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Abstract. Abdominal multi-organ and pan-tumor segmentation in CT
image plays a critically important role in preoperative planning, intra-
operative navigation, and postoperative assessment for surgical proce-
dures.In this study, we propose a semi-supervised learning approach us-
ing nnU-Net on the FLARE2023 competition dataset. Our methodol-
ogy involves training an initial model on fully annotated data, followed
by inference on partially annotated data to generate pseudo-labels, and
subsequently training a final model using these pseudo-labeled data. To
optimize computational efficiency, we adopt a parameter-efficient model
with a reduced number of parameters. By leveraging the availability of
both labeled and unlabeled data, our approach aims to enhance the per-
formance of the nnU-Net model while maintaining a reasonable compu-
tational cost. Ultimately, our trained small nnU-Net achieved significant
results on a validation set of 100 samples, with a dice coefficient of 0.8854
for multi-organ segmentation and 0.4186 for tumor segmentation. More-
over, the average inference time of the model was only 18 seconds.

Keywords: Semi-supervised learning · Image segmentation · Pseudo
label.

1 Introduction

The FLARE2023 challenge aims to promote the development of universal or-
gan and tumor segmentation in abdominal CT scans, which is an extension of
FLARE2021 and FLARE2022 challenge. The participants should develop seg-
mentation algorithm which enable segment 13 organs (liver, spleen, pancreas,
right kidney, left kidney, stomach, gallbladder, esophagus, aorta, inferior vena
cava, right adrenal gland, left adrenal gland, and duodenum) and one tumor
class with all kinds of cancer types (such as liver cancer, kidney cancer, stomach
cancer, pancreas cancer, colon cancer) in abdominal CT scans.

Abdominal organ and tumor segmentation hold significant clinical impor-
tance in several aspects. Firstly, accurate segmentation of abdominal organs
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allows for precise identification and analysis of specific structures, aiding in sur-
gical planning by providing detailed information about the spatial relationships
between organs. This assists surgeons in determining the optimal surgical ap-
proach and reducing the risk of complications during the procedure.Furthermore,
tumor segmentation plays a crucial role in the diagnosis, treatment planning, and
evaluation of cancer patients. By accurately delineating tumor boundaries, clin-
icians can assess tumor size, location, and response to therapy. This information
guides treatment decisions, such as determining the extent of surgical resection
and predicting prognosis.

However, multi-organ segmentation and pan-tumor segmentation face sev-
eral challenges. Firstly, variations in organ shape, size, and appearance across
different individuals and disease states make accurate segmentation challenging.
Secondly, the presence of overlapping structures and ambiguous boundaries be-
tween organs or tumors adds difficulty to the segmentation task. Finally, image
artifacts, noise, and limited image resolution can affect the quality of segmenta-
tion results.

The nnU-Net [6] segmentation framework has proven effective in addressing
the challenges mentioned due to its ability to analyze the fingerprint features of
training data. By understanding the unique characteristics of the data, nnU-Net
can adapt the network structure complexity and preprocessing strategy accord-
ingly. This adaptability enables the framework to handle variations in organ
shapes, sizes, and appearances, as well as cope with ambiguous boundaries and
image artifacts. As a result, nnU-Net can provide accurate and robust segmen-
tation results for multi-organ and pan-tumor segmentation tasks.

In this study, we propose a semi-supervised learning approach based on nnU-
Net to solve the abdominal multi-organ and pan-tumor segmentation problem
in CT images. Our methodology involves training an initial model on fully anno-
tated data, followed by inference on partially annotated data to generate pseudo-
labels, and subsequently training a final model using these pseudo-labeled data.
To optimize computational efficiency, we adopt a parameter-efficient model with
a reduced number of parameters. By leveraging the availability of both labeled
and unlabeled data, our approach aims to enhance the performance of the nnU-
Net model while maintaining a reasonable computational cost.

2 Method

The FLARE2023 challenge provide the largest abdomen CT dataset. The train-
ing set includes 4000 3D CT scans from 30+ medical centers. 2200 cases have
partial labels and 1800 cases are unlabeled.Despite the availability of a large
training dataset, a statistical analysis revealed severe class imbalance in the an-
notated dataset. Notably, among the 2,200 annotated examples, none included
annotations for all 14 classes. The graph below illustrates the distribution of an-
notations for each class in the incomplete dataset, indicating significantly fewer
annotations for classes 5-12 compared to others. To address this issue, we em-
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ployed a semi-supervised learning approach based on pseudo-labeling to itera-
tively train the segmentation model. The training process involved five stages:

1. In the first stage, we trained a segmentation model using 222 examples
annotated for classes 1-13.

2. In the second stage, we selected 597 examples annotated for classes 1-4,
13, and 14. Using the segmentation model from the first stage, we inferred the
unannotated classes and trained a 14-class segmentation model.

3. The third stage involved inferring tumor pseudo-labels using the model
from the second stage on the training data from the first stage. The combined
dataset of 819 annotated examples was then used to train the segmentation
model.

4. In the fourth stage, we utilized the model from the third stage to inference
the unannotated class labels for the remaining 1,200 examples, and mixed the
entire dataset of 2,200 examples for training.

5. Finally, in the fifth stage, we inferred the labels for the remaining 1,800
unannotated examples using the model obtained from the fourth stage. The
model was then further trained through the hybrid training process to obtain
the final segmentation model.

Fig. 1. Statistics on the annotated data for each class in the training set. The horizontal
axis represents the IDs of the 14 different classes, while the vertical axis represents the
number of annotated samples.

2.1 Preprocessing

All data preprocessing follows the original nnU-Net framework. Firstly, the raw
images are cropped to remove contiguous regions with pixel values of 0, although
such cases do not exist in real CT images. Secondly, the images are resampled
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according to the predetermined spacing, as shown in Table 1 and Table 2. The
input spacing for larger model is smaller than that for smaller model. Finally,
the data is normalized, with two threshold values of 0.05 and 0.95 obtained from
pixel value statistics used for truncation.

2.2 Proposed Method

As shown in Figure 2, our proposed method contains five training stages. Mean-
while, two different size 3D nnU-Net were applied to train different models.

Fig. 2. Pipeline of our proposed training strategy.

The big nnU-Net model is characterized by a wider and deeper network struc-
ture and a higher input resolution. On the contrary, the small nnU-Net model
has a narrower and shallower network structure, along with a lower input reso-
lution. The differences in their network structures can be observed from Table 1
and Table 2. This training strategy is inspired by the approach described in [5].
During the initial training phase with partially labeled data, we aim to obtain
more reliable pseudo-labels. As for the final network training, we balance the
inference speed, memory consumption, and segmentation accuracy by reducing
the complexity of the segmentation model.

Table 1. Big nnU-Net network structure.

Settings Value
channels in the first stage 32
convolution number per stage 3
downsampling times 5
input spacing (2.5, 0.8, 0.8)
test time augmentation yes
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Table 2. Small nnU-Net network structure.

Settings Value
channels in the first stage 16
convolution number per stage 2
downsampling times 4
input spacing (4.0, 1.2, 1.2)
test time augmentation no

Loss function: we use the summation between Dice loss and cross-entropy
loss because compound loss functions have been proven to be robust in various
medical image segmentation tasks [7].

Regarding the training process, as mentioned before, the entire dataset suf-
fers from severe class imbalance. Through statistical analysis of the annotated
data, we have proposed a hierarchical training strategy, progressing from easy
to difficult and gradually increasing the number of classes. This strategy is il-
lustrated in Figure 2. Firstly, we select dataset1, which consists of 222 examples
annotated with class labels ranging from 1 to 13. With this set of data, we train
a large nnU-Net, which named big nnU-Net 1. In the second step, we further
select dataset2, comprising 597 examples annotated with classes 1 to 4, 13, and
14 (a total of 6 classes). To supplement the missing 8 classes, we utilize the in-
ference results from big nnU-Net 1 and then train another large nnU-Net model,
called big nnU-Net 2. The third step involves using big nnU-Net 2 to infer the
missing tumor annotation in dataset1, then combined with dataset2 and train
big nnU-Net 3. For the fourth step, the remaining 1381 partially annotated data
samples form dataset3. We use big nnU-Net 3 to infer the missing labels, obtain
pseudo-labels, and mix them with the rest of the data to train big nnU-Net 4.

To fully utilize the remaining unlabeled data and strike a balance between
inference speed and memory consumption, in the final stage of training, we em-
ploy 2200 unlabeled examples, namely dataset4, to train the small nnU-Net. We
don’t used the pseudo labels generated by the FLARE21 winning algorithm [5]
and the best-accuracy-algorithm [14].

In order to improve inference speed and reduce resource consumption, on one
hand, we have reduced the model complexity and the size of input patches. On
the other hand, we have adopted the same sliding window strategy as described
in [5].

2.3 Post-processing

During the post-processing stage, we experimented with connected component
operations but found that they hardly improved the final results. As a result,
we ultimately decided not to employ any post-processing operations.
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3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [9][10], aim-
ing to aim to promote the development of foundation models in abdominal dis-
ease analysis. The segmentation targets cover 13 organs and various abdominal
lesions. The training dataset is curated from more than 30 medical centers under
the license permission, including TCIA [2], LiTS [1], MSD [13], KiTS [3,4], and
AbdomenCT-1K [11]. The training set includes 4000 abdomen CT scans where
2200 CT scans with partial labels and 1800 CT scans without labels. The vali-
dation and testing sets include 100 and 400 CT scans, respectively, which cover
various abdominal cancer types, such as liver cancer, kidney cancer, pancreas
cancer, colon cancer, gastric cancer, and so on. The organ annotation process
used ITK-SNAP [15], nnU-Net [6], and MedSAM [8].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 3. The training protocols of big nnU-Net and small nnU-Net
are listed in Table 4 and 5 respectively. We adopt data augmentation of additive
brightness, gamma, rotation, scaling, and elastic deformation on the fly during
training.

Table 3. Development environments and requirements.

System Ubuntu 20.04.3 LTS
CPU AMD EPYC 7643 48-Core Processor@1.50GHz
RAM 504GB
GPU (number and type) One NVIDIA A100 40G
CUDA version 11.6
Programming language Python 3.8
Deep learning framework torch 1.12

4 Results and discussion

4.1 Quantitative results on validation set

After multiple rounds of iterative training and hierarchical learning, the big
nnU-Net4 model has achieved good performance in segmentation. The average
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Table 4. Big nnU-Net training protocols.

Network initialization "He" normal initialization
Batch size 2
Patch size 48×224×224
Total epochs 1000
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule Poly learning rate policy
Training time 24 hours
Loss function Dice loss and cross entropy loss
Number of model parameters 82M1

Number of flops 776G2

CO2eq 34 Kg3

Table 5. Training protocols for the small nnU-Net.

Network initialization "He" normal initialization
Batch size 2
Patch size 32×128×192
Total epochs 1000
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule Poly learning rate policy
Training time 12 hours
Number of model parameters 5.4M4

Number of flops 136G5

CO2eq 11 Kg6
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Table 6. Quantitative evaluation results on the public 50 validation cases and 100
online validation cases.

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 97.27±0.48 98.88±1.44 97.23 98.91
Right Kidney 94.58±7.79 96.10±7.34 93.83 95.47
Spleen 96.38±1.07 98.35±2.35 96.61 98.80
Pancreas 85.50±5.44 97.00±3.56 84.37 96.22
Aorta 95.69±1.25 98.88±1.83 95.80 98.85
Inferior vena cava 93.97±1.85 96.70±2.64 93.77 96.16
Right adrenal gland 81.89±5.08 95.04±2.73 80.84 94.46
Left adrenal gland 78.82±6.00 93.18±4.88 78.35 92.43
Gallbladder 79.34±24.71 78.00±25.19 79.79 78.12
Esophagus 81.43±14.71 92.91±14.67 82.06 93.90
Stomach 91.93±3.14 96.97±4.42 92.46 97.48
Duodenum 81.55±7.19 94.83±5.32 82.47 95.38
Left kidney 93.37±9.80 94.18±12.15 93.41 94.93
Tumor 48.40±34.35 39.18±30.50 41.86 33.81
Average 85.72±17.82 90.73±19.46 85.17 90.35

Dice coefficient for organ segmentation is 0.895, and for tumor segmentation, it
is 0.447. The tumor segmentation metric ranked ninth on the validation leader-
board. Figure 3 presents a comparative analysis of the average Dice coefficient
achieved by three models during the training process on the online validation
dataset.

Fig. 3. Comparison of different models on validation mean Dice metric.
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As for the final small nnU-Net model, the average Dice coefficient for organ
segmentation on the validation set is 0.885, and for tumor segmentation, it is
0.419. Although there is a slight decrease in segmentation performance, the infer-
ence time cost and GPU memory consumption have been significantly reduced.
The quantitative evaluation results of the small nnU-Net on the validation set
are shown in Table 6.

4.2 Qualitative results on validation set

Despite the reduced complexity of the small nnU-Net model, the inclusion of
a large amount of unlabeled data in the training process allows the model to
maintain good segmentation performance on various organs. Figure4 illustrates
two well-segmented cases, demonstrating the model’s ability to capture organ
edges and details accurately. However, due to the decrease in resolution, the
segmentation performance of the model is more noticeably affected on smaller
anatomical structures, particularly tumors. Figure5 displays two cases where the
segmentation results are less satisfactory.

Fig. 4. Qualitative results of the small nnU-Net on two easy cases.

4.3 Segmentation efficiency results on validation set

We build our small nnU-Net with an efficient inference strategy as a docker
image for final submission. In Table7, we report the efficiency evaluation results
on the FLARE2023 organizer’s computer server with GPU NVIDIA QUADRO
RTX5000.

4.4 Results on final testing set

4.5 Limitation and future work

Although our final model has shown promising performance in terms of infer-
ence speed and GPU memory consumption, there is still considerable room for
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Fig. 5. Qualitative results of the small nnU-Net on two hard cases.

Table 7. Efficiency evaluation results of our submitted docker. All metrics reported
are the average values on 20 validation cases.

Time GPU Memory AUC GPU Time CPU Utilization AUC CPU Time
18.5s 2532MiB 18466 63.2% 357

improvement in its segmentation performance. In the future, we will explore
more semi-supervised learning techniques, particularly deep learning methods
based on auto-encoders. By extracting high-level semantic features from a large
amount of data and transferring the learned feature descriptors to downstream
segmentation tasks, we aim to enable the segmentation model to converge faster
and achieve higher accuracy.

5 Conclusion

In this paper, we propose a semi-supervised training strategy based on nnU-
Net. Specifically, we adopt a hierarchical learning approach to leverage both
partially labeled and unlabeled data. We progressively train the model from
easy to difficult samples. Additionally, to accelerate the model’s inference speed,
we reduce its complexity. We believe that our approach can provide valuable
insights and inspiration for other researchers in this field.
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Table 8. Checklist Table. Please fill out this checklist table in the answer column.

Requirements Answer
A meaningful title Yes
The number of authors (≤6) 3
Author affiliations, Email, and ORCID Yes
Corresponding author is marked Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts:
background, related work, and motivation Yes

A pipeline/network figure is provided 2
Pre-processing 3
Strategies to use the partial label 5
Strategies to use the unlabeled images. 5
Strategies to improve model inference 5
Post-processing 5
Dataset and evaluation metric section is presented 6
Environment setting table is provided 2
Training protocol table is provided 4,5
Ablation study 8
Visualized segmentaiton example is provided 9,10
Limitation and future work are presented Yes
Reference format is consistent. Yes


