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ABSTRACT

Large Reasoning Models (LRMs) have achieved impressive performance on com-
plex reasoning tasks by generating detailed chain-of-thought (CoT) explanations.
However, these responses are often excessively long, containing redundant reason-
ing steps that inflate inference cost and reduce usability. Controlling the length
of generated reasoning without sacrificing accuracy remains an open challenge.
Through a systematic empirical analysis, we reveal a consistent positive corre-
lation between model entropy and response length at different reasoning stages
across diverse LRMs: the thinking phase exhibits higher entropy, reflecting ex-
ploratory behavior of longer responses, while the final answer phase shows lower
entropy, indicating a more deterministic solution. This observation suggests that
entropy at different reasoning stages can serve as a control knob for balancing
conciseness and performance. Based on this insight, this paper introduces Phase
Entropy Aware Reward (PEAR), a reward mechanism that incorporating phase-
dependent entropy into the reward design. Instead of treating all tokens uniformly,
PEAR penalize excessive entropy during the thinking phase and allowing mod-
erate exploration at the final answer phase, which encourages models to gener-
ate concise reasoning traces that retain sufficient flexibility to solve the task cor-
rectly. This enables adaptive control of response length without relying on explicit
length targets or rigid truncation rules. Extensive experiments across four bench-
marks demonstrate that PEAR consistently reduces response length while sustain-
ing competitive accuracy across model scales. In addition, PEAR demonstrates
strong out-of-distribution (OOD) robustness beyond the training distribution.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable reasoning capabilities, particularly
when employing techniques like Chain-of-Thought (COT) prompting (Wei et al., 2022). Building
on this, recent Large Reasoning Models (LRMs) (Jaech et al., 2024; Guo et al., 2025; Yang et al.,
2025a; Team et al., 2025; Team, 2025) encourage an explicit thinking phase via special tokens
before generating the final answer, further improving models’ complex problem-solving capability.
However, LRMs tend to generate excessively long chain-of-thought responses (Chen et al., 2024;
Yue et al., 2025), the models often produce redundant calculations or verbose explanations, which
leads to bloated outputs and reduces inference efficiency (Hassid et al., 2025; Kuo et al., 2025).
Consequently, a key challenge is to enable models to think less while preserving the performance.

Recent works have attempted to address this issue by enforcing efficiency through further training
on filtered concise data (Yue et al., 2025; Qu et al., 2025; Sui et al., 2025). The common paradigm
is to modify the training corpus so that the model is exposed primarily to shorter reasoning traces
(Yuan et al., 2025; An et al., 2025; Zhao et al., 2025b). By strictly constraining the supervision
signal, the model often struggles to adapt to novel reasoning styles or out-of-distribution (OOD)
problems where the optimal length of reasoning may differ (Aggarwal & Welleck, 2025). Moreover,
such methods risk discarding valuable intermediate reasoning that could improve accuracy. This
motivates the need for a more adaptive and model-driven approach to efficient reasoning.

Concurrently, there has been growing interest in understanding how token-level uncertainty, as mea-
sured by entropy, influences model behavior (Lei et al., 2025; Cheng et al., 2025a; Zhang et al.,
2025b). Entropy captures the spread of the predictive distribution: high-entropy segments often
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Figure 1: PEAR reduce the response length by penalizing excessive entropy during thinking phase
while allowing moderate exploration at the final answer phase.

correspond to exploratory reasoning steps where the model searches for a correct path, while low-
entropy segments capture more deterministic computations or final answer generation (Wang et al.,
2025c; Zhang et al., 2025f). Therefore, recent works have begun to exploit these signals for im-
proving calibration or enhancing reasoning robustness (Zhang et al., 2025c; Wang et al., 2025b).
However, the connection between entropy and efficient reasoning has been largely overlooked.

Intuitively, a model that operates at consistently high entropy may explore too broadly and thus pro-
duce unnecessarily long reasoning chains, while a model biased toward low entropy may commit
earlier to a determined reasoning path with more concise outputs. Motivated by this hypothesis,
we first conduct empirical analysis, and observe a consistent positive correlation between average
token-level entropy and response length across model scales and benchmarks. Interestingly, this
relationship is not uniform across reasoning stages: the “thinking” portion of the output exhibits
substantially higher entropy than the “final answer” portion, highlighting distinct roles of explo-
ration and commitment in different stages of reasoning. Moreover, when we filter out high-entropy
tokens, models’ performance will not be affected within certain ratio, suggesting that excessive en-
tropy can be pruned without harming reasoning quality. Based on these observations, we propose
Phase Entropy Aware Reward (PEAR), a reward mechanism that explicitly decomposes entropy
into thinking and final answer phases and integrates both components into the training objective. As
illustrated in Figure 1, by penalizing excessive entropy during the thinking phase while moderating
entropy in the final answer phase, PEAR encourages models to produce more concise reasoning
traces, providing a soft and adaptive mechanism for balancing exploration with efficiency.

We evaluate PEAR on four widely used reasoning benchmarks: GSM8K, MATH500, AIME24,
and AMC23. Across models of different scales, PEAR achieves substantial reductions in response
length, ranging from 37.8% to 59.4%, while preserving accuracy with decreases of less than 1%.
By incorporating both phases of a model’s response into the reward calculation, PEAR eliminates
the need for manual data curation and generalizes effectively to out-of-domain questions through its
broadly applicable training objective.

To summarize, our work makes the following key contributions:

• We empirically establish and validate a positive correlation between model entropy and
response length in LRMs, and show that the thinking phase exhibits substantially higher
entropy than the final answer phase.

• We introduce Phase Entropy Aware Reward (PEAR), a reward mechanism that leverages
this property to adaptively promote concise reasoning traces without depending on curated
datasets or explicit length constraints.

• We provide extensive experimental evidence on GSM8K, MATH500, AIME24, and
AMC23, showing that our method achieves substantial reductions in response length while
preserving accuracy, with strong generalization capability to out-of-distribution tasks.
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Figure 2: (a) Relationship between average entropy and response length across different models. The
dot size indicates accuracy. DS(L) represents DeepSeek-R1-Distill-Qwen/Llama. (b) Comparison
of average entropy between the thinking phase and the final answer phase.

2 PRELIMINARY ANALYSIS

In this section, we present empirical observations that motivate our approach. We first examine the
relationship between entropy and response length, showing how higher entropy is associated with
longer reasoning traces. Next, we differentiate the roles of entropy in the thinking phase versus
the final answer phase, highlighting distinct patterns across stages. Finally, we conduct entropy-
filtering experiments to demonstrate the robustness of low-entropy reasoning traces. All analyses
are performed on GSM8K, MATH500, AIME24, and AMC23, where we report average accuracy,
response length (in tokens), and entropy.

2.1 ENTROPY AND RESPONSE LENGTH

We begin by analyzing the correlation between response entropy and length across a diverse set of
LRMs. For each model, we measure the average entropy of the predictive distribution across all
generated tokens and compare it against the total number of tokens produced during inference.

The entropy of the predictive distribution at each token position t is defined as

Ht = −
|V |∑
i=1

p
(t)
i log p

(t)
i , H̄ =

1

T

T∑
t=1

Ht (1)

where p
(t)
i denotes the predicted probability of token i at position t, |V | is the vocabulary size, T is

the total response length, and H̄ is the average entropy across the entire response.

Figure 2(a) shows a consistent positive correlation between average entropy and response length
across all examined model families and benchmarks. Responses with higher entropy are typically
longer and more exploratory, while lower entropy corresponds to shorter and more concise traces.
This pattern is especially evident within individual model series, where models of different scales
exhibit a clear alignment between entropy levels and response characteristics.

These findings suggest that the entropy–length relationship is a fundamental property of large rea-
soning models. Longer responses naturally reflect higher uncertainty or diversity in token predic-
tions, as captured by increased entropy. This makes entropy an interpretable internal signal for
shaping model behavior. By integrating entropy into the reward design, we can provide models
with a principled mechanism to balance thorough reasoning with efficient generation, enabling finer
control over response length without relying on explicit constraints.
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2.2 PHASE-DEPENDENT ENTROPY ANALYSIS

To further investigate the role of entropy in model responses, we analyze how entropy is distributed
across different stages of generation. As shown in Figure 2(b), a clear distinction emerges between
the thinking phase (before the </think> token) and the final answer phase (after the </think>
token). The thinking phase exhibits consistently higher entropy, reflecting exploratory behavior as
the model searches through multiple potential reasoning paths and generates longer, more diverse
traces. In contrast, the final answer phase shows much lower entropy, indicating a more confident
and deterministic commitment to a specific solution. These results indicate that the two phases
serve complementary functions of exploration versus conclusion and should therefore be optimized
differently. Phase-specific reward mechanisms can leverage this distinction, reducing unnecessary
exploration during reasoning while preserving confidence and clarity in final answers.

2.3 ENTROPY FILTERING EXPERIMENTS
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Figure 3: Accuracy and average response length
in the entropy filtering experiments on Qwen3-4B.

To assess how high-entropy tokens influence
model reasoning and whether pruning them im-
pacts reasoning quality, we conduct a system-
atic filtering experiment, as shown in Figure 3.
Our procedure consists of two stages: first, we
generate complete reasoning traces and com-
pute token-level entropy within the thinking
phase. Second, we retain only a specified per-
centage of tokens with the lowest entropy val-
ues while discarding the rest, thereby construct-
ing filtered reasoning traces. These filtered
traces are then fed back to the model to produce
final answers, enabling us to directly examine
how entropy-based filtering influences both rea-
soning efficiency and task accuracy. Results for
more models can be found at Appendix B.

When retaining 80% or 60% of low-entropy tokens, accuracy remains stable or even improves com-
pared to the unfiltered baseline. This indicates that the high-entropy tokens being removed mainly
drive excessive exploration rather than contributing to correct reasoning, and their absence reduces
noise in the reasoning process. Performance degradation only emerges under more aggressive fil-
tering: retaining 40% or fewer low-entropy tokens leads to a sharp drop in accuracy, showing that
essential reasoning steps are lost when the trace is compressed too heavily. Notably, the length of
the final answer phase remains relatively unchanged across filtering levels, reinforcing that redun-
dancy is concentrated in the thinking phase, where high-entropy tokens leads to over-elaboration
and inflates response length without improving outcomes.

3 METHOD

3.1 GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

We begin with a brief introduction to the Group Relative Policy Optimization (GRPO) algorithm
(Shao et al., 2024). Unlike standard PPO (Schulman et al., 2017), GRPO eliminates the need for
a critic model by estimating advantages through reward normalization across a group of sampled
responses to the same prompt. Specifically, for a prompt q with G responses and corresponding
rewards {ri}Gi=1, the group-normalized advantage is defined as:

Âi,t =
ri −mean({rj}Gj=1)

std({rj}Gj=1)
. (2)

This normalization emphasizes the differences among candidate outputs for the same question,
which improves the stability of the gradient signal even under sparse reward settings. GRPO also
incorporates a KL divergence term that regularizes the learned policy against a reference policy. The
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overall surrogate objective can be written as:

JGRPO(θ) = Eq∼P (Q),{oi}G
i=1∼πθold (·|q)

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− ϵ, 1 + ϵ

)
Âi,t

]
− βDKL

[
πθ ∥πref

]}
.

(3)

where

ri,t(θ) =
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, (4)

ϵ and β are hyperparameters, and DKL denotes the KL divergence between the learned policy πθ and
a reference policy πref.

3.2 PHASE ENTROPY AWARE REWARD (PEAR)

In the original GRPO algorithm, the reward r is typically defined in a rule-based manner, assigning
a value of 1 to correct responses and 0 to incorrect ones. While simple and effective, this binary
scheme overlooks richer characteristics of the response, such as the degree of exploration or reflec-
tion embedded in the reasoning trajectory. As a result, it provides no guidance on how the model
should balance exploratory reasoning with concise and reliable answer generation.

Building on the observed correlation between model entropy and response length in Section 2, we
introduce Phase Entropy Aware Reward (PEAR) that leverages entropy as guidance to train mod-
els to reason more efficiently. Let a sampled response be the token sequence y = (y1, . . . , yT ) that
contains a thinking segment between <think> and </think> followed by the final answer.

Let k denote the index of the closing token </think> in y. We compute token entropies with
respect to the old policy πθold :

Ht = −
∑
v∈V

πθold(v | y<t) log πθold(v | y<t), t = 1, . . . , T. (5)

We then average entropies for the thinking phase and final answer phase (excluding the </think>
token itself):

H̄think =
1

k − 1

k−1∑
t=1

Ht, H̄answer =
1

T − k

T∑
t=k+1

Ht. (6)

The phase reward P integrates entropy from both the thinking and final answer phases, defined as:

P(y) = max
(
0, H̄think − α H̄answer

)
. (7)

The coefficient α is a tunable hyperparameter that adjusts the contribution of the final answer phase
entropy, enabling flexible control over the balance between reasoning exploration and final answer
confidence. As discussed in Section 2.2, the reasoning process exhibits distinct entropy patterns: the
thinking phase is characterized by higher entropy with exploratory behavior, while the final answer
phase reflects lower entropy associated with deterministic solutions. To promote more efficient
reasoning, we therefore aim to reduce entropy during the thinking phase to mitigate unnecessary
exploration while preserving or even encouraging entropy in the final answer phase to maintain
flexibility and completeness in solution formulation.

Given a base score s ∈ (0, 1] for a correct final answer and a format score rfmt ∈ [0, 1) for mal-
formed/incorrect answers, the phase-aware entropy-inclusive reward for response y is:

r(y) =

{
min

(
1, s− P(y)

)
, if the extracted answer equals the ground truth,

rfmt, otherwise.
(8)

Finally, we replace ri in Eq. equation 2 by r(yi) and keep the same GRPO advantage normalization:

Ai =
r(yi)−mean

(
{r(yj)}Gj=1

)
std

(
{r(yj)}Gj=1

) . (9)
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Edge cases. If </think> token is absent we set k = T and use H̄post = 0 (i.e., only thinking
phase entropy contributes); if the answer cannot be parsed, we assign r(y) = rfmt.

With PEAR, the model is guided not only by final answer correctness but also by the quality of
its reasoning behavior. The component for the thinking phase discourages excessive exploration,
as high-entropy reasoning yields lower reward, thereby encouraging the model to generate more
focused and efficient reasoning traces. Meanwhile, the component for the final answer phase helps
stabilize and structure the concluding steps, ensuring that the model produces complete and coherent
answers without sacrificing accuracy.

4 RESULTS

4.1 EXPERIMENT SETTING

Baseline Methods. GRPO (Group Relative Policy Optimization) (Shao et al., 2024) is a rein-
forcement learning framework that eliminates the need for a critic model by estimating advantages
through reward normalization within a group of responses to the same prompt. Step Entropy (Li
et al., 2025) adopts a two-stage training strategy that enables LLMs to generate compressed chain-of-
thought (CoT) reasoning at inference time by strategically inserting [SKIP] tokens. LCPO (Length-
Controlled Policy Optimization) (Aggarwal & Welleck, 2025) is a reinforcement learning method
designed to jointly optimize for accuracy and compliance with user-specified length constraints.

Baseline Models. We evaluate our method on widely used Large Reasoning Models (LRMs),
including DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025), Qwen3-4B, and Qwen3-8B (Yang
et al., 2025a), which are commonly adopted in prior works. For fair comparison, we also report
results on these baseline models across different model scales. Detailed implementation settings for
all baseline methods are provided in Appendix C.

Training and Evaluation Setup. We conduct training using the open-source verl framework
(Sheng et al., 2025), with 7,473 samples from GSM8K (Cobbe et al., 2021) as the training dataset
for all models. The dataset is consist of grade school math word problems, which are designed to
evaluate question answering on basic mathematics that requires multi-step reasoning. The training
configuration uses a batch size of 128 and a learning rate of 1 × 10−6. We set the coefficient α for
final answer phase reward calculation as 1. To evaluate the effectiveness and generalizability of our
compression method, we benchmark on four standard mathematical reasoning datasets: GSM8K
test set (Cobbe et al., 2021), MATH500 (Hendrycks et al., 2021), AIME24 (Li et al., 2024) and
AMC23 (Li et al., 2024), detailed introduction of these benchmarks can be found at Appendix D.

Performance is measured along two dimensions: Accuracy (Acc) and the number of Generated
Tokens (Tok), with a generation length cap of 16,384 tokens. Following the evaluation protocol of
Guo et al. (2025), we adopt sampling with temperature set to 0.6 and top-p set to 0.95. Answer
extraction and verification are carried out following the methodology of Yang et al. (2024).

4.2 EFFECTIVENESS OF PEAR

As shown in Table 1, PEAR achieves the most substantial reduction in response length across all
benchmarks and evaluated models, while maintaining accuracy at a level comparable to original
models. Compared to original reasoning models, PEAR achieves an average response length re-
duction of 37.8% to 55.2%, while preserving the same performance with the decrease of only 0.9%
in accuracy. This indicates that encouraging models to lower entropy level at thinking phase dur-
ing training provides an effective mechanism for eliminating redundant reasoning steps, thereby
producing more concise outputs without compromising correctness.

Compared to the 1.5B model, the results for the 4B and 8B models suggest that larger models,
which are prone to verbose reasoning, benefit more from PEAR by achieving over 50% reduction
in response length. This supports the intuition that bigger models tend to “over-explain”, creating
greater opportunities for efficiency gains. Moreover, PEAR delivers a superior efficiency-accuracy
trade-off on larger models relative to other baselines. In the case of Qwen3-8B, while Step Entropy
and LCPO enforce shorter responses, they incur larger accuracy drops of 1.23% and 2.68%, respec-
tively. In contrast, PEAR achieves even greater compression while limiting performance decline
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Table 1: Acc@1 results on four mathematical reasoning benchmarks across three LRMs. ↓ indicates
the relative change with respect to the Original row of each model. PEAR consistently achieves the
largest reduction in token usage across model scales, while maintaining comparable accuracy.

Method
GSM8K MATH500 AIME24 AMC23 Average

Acc Tok Acc Tok Acc Tok Acc Tok Acc Tok

DeepSeek-R1-Distill-Qwen-1.5B
Original 85.97 1496 75.00 3620 26.66 8843 70.00 5253 64.41 4853
GRPO 87.86 1493 76.80 3132 33.33 7839 67.50 4899 66.37 4341 (↓ 10.6%)
Step Entropy 85.59 1629 76.80 3298 26.66 5640 70.00 4911 64.76 3870 (↓ 20.3%)
LCPO 87.11 2149 76.00 2895 26.66 5358 70.00 3324 64.94 3432 (↓ 29.3%)
PEAR 87.94 624 77.20 2358 23.33 5379 70.00 3705 64.62 3016 (↓ 37.8%)

Qwen3-4B
Original 94.69 2634 85.40 5795 56.66 16792 87.50 9234 81.06 8614
GRPO 94.38 2321 84.80 5434 63.33 14061 90.00 8568 83.13 7596 (↓ 11.8%)
Step Entropy 94.84 2261 85.40 4704 60.00 9467 87.50 7317 81.93 5937 (↓ 31.1%)
LCPO 93.47 1846 84.20 3569 63.33 8528 85.00 6518 81.50 5115 (↓ 40.6%)
PEAR 94.01 1439 84.00 2695 56.66 5685 87.50 4173 80.54 3498 (↓ 59.4%)

Qwen3-8B
Original 96.13 2335 86.60 5532 63.33 14977 90.00 8161 84.02 7751
GRPO 95.83 1999 85.20 5375 66.66 13195 90.00 7881 84.42 7113 (↓ 08.2%)
Step Entropy 95.14 2087 86.00 4658 60.00 6816 90.00 7352 82.79 5228 (↓ 32.6%)
LCPO 94.54 1645 85.00 4234 63.33 7173 82.50 6961 81.34 5003 (↓ 35.5%)
PEAR 94.54 1092 85.40 2664 60.00 6104 92.50 4045 83.11 3476 (↓ 55.2%)

to just 0.91%. This underscores PEAR’s adaptive nature, enabling it to compress reasoning traces
aggressively without compromising accuracy.

In addition, the benefits of PEAR extend beyond the training distribution, demonstrating strong out-
of-distribution (OOD) robustness. Although trained solely on GSM8k, our method yields consistent
improvements across all four benchmarks. For example, on Qwen3-4B, PEAR matches the vanilla
model’s accuracy on AIME24 and AMC23 while consuming only 34% and 45% of the original
reasoning budget, respectively. These results highlight that phase-dependent entropy serves as a
universal, domain-agnostic signal for controlling reasoning efficiency, enabling our approach to
generalize effectively across diverse reasoning tasks.

Overall, these results validate the central hypothesis of our work: incorporating phase-dependent
entropy into the reward design enables LRMs to generate shorter and more efficient reasoning tra-
jectories, while preserving accuracy and demonstrating strong generalization across domains.

4.3 HOW PEAR AFFECTS REASONING

We further analyze how PEAR influences model reasoning across different phases, focusing on
changes in entropy, number of reasoning steps, and average tokens per step after training with PEAR.

As shown in Figure 4(a), PEAR consistently reduces the overall entropy across all evaluated mod-
els. Crucially, the largest reduction occurs in the thinking phase, where excessive exploration had
previously contributed to unnecessarily long reasoning traces. This demonstrates that our reward
effectively steers models toward more confident and focused reasoning, eliminating redundant ex-
ploratory steps in the thinking process. In contrast, the final answer phase shows a slight increase in
entropy, indicating that the model retains flexibility when articulating its conclusions. Such phase-
specific adjustments highlight PEAR’s ability to suppress over-exploration during reasoning while
still supporting diversity and completeness in the final answer through the control towards entropy.

Figure 4(b) illustrates the changes in the number of reasoning steps and tokens per step for the
Qwen3-4B model across all benchmarks before and after applying PEAR. The results show that
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Figure 4: (a) Entropy changes before and after training with PEAR across thinking and final answer
phases. (b) Changes in the number of reasoning steps and average tokens per step for Qwen3-4B.
PEAR reduces both the number of reasoning steps and the average tokens per step.

PEAR not only reduces the total number of reasoning steps but also decreases the average tokens
per step, reflecting a shift toward more deterministic and efficient reasoning. Importantly, the re-
duction is concentrated in the thinking phase, consistent with PEAR’s objective of discouraging
excessive exploration while maintaining entropy in the final answer phase. This effect is especially
pronounced on more challenging datasets such as AIME24, where the number of thinking steps is
reduced by more than half. These results further validate the effectiveness of PEAR in producing
concise reasoning trajectories without compromising solution quality.

Crucially, these findings explain why PEAR achieves substantial reductions in response length with-
out sacrificing accuracy, highlighting phase-dependent entropy as a powerful control signal for bal-
ancing efficiency and performance in large reasoning models.

4.4 HYPERPARAMETER STUDY
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Figure 5: Average accuracy and response
length of Qwen3-4B trained with different α.

A central hyperparameter in our reward design is the
coefficient α for final answer phase’s entropy. This
parameter directly controls the extent to which the
model is encouraged for higher entropy in the final
answer phase. Figure 5 illustrates the impact of the
hyperparameter α on Qwen3-4B across four bench-
marks. By default, α is set to a positive value in
order to avoid “reward gaming”, where the model
drives entropy down indiscriminately to maximize
reward, which often leads to degraded performance.

The experiments confirm this hypothesis. When
α = 0, post-thinking entropy is ignored, and the
model is optimized solely to minimize entropy in
the thinking phase. While efficient, this strict reduc-
tion harms accuracy, as the model loses the flexibil-
ity needed in the answer phase to refine or adjust its
predictions. The problem becomes even more pronounced when α = −1, where both the reasoning
and answer phases are simultaneously penalized for entropy. In this setting, the model is overly
constrained, producing shorter but less reliable responses and further degrading performance.

As α increases, the penalty on post-thinking entropy becomes stronger. This relaxes the restrictive
effect on the answer phase, allowing the model to preserve higher entropy where needed and thereby
improving accuracy. At moderate values of α (e.g., 1), we observe a favorable balance: the model
reduces redundancy in its reasoning while maintaining strong performance. However, when α is
set too high, the penalty effect becomes negligible, and the model’s behavior converges toward the
baseline, producing longer responses and diminishing the efficiency gains.
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5 RELATED WORK

5.1 EFFICIENT REASONING

A growing body of research has focused on improving the efficiency of LRMs. Early exit stops
model dynamically once certain criteria has been reached (Liao et al., 2025). Typical methods in-
clude designing stopping rules based on internal reasoning state (Yang et al., 2025b; Qiao et al.,
2025; Zhu et al., 2025; Xu et al., 2025), generation behavior (Wang et al., 2025a;d; Liu & Wang,
2025), or without relying on pre-defined triggers (Dai et al., 2025). Another complementary re-
search direction focuses on compressing chain-of-thought reasoning traces, such as parallel thinking
compression (Munkhbat et al., 2025; Ghosal et al., 2025), filtering or summarizing intermediate rea-
soning tokens and steps (Yu et al., 2025; Luo et al., 2025a; Yuan et al., 2025; Xia et al., 2025; Zhao
et al., 2025a), and compression reward mechanisms (Cheng et al., 2025b; Zeng et al., 2025). No-
tably, Li et al. (2025) introduce step entropy for quantifying the informational contribution of each
reasoning step within CoT trajectories, enabling selective removal of low-entropy steps. Besides,
adaptive reasoning methods attempt to dynamically adjust the depth or length of reasoning depend-
ing on the difficulty of the input, this includes carefully designed reward (Jiang et al., 2025; Wang
et al., 2025e; Luo et al., 2025b) and reasoning mode switching (Zhang et al., 2025d; Huang et al.,
2025; Zhang et al., 2025a). For example, LCPO (Aggarwal & Welleck, 2025) include user-specified
length constraint into the training reward to guide the model toward answering within the constraint.
However, such methods discard valuable intermediate reasoning that could improve accuracy. In
contrast, our method utilizes the intrinsic phase-dependent entropy as reward signal, making it an
adaptive and model-driven approach to helps the model reason more efficiently.

5.2 REASONING THROUGH ENTROPY CONTROL

With the increasing research focus on Reinforcement Learning with Verifiable Rewards (RLVR),
model entropy (Shannon, 1948) has emerged as a powerful internal signal for shaping reasoning
behaviors in large language models. Recent work has investigated how policy entropy evolves dur-
ing reinforcement learning-based post-training of reasoning models. Zhang et al. (2025f) reveal the
correlation between entropy collapse and performance saturation as well as subsequent degradation.
Cui et al. (2025) further shows how high-probability/high-advantage updates systematically reduce
entropy. Another complementary direction treats entropy minimization itself as supervision by di-
rectly minimizing token-level entropy via finetuning or using negative entropy as the sole reward in
RL (Agarwal et al., 2025; Prabhudesai et al., 2025). Besides, recent work has explored augmenting
reinforcement learning approaches by incorporating entropy-based mechanisms to encourage ex-
ploration in reasoning chains (Zhang et al., 2025e; Cheng et al., 2025a). Furthermore, Wang et al.
(2025c) reveal that the effectiveness of RLVR stems primarily from optimizing high-entropy to-
kens that determine critical reasoning directions. Selectively targeting these high-entropy minority
tokens during optimization can substantially enhance reasoning capabilities while improving com-
putational efficiency. While most existing studies leverage entropy to improve reasoning capability,
our approach uses entropy as a control signal for efficiency, enabling adaptive length control with-
out explicit token budgets while preserving accuracy. This reframes entropy not only as a tool for
capability shaping but also as a principled knob for controlling the cost of reasoning.

6 CONCLUSION

In this work, we conduct empirical analysis and observed the consistent positive relation between
entropy and response length across reasoning stages: the thinking phase exhibits higher entropy,
reflecting exploratory behavior of longer response, while the final answer phase shows lower en-
tropy, indicating more deterministic solution. Based on this finding, we address the challenge of
efficient reasoning by introducing Phase Entropy Aware Reward (PEAR), a reward mechanism that
distinguishes entropy between thinking phase and final answer phase during training. By discour-
aging entropy in thinking phase while preserving flexibility in final answer phase, PEAR enables
adaptive control of response length without requiring explicit length targets or rigid truncation rules.
Extensive experiments across four benchmarks have demonstrated that PEAR reduces token redun-
dancy by a large percentage of 37.8% to 59.4% while preserving accuracy. Besides, PEAR also
demonstrate strong generalization capability to out-of-distribution tasks.
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of Large Reasoning Models (LRMs) through phase-dependent entropy reward design. No human
subjects, personally identifiable information, or sensitive user data were used in this study. All
datasets employed (GSM8K, MATH500, AIME24, and AMC23) are publicly available benchmarks
designed for evaluating mathematical reasoning tasks. The methods proposed in this paper aim to re-
duce computational overhead by shortening reasoning traces, which contributes to lowering energy
consumption and improving the sustainability of large-scale model deployment. We do not antici-
pate direct harmful applications; however, as with all advances in language modeling, there exists
a risk of misuse in generating misleading or harmful reasoning traces. We encourage responsible
use and recommend that future work continue to consider fairness, transparency, and accountability
in the deployment of reasoning models. No conflicts of interest or external sponsorships influenced
this work.
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We have made extensive efforts to ensure the reproducibility of our work. All datasets used in our
experiments (GSM8K, MATH500, AIME24, and AMC23) are publicly available and referenced
in Section 4.1 and Appendix D. Detailed descriptions of our training setup, hyperparameters, and
evaluation protocol are provided in Section 4.1 and Appendix C. For baselines, we follow official im-
plementations and cite the corresponding repositories to ensure faithful comparison in Appendix C.
Our method is implemented using the open-sourced verl framework (Sheng et al., 2025), and we
will release the complete source code and training scripts in the future to facilitate replication of
results. Together, these resources provide a clear pathway for reproducing both the training process
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Figure 6: Accuracy and average response length in the entropy filtering experiments on Qwen3-8B.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used solely for polishing the writing and improving the clarity
of presentation. They were NOT involved in research ideation, methodology design, experiments,
analysis, or any other substantive aspect of this work. All scientific contributions, results, and con-
clusions are the sole responsibility of the authors.

B ENTROPY FILTERING EXPERIMENTS FOR QWEN3-8B

Figure 6 demonstrates the entropy filtering experiment result on Qwen3-8B. The results reveal a
similar trend as Qwen3-4B discussed in Section 2.3. When retaining 80% or 60% of low-entropy
tokens, accuracy remains stable or even improves compared to the unfiltered baseline. Performance
degradation only emerges under more aggressive filtering: retaining 40% or fewer low-entropy to-
kens leads to a sharp drop in accuracy, showing that essential reasoning steps are lost when the trace
is compressed too heavily. Notably, the length of the final answer phase also remains relatively
unchanged across filtering levels, reinforcing that redundancy is concentrated in the thinking phase.

This result further supports the conclusion that the high-entropy tokens being removed mainly drive
excessive exploration rather than contributing to correct reasoning, and their absence reduces noise
in the reasoning process.

C EXPERIMENT DETAILS FOR BASELINE METHODS

We evaluate three baseline methods: GRPO (Group Relative Policy Optimization) (Shao et al.,
2024), Step Entropy (Li et al., 2025), and LCPO (Length-Controlled Policy Optimization) (Ag-
garwal & Welleck, 2025) using the GSM8K training set (Cobbe et al., 2021). Experiments are
conducted across three model sizes: DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025), Qwen3-
4B, and Qwen3-8B (Yang et al., 2025a). The implementation details for each baseline are provided
below.
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For GRPO (Shao et al., 2024), we use the open-source verl framework (Sheng et al., 2025)2 with
the original rule-based reward, which assigns a reward of 1 for correct answers and 0 otherwise. We
set the rollout number to 8 and the KL penalty coefficient to 1× 10−3.

For Step Entropy (Li et al., 2025), we use the official implementation provided by the authors3. The
method follows a two-stage training strategy: Supervised Fine-Tuning (SFT) with pruned CoT data,
followed by Reinforcement Learning (RL) with GRPO. During the SFT stage, training is performed
with mixed precision (FP16), a learning rate of 2 × 10−5, and a weight decay of 0.01. In the RL
stage, the learning rate is set to 1× 10−5 and the KL penalty is fixed at 0.1.

For LCPO (Aggarwal & Welleck, 2025), we use the official codebase provided by the authors4 and
follow the L1-Exact setup. Training is performed with GRPO under length control and a maximum
length constraint. We set the learning rate to 1×10−6 with a batch size of 64, and restrict the context
length to 4K tokens during training. Rollout number is fixed at 8 with a sampling temperature of
0.6, and the KL penalty coefficient is set to 1× 10−3.

D EVALUATION BENCHMARKS

To evaluate the effectiveness and generalizability of our compression method, we benchmark on
four standard mathematical reasoning datasets.

GSM8K test set (Cobbe et al., 2021) is a carefully designed benchmark comprising 1,319 grade-
school mathematics word problems. Each question typically requires two to eight sequential rea-
soning steps, primarily involving basic arithmetic operations applied across multiple intermediate
stages. MATH500 (Hendrycks et al., 2021) contains a subset of 500 problems drawn from high
school mathematics competitions. We follow the evaluation setup of OpenAI by adopting the same
curated subset. AIME24 (Li et al., 2024) features 30 problems from the 2024 American Invita-
tional Mathematics Examination (AIME). As one of the most prestigious secondary-level compe-
titions, AIME problems demand sophisticated reasoning across diverse topics, including algebra,
combinatorics, geometry, number theory, and probability. AMC23 (Li et al., 2024) consists of 40
problems taken from the 2023 American Mathematics Competition (AMC). The dataset covers core
high school mathematics domains such as algebra, geometry, combinatorics, and number theory,
providing a broad yet rigorous evaluation of mathematical reasoning ability.

2https://github.com/volcengine/verl
3https://github.com/staymylove/COT_Compression_via_Step_entropy
4https://github.com/cmu-l3/l1
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