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ABSTRACT

Transformers incorporating copula structures have demonstrated remarkable per-
formance in time series prediction. However, their heavy reliance on self-attention
mechanisms demands substantial computational resources, thus limiting their
practical utility across a wide range of tasks. In this work, we present a model that
combines the perceiver architecture with a copula structure to enhance time-series
forecasting. By leveraging the perceiver as the encoder, we efficiently transform
complex, high-dimensional, multimodal data into a compact latent space, thereby
significantly reducing computational demands. To further reduce complexity, we
introduce midpoint inference and local attention mechanisms, enabling the model
to capture dependencies within imputed samples effectively. Subsequently, we
deploy the copula-based attention and output variance testing mechanism to cap-
ture the joint distribution of missing data, while simultaneously mitigating er-
ror propagation during prediction. Our experimental results on the unimodal and
multimodal benchmarks showcase a consistent 20% improvement over the state-
of-the-art methods, while utilizing less than half of available memory resources.

1 INTRODUCTION

Time-series prediction remains an enduring challenge since it requires effectively capturing global
patterns (e.g., month-long trends) and localized details (e.g., abrupt disruptions). This challenge be-
comes particularly pronounced when dealing with non-synchronized, incomplete, high-dimensional,
or multimodal input data. For instance, consider a time series consisting of N regularly-sampled and
synchronously-measured values, where measurements are taken at intervals of length T . If the time-
step is unobserved at rate r, then there are (1−r)NT observed values that are relevant for inference.
Consider an asynchronously-measured time series, where input variables are observed at different
times, resulting in each time-step having only 1/N of its variables observed. In this scenario, only
(1−r)T values remain relevant for inference within the time series. Consequently, employing a syn-
chronous model to address non-synchronized time series results in a missingness rate of (N−1)/N .
This missingness rate grows rapidly as the number of variables increases, reaching 95% with just
20 variables in the time series. When designing an architecture to handle missing data, it is crucial
to utilize techniques for approximating missing values while ensuring the computational overhead
does not exceed the effort required to extract valuable insights from the observed data. To this end,
TACTiS (Drouin et al., 2022) presents an attention-based model (Vaswani et al., 2017) tailored for
time series. This model tokenizes input variables and utilizes a transformer-based encoding and
decoding approach, making it a suitable choice for modeling non-synchronized time series data. To-
kenization also offers significant advantages for missing data, as unobserved data can be seamlessly
excluded from the token stream. Additionally, TACTiS leverages a copula structure (Nelsen, 2006)
as a flexible model to represent the sequence distribution and achieves remarkable prediction perfor-
mance. Particularly, it represents the joint distribution with a non-parametric copula that is a product
of conditional probabilities. To ensure that the product give a valid copula, TACTiS considers per-
mutations of the margins during training such that a level of permutation invariance occurs. This,
however, yields an exchangeable class of copulas in the limit of infinite permutations, diminishing
the utility of the non-parameteric copula. In addition, the transformer architecture in TACTiS poses
significant computational demands related to the self-attention mechanism.

In this paper, we introduce the Perceiver-Attentional Copulas for Time Series (PrACTiS) architec-
ture, a new approach that combines the Perceiver IO model (Jaegle et al., 2021a) with attention-
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based copulas to enhance time series modeling and address computational efficiency challenges.
Our model consists of the perceiver-based encoder and the copula-based decoder, enabling the in-
corporation of a more general class of copulas that are not exchangeable. Specifically, the class of
copulas in PrACTiS are the factor copulas, which are conditionally exchangeable based on the factor.
Initially, PrACTiS transforms the input variables into temporal embeddings through a combination
of input embedding and positional encoding procedures. In this phase, the observed and the missing
data points are encoded (i.e., the value of missing data points are masked). Subsequently, PrACTiS
utilizes a latent attention-based mechanism inspired by the perceiver architecture. This mechanism
efficiently maps the acquired input embeddings to a lower-dimensional latent space. Since all subse-
quent computations are performed within this compact latent space, it helps reduce the complexity
from a quadratic to a sub-quadratic level. Lastly, the decoder leverages the copula structure to for-
mulate the joint distribution of missing data using latent embeddings. This distribution undergoes a
sampling process to yield the predicted outcomes. Our proposed model can effectively handle syn-
chronized, non-synchronized, and multimodal data, expanding its applicability to diverse domains.

To validate the efficacy of PrACTiS, we conduct extensive experiments on the unimodal datasets
from the Monash Time Series Forecasting Repository (Godahewa et al., 2021) (i.e., electricity, traf-
fic, and fred-md) and the multimodal datasets, such as room occupation (Candanedo, 2016), inter-
state traffic (Hogue, 2019), and air quality (Chen, 2019). We also conduct memory consumption
scaling experiments using random walk data to demonstrate the memory efficiency of PrACTiS.
The results demonstrate the competitive performance of our model compared to the state-of-the-art
methods, including TACTiS, GPVar (Salinas et al., 2019), SSAE-LSTM (Zhu et al., 2021), and deep
autoregressive AR (Kalliovirta et al., 2015) while utilizing as little as 10% of the memory resources.

2 RELATED WORK

Neural networks for time series forecasting (Zhang et al., 1998) have undergone extensive research
and delivered impressive results when compared to classical statistical methods (Box et al., 2015;
Hyndman et al., 2008; Yanchenko & Mukherjee, 2020). Notably, both convolutional (Chen et al.,
2020) and recurrent neural networks (Connor et al., 1994; Shih et al., 2019; Hochreiter & Schmidhu-
ber, 1997) have demonstrated the power of deep neural networks in learning historical patterns and
leveraging this knowledge for precise predictions of future data points. Subsequently, various deep
learning techniques have been proposed to address the modeling of regularly-sampled time series
data (Oreshkin et al., 2019; Le Guen & Thome, 2020; de Bézenac et al., 2020; Lim & Zohren, 2021;
Benidis et al., 2022). Most recently, the transformer architecture, initially designed for sequence
modeling tasks, has been adopted extensively for time series forecasting (Li et al., 2019; Lim et al.,
2021; Müller et al., 2021). Using the properties of the attention mechanism, these models excel
at capturing long-term dependencies within the data, achieving remarkable results. In addition to
these developments, score-based diffusion models (Tashiro et al., 2021) achieved competitive per-
formance in forecasting tasks. However, it is worth noting that the majority of these approaches
are tailored for handling regularly sampled and synchronized time series data. Consequently, they
may not be optimal when applied to non-synchronized datasets. In financial forecasting, the copula
emerges as a formidable tool for estimating multivariate distributions (Aas et al., 2009; Patton, 2012;
Krupskii & Joe, 2020; Größer & Okhrin, 2022; Mayer & Wied, 2023). Its computational efficiency
has led to its use in the domain adaptation contexts (Lopez-Paz et al., 2012). Moreover, the cop-
ula structure has found utility in time series prediction when coupled with neural architectures like
LSTMs (Lopez-Paz et al., 2012) and the transformer (Drouin et al., 2022), enabling the modeling
of irregularly sampled time series data. While previous research has explored non-synchronized
methods (Chapados & Bengio, 2007; Shukla & Marlin, 2021), their practicality often falters due to
computational challenges. The TACTiS (Drouin et al., 2022) method combines the transformer ar-
chitecture with copulas, and it achieved significant advancements over existing models, making the
approach applicable to both synchronized and non-synchronized datasets. Nonetheless, it is impor-
tant to note that the inherent computational overhead associated with the transformer’s self-attention
mechanism poses limitations, particularly when applied to high-dimensional inputs such as multi-
modal data. To mitigate this computational complexity, we propose the adoption of the perceiver
IO (Jaegle et al., 2021b;a) as the encoder, paired with a copula-based decoder. In addition, we utilize
the midpoint inference (Liu et al., 2019) during the decoding phase of the model. This approach re-
stricts conditioning and effectively embodies a form of sparse attention (Child et al., 2019; Tay et al.,
2020; Roy et al., 2021), although the sparsity pattern is determined through a gap-filling process.
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3 PRELIMINARIES

TACTiS (Drouin et al., 2022) has exhibited outstanding performance in the domain of time series
prediction. It harnesses the self-attention mechanism (Vaswani et al., 2017) at two critical stages
within its operation. Firstly, TACTiS employs self-attention to encode input time series variables,
effectively transforming them into a sequence of generalized tokens. This transformation enables
the model to process and analyze the temporal aspects of the data efficiently. Secondly, it applies
self-attention over this resulting token sequence to generate a conditional distribution of inferred
variables using a parameterized copula. An innovative aspect of TACTiS involves permuting mod-
eled variables, allowing the model to determine the optimal ordering of these conditional distribu-
tions. Furthermore, it introduces a stochastic element by randomly selecting permutations for each
inference sample, accommodating scenarios where a fixed order may not be ideal. This feature
grants TACTiS a competitive edge in modeling asynchronous time series data. These features allow
TACTiS to accel in missing data inference. It accomplishes this by removing unobserved data from
the token stream during tokenization, allowing the model to generate precise predictions even when
dealing with incomplete input.

Let X denote the a time series of interest, X = {X1, X2, . . . , Xi, . . .}. Each element Xi is defined
as a quadruple: Xi = (vi, ci, ti,mi), where vi is the value, ci is an index identifying the variable, ti
is a time stamp, and mi is a mask indicating whether the data point is observed (i.e., with available
value) or needs to be inferred (i.e., missing data). For synchronously measured time series data, we
can organize it into a data matrix denoted as Xc,t. This matrix has rows corresponding to individual
variables and columns corresponding to different timestamps when measurements were recorded.
The TACTiS architecture comprises an encoder and a decoder. First, the encoder generates em-
beddings for each data point, x⃗i, which includes the value vi, a learned encoding for the variable
ci, an additive sinusoidal positional encoding indicating the position of ti within the overall time
series, and the mask mi. Subsequently, TACTiS employs a self-attention mechanism represented as
self attention(K, Q, V), where K represents keys, Q is a query, and V is a set of values. By utiliz-
ing learned functions for generating keys and values, key encode() and value encode(), TACTiS
derives a tokenized representation, denoted as z⃗i, for each data point. This is achieved by passing
the input embeddings through a stack of residual layers, as follows:

z⃗i = self attention(key encode(x⃗¬i), x⃗i, value encode(x⃗¬i))

Next, the decoder is specifically designed to learn the joint distribution of the missing data points
conditioned on the observed ones. To achieve this, the attention-based decoder is trained to mimic
a non-parametric copula (Nelsen, 2006). Let x(m) and x(o) represent the missing and observed data
points, respectively. Let Fi be the ith marginal cumulative distribution function (CDF) and fi be the
marginal probability density function (PDF). The copulas, under Sklar’s theorem (Sklar, 1959), al-
low for separate modeling of the joint distribution and the marginals, which has particular relevance
to the case of sequence modeling. To model the marginal CDF, TACTiS employs a normalizing flow
technique known as Deep Sigmoidal Flow (Huang et al., 2018). The marginal PDF is obtained by
differentiating the marginal CDF. The copula-based structure gϕ is described as follows:
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During the decoding phase, TACTiS selects a permutation, denoted as γ, from all data points, ensur-
ing that observed data points come before those awaiting inference. It then utilizes the learned key
and value functions, key decode() and value decode(), to derive distributional parameters, θγ(i),
for each datapoint awaiting inference as follows:

θγ(i) = self attention(key decode(z⃗γ(j)<γ(i)), z⃗γ(i), value decode(z⃗γ(j)<γ(i)))

Finally, TACTiS introduces a parameterized diffeomorphism fϕ,c : (0, 1) 7→ R. When θ represents
the parameters for a distribution pθ over the interval (0, 1), TACTiS proceeds by either sampling
data points as x̂i = fϕ,ci(ui), ui ∼ pθi , or computing the conditional likelihood: pθi(f

−1
ϕ,ci

(xi)).
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It’s important to note that both self-attention mechanisms within TACTiS involve pairwise calcula-
tions among the variables. Consequently, the encoder’s computational complexity scales as O(N2),
where N is the number of data points in the time series. Conversely, the decoder’s complexity scales
as O(S(S + H)), where S represents the number of data points to be inferred and H denotes the
number of observed data points. To address the computational complexity of the encoder in TACTiS,
especially for synchronously measured time series, Drouin et al. (2022) have implemented a tem-
poral transformer variant. This variant applies attention iteratively, first within a time step and then
across time steps, effectively reducing the encoder’s complexity to O(n2T + nT 2), where n is the
number of variables, and T is approximately the number of time steps. However, it’s worth noting
that the self-attention-based decoder in TACTiS maintains its complexity scaling as O(S(S +H)).

Here, TACTiS uses a training procedure involving random permutations to establish an approxi-
mately valid copula. In particular, all margins are approximately the same and approximately uni-
form. Once a valid copula is obtained, it leverages Sklar’s theorem to combine copula density with
marginal densities for maximum likelihood estimation (MLE). However, the conditional copula fac-
torization, as expressed by c(u1, . . . , ud) = c(uπ1)× c(uπ2 | uπ1)× · · · × c(uπd

| uπ1 , . . . , uπd−1
)

for permutations of indices π, carries significant implications, especially in the asymptotic limit of
infinite permutations. As the order of the marginals becomes irrelevant, the copula converges into
a family of exchangeable copulas. Relying on exchangeability to ensure the validity of a copula
undermines the potential advantages of utilizing a nonparametric copula, ultimately diminishing its
expected benefits.

4 PRACTIS

We propose the integration of the Perceiver model (Jaegle et al., 2021b;a) as the encoder with the
copula-based decoder, aiming to enhance the expressiveness of dependence between covariates, el-
evate prediction performance, and streamline the complexity of TACTiS. This integrated model,
called Perceiver-Attentional Copulas for Time Series (PrACTiS), represents a groundbreaking ad-
vancement in generative modeling for time series data. PrACTiS utilizes the advantages of both
the self-attention mechanism and latent-variable-based attention mechanisms from perceivers. No-
tably, it enables the modeling of dependencies between covariates, which can converge into a factor
copula (Oh & Patton, 2017; Krupskii & Joe, 2013) described as follows:

C(u1, · · · , ud) =

∫
[0,1]k

d∏
j=1

Fj|Z1,··· ,Zk
(uj |z1, · · · , zk)dz1 · · · zk (1)

The factor copula is particularly well-suited for modeling high-dimensional data, primarily because
it permits the specification of a parametric form with linear O(n) dependency parameters, rather
than the computationally burdensome O(n2) parameters, where n is the number of observed vari-
ables. Furthermore, the factor copula model proves invaluable in cases where the interdependence
among observed variables is contingent upon a limited number of unobserved variables, particularly
in situations where there is a presence of tail asymmetry or tail dependence within the dataset. In
numerous multivariate scenarios, the dependence on observed variables can be explained through
latent variables. Importantly, this approach dispenses with the assumption of exchangeability, al-
lowing the copula to adopt a more general form. The perceiver considers this structure conditioned
on latent variables. As a result, our proposed PrACTiS model is capable of effectively handling
multimodal input data, while significantly reducing computational complexity. The perceiver serves
as the driving force behind PrACTiS, enabling it to efficiently process a wide spectrum of data types.
The overview architecture of our proposed model is illustrated in Figure 1. Next, we discuss detailed
components of the PrACTiS model.

4.1 PERCEIVER-BASED ENCODING

Initially, each data point x⃗i undergoes embedding via the input embedding and positional encod-
ing processes. Subsequently, these embeddings are passed through the perceiver-based encoder.
Here, the encoder leverages a predefined set of learned latent vectors u⃗k for the cross-attention
mechanism cross attention(K, Q, V), where K is a set of keys, Q is a query, and V is a set of
values. Through the utilization of learned key and value-generating functions, key latent() and
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Figure 1: The overview architecture of PrACTiS. The pre-processor includes input embedding, and
positional encoding layers to capture temporal dependencies in the input data. The encoder uses the
cross-attention mechanisms to map the embedding to a lower-dimensional latent space. The decoder
constructs the joint distribution of missing data using the copula-based structure.

value latent(), the encoder derives latent vectors w⃗i, which effectively encapsulate the temporal
information through cross-attention with the set of observed vectors X⃗O as follows:

w⃗k = cross attention(key latent(X⃗O), u⃗k, value latent(X⃗O))

Following additional self-attention-based processing on the set of latent vectors, the perceiver-based
encoder proceeds to employ cross-attention with the latent vector set W⃗ , to generate tokens for each
data point. This operation involves using the learned key, query, and value-generating functions,
key encode(), query encode(), and value encode(), to derive token vectors z⃗i as follows:

z⃗i = cross attention(key encode(W⃗ ), query encode(x⃗i), value encode(W⃗ ))

Aligned with the perceiver architecture, the number of latent features K is intentionally maintained
at a considerably smaller scale compared to the total number of data points N . This strategic choice
serves to manage computational complexity, which scales at O(NK). The initial cross-attention
step in PrACTiS assumes a pivotal role by encoding a comprehensive global summary of the ob-
served data from the time series into a set of concise latent vectors. These latent vectors effectively
capture the essential information embedded within the entire dataset. Subsequently, PrACTiS gen-
erates tokens for each individual data point by efficiently querying relevant global information from
the previously obtained latent summary in the second cross-attention step. This process ensures that
each token encompasses vital contextual details drawn from the overall dataset, as necessitated.

4.2 MIDPOINT INFERENCE AND LOCAL ATTENTION

To enhance computational efficiency while maintaining the prediction performance, we propose the
midpoint inference mechanism with temporally local self-attention to effectively reduce computa-
tional overhead. Instead of relying on random permutations to establish the conditioning structure,
our method employs permutations that recursively infer midpoints within gaps in the observed data.
When dealing with a continuous sequence of missing data points for the same variable, we deter-
mine the depth of each data point based on the number of midpoint inferences required within that
sequence before considering the data point itself as a midpoint. Notably, observed data points are
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Figure 2: (a) Visualization of the midpoint inference mechanism: blue-filled points represent the
points earmarked for inference at a particular depth, while black points represent those already
observed or inferred at that depth and the white points are unobserved. (b) Comparison between the
attention mechanisms in TACTiS and PrACTiS, both utilizing a local window containing only the
nearest tokens: green-filled points indicate the currently sampled variable, while red points signify
the variables to which the sampled token directs its attention during the sampling process.

assigned shallower depths compared to data points that are yet to be observed. Consequently, we
sample a permutation γ that positions data points with shallower assigned depths before those with
deeper depths. Here, we determine midpoints by considering the number of data points between
the prior observation and the next observation, as visually depicted in Figure 2. This method is
well-suited for regularly or nearly-regularly sampled time series data. For each data token z⃗i, our
approach selects a set of conditioning tokens H⃗i. These conditioning tokens comprise both past and
future windows, consisting of the k closest tokens for each variable in the series that precede z⃗i
within the generated permutation γ. Figure 2(b) illustrates the proposed local-attention conditioning
mechanism in comparison with TACTiS’s global self-attention. Here, PrACTiS employs learned
key and value-generation functions, key decode() and value decode(), to derive distributional
parameters θγ(i) for each data point to be inferred, following the ordering imposed by γ as follows:

θi = self attention(key decode(H⃗i), z⃗i, value decode(H⃗i))

4.3 OUTPUT VARIANCE TEST AND DECODING

Our approach incorporates the copula-based decoder to construct the joint distribution of the miss-
ing data from the observed latent vectors. By incorporating midpoint inference and local attention
mechanisms, the decoder efficiently captures dependencies among neighboring imputed samples.
However, it’s worth noting that the system is vulnerable to errors, which can potentially impede the
training process. To mitigate the error propagation, we implement an output variance test for each
imputed data point. Specifically, for every imputation, we perform 10 predictions by sampling from
the obtained joint distribution of the missing data. We then compare the output variance obtained
from these predicted samples with a threshold, which is set to match the input data variance. If
the output variance exceeds four times the threshold, we flag this predicted sample for exclusion
in future imputations. In simpler terms, we mask out this predicted data point to prevent it from
influencing future imputation processes. With a fixed window size, the decoder’s complexity can
be described as O(nN), where n is the number of time series variables. In summary, integrating
the perceiver-based architecture with the tailored inference mechanisms significantly elevates the
performance of PrACTiS, resulting in notable improvements in both efficiency and scalability.

5 EXPERIMENTAL STUDY

We present comprehensive experiments to showcase the computational efficiency of PrACTiS. First,
we conduct memory consumption scaling experiments using synthetic random walk data to demon-
strate the memory efficiency of our proposed model. Next, we evaluate the predictive capabili-
ties of our model, comparing it against the state-of-the-art approaches, such as TACTiS (Drouin
et al., 2022), GPVar (Salinas et al., 2019), SSAE-LSTM (Zhu et al., 2021), and deep autore-
gressive AR (Kalliovirta et al., 2015). Our evaluation spans across three unimodal time series
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(a) Varying Prediction Length (b) Varying Conditioning Length

Figure 3: Comparison of memory consumption of PrACTiS, TACTiS, TACTiS with perceiver-based
encoder (TACTiS-PE), and TACTiS with midpoint imputation (TACTiS-MI) on a synthetic dataset
with (a) varying prediction length and (b) varying conditioning length.

datasets from the Monash Time Series Forecasting Repository (Godahewa et al., 2021), includ-
ing electricity, traffic, and fred-md, for short-term and long-term prediction tasks.
Moreover, we evaluate the multi-modality capabilities of our perceiver-based model in three mul-
timodal time series datasets from the UCI Machine Learning Repository (Dua & Graff, 2017), in-
cluding room occupation (Candanedo, 2016), interstate traffic (Hogue, 2019), and
air quality (Chen, 2019) datasets. The experimental results show the efficacy of our proposed
PrACTiS model over other approaches in prediction performance and memory utilization.

5.1 MEMORY CONSUMPTION SCALING ON SYNTHETIC DATASETS

In this experiment, we evaluate the computational costs associated with our proposed PrACTiS
model and the state-of-the-art TACTiS approach with respect to the quantity of observed and in-
ferred data. Here, we use the synthetic random walk data with a synchronously-measured time
series consisting of 10 variables, 10 observed time-steps, and 10 to-be-inferred time-steps. Addi-
tionally, we vary the number of observed and inferred time-steps to assess their impact. Our analysis
extends to comparing our PrACTiS model with a perceiver-based variant of TACTiS (TACTiS-PE).
It employs similar encoding and decoding mechanisms as TACTiS but leverages the perceiver-based
encoder. We also consider TACTiS with a midpoint inference mechanism (TACTiS-MI). This model
deduces data points using midpoint imputation and temporally local attention.

A comprehensive comparison of memory usage among these models when applied to a single input
series is illustrated in Figure 3. Firstly, it shows the quadratic relationship between the compu-
tational cost of TACTiS and the quantity of input data. Secondly, it underscores the remarkable
efficiency of the proposed PrACTiS in terms of memory utilization. Additionally, it showcases the
improvements achieved by TACTiS variants over the original model. TACTiS-PE, which utilizes
TACTiS’ decoder, operates quadratically when dealing with inferred variables, thereby maintaining
its quadratic scaling with respect to the number of predicted time-steps. Conversely, TACTiS-MI
employs TACTiS’ encoder, preserving its quadratic scaling with respect to the number of observed
time steps. Overall, these results underscore the success of PrACTiS and the proposed inference
mechanisms in efficiently mitigating the inherent quadratic scaling issue within TACTiS.

5.2 FORECASTING ON UNIMODAL DATASETS

In these experiments, we evaluate our proposed model’s computational cost and inference perfor-
mance across three real-world unimodal datasets. To begin, we employ the fred-md time series
dataset, consisting of 20 input variables, each comprising 24 observed samples, with the goal of pre-
dicting 24 time-steps into the future. Appendix C provides insights into the models and their training
procedures. Table 1 presents a comparative analysis of performance metrics for PrACTiS, TACTiS,
GPVar, and AR models. We evaluate these models based on negative log-likelihoods (NLL), root-
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Table 1: Comparison of memory usage and prediction performance between PrACTiS and other
approaches in unimodal time series datasets, such as fred-md, traffic, and electricity.

fred-md - 24 timesteps prediction
Approach Params Memory Batches/s NLL RMSE-CM CRPS
AR(24) 6K 3.7 MB 37.4 – 7.0±0.5E+2 1.10±0.05

GPVar 78K 1.39 GB 11.7 42.3±0.6 6.8±0.5E+2 0.86±0.06

TACTiS 91K 1.51 GB 12.3 42.3±0.4 6.1±0.4E+2 0.74±0.05

PrACTiS 122K 1.66 GB 16.6 34.2±0.3 6.0±0.4E+2 0.71±0.06

traffic - 48 timesteps prediction
Approach Params Memory Batches/s NLL RMSE-CM CRPS
AR(48) 20K 11.5 MB 10.31 – 0.053±0.005 0.431±0.004

GPVar 78K 4.67 GB 5.81 204.6±0.8 0.044±0.003 0.215±0.008

TACTiS 91K 5.52 GB 5.84 198.7±0.6 0.035±0.002 0.181±0.009

PrACTiS 122K 2.75 GB 5.95 188.7±0.6 0.028±0.002 0.162±0.006

electricity - 48 timesteps prediction
Approach Params Memory Batches/s NLL RMSE-CM CRPS
AR(48) 20K 11.6 MB 10.34 – 90±0.1 0.149±0.001

GPVar 78K 4.78 GB 5.76 185.6±0.5 62±0.1 0.060±0.001

TACTiS 91K 5.42 GB 5.81 182.3±0.6 49±0.1 0.060±0.001

PrACTiS 122K 2.73 GB 5.93 177.8±0.8 42±0.1 0.056±0.001

electricity - 672 timesteps prediction
Approach Params Memory Batches/s NLL RMSE-CM CRPS
AR(672) 270K 47.7 MB 1.74 – 159±0.8 0.290±0.02

GPVar 78K 4.81 GB 3.48 3.5±0.4E+3 147±0.5 0.198±0.005

TACTiS 91K 4.81 GB 3.65 2.8±0.2E+3 141±0.3 0.186±0.006

PrACTiS 122K 372 MB 18.3 185±0.9 98±0.1 0.133±0.001

mean-squared-errors of conditional expectations (RMSE-CM), and continuous ranked probability
scores (CRPS). In Figures 4, 5, and 6, we demonstrate example inferences generated by PrAC-
TiS, TACTiS, and AR models, respectively. Our proposed model outperforms GPVar and AR while
achieving competitive results with TACTiS in both RMSE-CM and CRPS metrics.

Next, we utilize traffic time series data with 20 input variables, each with 48 observed samples
to predict 48 time-steps ahead. The performance comparison between PrACTiS, TACTiS, GPVar,
AR is demonstrated in Table 1. We also present example inferences from PrACTiS, TACTiS, and
AR in Figures 7, 8, and 9 respectively. Here, our proposed model demonstrates a significant
performance advantage over TACTiS, GPVar, and AR, excelling in both RMSE-CM and CRPS
metrics. Notably, we achieve 20% improvement over TACTiS in terms of RMSE-CM. Furthermore,
the reported numbers of parameters and memory usage highlight the efficiency of PrACTiS, which
utilizes less than 50% of the memory compared to TACTiS and GPVar.

Finally, we evaluate PrACTiS in the context of short-term and long-term prediction tasks using
the electricity dataset. In the short-term prediction experiment, we utilize 20 variables, each
spanning 48 observed time-steps, to forecast 48 time-steps into the future. As shown in Table 1, our
proposed model significantly outperforms other approaches, boasting a 14% improvement in RMSE-
CM compared to TACTiS, all while utilizing just 50% of available memory. Figures 10, 11, and
12 illustrate the examples of predictions made by PrACTiS, TACTiS, and AR(48), respectively. For
the long-term prediction task, we work with 10 variables, each encompassing 672 observed time-
steps, to predict the subsequent 672 time-steps. This experiment provides valuable insights into
the capabilities of these models on a large-scale dataset. Visual representations of the predictions
from PrACTiS, TACTiS, and AR are shown in Figures 13, 14, and 15, respectively. In this
scenario, PrACTiS demonstrates a significant performance advantage over TACTiS, excelling in
both RMSE-CM and CRPS while utilizing only 10% of available memory. It’s noteworthy that
PrACTiS manages to capture the seasonal patterns in the data, albeit not as accurately as in the
short-term task. Conversely, TACTiS and other methods face inherent challenges when dealing with
extended time series. In particular, TACTiS struggles to model the underlying seasonal structures
within the data, resulting in less reliable performance when tasked with long-term predictions.
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Table 2: Comparison of memory usage and prediction performance between PrACTiS and other
approaches in multimodal time series datasets, such as room occupation, interstate traffic, air quality.

room occupation - 6 features attributions
Approach Params Memory RMSE-CM Use/No Use High/Low CO2

SSAE-LSTM 76K 5.22 GB 0.056±0.002 97.1% 96.5%
TACTiS 91K 6.38 GB 0.031±0.001 98.1% 97.7%
PrACTiS 122K 3.09 GB 0.018±0.001 98.9% 98.4%

interstate traffic - 8 features attributions
Approach Params Memory RMSE-CM Rain/No Rain High/Low Traffic
SSAE-LSTM 76K 5.68 GB 0.083±0.004 95.3% 94.6%
TACTiS 91K 7.13 GB 0.065±0.003 96.7% 96.1%
PrACTiS 122K 3.22 GB 0.027±0.003 98.2% 97.8%

air quality - 12 features attributions
Approach Params Memory RMSE-CM Rain/No Rain High/Low PM2.5
SSAE-LSTM 76K 6.17 GB 0.106±0.006 93.7% 93.4%
TACTiS 91K 8.83 GB 0.074±0.005 95.8% 94.9%
PrACTiS 122K 3.41 GB 0.022±0.004 98.5% 98.1%

5.3 FORECASTING ON MULTIMODAL DATASETS

In the multimodal experiments, we first evaluate the predictive capabilities of PrACTiS on the room
occupation dataset (Candanedo, 2016). This dataset is multimodal, consisting of 6 feature at-
tributes related to room conditions, such as temperature, humidity, and CO2 levels. A detailed
dataset description is available in Appendix D. Here, we conduct a comparative analysis with TAC-
TiS (Drouin et al., 2022) and SSAE-LSTM (Zhu et al., 2021). Both of these methods employ a
strategy of concatenating all feature attributes at each time-step for prediction. The performance
results, as presented in Table 2, consist of measures such as average RMSE-CM, room occupa-
tion detection accuracy, and high CO2 detection accuracy. The memory usage is also provided
to highlight the efficiency of PrACTiS when achieving 40% reduction in RMSE-CM compared to
TACTiS, while utilizing only half of the memory resources. We then extend our experimentation
to the interstate traffic dataset (Hogue, 2019). This dataset comprises 8 feature attributes
related to weather conditions (e.g., temperature, snow), holiday status, and traffic volume. Table 2 il-
lustrates that PrACTiS significantly outperforms other approaches while maintaining linear memory
usage. Notably, our approach achieves a 58% improvement in RMSE-CM compared to TACTiS and
consistently excels in prediction tasks related to detecting rain and high traffic. Finally, we evaluate
the performance of our approach on the air quality dataset (Chen, 2019), which encompasses
12 variables, each with 12 feature attributes, including 6 pollution-related features (e.g., PM2.5,
PM10) and 6 weather-related features (e.g., temperature, rain). Table 2 showcases the performance
comparison between PrACTiS and other approaches, with our model achieving a remarkable 70%
improvement in RMSE-CM compared to TACTiS while utilizing only 40% of the memory resources.

The results of our experiments illustrate that PrACTiS exhibits increasing efficiency as both the
prediction length and the number of feature attributes grow in scale. This efficiency gain becomes
particularly pronounced when compared to TACTiS and other existing approaches. In essence,
the perceiver-based architecture and the midpoint inference mechanism have proven to be highly
effective in addressing the challenges posed by complex multimodal datasets.

6 CONCLUSIONS

We introduce a new approach to time series forecasting, harnessing the power of cross-attention with
a copula-based structure. Our model excels at encoding the global description of partially-observed
time series into latent representations, effectively reducing computational complexity. It also in-
tegrates a temporally local attention mechanism through midpoint inference, which restricts token
attention to those with the utmost temporal relevance to their conditioning for precise conditional
modeling. Our experiments underscore the substantial reduction in computational costs when mod-
eling extensive time series data, while delivering competitive inference performance compared with
the state-of-the-art methods.
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REPRODUCIBILITY STATEMENT

We provide a comprehensive breakdown of the experimental setup details for the memory consump-
tion experiment in Appendix B, encompassing the dataset description and the model parameters.
Additional details on the unimodal data experiment are shown in Appendix C, including the detailed
unimodal datasets descriptions and the complete experimental setup (i.e., the training parameters
for the PrACTiS, TACTiS models). The examples of the predicted samples using these models are
illustrated in Appendix E. For the multimodal data experiment, we provide a thorough description
of multimodal datasets and the experimental training procedure in Appendix D.
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A ADVANTAGES AND DISADVANTAGES OF PRACTIS

Throughout extensive experiments on unimodal and multimodal datasets, we have observed that
PrACTiS effectively learns to model time series data and contributes to improved prediction perfor-
mance. Nevertheless, it is worth noting that in certain instances, the utilization of PrACTiS may re-
sult in a significant increase in memory consumption without proportional gains in performance. For
instance, for shorter time series, such as the fred-md dataset in the Monash Time Series Forecast-
ing Repository (Godahewa et al., 2021), PrACTiS may require increased time and computational re-
sources for training compared to the TACTiS approach. This heightened resource requirement stems
from the overhead associated with the cross-attention mechanism, which is designed to map input
embeddings into latent embeddings. In this experiment, PrACTiS obtains insignificant improve-
ment over TACTiS, but utilizes more memory resources. In contrast, when dealing with long and
complex time series, such as those present in the Monash Time Series Forecasting Repository (Go-
dahewa et al., 2021) (e.g., traffic, electricity datasets), and the UCI Machine Learning
Repository (Dua & Graff, 2017) (room occupation dataset (Candanedo, 2016), interstate
traffic (Hogue, 2019), and air quality (Chen, 2019) datasets), our experiments clearly
demonstrate the advantages of PrACTiS’s enhanced scalability, as exemplified by the outcomes of
our memory scaling experiments. These advancements highlight PrACTiS models’ ability to train
efficiently on hardware configurations with more modest computational resource allocations, ren-
dering them highly suitable for a wide range of time series modeling tasks. Furthermore, PrACTiS
exhibits the capacity to handle more complex tasks with a linear increase in memory usage, allowing
for greater flexibility in model design. In summary, PrACTiS simplifies the modeling of time series
data that would otherwise pose computational challenges when employing TACTiS or alternative
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methodologies. As a result, PrACTiS can adeptly learn to model time series data while consuming
only a fraction of the memory resources, all while achieving highly competitive performance levels.

Overall, PrACTiS shows potential applications in the generative models for handling missing data.
Its utilization of latent variables to deduce a global state and enhance computational efficiency bears
a striking resemblance to how other generative models leverage their latent variables for efficient
missing data inference. The fusion of this latent space with an attentional generative mechanism
empowers PrACTiS to overcome many of the inherent architectural challenges encountered when
applying existing generative models to missing data tasks. Attentional models, which replace com-
plex architectural details with information encoded within their input data, may prove to be ideally
suited for addressing missing data challenges.

B ADDITIONAL DETAILS FOR MEMORY CONSUMPTION EXPERIMENTS

To illustrate how the computational demands of PrACTiS and TACTiS models scale in relation to
the quantity of observed and inferred data, we investigate the memory usage of these two architec-
tures during training using synthetic random walk data. In this experimental setup, we initiate with
a synchronously-measured Random Walk time series comprising 10 variables, encompassing 10 ob-
served time-steps and an additional 10 time-steps to be inferred. We then systematically vary both
the number of observed time-steps and the number of inferred time-steps. The model parameters
employed for our memory scaling experiments with TACTiS and PrACTiS are detailed in Table 3.

Our analysis also extends to comparing our PrACTiS model with a perceiver-based variant of TAC-
TiS (TACTiS-PE). It employs similar encoding and decoding mechanisms as TACTiS but lever-
ages the perceiver-based encoder. We also consider TACTiS with a midpoint inference mechanism
(TACTiS-MI). This model deduces data points using midpoint imputation and temporally local at-
tention. As shown in Figure 3, both of these models always outperform the original TACTiS, demon-
strating the efficacy of the added mechanism.

C ADDITIONAL DETAILS FOR INFERENCE PERFORMANCE EXPERIMENTS

The TACTiS model parameters employed for these experiments were adopted from the configura-
tion used by Drouin et al. (2022). We also adopt these parameters as the foundation for establishing
a comparable PrACTiS model. Additionally, we employ deep AR(d) models, characterized as feed-
forward models that take the previous d time-steps as inputs to predict the current time-step. Below,
in Table 4, we provide a comprehensive listing of the model parameters utilized for our deep AR,
TACTiS, and PrACTiS models.

C.1 FURTHER DETAILS FOR SHORT FORECASTING

The datasets, namely fred-md, traffic, and electricity, all consist of 20 input variables.
Our model training process for these datasets follows a consistent protocol: we use batch sizes of
24 for the fred-md dataset and 48 for the traffic and electricity datasets. This training
routine extends over 100 epochs, each comprising 512 batches. For optimizing all our models, we
employ the RMSProp optimizer (Hinton et al., 2012) with an initial learning rate set at 1e− 3.

C.2 FURTHER DETAILS FOR LONG FORECASTING

Given the considerable computational demands associated with forecasting 672 time-steps in this
experiment, we made the strategic decision to reduce the batch size to 1 in order to facilitate the train-
ing of the TACTiS model. However, this adjustment presented challenges when applying PrACTiS’s
midpoint inference scheme, as its initial forecasts extended across hundreds of time steps, leading
to suboptimal performance. To overcome this limitation and achieve substantially improved results
in the realm of long-term forecasting, we refined the midpoint inference scheme. This refinement
involved introducing greater autoregressive behavior at the outset, with a carefully designed sam-
pling order that ensured each time-step remained within a user-defined maximum interval from the
nearest conditioning variable. In this experiment, we set a relatively aggressive maximum interval
of three time-steps, and the subsequent results reflect the impact of this adjustment.
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Table 3: Model Parameters for Memory Consumption Scaling Experiment.

(a) TACTiS

Input Encoding
Series Embedding Dim. 5
Input Encoder Layers 3
Positional Encoding
Dropout 0.0
Temporal Encoder
Attention Layers 3
Attention Heads 3
Attention Dim. 16
Attention Feedforward Dim. 16
Dropout 0.0
Copula Decoder
Min. u 0.01
Max. u 0.99
Attentional Copula
Attention Layers 3
Attention Heads 3
Attention Dim. 16
Feedforward Dim. 16
Feedforward Layers 3
Resolution 50
Marginal Flow
Feedforward Layers 2
Feedforward Dim. 8
Flow Layers 2
Flow Dim. 8

(b) PrACTiS

Input Encoding
Series Embedding Dim. 5
Input Encoder Layers 3
Positional Encoding
Dropout 0.0
Perceiver Encoder
Num. Latents 64
Latent Dim. 48
Attention Layers 3
Self-attention Heads 3
Cross-attention Heads 3
Dropout 0.0
Perceiver Decoder
Cross-attention Heads 3
Copula Decoder
Min. u 0.01
Max. u 0.99
Attentional Copula
Attention Layers 3
Attention Heads 3
Attention Dim. 16
Feedforward Dim. 16
Feedforward Layers 3
Resolution 50
Marginal Flow
Feedforward Layers 2
Feedforward Dim. 8
Flow Layers 2
Flow Dim. 8

It’s important to highlight that the autoregressive refinement made in the midpoint inference order
doe not alter the computational complexity of training a PrACTiS model. While this adjustment has
the potential to improve forecasting accuracy in specific situations, it’s worth acknowledging that it
can also pose challenges when predicting time-steps that fall between observed data points.

D ADDITIONAL DETAILS FOR MULTIMODAL EXPERIMENTS

The room occupation dataset (Candanedo, 2016) is a comprehensive multimodal dataset en-
compassing six distinct feature attributes that capture room conditions and room occupancy status
(i.e., the primary output). These attributes include temperature, relative humidity, humidity ratio,
light levels, and CO2 concentrations. In this experiment, our model is trained to forecast 48 time-
steps ahead, utilizing historical data spanning the preceding 48 time-steps. The evaluation of pre-
dictive performance is based on the average RMSE-CM across all six attributes. Furthermore, we
undertake two classification tasks: the first task involves predicting room occupancy, while the sec-
ond task focuses on detecting high CO2 levels (i.e., levels exceeding 700 ppm).

The interstate traffic dataset (Hogue, 2019) presents a collection of multimodal traffic
data samples, encompassing eight feature attributes that capture a wide range of information. These
attributes are associated with diverse aspects, including weather conditions, temporal factors, hol-
iday status, and traffic volume (i.e., primary output). Here, the weather-related attributes include
temperature, precipitation (rain and snow), cloud cover, and the categorization of weather condi-
tions. In this experimental setup, our model is rigorously trained to predict traffic conditions up
to 48 time-steps into the future, leveraging historical data spanning the preceding 48 time-steps. To
assess predictive performance, we utilize RMSE-CM calculated across all eight attributes. Addition-

14



Under review as a conference paper at ICLR 2024

Table 4: Model Parameters for Performance Experiments.

(a) Deep AR(d)

Num. Layers 3
Hidden Dim. d

(b) TACTiS

Input Encoding
Series Embedding Dim. 5
Input Encoder Layers 3
Positional Encoding
Dropout 0.01
Temporal Encoder
Attention Layers 2
Attention Heads 2
Attention Dim. 24
Attention Feedforward Dim. 24
Dropout 0.01
Copula Decoder
Min. u 0.05
Max. u 0.95
Attentional Copula
Attention Layers 1
Attention Heads 3
Attention Dim. 16
Feedforward Dim. 48
Feedforward Layers 1
Resolution 20
Marginal Flow
Feedforward Layers 1
Feedforward Dim. 48
Flow Layers 3
Flow Dim. 16

(c) PrACTiS

Input Encoding
Series Embedding Dim. 5
Input Encoder Layers 3
Positional Encoding
Dropout 0.01
Perceiver Encoder
Num. Latents 256
Latent Dim. 48
Attention Layers 2
Self-attention Heads 3
Cross-attention Heads 3
Dropout 0.01
Perceiver Decoder
Cross-attention Heads 3
Copula Decoder
Min. u 0.05
Max. u 0.95
Attentional Copula
Attention Layers 1
Attention Heads 3
Attention Dim. 16
Feedforward Dim. 48
Feedforward Layers 1
Resolution 20
Marginal Flow
Feedforward Layers 1
Feedforward Dim. 48
Flow Layers 3
Flow Dim. 16

ally, we investigate two classification tasks: firstly, identifying instances of rainy weather conditions,
and secondly, detecting periods of high traffic volume (i.e., volumes exceeding 2000 cars).

The air quality (Chen, 2019) dataset comprises pollution measures and weather-related met-
rics data. It encompasses 12 variables, each with 12 feature attributes, including 6 pollution-related
features and 6 weather-related features. The pollution-related features include PM2.5, PM10, SO2,
NO2, CO, O3 concentrations. The weather-related features consist of temperature, dew point tem-
perature, pressure, precipitation, wind direction and speed. Similarly, our model is trained to fore-
cast 48 time-steps into the future, leveraging historical data spanning the preceding 48 time-steps.
To assess the quality of our predictions, we employ the average RMSE-CM calculated across all at-
tributes. Moreover, we tackle two classification tasks: firstly, identifying instances of rainy weather
conditions, and secondly, detecting periods with elevated PM2.5 levels, specifically those exceeding
80 µg/m3. The detailed results of these experiment can be found in Table 2.

E FORCASTING SAMPLES

Here, we provide some predicted samples produced using the PrACTiS, TACTiS, and AR models.
First, Figure 4, 5, and 6 illustrate the predicted samples from the short-term task (i.e., 24 time-
steps, which corresponds to 2 years) in fred-md dataset using PrACTiS, TACTiS, and AR models,
respectively. Next, Figure 7, 8, and 9 demonstrate the short-term predicted samples (i.e., 48
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Figure 4: The predicted samples by the PrACTiS model for two-year forecasts, corresponding to 24
time-steps, conditioned on two-year historical data in fred-md dataset.

Figure 5: The predicted samples by the TACTiS model for two-year forecasts, corresponding to 24
time-steps, conditioned on two-year historical data in fred-md dataset.

time-step, corresponding to 2 days) in traffic dataset using PrACTiS, TACTiS, and AR models,
respectively. Similarly, the short-term predicted samples (i.e., 48 time-step, corresponding to 2 days)
in electricity dataset using PrACTiS, TACTiS, and AR models are shown in Figure 10, 11,
and 12, respectively. Lastly, Figure 13, 14, and 15 illustrate the last 4-day predicted samples from
the long-term task (i.e., 672 time-step, corresponding to 1 month) in electricity dataset using
PrACTiS, TACTiS, and AR models, respectively.
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Figure 6: The predicted samples by the AR(24) model for two-year forecasts, corresponding to 24
time-steps, conditioned on two-year historical data in fred-md dataset.

Figure 7: The predicted samples by the PrACTiS model for two-day forecasts, corresponding to 48
time-steps, conditioned on two-day historical data in traffic dataset.
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Figure 8: The predicted samples by the TACTiS model for two-day forecasts, corresponding to 48
time-steps, conditioned on two-day historical data in traffic dataset.

Figure 9: The predicted samples by the AR(48) model for two-day forecasts, corresponding to 48
time-steps, conditioned on two-day historical data in traffic dataset.
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Figure 10: The predicted samples by the PrACTiS model for two-day forecasts, corresponding to 48
time-steps, conditioned on two-day historical data in electricity dataset.

Figure 11: The predicted samples by the TACTiS model for two-day forecasts, corresponding to 48
time-steps, conditioned on two-day historical data in electricity dataset.
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Figure 12: The predicted samples by the AR(48) model for two-day forecasts, corresponding to 48
time-steps, conditioned on two-day historical data in electricity dataset.

Figure 13: The final four-day predicted samples by the PrACTiS model for one-month forecasts, cor-
responding to 672 time-steps, conditioned on one-month historical data in electricity dataset.
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Figure 14: The final four-day predicted samples by the TACTiS model for one-month forecasts, cor-
responding to 672 time-steps, conditioned on one-month historical data in electricity dataset.

Figure 15: The final four-day predicted samples by the AR(672) model for one-month forecasts, cor-
responding to 672 time-steps, conditioned on one-month historical data in electricity dataset.
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