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ABSTRACT

In the sequential decision making setting, an agent aims to achieve systematic
generalization over a large, possibly infinite, set of environments. Such environ-
ments are modeled as discrete Markov decision processes with both states and
actions represented through a feature vector. The underlying structure of the en-
vironments allows the transition dynamics to be factored into two components:
one that is environment-specific and another one that is shared. Consider a set of
environments that share the laws of motion as an illustrative example. In this set-
ting, the agent can take a finite amount of reward-free interactions from a subset of
these environments. The agent then must be able to approximately solve any plan-
ning task defined over any environment in the original set, relying on the above
interactions only. Can we design a provably efficient algorithm that achieves this
ambitious goal of systematic generalization? In this paper, we give a partially pos-
itive answer to this question. First, we provide the first tractable formulation of
systematic generalization by employing a causal viewpoint. Then, under specific
structural assumptions, we provide a simple learning algorithm that allows us to
guarantee any desired planning error up to an unavoidable sub-optimality term,
while showcasing a polynomial sample complexity.

1 INTRODUCTION

Whereas recent breakthroughs have established Reinforcement Learning (RL) Sutton & Barto
(2018) as a powerful tool to address a wide range of sequential decision making problems, the
curse of generalization Kirk et al. (2021) is still a main limitation of commonly used techniques.
RL algorithms deployed on a given task are usually effective in discovering the correlation between
an agent’s behavior and the resulting performance from large amounts of labeled samples. How-
ever, those algorithms are usually unable to discover basic cause-effect relations between the agent’s
behavior and the environment dynamics. Crucially, the aforementioned correlations are oftentimes
specific to the task, and they are unlikely to be of any use for addressing different tasks. Instead,
some universal causal relations generalize over the environments, and once learned can be exploited
for solving any task. Let us consider as an illustrative example an agent interacting with a large set of
physical environments. While each of these environments can have its specific dynamics, we expect
the basic laws of motion to hold across the environments, as they encode general causal relations.
Once they are learned, there is no need to discover them again from scratch when facing a new task,
or an unseen environment. Even if the dynamics over these relations can change, such as moving
underwater is different than moving in the air, or the gravity can change from planet to planet, the
underlying causal structure still holds. This knowledge alone often allows the agent to solve new
tasks in unseen environments by taking a few, or even zero, interactions.

We argue that we should pursue this kind of generalization in RL, which we call systematic general-
ization, where learning universal causal relations from interactions with a few environments allows
us to approximately solve any task in any other environment without further interactions. Although
this problem setting might seem overly ambitious or even far-fetched, in this document we provide
the first tractable formulation of systematic generalization (Section 3), thanks to a set of structural
assumptions that are motivated by a causal viewpoint. Especially, we consider a large, potentially
infinite, set of reward-free environments, or a universe, the agent can freely interact with. Crucially,
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Figure 1: High-level illustration of causal model-based approach to systematic generalization.

these environments share a common causal structure that explains a significant portion, but not all,
of their transition dynamics. Can we design a provably efficient algorithm that guarantees an arbi-
trarily small planning error for any possible task that can be defined over the set of environments, by
taking reward-free interactions with a generative model?

In this document, we provide a partially positive answer to this question by presenting a simple but
principled causal model-based approach (see Figure 1). This algorithm interacts with a finite sub-
set of the universe to learn the causal structure underlying the set of environments in the form of a
causal dependency graph G Wadhwa & Dong (2021). The causal transition model, which encodes
the dynamics that is common across the environment, is obtained by estimating the Bayesian net-
work PG over G Dasgupta (1997) from a mixture of the environments. Then, the learned model is
employed by a planning oracle to provide an approximately optimal policy for a latent environment
and a given reward function. We can show that this simple recipe allows achieving any desired plan-
ning error up to an unavoidable error term, which is inherent to the setting. Especially, we provide
an analysis of the sample complexity (Section 4) of the proposed approach, which is polynomial
in all the relevant quantities of the problem.

Finally, with this work we aim to connect several active research areas on reward-free RL Jin et al.
(2020), multi-task RL Brunskill & Li (2013), model-based RL Sutton & Barto (2018), factored
MDPs Rosenberg & Mansour (2021), causal RL Zhang et al. (2020), experimental design Ghassami
et al. (2018), independence testing Canonne et al. (2018), into a general framework where individual
progresses can be enhanced beyond the sum of their parts.

2 NOTATION

We will denote a set of integers {1, . . . , a} as [a], and the probability simplex over the space A as
∆A. For any A ∈ A, we denote with A[Z] the vector (Ai)i∈Z . Given two probability measures P
and Q over a discrete space A, their L1-distance is ‖P − Q‖1 =

∑
A∈A |P (A) − Q(A)|. We will

denote by UA the uniform distribution over A.

Graphs We define a graph G as a pair G := (V, E), where V is a set of nodes and E ⊆ N × N
is a set of edges between them. We call G a directed graph if all of its edges E are directed (i.e.,
ordered pairs of nodes). We also define the in-degree of a node to be its number of incoming edges:
degreein(A) = |{(B,A) : (B,A) ∈ E,∀B}|. G is said to be a Directed Acyclic Graph (DAG) if it
is a directed graph without cycles. We call G a bipartite graph if there exists a partition X ∪ Y = V
such that none of the nodes in X and Y are connected by an edge.

Causal Graphs and Bayesian Networks For a set X of random variables, we represent the
causal structure over X with a DAG GX = (X , E),1 which we call the causal graph of X . For
each pair of variables A,B ∈ X , a directed edge (A,B) ∈ GX denotes that B is conditionally
dependent on A. For every variable A ∈ X , we denote as Pa(A) the causal parents of A, i.e.,
the set of all the variables B ∈ X on which A is conditionally dependent, (B,A) ∈ GX . A
Bayesian network Dean & Kanazawa (1989) over the set X is defined as N := (GX , P ), where GX
specifies the structure of the network, i.e., the dependencies between the variables in X , and the
distribution P : X → ∆X specifies the conditional probabilities of the variables in X , such that
P (X ) =

∏
Xi∈X Pi(Xi|Pa(Xi)).

Markov Decision Processes We define a discrete episodic Markov Decision Process (MDP) Puter-
man (2014) asM := ((S, dS , n), (A, dA, n), P,H, r), where S is a set of |S| = S states andA is a
set of |A| = A actions, such that every s ∈ S can be represented through a dS-dimensional vector of

1We will omit the subscript X whenever clear from the context.
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discrete features taking value in [n], and a ∈ A through a dA-dimensional vector of discrete features
taking value in [n].2 P is a transition model such that P (s′|s, a) gives the conditional probability
distribution of the next state s′ having taken action a in state s, H is the horizon of an episode,
and r : S × A → [0, 1] is a deterministic reward function. A stochastic policy πh(a|s) denotes
the conditional probability of taking action a in state s at step h. The value function V πh : S → R
associated to π is defined as V πh (s) := Eπ

[∑H
h′=h r(sh′ , ah′)

∣∣ sh = s
]
. We will write V πM,r to

denote V π1 in the MDPM with reward function r.

3 PROBLEM FORMULATION

In our setting, a learning agent aims to master a large, potentially infinite, set U of environments
modeled as discrete MDPs without rewards,

U :=
{
Mi = ((S, dS , n), (A, dA, n), Pi, µ)

}∞
i=1

,

which we call a universe. The agent can draw a finite amount of experience by interacting with
the MDPs in U. From these interactions alone, the agent aims to acquire sufficient knowledge to
approximately solve any task that can be specified over the universe U. Specifically, a task is defined
as any pairing of an MDPM ∈ U and a reward function r, whereas solving it refers to providing
a slightly sub-optimal policy via planning, i.e., without taking additional interactions. We call this
problem systematic generalization, which we can formalize as follows.

Definition 1 (Systematic Generalization). For any latent MDP M ∈ U and any given reward
r : S × A → [0, 1], the systematic generalization problem requires the agent to provide a policy π,
such that V ∗M,r − V πM,r ≤ ε up to any desired ε > 0.

Since the set U is infinite, we clearly require additional structure to make the problem feasible.
On the one hand, the state space (S, dS , n), action space (A, dA, n), and initial state distribution
µ are shared across M ∈ U. The transition dynamics Pi is instead specific to each MDP Mi ∈
U. However, we assume the presence of a common causal structure that underlies the transition
dynamics of the universe, and relates the single transition models Pi.

3.1 THE CAUSAL STRUCTURE OF THE TRANSITION DYNAMICS

{

{
{

ds{
X

Y

causal edge e ∈ G environment specific edge e /∈ G

[nm]
[n]

dS + dA

Figure 2: Illustration of the causal transition
model PG .

To ease the notation, we denote the current
state-action features with a random vector X =
(Xi)i∈[dS+dA], and the next state features with
a random vector Y = (Yi)i∈[dS ]. For each en-
vironmentMi ∈ U, the conditional dependen-
cies between Y and X are represented through
a bipartite dependency graph Gi. Clearly, each
environment can display its own dependencies,
but we assume there is a set of dependencies
that represent general causal relationships be-
tween the features, and that appear in anyMi ∈
U. In particular, we call the intersection G :=
∩∞i=0Gi the causal structure of U, which is the
set of conditional dependencies that are com-
mon across the universe. In Figure 2, we show
an illustration of such a causal structure. We as-
sume the causal structure G is time-consistent,
i.e., G(h) = G(1) for any step h ∈ [H], and sparse, which means that the number of features X[z] on
which a feature Y [j] is dependent on is bounded from above.

Assumption 1 (Z-sparseness). Let Z ∈ N. The causal structure G is Z-sparse if
max
j∈[dS ]

degreein(Y [j]) ≤ Z.

2Note that any tabular MDP Puterman (2014) can be formulated under this alternative formalism by taking
n = 2, dS = S, and dA = A, so that the states and actions are specified through one-hot encoding.
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Given a causal structure G, and without losing generality,3 we can express each transition model Pi
as

Pi(Y |X) = PG(Y |X)Fi(Y |X), PG(Y |X) =

dS∏

j=1

Pj(Y [j]|X[Zj ]),

in which PG is the Bayesian network over the causal structure G, whereas Fi includes environment-
specific factors affecting the conditional probabilities,4 the Zj are the set of indices z such that
(X[z], Y [j]) ∈ G. Since it represents the conditional probabilities due to universal causal relations
in U, we call PG the causal transition model of U. We assume the causal transition model PG is also
time-consistent, i.e., P (h)

G = P
(1)
G ,∀h ∈ [H], and that it explains a significant part of the transition

dynamics ofMi ∈ U.
Assumption 2 (λ-sufficiency). Let λ ∈ [0, 1] be a constant. The causal transition model PG is
causally λ-sufficient if

sup
X
‖PG(·|X)− Pi(·|X)‖1 ≤ λ, ∀Pi ∈Mi ∈ U.

Notably, the parameter λ controls the amount of the transition dynamics that is due to the universal
causal relations G (λ = 0 means that PG is sufficient to explain the transition dynamics of anyMi ∈
U, whereas λ = 1 implies no shared structure between the transition dynamics of the Mi ∈ U).
In this paper, we argue that learning the causal transition model PG is a good target for systematic
generalization and we provide theoretical support for this claim in Section 4.

3.2 A CLASS OF TRAINING ENVIRONMENTS

Even if the universe U admits the structure that we presented in the last section, it is still an infinite
set. Instead, the agent can only interact with a finite subset of discrete MDPs

M := {Mi = ((S, dS , n), (A, dA, n), Pi, µ)}Mi=1 ⊂ U,

which we call a class of size M . Crucially, the causal structure G is a property of the full set U, and
if we aim to infer it from interactions with a finite class M, we have to assume that M is informative
on the universal causal relations of U.
Assumption 3 (Diversity). Let M ⊂ U be class of size M . We say M is causally diverse if G =
∩Mi=1Gi = ∩∞i=1Gi.

Analogously, if we aim to infer the causal transition model PG from interactions with the transition
models Pi of the single MDPsMi ∈M, we have to assume that M is balanced in terms of the con-
ditional probabilities displayed by its components, so that the factors that do not represent universal
causal relations even out while learning.
Assumption 4 (Evenness). Let M ⊂ U be class of size M . We say M is causally even if
Ei∼U[M]

[
Fi(Y [j]|X)

]
= 1,∀j ∈ [dS ].

Whereas in this paper we assume that M is diverse and even by design, we leave as future work
the interesting problem of selecting such a class from active interactions with U, which would add
to our problem formulation flavors of active learning and experimental design Hauser & Bühlmann
(2014); Kocaoglu et al. (2017); Ghassami et al. (2018).

4 SAMPLE COMPLEXITY OF SYSTEMATIC GENERALIZATION WITH A
GENERATIVE MODEL

We have access to a class M of discrete MDPs within a universe U, from which we can draw
interactions with a generative model P (X). We would like to solve the systematic generalization
problem as described in Definition 1. This problem requires to provide, for any combination of a
(latent) MDPM∈ U, and a given reward function r, a planning policy π̂ such that V ∗M,r−V π̂M,r ≤
ε. Especially, can we design an algorithm that guarantees this requirement with high probability

3Note that one can always take PG(Y |Z) = 1, ∀(X,Y ) to avoid shared structure on the transition dynamics.
4The parameters in Fi are numerical values such that Pi remains a well-defined probability measure.
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Algorithm 1 Causal Transition Model Estimation

Input: class of MDPs M, error ε, confidence δ
let K ′ = C ′

(
d2
SZ

2n log(2Md2
SdA/δ)

/
ε2
)

set the generative model P (X) = UX
for i = 1, . . . ,M do

let Pi(Y |X) be the transition model ofMi ∈M
Ĝi ← Causal Structure Estimation (Pi, P (X),K ′)

end for
let Ĝ = ∩Mi=1Ĝi
let K ′′ = C ′′

(
d3
Sn

3Z+1 log(4dSn
Z/δ)

/
ε2
)

let PM(Y |X) be the mixture 1
M

∑M
i=1 Pi(Y |X)

P̂Ĝ ← Bayesian Network Estimation (PM, Ĝ,K ′′)
Output: causal transition model P̂Ĝ

by taking a number of samples K that is polynomial in ε and the relevant parameters of M? Here
we give a partially positive answer to this question, by providing a simple but provably efficient
algorithm that guarantees systematic generalization over U up to an unavoidable sub-optimality
term ελ that we will later specify.

The algorithm implements a model-based approach into two separated components. The first, for
which we provide the pseudocode in Algorithm 1, is the procedure that actually interacts with the
class M to obtain a principled estimation P̂Ĝ of the causal transition model PG of U. The second, is
a planning oracle that takes as input a reward function r and the estimated causal transition model,
and returns an optimal policy π̂ operating on P̂Ĝ as an approximation of the transition model Pi of
the true MDPMi. We provide an upper bound to the sample complexity of the Algorithm 1.
Lemma 4.1. Let M = {Mi}Mi=1 be a class of M discrete MDPs, let δ ∈ (0, 1), and let ε > 0.
The Algorithm 1 returns a causal transition model P̂Ĝ such that Pr(‖P̂Ĝ − PG‖1 ≥ ε) ≤ δ with a
sample complexity

K = O

(
Md3

SZ
2n3Z+1 log

(4Md2
SdAn

Z

δ

) /
ε2
)
.

Having established the sample complexity of the causal transition model estimation, we can now
show how the learned model P̂Ĝ allows us to approximately solve, via a planning oracle, any task
defined by a combination of a latent MDPMi ∈ U and a given reward function r.5

Theorem 4.2. Let δ ∈ (0, 1) and ε > 0. For a latent discrete MDPM ∈ U, and a given reward
function r, a planning oracle operating on the causal transition model P̂Ĝ as an approximation of
M returns a policy π̂ such that

Pr
(
V ∗Mi,r − VMi,r ≥ ελ + ε

)
≤ δ,

where ελ = 2λH3dSn
2Z+1, and P̂Ĝ is obtained from Algorithm 1 with δ′ = δ and ε′ =

ε/2H3nZ+1.

Theorem 4.2 establish the sample complexity of systematic generalization through Lemma 4.1. For
the discrete MDP setting, we have that Õ(MH6d3

SZ
2n5Z+3), which reduces to Õ(MH6S4A2Z2)

in the tabular setting. Unfortunately, we are only able to obtain systematic generalization up to an
unavoidable sub-optimality term ελ. This error term is related to the λ-sufficiency of the causal
transition model (Assumption 2), and it accounts for the fact that PG cannot fully explain the transi-
tion dynamics of eachM ∈ U, even when it is estimated exactly. This is inherent to the ambitious
problem setting, and can be only overcome with additional interactions with the test MDPM.

5To provide this result in the discrete MDP setting, we have to further assume that the transition dynam-
ics Pi of the target MDP Mi admits factorization analogous to (3.1), such that we can write Pi(Y |X) =∏dS

j=1 Pi,j(Y [j]|X[Z
′
j ]), where the scopes Z

′
j are given by the environment-specific causal structure Gi, which

we assume to be 2Z-sparse (Assumption 1).
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A RELATED WORK

We revise the relevant literature and we discuss how it relates with our problem formulation and the
reported results.

Reward-Free Reinforcement Learning The reward-free RL formulation Jin et al. (2020) is
essentially akin to a particular case of our systematic generalization framework (Definition 1) in
which the set of MDPs is a singleton U = {M} instead of an infinite set of MDPs sharing a causal
structure. Several recent works have proposed provably efficient algorithms for the reward-free RL
formulation, both in tabular Jin et al. (2020); Kaufmann et al. (2021); Ménard et al. (2021); Zhang
et al. (2021) and continuous settings with structural assumptions Wang et al. (2020); Zanette et al.
(2020); Qiu et al. (2021). It is worth investigating how our sample complexity result compare to an
approach that performs reward-free exploration independently for each MDP over a large set U. Let
|U| = U , from (Jin et al., 2020, Theorem 4.1) we know that the agnostic reward-free approach would
require at least Ω(UHS2A/ε2) samples to obtain systematic generalization up to an ε threshold
over a set of tabular MDPs U. This compares favorably with our Õ(MH6S4A2/ε2) complexity
(see Corollary B.2) whenever U is small, but leveraging the inner structure of U becomes more and
more important as U grows to infinity, while M remains constant. However, our approach pays this
further generality with the additional error term ελ, which is unavoidable. Finally, it is an interesting
direction for future work to establish whether the additional factors in S,A,H w.r.t. reward-free RL
are also unavoidable.

Multi-Task Reinforcement Learning In the multi-task RL setting Lazaric & Ghavamzadeh
(2010); Lazaric & Restelli (2011); Brunskill & Li (2013); Liu et al. (2016), the agent interacts with
a set of MDPs (tasks) pursuing generalization from one task to the other, which is in a way similar
to the aim of systematic generalization. Although sample complexity results have been derived for
the multi-task setting (e.g., Brunskill & Li, 2013), we are not aware of previous works in this stream
that considered the problem of interacting with a set of reward-free MDPs, nor the presence of a
common causal structure underlying the set of MDPs.

Model-Based Reinforcement Learning The model-based RL Sutton & Barto (2018) methodol-
ogy prescribes learning an approximate model of transition dynamics in order to learn an optimal
policy. Theoretical works (e.g., Jaksch et al., 2010; Ayoub et al., 2020) generally concern with the
estimation of the approximate value functions obtained through the learned model, rather than the
estimation of the model itself. A notable exception is the work by Tarbouriech et al. (2020), which
targets point-wise high probability guarantees on the model estimation as we do in Lemma 4.1, B.1.
However, they address the model estimation of a single tabular MDPM, instead of the shared tran-
sition dynamics of an infinite set of MDPs U that we target in this paper. Other works (e.g., Zhang
et al., 2020; Tomar et al., 2021) have also addressed model-based RL from a causal perspective.
To the best of our knowledge, we are the first to prove a polynomial sample complexity for causal
model-based RL in systematic generalization.

Factored Markov Decision Processes The factored MDP formalism Kearns & Koller (1999)
allows encoding transition dynamics that are the product of multiple independent factors. This
formalism is closely related to how we define the causal transition model as a product of indepen-
dent factors in (3.1), which can be actually seen as a factored MDP. Several previous works have
considered learning problems over factored MDPs, either assuming full knowledge of the under-
lying factorization structure Delgado et al. (2011); Xu & Tewari (2020); Talebi et al. (2021); Tian
et al. (2020), or by estimating the structure from data Strehl et al. (2007); Vigorito & Barto (2009);
Chakraborty & Stone (2011); Osband & Van Roy (2014); Rosenberg & Mansour (2021). To the
best of our knowledge, none of the existing works have considered the factored MDP framework
in combination with a reward-free and multiple-environment setting and systematic generalization,
which bring unique challenges to the identification of the underlying factorization and the estimation
of the transition factors.

B ANCILLARY RESULTS

We provide some additional results w.r.t. the sample complexity analysis we reported in Section 4.
First, we reduce the reported sample complexity of systematic generalization for tabular domains.

9
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Then, we provide sample complexity results on the estimation of the causal structure (Section B.1)
and the Bayesian network (Section B.2) of an MDP, which can be of independent interest.

We can derive an analogous result to Lemma 4.1 for the tabular MDP setting, as stated by the
following lemma.
Lemma B.1. Let M = {Mi}Mi=1 be a class of M tabular MDPs. The sample complexity of
Lemma 4.1 reduces to

K = O

(
MS2Z222Z log

(
4MS2A2Z

δ

)

ε2

)
.

Then, the result of Theorem 4.2 reduces to the analogous for the tabular MDP setting without re-
quiring any additional factorization of the environment-specific transition model.
Corollary B.2. For a tabular MDPM ∈ M, the result of Theorem 4.2 holds with ελ = 2λSAH3,
ε′ = ε/2SAH3.

B.1 SAMPLE COMPLEXITY OF LEARNING THE CAUSAL STRUCTURE OF A DISCRETE MDP

As a byproduct of the main result in Theorem 4.2, we can provide a specific sample complexity result
for the problem of learning the causal structure G underlying a discrete MDPM with a generative
model. We believe that this problem can be of independent interest, mainly in consideration of
previous work on causal discovery of general stochastic processes (e.g., Wadhwa & Dong, 2021),
for which we refine known results to account for the structure of an MDP, which allows for a tighter
analysis of the sample complexity.

Instead of targeting the exact dependency graph G, which can include dependencies that are so weak
to be nearly impossible to detect with a finite number of samples, we only address the dependencies
above a given ε threshold.
Definition 2. We call Gε ⊆ G the ε-dependency subgraph of G if it holds, for each pair (A,B) ∈ G
distributed as PA,B

(A,B) ∈ Gε iff inf
Q∈{∆A×∆B}

‖PA,B −Q‖1 ≥ ε.

Before presenting the sample complexity result, we state the existence of a principled independence
testing procedure.
Lemma B.3 (Diakonikolas et al. (2021)). There exists an (ε, δ)-independence tester I(A,B) for
distributions PA,B on [n]× [n], which returns with probability at least 1− δ

• yes, if A,B are independent,
• no, if infQ∈{∆A×∆B} ‖PA,B −Q‖1 ≥ ε,

with a sample complexity O(n log(1/δ)/ε2).

We can now provide an upper bound to the number of samples required by a simple estimation
procedure to return an (ε, δ)-estimate Ĝ of the causal dependency graph G.
Theorem B.4. LetM be a discrete MDP with an underlying causal structure G, let δ ∈ (0, 1), and
let ε > 0. The Algorithm 2 returns a dependency graph Ĝ such that Pr(Ĝ 6= Gε) ≤ δ with a sample
complexity

K = O
(
n log(d2

SdA/δ)/ε
2
)
.

Finally, we can state an analogous result for a tabular MDP setting, by taking n = 2, dS = S, dA =
A.
Corollary B.5. Let M be a tabular MDP. The result of Theorem B.4 reduces to K =
O
(

log(S2A/δ)/ε2
)
.

B.2 SAMPLE COMPLEXITY OF LEARNING THE BAYESIAN NETWORK OF A DISCRETE MDP

We present as a standalone result an upper bound to the sample complexity of learning the param-
eters of a Bayesian network PG with a fixed structure G. Especially, we refine known results (e.g.,

10
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Algorithm 2 Causal Structure Estimation for an MDP

Input: sampling model P (Y |X), generative model P (X), batch parameter K
draw (xk, yk)Kk=1

iid∼ P (Y |X)P (X)

initialize Ĝ = ∅
for each pair of nodes Xz, Yj do

compute the independence test I(Xz, Yj)

if a dependency is found add (Xz, Yj) to Ĝ
end for
Output: causal dependency graph Ĝ

Algorithm 3 Bayesian Network Estimation for an MDP

Input: sampling model P (Y |X), dependency graph G, batch parameter K
let K ′ = dK/dSnZe
for j = 1, . . . , dS do

let Zj the scopes (X[Zj ], Y [j]) ⊆ G
initialize the counts N(X[Zj ], Y [j]) = 0

for each value x ∈ [n]|Zj | do
for k = 1, . . . ,K ′ do

draw y ∼ P (Y [j]|X[Zj ] = x)
increment N(X[Zj ] = x, Y [j] = y)

end for
end for
compute P̂j(Y [j]|X[Zj ]) = N(X[Zj ], Y [j])/K ′

end for
let P̂G(Y |X) =

∏dS
j=1 P̂j(Y [j]|X[Zj ])

Output: Bayesian network P̂G

Friedman & Yakhini, 1996; Dasgupta, 1997; Cheng et al., 2002; Abbeel et al., 2006; Canonne et al.,
2017) by considering the specific structure G of an MDP.

If the structure G is dense, the number of parameters of PG grows exponentially, making the esti-
mation problem mostly intractable. Thus, we consider a Z-sparse G (Assumption 1), as in previous
works Dasgupta (1997). Then, we can provide a polynomial sample complexity for the problem of
learning the Bayesian network PG of a discrete MDPM.
Theorem B.6. LetM be a discrete MDP, let G be its underlying causal structure, let δ ∈ (0, 1),
and let ε > 0. The Algorithm 3 returns a Bayesian network P̂G such that Pr(‖P̂G − PG‖1 ≥ ε) ≤ δ
with a sample complexity

K = O
(
d3
Sn

3Z+1 log(dSn
Z/δ)/ε2

)
.

Analogously, we can state the sample complexity of learning the fixed structure Bayesian network
of a tabular MDP.
Corollary B.7. Let M be a tabular MDP. The result of Theorem B.6 reduces to K =
O
(
S222Z log(S2Z/δ)/ε2

)
.

C PROOFS

Proposition 1. The causal structure G of U can be identified from purely observational data.

Proof. First, recall that with observational data alone, a causal graph can be identified up to its
Markov equivalence class Hauser & Bühlmann (2014). This means that its skeleton and v-structure
are properly identified, meanwhile determining the edge orientations requires interventional data in
the general case. Since in the considered causal graph G the edges orientations are determined a
priori (as they follow the direction of time), the causal graph can be entirely determined by using
only observational data.

11
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PROOFS OF SECTION 4: CAUSAL TRANSITION MODEL ESTIMATION

Before reporting the proof of the main result in Theorem 4.2, it is worth considering a set of lemmas
that will be instrumental to the main proof.

First, we provide an upper bound to the L1-norm between the Bayesian network PG over a given
structure G and the Bayesian network PGε over the structure Gε, which is the ε-dependency subgraph
of G as defined in Definition 2.
Lemma C.1. Let G a Z-sparse dependency graph, and let Gε its corresponding ε-dependence sub-
graph for a threshold ε > 0. The L1-norm between the Bayesian network PG over G and the
Bayesian network PGε over Gε can be upper bounded as

‖PG − PGε‖1 ≤ dSZε.

Proof. The proof is based on the fact that every edge (Xi, Yj) such that (Xi, Yj) ∈ G and (Xi, Yj) /∈
Gε corresponds to a weak conditional dependence (see Definition 2), which means that ‖PYj |Xi −
PYj‖1 ≤ ε.
We denote with Zj the scopes of the parents of the node Y [j] in G, i.e., PaG(Y [j]) = X[Zj ], and
with Zj,ε the scopes of the parents of the node Y [j] in Gε, i.e., PaGε(Y [j]) = X[Zj,ε]. As a direct
consequence of Definition 2, we have Zj,ε ⊆ Zj for any j ∈ dS , and we can write

PG(Y |X) =

dS∏

j=1

Pj(Y [j] |X[Zj ]) =

dS∏

j=1

Pj(Y [j] |X[Zj,ε], X[Zj\Zj,ε]), PGε(Y |X) =

dS∏

j=1

Pj(Y [j] |X[Zj,ε]).

Then, we let Zj \ Zj,ε = [I] overwriting the actual indices for the sake of clarity, and we derive

‖PG − PGε‖1 ≤
dS∑

j=1

∥∥∥Pj(Y [j] | X[Zj,ε],∪Ii=1X[i])− Pj(Y [j] | X[Zj,ε])
∥∥∥

1
(1)

≤
dS∑

j=1

I∑

i′=1

∥∥∥Pj(Y [j] | X[Zj,ε],∪Ii=i′X[i])− Pj(Y [j] | X[Zj,ε],∪Ii=i′+1X[i])
∥∥∥

1

(2)

≤
dS∑

j=1

I∑

i′=1

ε ≤ dSZε, (3)

in which we employed the property ‖µ−ν‖1 ≤ ‖
∏
i µi−

∏
i νi‖1 ≤

∑
i ‖µi−νi‖1 for the L1-norm

between product distributions µ =
∏
i µi, ν =

∏
i νi to write (1), we repeatedly applied the triangle

inequality ‖µ− ν‖1 ≤ ‖µ− ρ‖1 + ‖ρ− ν‖1 to get (2) from (1), we upper bounded each term of the
sum in (2) with ε thanks to Definition 2, and we finally employed the Z-sparseness Assumption 1 to
upper bound I with Z in (3).

Next, we provide a crucial sample complexity result for a provably efficient estimation of a Bayesian
network P̂Ĝ over an estimated ε-dependency subgraph Ĝ, which relies on both the causal structure
estimation result of Theorem B.4 and the Bayesian network estimation result of Theorem B.6.
Lemma C.2. LetM be a discrete MDP, let M = {M} be a singleton class, let δ ∈ (0, 1), and let
ε > 0. The Algorithm 1 returns a Bayesian network P̂Ĝ such that Pr(‖P̂Ĝ − PG‖1 ≥ ε) ≤ δ with a
sample complexity

K = O

(
d3
S Z

2 n3Z+1 log
( 4d2SdAn

Z

δ

)

ε2

)
.

Proof. We aim to obtain the number of samplesK = K ′+K ′′ for which Algorithm 1 is guaranteed
to return a Bayesian network estimate P̂Ĝ over a causal structure estimate Ĝ such that Pr(‖P̂Ĝ −
PG‖1 ≥ ε) ≤ δ in a setting with a singleton class of discrete MDPs. First, we derive the following
decomposition of the error

‖P̂Ĝ − PG‖1 ≤ ‖P̂Ĝ ± PĜ ± PGε′ − PG‖1 ≤ ‖P̂Ĝ − PĜ‖1 + ‖PĜ − PGε′‖1 + ‖PGε′ − PG‖1 (4)
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in which we employed the triangle inequality ‖µ− ν‖1 ≤ ‖µ−ρ‖1 + ‖ρ− ν‖1. Then, we can write

Pr
(
‖P̂Ĝ−PG‖1 ≥ ε

)
≤ Pr

(
‖P̂Ĝ − PĜ‖1 ≥

ε

3

)

︸ ︷︷ ︸
Bayesian network estimation (?)

+Pr
(
‖PĜ − PGε′‖1 ≥

ε

3

)

︸ ︷︷ ︸
causal structure estimation (•)

+Pr
(
‖PGε′ − PG‖1 ≥

ε

3

)

︸ ︷︷ ︸
Bayesian network subgraph (�)

through the decomposition (4) and a union bound to isolate the three independent sources of error
(?), (•), (�). To upper bound the latter term (�) with 0, we invoke Lemma C.1 to have dsZε′ ≤ ε

3 ,
which gives ε′ ≤ ε

3dSZ
. Then, we consider the middle term (•), for which we can write

Pr

(
‖PĜε′ − PGε′‖1 ≥

ε

3

)
≤ Pr

(
Ĝ 6= Gε

)
. (5)

We can now upper bound (•) ≤ δ/2 through (5) by invoking Theorem B.4 with threshold ε′ = ε
3dSZ

and confidence δ′ = δ
2 , which gives

K ′ = C ′
(
d

4/3
S Z4/3 n log1/3(2d2

SdA/δ)

ε4/3
+
d2
S Z

2 n log1/2(2d2
SdA/δ) + log(2d2

SdA/δ)

ε2

)
. (6)

Next, we can upper bound (?) ≤ δ/2 by invoking Theorem B.6 with threshold ε′ = ε
3 and confidence

δ′ = δ
2 , which gives

K ′′ = C ′′
(
d3
S n

3Z+1 log(4dSn
Z/δ)

ε2

)
. (7)

Finally, through the combination of (6) and (7), we can derive the sample complexity that guarantees
Pr(‖P̂Ĝ − PG‖1 ≥ ε) ≤ δ under the assumption ε4/3 � ε2, i.e.,

K = K ′ +K ′′ ≤
d3
S Z

2 n3Z+1 log
(

4d2SdAn
Z

δ

)

ε2
,

which concludes the proof.

Whereas Lemma C.2 is concerned with the sample complexity of learning the Bayesian network of
a singleton class, we can now extend the result to account for a class M composed of M discrete
MDPs.
Lemma 4.1. Let M = {Mi}Mi=1 be a class of M discrete MDPs, let δ ∈ (0, 1), and let ε > 0.
The Algorithm 1 returns a causal transition model P̂Ĝ such that Pr(‖P̂Ĝ − PG‖1 ≥ ε) ≤ δ with a
sample complexity

K = O

(
Md3

SZ
2n3Z+1 log

(4Md2
SdAn

Z

δ

) /
ε2
)
.

Proof. We aim to obtain the number of samples K = MK ′ + K ′′ for which Algorithm 1 is
guaranteed to return a Bayesian network estimate P̂Ĝ over a causal structure estimate Ĝ such that
Pr(‖P̂Ĝ − PG‖1 ≥ ε) ≤ δ in a setting with a class of M discrete MDPs. First, we can derive an
analogous decomposition as in (4), such that we have

Pr
(
‖P̂Ĝ−PG‖1 ≥ ε

)
≤ Pr

(
‖P̂Ĝ − PĜ‖1 ≥

ε

3

)

︸ ︷︷ ︸
Bayesian network estimation (?)

+Pr
(
‖PĜ − PGε′‖1 ≥

ε

3

)

︸ ︷︷ ︸
causal structure estimation (•)

+Pr
(
‖PGε′ − PG‖1 ≥

ε

3

)

︸ ︷︷ ︸
Bayesian network subgraph (�)

through a union bound. Crucially, the terms (?), (�) are unaffected by the class size, which leads to
K ′′ = (7) by upper bounding (?), and ε′ ≤ ε

3dSZ
by upper bounding (�), exactly as in the proof of

Lemma C.2. Instead, the number of samples K ′ has to guarantee that (•) = Pr(‖PĜ − PGε′‖1 ≥
ε/3) ≤ δ/2, where the causal structure Gε′ is now the intersection of the causal structures of the
single class componentsMi, i.e., Gε′ = ∩Mi=1Gε′,i. Especially, we can write

(•) = Pr
(
‖PĜ − PGε′‖1 ≥

ε

3

)
≤ Pr

(
Ĝ 6= Gε′

)
≤ Pr

( M⋃

i=1

Ĝi 6= Gε′,i
)
≤

M∑

i=0

Pr
(
Ĝi 6= Gε′,i

)
,

(8)
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through a union bound on the estimation of the single causal structures Ĝi. Then, we can upper
bound (•) ≤ δ/2 through (8) by invoking Theorem B.4 with threshold ε′ = ε

3dSZ
and confidence

δ′ = δ
2M , which gives

K ′ = C ′
(
d

4/3
S Z4/3 n log1/3(2Md2

SdA/δ)

ε4/3
+
d2
S Z

2 n log1/2(2Md2
SdA/δ) + log(2Md2

SdA/δ)

ε2

)
.

(9)
Finally, through the combination of (9) and (7), we can derive the sample complexity that guarantees
Pr(‖P̂Ĝ − PG‖1 ≥ ε) ≤ δ under the assumption ε4/3 � ε2, i.e.,

K = MK ′ +K ′′ ≤
Md3

S Z
2 n3Z+1 log

(
4Md2SdAn

Z

δ

)

ε2
,

which concludes the proof.

It is now straightforward to extend Lemma 4.1 for a class M composed of M tabular MDPs.

Lemma B.1. Let M = {Mi}Mi=1 be a class of M tabular MDPs. The sample complexity of
Lemma 4.1 reduces to

K = O

(
MS2Z222Z log

(
4MS2A2Z

δ

)

ε2

)
.

Proof. To obtain K = MK ′ + K ′′, we follows similar steps as in the proof of Lemma 4.1, to
have the usual decomposition of the event Pr(‖P̂Ĝ − PG‖1 ≥ ε) in the (?), (•), (�) terms. We can
deal with (�) as in Lemma 4.1 to get ε′ ≤ ε

3SZ . Then, we upper bound (•) ≤ δ/2 by invoking
Corollary B.5 (instead of Theorem B.4) with threshold ε′ = ε

3SZ and confidence δ′ = δ
2M , which

gives

K ′ = C ′
(
S4/3 Z4/3 log1/3(2MS2A/δ)

ε4/3
+
S2 Z2 log1/2(2MS2A/δ) + log(2MS2A/δ)

ε2

)
.

(10)
Similarly, we upper bound (?) ≤ δ/2 by invoking Corollary B.7 (instead of Theorem B.3) with
threshold ε′ = ε

3 and confidence δ′ = δ
2 , which gives

K ′′ =
18 S2 22Z log(4S2Z/δ)

ε2
. (11)

Finally, we combine 10 with 11 to obtain

K = MK ′ +K ′′ ≤ M S2 Z2 22Z log
(

4MS2A2Z

δ

)

ε2

PROOFS OF SECTION 4: PLANNING

For the sake of notational clarity within the following proofs we express

Theorem 4.2. Let δ ∈ (0, 1) and ε > 0. For a latent discrete MDPM ∈ U, and a given reward
function r, a planning oracle operating on the causal transition model P̂Ĝ as an approximation of
M returns a policy π̂ such that

Pr
(
V ∗Mi,r − VMi,r ≥ ελ + ε

)
≤ δ,

where ελ = 2λH3dSn
2Z+1, and P̂Ĝ is obtained from Algorithm 1 with δ′ = δ and ε′ =

ε/2H3nZ+1.
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Proof. Consider the MDPs with transition model P and P̂Ĝ . We refer to the respective optimal
policies as π∗ and π̂∗. Moreover, since the reward r is fixed, we remove it from the expressions
for the sake of clarity, and refer with V̂ to the value function of the MDP with transition model
P̂Ĝ . As done in (Jin et al., 2020, Theorem 3.5), we can write the following decomposition, where
V ∗ := V π

∗
.

Es1∼P
[
V ∗1 (s1)− V π̂1 (s1)

]
≤
∣∣∣Es1∼P

[
V ∗1 (s1)− V̂ π̂∗1 (s1)

]∣∣∣
︸ ︷︷ ︸

evaluation error

+Es1∼P
[
V̂ ∗1 (s1)− V̂ π̂∗1 (s1)

]

︸ ︷︷ ︸
≤ 0 by def.

+ Es1∼P
[
V̂ π̂
∗

1 (s1)− V̂ π̂1 (s1)
]

︸ ︷︷ ︸
optimization error

+
∣∣∣Es1∼P

[
V̂ π̂1 (s1)− V π̂1 (s1)

]∣∣∣
︸ ︷︷ ︸

evaluation error

≤ 2nZ+1H3ε′︸ ︷︷ ︸
ε

+ 2n2Z+1dSH
3λ︸ ︷︷ ︸

ελ

where in the last step we have set to 0 the approximation due to the planning oracle assumption, and
we have bounded the evaluation errors according to Lemma C.3. In order to get 2nZ+1H3ε′ = ε we
have to set ε′ = ε

2nZ+1H3 . Considering the sample complexity result in Lemma 4.1 the final sample
complexity will be:

K = O

(
M d3

S Z
2 n3Z+1 log

( 4Md2SdAn
Z

δ

)

(ε′)2

)
= O

(
4 M d3

S Z
2 n5Z+3 H6 log

( 4Md2SdAn
Z

δ

)

ε2

)

Lemma C.3. Under the preconditions of Theorem 4.2, with probability 1− δ, for any reward func-
tion r and policy π, we can bound the value function estimation error as follows.∣∣∣Es∼P

[
V̂ π1,r(s)− V π1,r(s)

]∣∣∣ ≤ nZ+1H3ε′︸ ︷︷ ︸
ε

+n2Z+1dSH
3λ︸ ︷︷ ︸

ελ

(12)

where V̂ is the value function of the MDP with transition model P̂Ĝ , ε′ is the approximation error
between P̂Ĝ and PG studied in Lemma 4.1, and λ stands for the λ-sufficiency parameter of PG .

Proof. The proof will be along the lines of that of Lemma 3.6 in (Jin et al., 2020). We first recall
(Dann et al., 2017, Lemma E.15), which we restate in Lemma C.5. In this prof we consider an
environment specific true MDPM with transition model P , and an mdp M̂ that has as transition
model the estimated causal transition model P̂Ĝ . In the following, the expectations will be w.r.t. P .
Moreover, since the reward r is fixed, we remove it from the expressions for the sake of clarity. We
can start deriving

∣∣∣Es∼P
[
V̂ π1 (s)− V π1 (s)

]∣∣∣ ≤
∣∣∣EX

[ H∑

h=1

(P̂Ĝ − P )V̂ πh+1(X)
]∣∣∣

≤ EX
[ H∑

h=1

∣∣∣(P̂Ĝ − P )V̂ πh+1(X)
∣∣∣
]

=

H∑

h=1

EX
∣∣∣(P̂Ĝ − P )V̂ πh+1(X)

∣∣∣ (13)

We now bound a single term within the sum above as follows:

EX
∣∣∣(P̂Ĝ − P )V̂ πh+1(X)

∣∣∣ = EX
∣∣∣(P̂Ĝ − PG + PG − P )V̂ πh+1(X)

∣∣∣

= EX
∣∣∣(P̂Ĝ − PG)V̂ πh+1(X) + (PG − P )V̂ πh+1(X)

∣∣∣

≤ EX

[∣∣∣(P̂Ĝ − PG)V̂ πh+1(X)
∣∣∣+
∣∣∣(PG − P )V̂ πh+1(X)

∣∣∣
]

= EX
∣∣∣(P̂Ĝ − PG)V̂ πh+1(X)

∣∣∣+ EX
∣∣∣(PG − P )V̂ πh+1(X)

∣∣∣ (14)
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We can now bound each term. Let us start considering the first term:

EX
∣∣∣(P̂Ĝ − PG)V̂ πh+1(X)

∣∣∣ = EX
∣∣∣P̂Ĝ V̂ πh+1(X)− PG V̂ πh+1(X)

∣∣∣

= EX
∣∣∣
∑

Y

P̂Ĝ(Y |X)V̂ πh+1(Y )−
∑

Y

PG(Y |X)V̂ πh+1(Y )
∣∣∣

= EX
∣∣∣
∑

Y

P̂Ĝ(Y |X)EX′∼π
[
r(X ′) + P̂Ĝ V̂

π
h+2(X ′)

]
(15)

−
∑

Y

PG(Y |X)EX′∼π
[
r(X ′) + PG V̂

π
h+2(X ′)

]∣∣∣

= EX
∣∣∣
∑

Y

(
P̂Ĝ(Y |X)− PG(Y |X)

)
EX′∼π

[
r(X ′)

]

+
∑

Y

P̂Ĝ(Y |X)EX′∼π
[
P̂Ĝ V̂

π
h+2(X ′)

]
−
∑

Y

PG(Y |X)EX′∼π
[
PG V̂

π
h+2(X ′)

]∣∣∣

≤ EX
∣∣∣
∑

Y

(
P̂Ĝ(Y |X)− PG(Y |X)

)∣∣∣ (16)

+ EX
∣∣∣
∑

Y

P̂Ĝ(Y |X)EX′∼π
[
P̂Ĝ V̂

π
h+2(X ′)

]
−
∑

Y

PG(Y |X)EX′∼π
[
PG V̂

π
h+2(X ′)

]∣∣∣

We can now bound the first term of (16):

EX
∣∣∣
∑

Y

(
P̂Ĝ(Y |X)− PG(Y |X)

)∣∣∣ = EX

∣∣∣∣∣
∑

Y

( dS∏

j=1

P̂j(Y [j]|X[Zj ])−
dS∏

j=1

Pj(Y [j]|X[Zj ])
)∣∣∣∣∣

≤ EX

[∑

Y

dS∑

j=1

∣∣∣P̂j(Y [j]|X[Zj ])− Pj(Y [j]|X[Zj ])
∣∣∣
]

=
∑

X

PπG (X)

[∑

Y

dS∑

j=1

∣∣∣P̂j(Y [j]|X[Zj ])− Pj(Y [j]|X[Zj ])
∣∣∣
]

=
∑

Y

dS∑

j=1

∑

X[Zj ]

PπG (X[Zj ])
∣∣∣P̂j(Y [j]|X[Zj ])− Pj(Y [j]|X[Zj ])

∣∣∣

(17)

Due to the uniform sampling and Z-sparseness assumptions, we have PG(X[Zj ]) = 1
nZ

, hence:

max
π†

Pπ
†

G (X[Zj ])

PG(X[Zj ])
≤ 1

PG(X[Zj ])
= nZ

Therefore:

Pπ
†

G (X[Zj ]) ≤ nZ · PG(X[Zj ])

Replacing this in (17) and marginalizing over Y \Y [j] we obtain:

EX
∣∣∣
∑

Y

(
P̂Ĝ(Y |X)− PG(Y |X)

)∣∣∣ = nZ
ds∑

j=1

∑

Y [j]

∑

X[Zj ]

∣∣∣P̂j(Y [j]|X[Zj ])− Pj(Y [j]|X[Zj ])
∣∣∣PG(X[Zj ])

≤ nZ
dS∑

j=1

∑

Y [j]

ε′

dS

∑

X[Zj ]

PG(X[Zj ])

= nZ+1ε′

16
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Where ε′

dS
is the approximation term of each component. By plugging this bound into (16) we get:

EX
∣∣∣(P̂Ĝ − PG)V̂ πh+1(X)

∣∣∣ ≤ nZ+1ε′ + EX
∣∣∣
∑

Y

P̂Ĝ(Y |X)EX′∼π
[
P̂Ĝ V̂

π
h+2(X ′)

]

−
∑

Y

PG(Y |X)EX′∼π
[
PG V̂

π
h+2(X ′)

]∣∣∣

≤
H∑

i=h+1

i · nZ+1ε′

≤ H2nZ+1ε′

where in the last step we have recursively bounded the right terms as in (24). By considering
2Z-sparseness, λ-sufficiency, and that the transition model P factorizes, we can apply the same
procedure to bound the second term of equation (14) as:

EX
∣∣∣(PG − P )V̂ πh+1(X)

∣∣∣ ≤ H2nZ+1dSλ

Therefore the initial expression in (13) becomes:

∣∣∣Es∼P
[
V̂ π1 (s)− V π1 (s)

]∣∣∣ ≤
H∑

h=1

EX
∣∣∣(P̂Ĝ − P )V̂ πh+1(X)

∣∣∣ (18)

≤
H∑

h=1

[nZ+1H2ε′ + n2Z+1dSH
2λ] (19)

≤ nZ+1H3ε′︸ ︷︷ ︸
ε

+n2Z+1dSH
3λ︸ ︷︷ ︸

ελ

(20)

Corollary B.2. For a tabular MDPM ∈ M, the result of Theorem 4.2 holds with ελ = 2λSAH3,
ε′ = ε/2SAH3.

Proof. Consider the MDPs with transition model P and P̂Ĝ . We refer to the respective optimal
policies as π∗ and π̂∗. Moreover, since the reward r is fixed, we remove it from the expressions
for the sake of clarity, and refer with V̂ to the value function of the MDP with transition model
P̂Ĝ . As done in (Jin et al., 2020, Theorem 3.5), we can write the following decomposition, where
V ∗ := V π

∗
.

Es1∼P
[
V ∗1 (s1)− V π̂1 (s1)

]
≤
∣∣∣Es1∼P

[
V ∗1 (s1)− V̂ π̂∗1 (s1)

]∣∣∣
︸ ︷︷ ︸

evaluation error

+Es1∼P
[
V̂ ∗1 (s1)− V̂ π̂∗1 (s1)

]

︸ ︷︷ ︸
≤ 0 by def.

+ Es1∼P
[
V̂ π̂
∗

1 (s1)− V̂ π̂1 (s1)
]

︸ ︷︷ ︸
optimization error

+
∣∣∣Es1∼P

[
V̂ π̂1 (s1)− V π̂1

︸ ︷︷ ︸
evaluation error

(s1)
]∣∣∣

≤ 2SAH3ε′︸ ︷︷ ︸
ε

+ 2SAH3λ︸ ︷︷ ︸
ελ

where in the last step we have set to 0 the approximation due to the planning oracle assumption, and
we have bounded the evaluation errors according to Lemma C.4. In order to get 2SAH3ε′ = ε we
have to set ε′ = ε

2SAH3 . Considering the sample complexity result in Lemma B.1 the final sample
complexity will be:

K = O

(
M S2 Z2 22Z log

(
4MS2A2Z

δ

)

(ε′)2

)
= O

(
4M S4 A2 H6 Z2 22Z log

(
4MS2A2Z

δ

)

ε2

)

17
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Lemma C.4. Under the preconditions of Corollary B.2, with probability 1 − δ, for any reward
function r and policy π, we can bound the value function estimation error as follows.∣∣∣Es∼P

[
V̂ π1,r(s)− V π1,r(s)

]∣∣∣ ≤ SAH3ε′︸ ︷︷ ︸
ε

+SAH3λ︸ ︷︷ ︸
ελ

(21)

where V̂ is the value function of the MDP with transition model P̂Ĝ , ε′ is the approximation error
between P̂Ĝ and PG studied in Lemma 4.1, and λ stands for the λ-sufficiency parameter of PG .

Proof. The proof will be along the lines of that of Lemma 3.6 in (Jin et al., 2020). We first recall
(Dann et al., 2017, Lemma E.15), which we restate in Lemma C.5. In this prof we consider an
environment specific true MDPM with transition model P , and an mdp M̂ that has as transition
model the estimated causal transition model P̂Ĝ . In the following, the expectations will be w.r.t. P .
Moreover, since the reward r is fixed, we remove it from the expressions for the sake of clarity. We
can start deriving

∣∣∣Es∼P
[
V̂ π1 (s)− V π1 (s)

]∣∣∣ ≤
∣∣∣Eπ

[ H∑

h=1

(P̂Ĝ − P )V̂ πh+1(sh, ah)
]∣∣∣

≤ Eπ
[ H∑

h=1

∣∣∣(P̂Ĝ − P )V̂ πh+1(sh, ah)
∣∣∣
]

=

H∑

h=1

Eπ
∣∣∣(P̂Ĝ − P )V̂ πh+1(sh, ah)

∣∣∣

We now bound a single term within the sum above as follows:

Eπ
∣∣∣(P̂Ĝ − P )V̂ πh+1(sh, ah)

∣∣∣ ≤
∑

s,a

∣∣∣(P̂Ĝ − P )V̂ π(s, a)
∣∣∣Pπ(s, a)

=
∑

s,a

∣∣∣(P̂Ĝ − P )V̂ π(s, a)
∣∣∣Pπ(s)π(a|s)

≤ max
π′

∑

s,a

∣∣∣(P̂Ĝ − P )V̂ π(s, a)
∣∣∣Pπ(s)π′(a|s)

= max
ν:S→A

∑

s,a

∣∣∣(P̂Ĝ − P )V̂ π(s, a)
∣∣∣Pπ(s)1{a = ν(s)}

where in the last step we have used the fact that there must exist an optimal deterministic policy.
Due to the uniform sampling assumption, we have P (s, a) = 1

SA , hence:

max
π†

Pπ
†
(s, a)

P (s, a)
≤ 1

P (s, a)
= SA

Therefore:
Pπ†(s, a) ≤ SA · P (s, a)

Moreover, notice that, since π′ is deterministic we have Pπ(s) = Pπ
′
(s) = Pπ

′
(s, a) ≤ SA ·

P (s, a). Replacing it in the expression above we get

Eπ
∣∣∣(P̂Ĝ − P )V̂ πh+1(sh, ah)

∣∣∣ ≤ SA ·
∑

s,a

∣∣∣(P̂Ĝ − P )V̂ πh+1(s, a)
∣∣∣P (s)1{a = ν(s)}

≤ SA ·
∣∣∣(P̂Ĝ − P )V̂ πh+1(s, a)

∣∣∣

≤ SA ·
∣∣∣(P̂Ĝ − PG)V̂ πh+1(s, a)

∣∣∣+ SA ·
∣∣∣(PG − P )V̂ πh+1(s, a)

∣∣∣ (22)

≤ SA ·
H∑

i=h+1

i · ε′ + SA ·
H∑

i=h+1

i · λ

≤ SAH2ε′ + SAH2λ (23)
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where ε′ is the approximation error between P̂Ĝ andPG studied in Lemma 4.1, and in the penultimate
step we have used the following derivation:
∣∣∣(P̂Ĝ − PG)V̂ πh+1(s, a)

∣∣∣ =
∣∣∣P̂Ĝ V̂ πh+1(s, a)− PG V̂ πh+1(s, a)

∣∣∣ (24)

=
∣∣∣
∑

s′

P̂Ĝ(s′|s, a)V̂ πh+1(s′)−
∑

s′

PG(s′|s, a)V̂ πh+1(s′)
∣∣∣

=
∣∣∣
∑

s′

P̂Ĝ(s′|s, a)Ea′∼π
[
r(s′, a′) + P̂Ĝ V̂

π
h+2(s′, a′)

]
(25)

−
∑

s′

PG(s′|s, a)Ea′∼π
[
r(s′, a′) + PG V̂

π
h+2(s′, a′)

]∣∣∣

=
∣∣∣
∑

s′

(
P̂Ĝ(s′|s, a)− PG(s′|s, a)

)
Ea′∼π

[
r(s′, a′)

]

+
∑

s′

P̂Ĝ(s′|s, a)Ea′∼π
[
P̂Ĝ V̂

π
h+2(s′, a′)

]
−
∑

s′

PG(s′|s, a)Ea′∼π
[
PG V̂

π
h+2(s′, a′)

]∣∣∣

≤ ε′ +
∣∣∣
∑

s′

P̂Ĝ(s′|s, a)Ea′∼π
[
P̂Ĝ V̂

π
h+2(s′, a′)

]
−
∑

s′

PG(s′|s, a)Ea′∼π
[
PG V̂

π
h+2(s′, a′)

]∣∣∣

= ε′ +
∣∣∣
∑

s′

P̂Ĝ(s′|s, a)Ea′∼π
[∑

s′′

P̂Ĝ(s′′|s′, a′)Ea′′∼π
[
r(s′′, a′′) + P̂Ĝ V̂

π
h+3(s′′, a′′)

]]

−
∑

s′

PG(s′|s, a)Ea′∼π
[∑

s′′

PG(s′′|s′, a′)Ea′′∼π
[
r(s′′, a′′) + PG V̂

π
h+3(s′′, a′′)

]]∣∣∣

≤ ε′ +
∑

s′,s′′,a′

∣∣∣P̂Ĝ(s′|s, a)P̂Ĝ(s′′|s′, a′)− PG(s′|s, a)PG(s′′|s′, a′)
∣∣∣
1

+ . . .

≤ ε′ +
∑

s′,s′′,a′

[∣∣∣P̂Ĝ(s′|s, a)− PG(s′|s, a)
∣∣∣
1

+
∣∣∣P̂Ĝ(s′′|s′, a′)− PG(s′′|s′, a′)

∣∣∣
1

]
+ . . .

≤ ε′ + 2ε′ + . . .

Hence, due to this recursive unrolling, we have:

∣∣∣(P̂Ĝ − PG)V̂ πh+1(s, a)
∣∣∣ ≤

H∑

i=h+1

iε′ ≤ H2ε

Notice that the same argument holds also for the second term of (22), replacing ε′ with λ.

By plugging the result in equation (23) into the initial expression we get:

∣∣∣Es∼P
[
V̂ π1 (s)− V π1 (s)

]∣∣∣ ≤
H∑

h=1

Eπ
∣∣∣(P̂Ĝ − P )V̂ πh+1(sh, ah)

∣∣∣

≤
H∑

h=1

SAH2ε′ + SAH2λ

= SAH3ε′ + SAH3λ

In the following we restate (Dann et al., 2017, Lemma E.15) for the case of stationary transition
model.

Lemma C.5. For any two MDPsM′ andM′′ with rewards r′ and r′′ and transition models P ′ and
P ′′, the difference in value functions V ′, V ′′ w.r.t. the same policy π can be written as:

V ′h(s)− V ′′h (s) = EM′′,π
[ H∑

i=h

[r′(si, ai)− r′′(si, ai) + (P ′ − P ′′)V ′i+1(si, ai)] | sh = s
]

(26)
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PROOFS OF SECTION B.1

We provide the proof of the sample complexity result for learning the causal structure of a discrete
MDP with a generative model.

Theorem B.4. LetM be a discrete MDP with an underlying causal structure G, let δ ∈ (0, 1), and
let ε > 0. The Algorithm 2 returns a dependency graph Ĝ such that Pr(Ĝ 6= Gε) ≤ δ with a sample
complexity

K = O
(
n log(d2

SdA/δ)/ε
2
)
.

Proof. We aim to obtain the number of samples K for which Algorithm 2 is guaranteed to return
a causal structure estimate Ĝ such that Pr(Ĝ 6= Gε) ≤ δ in a discrete MDP setting. First, we can
upper bound the probability of the bad event Pr(Ĝ 6= Gε) in terms of the probability of a failure in
the independence testing procedure I(Xz, Yj) for a single pair of nodes Xz ∈ Gε, Yz ∈ Gε, i.e.,

Pr(Ĝ 6= Gε) ≤ Pr
( dS+dA⋃

z=1

dS⋃

j=1

test I(Xz, Yj) fails
)
≤
dS+dA∑

z=1

dS∑

j=1

Pr

(
test I(Xz, Yj) fails

)
,

(27)
where we applied an union bound to obtain the last inequality. Now we can look at the probability
of a single independence test failure. Especially, for a provably efficient independence test (the
existence of such a test is stated by Lemma B.3, whereas the Algorithm 2 in Diakonikolas et al.
(2021) reports an actual testing procedure), we have Pr(test I(Xz, Yj) fails) ≤ δ′, for any choice of
δ′ ∈ (0, 1), ε′ > 0, with a number of samples

K ′ = C

(
n log1/3(1/δ′)

(ε′)4/3
+
n log1/2(1/δ′) + log(1/δ′)

(ε′)2

)
, (28)

where C is a sufficiently large universal constant (Diakonikolas et al., 2021, Theorem 1.3). Finally,
by letting ε′ = ε, δ′ = δ

d2SdA
and combining (27) with (28), we obtain Pr(Ĝ 6= Gε) with a sample

complexity

K = O

(
n log(d2

SdA/δ)

ε2

)
,

under the assumption ε2 � ε4/3, which concludes the proof.

The proof of the analogous sample complexity result for a tabular MDP setting (Corollary B.5) is a
direct consequence of Theorem B.4 by letting n = 2, dS = S, dA = A.

PROOFS OF SECTION B.2

We first report a useful concentration inequality for the L1-norm between the empirical distribution
computed over K samples and the true distribution (Weissman et al., 2003, Theorem 2.1).

Lemma C.6 (Weissman et al. (2003)). Let X1, . . . , XK be i.i.d. random variables over [n] having
probabilities Pr(Xk = i) = Pi, and let P̂K(i) = 1

K

∑K
k=1 1(Xk = i). Then, for every threshold

ε > 0, it holds

Pr

(
‖P̂K − P‖1 ≥ ε

)
≤ 2 exp(−Kε2/2n).

We can now provide the proof of the sample complexity result for learning the Bayesian network of
a discrete MDP with a given causal structure.

Theorem B.6. LetM be a discrete MDP, let G be its underlying causal structure, let δ ∈ (0, 1),
and let ε > 0. The Algorithm 3 returns a Bayesian network P̂G such that Pr(‖P̂G − PG‖1 ≥ ε) ≤ δ
with a sample complexity

K = O
(
d3
Sn

3Z+1 log(dSn
Z/δ)/ε2

)
.
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Proof. We aim to obtain the number of samples K for which Algorithm 3 is guaranteed to return a
Bayesian network estimate P̂G such that Pr(‖P̂G −PG‖1 ≥ ε) ≤ δ in a discrete MDP setting. First,
we note that

Pr
(
‖P̂G − PG‖1 ≥ ε

)
≤ Pr

( dS∑

j=1

‖P̂j − Pj‖1 ≥ ε
)

(29)

≤ Pr
(

1

dS

dS∑

j=1

‖P̂j − Pj‖1 ≥
ε

dS

)
(30)

≤ Pr
( dS⋃

j=1

‖P̂j − Pj‖1 ≥
ε

dS

)
(31)

≤
dS∑

j=1

Pr

(
‖P̂j − Pj‖1 ≥

ε

dS

)
, (32)

in which we employed the property ‖µ−ν‖1 ≤ ‖
∏
i µi−

∏
i νi‖1 ≤

∑
i ‖µi−νi‖1 for the L1-norm

between product distributions µ =
∏
i µi, ν =

∏
i νi to write (29), and we applied a union bound to

derive (32) from (31). Similarly, we can write

Pr
(
‖P̂j − Pj‖1 ≥

ε

dS

)
≤ Pr

( ⋃

x∈[n]|Zj |

‖P̂j(·|x)− Pj(·|x)‖1 ≥
ε

dSn|Zj |

)
(33)

≤
∑

x∈[n]|Zj |

Pr

(
‖P̂j(·|x)− Pj(·|x)‖1 ≥

ε

dSn|Zj |

)
(34)

≤
∑

x∈[n]|Zj |

Pr

(
‖P̂j(·|x)− Pj(·|x)‖1 ≥

ε

dSnZ

)
(35)

by applying a union bound to derive (34) from (33), and by employing Assumption 1 to bound |Zj |
with Z in (35). We can now invoke Lemma C.6 to obtain the sample complexity K ′ that guarantees
Pr(‖P̂j(·|x)− Pj(·|x)‖1 ≥ ε′) ≤ δ′, i.e.,

K ′ =
2n log(2/δ′)

(ε′)2
=

2 d2
S n

2Z+1 log(2dSn
Z/δ)

ε2
,

where we let ε′ = ε
dSnZ

, δ′ = δ
dSnZ

. Finally, by summing K ′ for any x ∈ [nm]|Zj | and any
j ∈ [dS ], we obtain

K =
∑

j∈[dS ]

∑

x∈[n]|Zj |

K ′ ≤ 2 d3
S n

3Z+1 log(2dSn
Z/δ)

ε2
,

which proves the theorem.

To prove the analogous sample complexity result for a tabular MDP we can exploit a slightly tighter
concentration on the KL divergence between the empirical distribution and the true distribution
in the case of binary variables (Dembo & Zeitouni, 2009, Theorem 2.2.3)6, which we report for
convenience in the following lemma.
Lemma C.7 (Dembo & Zeitouni (2009)). Let X1, . . . , XK be i.i.d. random variables over [2]

having probabilities Pr(Xk = i) = Pi, and let P̂K(i) = 1
K

∑K
k=1 1(Xk = i). Then, for every

threshold ε > 0, it holds

Pr

(
dKL

(
P̂K ||P

)
≥ ε
)
≤ 2 exp(−Kε).

We can now provide the proof of Corollary B.7.
6Also reported in (Mardia et al., 2020, Example 1).
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Corollary B.7. Let M be a tabular MDP. The result of Theorem B.6 reduces to K =
O
(
S222Z log(S2Z/δ)/ε2

)
.

Proof. We aim to obtain the number of samples K for which Algorithm 3 is guaranteed to return a
Bayesian network estimate P̂G such that Pr(‖P̂G − PG‖1 ≥ ε) ≤ δ in a tabular MDP setting. We
start by considering the KL divergence dKL(P̂G ||PG). Especially, we note

dKL
(
P̂G ||PG

)
=
∑

X,Y

P̂G(X,Y ) log
P̂G(X,Y )

PG(X,Y )

=
∑

X,Y

P̂G(X,Y ) log

∏S
j=1 P̂j(Y [j]|X[Zj ])

∏S
j=1 Pj(Y [j]|X[Zj ])

=
∑

X,Y

P̂G(X,Y )

S∑

j=1

log
P̂j(Y [j]|X[Zj ])

Pj(Y [j]|X[Zj ])
=

S∑

j=1

dKL
(
P̂j ||Pj

)
.

Then, for any ε′ > 0 we can write

Pr
(
dKL

(
P̂G ||PG

)
≥ ε′

)
≤ Pr

( S⋃

j=1

dKL
(
P̂j ||Pj

)
≥ ε′

S

)
(36)

≤
S∑

j=1

Pr

(
dKL

(
P̂j ||Pj

)
≥ ε′

S

)
(37)

≤
S∑

j=1

Pr

( ⋃

x∈[2]|Zj |

dKL
(
P̂j(·|x)||Pj(·|x)

)
≥ ε′

S2|Zj |

)
(38)

≤
S∑

j=1

∑

x∈[2]|Zj |

Pr

(
dKL

(
P̂j(·|x)||Pj(·|x)

)
≥ ε′

S2|Zj |

)
(39)

≤
S∑

j=1

∑

x∈[2]|Zj |

Pr

(
dKL

(
P̂j(·|x)||Pj(·|x)

)
≥ ε′

S2Z

)
, (40)

in which we applied a first union bound to get (37) from (36), a second union bound to get (39)
from (38), and Assumption 1 to bound |Zj | with Z in (40). We can now invoke Lemma C.7 to
obtain the sample complexity K ′′ that guarantees Pr(dKL(P̂j(·|x)||Pj(·|x)) ≥ ε′′) ≤ δ′′, i.e.,

K ′′ =
log(2/δ′′)

ε′′
=
S2Z log(2S2Z/δ′)

ε′
,

where we let ε′′ = ε′

S2Z
, and δ′′ = δ′

S2Z
for any choice of δ′ ∈ (0, 1). By summing K ′′ for any x ∈

[2]|Zj | and and j ∈ [S], we obtain the sample complexity K ′ that guarantees Pr(dKL(P̂G ||PG) ≥
ε′) ≤ δ′, i.e.,

K ′ =

S∑

j=1

∑

x∈[2]|Zj |

K ′′ ≤ S222Z log(2S2Z/δ′)
ε′

. (41)

Finally, we employ the Pinsker’s inequality ‖P̂G − PG‖1 ≤
√

2dKL(P̂G ||PG) Csiszár (1967) to
write

Pr
(
dKL(P̂G ||PG) ≥ ε′

)
= Pr

(√
2dKL(P̂G ||PG) ≥

√
2ε′
)
≥ Pr

(
‖P̂G − PG‖1 ≥

√
2ε′
)
,

which gives the sample complexity K that guarantees Pr(‖P̂G − PG‖1 ≥ ε) ≤ δ by letting ε′ = ε2

2
and δ′ = δ in (41), i.e.,

K =
2S222Z log(2S2Z/δ)

ε2
.
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