objects. All of this without ever accessing the original reward function. Eventually, after learning a
few hundred skills, the neural reward function pushes the rewarding states all the way to the fourth
room.

5 CONCLUSION

We have presented an unsupervised Reinforce-
ment Learning algorithm that uses reward func-
tions encoded by neural networks. Our algo-
rithm alternates between increasing the com-
plexity of the reward function and transferring
previous knowledge to learn a new skill that
finds rewarding states. This allows it to learn
an unbounded number of skills that is mostly
limited by the available compute power.

reward

“““

0 25 0 T 100 1% 10 155 20
step

(b)

We have thoroughly tested the different com-  Figure 5: (a) The position of the agent in the most
ponents of our model in a 2d navigation task. rewarding state of each skill. The skills are num-
This has allowed us to better understand our pered with the creation order. (b) The rewards
method in practice. We have shown that our received by skill 29 during part of its trajectory.

method works both with high dimensional fea-  This shows the long term nature of the discovered
ture inputs, in robotic environments, and pixel gkijlls.

inputs, in Montezuma’s Revenge. Our algorithm

learned a diverse set of skills in both settings. In HUMANOID and Montezuma’s Revenge, skills found
by our method achieve a zero-shot performance that takes millions of steps to learn in the classical
Reinforcement Learning setup.

Our approach is very general and opens up many possibilities for future research. The forward transfer
mechanism can be replaced by a more complex meta-learning or off-policy relabelling techniques.
Collecting data for reward function training can benefit from smarter exploration strategies. We

SUsing the ladder is needed to kill the skull, but the reward function gives no reward when the agent is on the
ladder before killing the skull.
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believe our algorithm is one step in a direction that may one day allow Reinforcement Learning
agents to fully understand an environment without making use of any predefined reward function.
Just like in Computer Vision and Natural Language Processing, this will lead to agents that need very
few labels from the task at hand to be able to solve it and will drastically expand the applicability of
Reinforcement Learning.
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Figure 6: Total number of states visited by the learnt policies after 60 generations as a function of the
entropy regularization used by the underlying A2C agent. The adaptive entropy model manages to
visit all states in all runs.

A PSEUDO-CODE

Algorithm 1 Open-Ended Neural Reward Functions

Initialize 6y and ¥ and Oyeg_aur-
140
while TRUE do
Onegis Oposi <~ [Z)a (Z)
Set Ry, as the reward of the MDP
Train 7y, and Vj, using an actor-critic algorithm
for j =0tobdo
Reset the MDP to the initial state
Follow g, for k steps and add the observed states to Oj,eq
Follow a random policy for &’ steps and add the observed states to O,
end for
Oneg,all,, — Oneg,all,;_l U Oneg,;
Yig1 < Y
Train ;11 wWith Ly, Opos; > Oneg; and Opeq ail;
Oiy1 < 0;
Set last layer of mg
1+ 1+1
end while

i1 100

B 2D NAVIGATION: EXPERIMENTAL DETAILS

The episode length in the 2d navigation task is 250 steps. The guiding phase lasts for 2/3 of the total
steps of the 1-steps A2C agent learning. We sample the guiding length uniformly at random in the 0
to 200 range. For the negative samples we follow the learnt policy for 200 steps. For the positive
samples, we take random actions for 50 steps after following the policy for 200 steps.
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Table 3: Hyperparameters for the 2d navigation task.

HYPERPARAMETER

BASE ENTROPY REGULARIZATION 0.005
EXTRA ENTROPY REGULARIZATION 0.05
EPISODE LENGTH 250
A2C LEARNING RATE 0.0001
A2C DISCOUNT FACTOR 0.99
BATCH-SIZE 2048
STEPS PER SKILL 2048 - 60000
POSITIVE/NEGATIVE SAMPLE TARGET VALUE  0.05/ — 0.005
REWARD NETWORK UPDATES PER SKILL 500
REWARD NETWORK LEARNING RATE 0.001
REWARD NETWORK TRAINING BATCH SIZE 3256

Table 4: Hyperparameters for PPO shared in all three environments.

BRAX PPO HYPERPARAMETERS

POLICY HIDDEN LAYER SIZES [612,512]
VALUE HIDDEN LAYER SIZES [512,512]
BODY LEARNING RATE MULTIPLIER 0.5
EPISODE LENGTH 1000
ACTION REPEAT 1
NUMBER OF MINI-BATCHES 32
BATCH-SIZE 1024
PARALLEL ENVIRONMENTS 2048

C ROBOTIC ENVIRONMENTS: ARCHITECTURE AND HYPERPARAMETERS

We use the PPO (Schulman et al., 2017} implementation from (Freeman et al., [2021) with mod-
ifications such that it allows our training method to work. In Table 4] and Table [5| we list the
hyperparemeters we used. Note that we use a smaller learning rate for the bodies of the policy and
value network. We found that this was beneficial for transferring more knowledge from the previous
skill. The environment specific parameters were found using Optuna (Akiba et al.||2019). For each
environment we ran a search to optimize final performance on the environment rewards (running in
positive x-direction). We used 200 runs and trained each of them for the same number of steps as a
skill in our method. This yielded hyperparameters which are able to learn tasks in the corresponding
environment. We did not take the downstream performance metrics (zero-shot perforamce and
particle-based information) into account. Doing so would have exceeded our compute budget. In
Table 6] the architecure and hyperparameters used for the neural reward functions are listed. For the
supervised reward training we use the Adam optimizer (Kingma & Bal 2014). All code can be found
in the supplementary material.

D ROBOTIC ENVIRONMENTS: ZERO-SHOT TRANSFER

We use the Optuna hyperparameter tuning library (Akiba et al.| 2019) to create Table [[l We ran
multiple optimization procedures. For each one, we fix a number of environment steps, then optimize
the final performance on the environment reward over 200 runs. We iteratively increased the number
of timesteps until the highest score of the 200 runs beats our averaged zero-shot performance. We
take the hyperparemters of that run and train 10 agents until they outperform our averaged zero-shot
performance. The average number of training steps needed for this is reported in Table |1} In the
HUMANOID environment three of the runs did not reach the score in 1000 steps, at which point
we stopped training. We nonetheless took 1000/ into the average. The code for the hyperparameter
search and the results of our conducted studies can be found in the supplementary material.
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Table 5: Environment specific PPO hyperparemeters.

HALF-CHEETAH ANT HUMANOID

LEARNING RATE 0.00010 0.00029 0.00017
REWARD SCALING 0.24532 5.58242 0.15326
UNROLL LENGTH 3 5 6
UPDATES PER EPOCH 15 14 10
DISCOUNT FACTOR 0.99109 0.92318 0.99114
ENTROPY COST 0.00062 0.00200 0.02087
ENVIRONMENT STEPS PER SKILL 10M 10M 20M

Table 6: Neural reward function hyperparemeters for the BRAX environments.

NEURAL REWARD FUNCTION HYPERPAREMETERS
IN BRAX ENVIRONMENTS

HIDDEN LAYER SIZES [87]
HIDDEN LAYER NONLINEARITY TANH
TARGET VALUE a 5
GRADIENT STEPS 300
LEARNING RATE 0.001
TOTAL BATCH SIZE 171
NEGATIVE STEPS 300
POSITIVE STEPS 40
NUMBER OF SAMPLING ENVIRONMENTS 8192
FRACTION OF NEGATIVE SAMPLES STORED 0.01

E ROBOTIC ENVIRONMENTS: ADDITIONAL z — y VELOCITY PLOTS

In Figure [7]and [§| one scatter plot as in Figure ] for every run is shown.

F MONTEZUMA’S REVENGE: ADAPTING EPISODE LENGTH

In order to save computation, we adapt the number of training steps according to several criteria. This
lets us save a lot of compute on the skills which are easy to learn. We use the following measures:

* We train for 1M steps with guiding from the previous policy. The number of guiding steps
is sampled uniformly at random between 0 and 450, each time the environment is reset.
Then we train for another 0.65M/ steps without any guiding.

* If the average reward goes down after removing the guiding or is too low at any point, we
restart the guiding phase for 0.65M steps.

« If the agent is reaching a terminal state in more than 10% of the episodes, we continue
training.

On top of this, we ignore positive samples that receive almost no reward. All these tricks enable us to
considerably reduce the training time. However, they are not a core change in our algorithm as they
could all be replaced by just training all generations for a longer fixed number of steps, just as before.

G MONTEZUMA’S REVENGE: ENVIRONMENT DETAILS

Figure [0 shows the initial state of Montezuma’s Revenge and the cropped version of it that is used for
our agent.
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Figure 7: Scatter-plots of the x- and y-velocity dimension of the states visited by the first n skills of
all additional 9 runs in ANT . n was picked by hand in each run. The second half of the trajectory is
shown. Colors change from early skills in purple to late skills in red.

H MONTEZUMA’S REVENGE: EXPERIMENTAL DETAILS

In Montezuma’s Revenge, we use the PPO implementation from the coaxﬂ library, with 1-step
temporal differences. If the average score per 500 steps is below 5, we go back to the guiding phase.
Due to the large memory requirements to store all negative samples, after the 15-th epoch we rewrite
old negative samples to add the new ones. Table[7]summarizes our hyper-parameters.

"https://github.com/coax-dev/coax
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Figure 8: Scatter-plots of the z- and y-velocity dimension of the states visited by the first n skills
of all additional 9 runs in HUMANOID . n was picked by hand in each run. The second half of the
trajectory is shown. Colors change from early skills in purple to late skills in red.

Table 7: Hyperparameters for Montezuma’s Revenge.

HYPER-PARAMETER

BASE ENTROPY REGULARIZATION 0.003
EXTRA ENTROPY REGULARIZATION 0.03
EPISODE LENGTH 500
PPO LEARNING RATE 0.0003
PPO DISCOUNT FACTOR 0.99
PPO EPSILON 0.2
PPO BATCH SIZE 1024
PPO REPLAY BUFFER SIZE 4096
PPO REPLAY EPOCHS 4
PARALLEL ENVIRONMENTS 32
POSITIVE/NEGATIVE SAMPLE TARGET VALUE  0.05/ — 0.05
REWARD NETWORK UPDATES PER SKILL 1500
REWARD NETWORK LEARNING RATE 0.001
REWARD NETWORK TRAINING BATCH SIZE 3-243
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¥

(b)

Figure 9: (a) Initial state in the first room of Montezuma’s Revenge. The agent controls the red/yellow
character and its actions are moving up, down, right or left, and jumping. Touching the skull or
jumping from a high height makes the agent lose a life. The agent must collect the key and open
one of the two doors to access the next room. (b) Cropped version of the input that we use in our
algorithm.

18



