

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PEAR: PHASE ENTROPY AWARE REWARD FOR EFFICIENT REASONING

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Reasoning Models (LRMs) have achieved impressive performance on complex reasoning tasks by generating detailed chain-of-thought (CoT) explanations. However, these responses are often excessively long, containing redundant reasoning steps that inflate inference cost and reduce usability. Controlling the length of generated reasoning without sacrificing accuracy remains an open challenge. Through a systematic empirical analysis, we reveal a consistent positive correlation between model entropy and response length at different reasoning stages across diverse LRMs: the thinking phase exhibits higher entropy, reflecting exploratory behavior of longer responses, while the final answer phase shows lower entropy, indicating a more deterministic solution. This observation suggests that entropy at different reasoning stages can serve as a control knob for balancing conciseness and performance. Based on this insight, this paper introduces **Phase Entropy Aware Reward** (PEAR), a reward mechanism that incorporating phase-dependent entropy into the reward design. Instead of treating all tokens uniformly, PEAR penalize excessive entropy during the thinking phase and allowing moderate exploration at the final answer phase, which encourages models to generate concise reasoning traces that retain sufficient flexibility to solve the task correctly. This enables adaptive control of response length without relying on explicit length targets or rigid truncation rules. Extensive experiments across four benchmarks demonstrate that PEAR consistently reduces response length while sustaining competitive accuracy across model scales. In addition, PEAR demonstrates strong out-of-distribution (OOD) robustness beyond the training distribution.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable reasoning capabilities, particularly when employing techniques like Chain-of-Thought (COT) prompting (Wei et al., 2022). Building on this, recent Large Reasoning Models (LRMs) (Jaech et al., 2024; Guo et al., 2025; Yang et al., 2025a; Team et al., 2025; Team, 2025) encourage an explicit thinking phase via special tokens before generating the final answer, further improving models' complex problem-solving capability. However, LRMs tend to generate excessively long chain-of-thought responses (Chen et al., 2024; Yue et al., 2025), the models often produce redundant calculations or verbose explanations, which leads to bloated outputs and reduces inference efficiency (Hassid et al., 2025; Kuo et al., 2025). Consequently, a key challenge is to enable models to think less while preserving the performance.

Recent works have attempted to address this issue by enforcing efficiency through further training on filtered concise data (Yue et al., 2025; Qu et al., 2025; Sui et al., 2025). The common paradigm is to modify the training corpus so that the model is exposed primarily to shorter reasoning traces (Yuan et al., 2025; An et al., 2025; Zhao et al., 2025b). By strictly constraining the supervision signal, the model often struggles to adapt to novel reasoning styles or out-of-distribution (OOD) problems where the optimal length of reasoning may differ (Aggarwal & Welleck, 2025). Moreover, such methods risk discarding valuable intermediate reasoning that could improve accuracy. This motivates the need for a more adaptive and model-driven approach to efficient reasoning.

Concurrently, there has been growing interest in understanding how token-level uncertainty, as measured by entropy, influences model behavior (Lei et al., 2025; Cheng et al., 2025a; Zhang et al., 2025b). Entropy captures the spread of the predictive distribution: high-entropy segments often

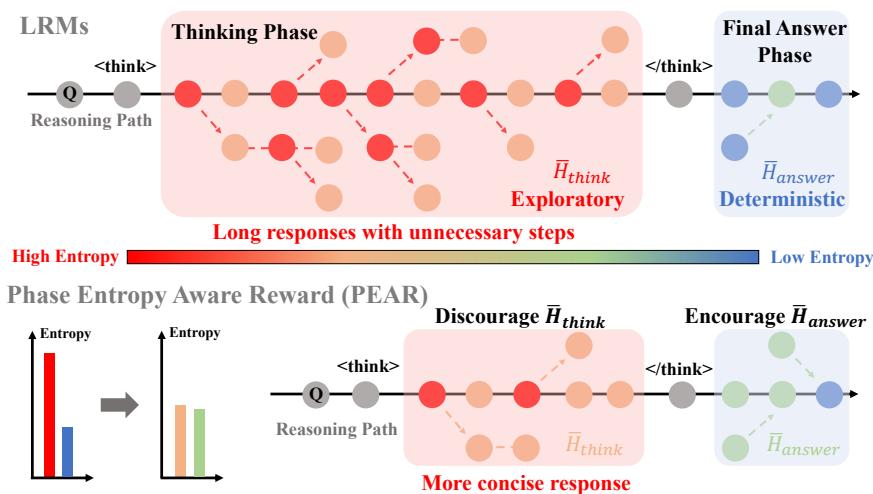


Figure 1: PEAR reduce the response length by penalizing excessive entropy during thinking phase while allowing moderate exploration at the final answer phase.

correspond to exploratory reasoning steps where the model searches for a correct path, while low-entropy segments capture more deterministic computations or final answer generation (Wang et al., 2025c; Zhang et al., 2025f). Therefore, recent works have begun to exploit these signals for improving calibration or enhancing reasoning robustness (Zhang et al., 2025c; Wang et al., 2025b). However, the connection between entropy and efficient reasoning has been largely overlooked.

Intuitively, a model that operates at consistently high entropy may explore too broadly and thus produce unnecessarily long reasoning chains, while a model biased toward low entropy may commit earlier to a determined reasoning path with more concise outputs. Motivated by this hypothesis, we first conduct empirical analysis, and observe a consistent positive correlation between average token-level entropy and response length across model scales and benchmarks. Interestingly, this relationship is not uniform across reasoning stages: the “thinking” portion of the output exhibits substantially higher entropy than the “final answer” portion, highlighting distinct roles of exploration and commitment in different stages of reasoning. Moreover, when we filter out high-entropy tokens, models’ performance will not be affected within certain ratio, suggesting that excessive entropy can be pruned without harming reasoning quality. Based on these observations, we propose **Phase Entropy Aware Reward (PEAR)**, a reward mechanism that explicitly decomposes entropy into thinking and final answer phases and integrates both components into the training objective. As illustrated in Figure 1, by penalizing excessive entropy during the thinking phase while moderating entropy in the final answer phase, PEAR encourages models to produce more concise reasoning traces, providing a soft and adaptive mechanism for balancing exploration with efficiency.

We evaluate PEAR on four widely used reasoning benchmarks: GSM8K, MATH500, AIME24, and AMC23. Across models of different scales, PEAR achieves substantial reductions in response length, ranging from 37.8% to 59.4%, while preserving accuracy with decreases of less than 1%. By incorporating both phases of a model’s response into the reward calculation, PEAR eliminates the need for manual data curation and generalizes effectively to out-of-domain questions through its broadly applicable training objective.

To summarize, our work makes the following key contributions:

- We empirically establish and validate a positive correlation between model entropy and response length in LRM, and show that the thinking phase exhibits substantially higher entropy than the final answer phase.
- We introduce Phase Entropy Aware Reward (PEAR), a reward mechanism that leverages this property to adaptively promote concise reasoning traces without depending on curated datasets or explicit length constraints.
- We provide extensive experimental evidence on GSM8K, MATH500, AIME24, and AMC23, showing that our method achieves substantial reductions in response length while preserving accuracy, with strong generalization capability to out-of-distribution tasks.

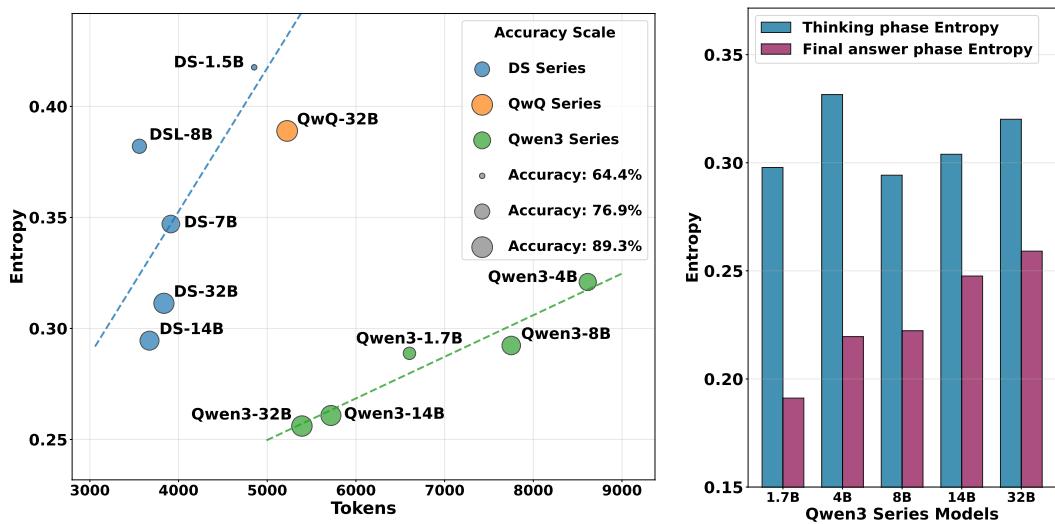


Figure 2: (a) Relationship between average entropy and response length across different models. The dot size indicates accuracy. DS(L) represents DeepSeek-R1-Distill-Qwen/Llama. (b) Comparison of average entropy between the thinking phase and the final answer phase.

2 PRELIMINARY ANALYSIS

In this section, we present empirical observations that motivate our approach. We first examine the relationship between entropy and response length, showing how higher entropy is associated with longer reasoning traces. Next, we differentiate the roles of entropy in the thinking phase versus the final answer phase, highlighting distinct patterns across stages. Finally, we conduct entropy-filtering experiments to demonstrate the robustness of low-entropy reasoning traces. All analyses are performed on GSM8K, MATH500, AIME24, and AMC23, where we report average accuracy, response length (in tokens), and entropy.

2.1 ENTROPY AND RESPONSE LENGTH

We begin by analyzing the correlation between response entropy and length across a diverse set of LRM_s. For each model, we measure the average entropy of the predictive distribution across all generated tokens and compare it against the total number of tokens produced during inference.

The entropy of the predictive distribution at each token position t is defined as

$$H_t = - \sum_{i=1}^{|V|} p_i^{(t)} \log p_i^{(t)}, \quad \bar{H} = \frac{1}{T} \sum_{t=1}^T H_t \quad (1)$$

where $p_i^{(t)}$ denotes the predicted probability of token i at position t , $|V|$ is the vocabulary size, T is the total response length, and \bar{H} is the average entropy across the entire response.

Figure 2(a) shows a consistent positive correlation between average entropy and response length across all examined model families and benchmarks. Responses with higher entropy are typically longer and more exploratory, while lower entropy corresponds to shorter and more concise traces. This pattern is especially evident within individual model series, where models of different scales exhibit a clear alignment between entropy levels and response characteristics.

These findings suggest that the entropy-length relationship is a fundamental property of large reasoning models. Longer responses naturally reflect higher uncertainty or diversity in token predictions, as captured by increased entropy. This makes entropy an interpretable internal signal for shaping model behavior. By integrating entropy into the reward design, we can provide models with a principled mechanism to balance thorough reasoning with efficient generation, enabling finer control over response length without relying on explicit constraints.

162
163

2.2 PHASE-DEPENDENT ENTROPY ANALYSIS

164
165
166
167
168
169
170
171
172
173

To further investigate the role of entropy in model responses, we analyze how entropy is distributed across different stages of generation. As shown in Figure 2(b), a clear distinction emerges between the thinking phase (before the `</think>` token) and the final answer phase (after the `</think>` token). The thinking phase exhibits consistently higher entropy, reflecting exploratory behavior as the model searches through multiple potential reasoning paths and generates longer, more diverse traces. In contrast, the final answer phase shows much lower entropy, indicating a more confident and deterministic commitment to a specific solution. These results indicate that the two phases serve complementary functions of exploration versus conclusion and should therefore be optimized differently. Phase-specific reward mechanisms can leverage this distinction, reducing unnecessary exploration during reasoning while preserving confidence and clarity in final answers.

174
175

2.3 ENTROPY FILTERING EXPERIMENTS

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

To assess how high-entropy tokens influence model reasoning and whether pruning them impacts reasoning quality, we conduct a systematic filtering experiment, as shown in Figure 3. Our procedure consists of two stages: first, we generate complete reasoning traces and compute token-level entropy within the thinking phase. Second, we retain only a specified percentage of tokens with the lowest entropy values while discarding the rest, thereby constructing filtered reasoning traces. These filtered traces are then fed back to the model to produce final answers, enabling us to directly examine how entropy-based filtering influences both reasoning efficiency and task accuracy. Results for more models can be found at Appendix B.

191
192
193
194
195
196
197
198
199
200

When retaining 80% or 60% of low-entropy tokens, accuracy remains stable or even improves compared to the unfiltered baseline. This indicates that the high-entropy tokens being removed mainly drive excessive exploration rather than contributing to correct reasoning, and their absence reduces noise in the reasoning process. Performance degradation only emerges under more aggressive filtering: retaining 40% or fewer low-entropy tokens leads to a sharp drop in accuracy, showing that essential reasoning steps are lost when the trace is compressed too heavily. Notably, the length of the final answer phase remains relatively unchanged across filtering levels, reinforcing that redundancy is concentrated in the thinking phase, where high-entropy tokens leads to over-elaboration and inflates response length without improving outcomes.

201
202

3 METHOD

203
204

3.1 GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

205
206
207
208
209

We begin with a brief introduction to the Group Relative Policy Optimization (GRPO) algorithm (Shao et al., 2024). Unlike standard PPO (Schulman et al., 2017), GRPO eliminates the need for a critic model by estimating advantages through reward normalization across a group of sampled responses to the same prompt. Specifically, for a prompt q with G responses and corresponding rewards $\{r_i\}_{i=1}^G$, the group-normalized advantage is defined as:

210
211
212
213

$$\hat{A}_{i,t} = \frac{r_i - \text{mean}(\{r_j\}_{j=1}^G)}{\text{std}(\{r_j\}_{j=1}^G)}. \quad (2)$$

214
215

This normalization emphasizes the differences among candidate outputs for the same question, which improves the stability of the gradient signal even under sparse reward settings. GRPO also incorporates a KL divergence term that regularizes the learned policy against a reference policy. The

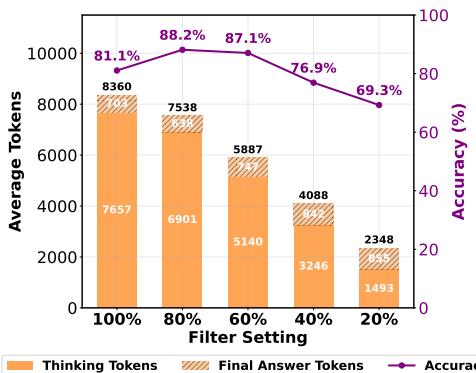


Figure 3: Accuracy and average response length in the entropy filtering experiments on Qwen3-4B.

216 overall surrogate objective can be written as:
 217

$$218 \quad \mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{q \sim P(Q), \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | q)} \\ 219 \quad 220 \quad \frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \left\{ \min \left[r_{i,t}(\theta) \hat{A}_{i,t}, \text{clip}(r_{i,t}(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_{i,t} \right] - \beta D_{\text{KL}}[\pi_{\theta} \parallel \pi_{\text{ref}}] \right\}. \quad (3)$$

222 where
 223

$$224 \quad r_{i,t}(\theta) = \frac{\pi_{\theta}(o_{i,t} \mid q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid q, o_{i,<t})}, \quad (4)$$

225 ϵ and β are hyperparameters, and D_{KL} denotes the KL divergence between the learned policy π_{θ} and
 226 a reference policy π_{ref} .
 227

228 3.2 PHASE ENTROPY AWARE REWARD (PEAR) 229

230 In the original GRPO algorithm, the reward r is typically defined in a rule-based manner, assigning
 231 a value of 1 to correct responses and 0 to incorrect ones. While simple and effective, this binary
 232 scheme overlooks richer characteristics of the response, such as the degree of exploration or reflec-
 233 tion embedded in the reasoning trajectory. As a result, it provides no guidance on how the model
 234 should balance exploratory reasoning with concise and reliable answer generation.

235 Building on the observed correlation between model entropy and response length in Section 2, we
 236 introduce **Phase Entropy Aware Reward (PEAR)** that leverages entropy as guidance to train mod-
 237 els to reason more efficiently. Let a sampled response be the token sequence $y = (y_1, \dots, y_T)$ that
 238 contains a thinking segment between `</think>` and `</think>` followed by the final answer.

239 Let k denote the index of the closing token `</think>` in y . We compute token entropies with
 240 respect to the old policy $\pi_{\theta_{\text{old}}}$:

$$242 \quad H_t = - \sum_{v \in \mathcal{V}} \pi_{\theta_{\text{old}}}(v \mid y_{<t}) \log \pi_{\theta_{\text{old}}}(v \mid y_{<t}), \quad t = 1, \dots, T. \quad (5)$$

244 We then average entropies for the thinking phase and final answer phase (excluding the `</think>`
 245 token itself):
 246

$$247 \quad \bar{H}_{\text{think}} = \frac{1}{k-1} \sum_{t=1}^{k-1} H_t, \quad \bar{H}_{\text{answer}} = \frac{1}{T-k} \sum_{t=k+1}^T H_t. \quad (6)$$

250 The phase reward \mathcal{P} integrates entropy from both the thinking and final answer phases, defined as:
 251

$$252 \quad \mathcal{P}(y) = \max(0, \bar{H}_{\text{think}} - \alpha \bar{H}_{\text{answer}}). \quad (7)$$

253 The coefficient α is a tunable hyperparameter that adjusts the contribution of the final answer phase
 254 entropy, enabling flexible control over the balance between reasoning exploration and final answer
 255 confidence. As discussed in Section 2.2, the reasoning process exhibits distinct entropy patterns: the
 256 thinking phase is characterized by higher entropy with exploratory behavior, while the final answer
 257 phase reflects lower entropy associated with deterministic solutions. To promote more efficient
 258 reasoning, we therefore aim to reduce entropy during the thinking phase to mitigate unnecessary
 259 exploration while preserving or even encouraging entropy in the final answer phase to maintain
 260 flexibility and completeness in solution formulation.

261 Given a base score $s \in (0, 1]$ for a correct final answer and a format score $r_{\text{fmt}} \in [0, 1]$ for mal-
 262 formed/incorrect answers, the phase-aware entropy-inclusive reward for response y is:

$$263 \quad r(y) = \begin{cases} \min(1, s - \mathcal{P}(y)), & \text{if the extracted answer equals the ground truth,} \\ 264 \quad r_{\text{fmt}}, & \text{otherwise.} \end{cases} \quad (8)$$

266 Finally, we replace r_i in Eq. equation 2 by $r(y_i)$ and keep the same GRPO advantage normalization:

$$268 \quad A_i = \frac{r(y_i) - \text{mean}(\{r(y_j)\}_{j=1}^G)}{\text{std}(\{r(y_j)\}_{j=1}^G)}. \quad (9)$$

270 **Edge cases.** If `</think>` token is absent we set $k = T$ and use $\bar{H}_{\text{post}} = 0$ (i.e., only thinking
 271 phase entropy contributes); if the answer cannot be parsed, we assign $r(y) = r_{\text{fmt}}$.
 272

273 With PEAR, the model is guided not only by final answer correctness but also by the quality of
 274 its reasoning behavior. The component for the thinking phase discourages excessive exploration,
 275 as high-entropy reasoning yields lower reward, thereby encouraging the model to generate more
 276 focused and efficient reasoning traces. Meanwhile, the component for the final answer phase helps
 277 stabilize and structure the concluding steps, ensuring that the model produces complete and coherent
 278 answers without sacrificing accuracy.
 279

280 4 RESULTS

281 4.1 EXPERIMENT SETTING

284 **Baseline Methods.** **GRPO** (Group Relative Policy Optimization) (Shao et al., 2024) is a rein-
 285 forcement learning framework that eliminates the need for a critic model by estimating advantages
 286 through reward normalization within a group of responses to the same prompt. **Step Entropy** (Li
 287 et al., 2025) adopts a two-stage training strategy that enables LLMs to generate compressed chain-of-
 288 thought (CoT) reasoning at inference time by strategically inserting [SKIP] tokens. **LCPO** (Length-
 289 Controlled Policy Optimization) (Aggarwal & Welleck, 2025) is a reinforcement learning method
 290 designed to jointly optimize for accuracy and compliance with user-specified length constraints.
 291

292 **Baseline Models.** We evaluate our method on widely used Large Reasoning Models (LRMs),
 293 including DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025), Qwen3-4B, and Qwen3-8B (Yang
 294 et al., 2025a), which are commonly adopted in prior works. For fair comparison, we also report
 295 results on these baseline models across different model scales. Detailed implementation settings for
 296 all baseline methods are provided in Appendix C.
 297

298 **Training and Evaluation Setup.** We conduct training using the open-source `ver1` framework
 299 (Sheng et al., 2025), with 7,473 samples from GSM8K (Cobbe et al., 2021) as the training dataset
 300 for all models. The dataset is consist of grade school math word problems, which are designed to
 301 evaluate question answering on basic mathematics that requires multi-step reasoning. The training
 302 configuration uses a batch size of 128 and a learning rate of 1×10^{-6} . We set the coefficient α for
 303 final answer phase reward calculation as 1. To evaluate the effectiveness and generalizability of our
 304 compression method, we benchmark on four standard mathematical reasoning datasets: **GSM8K**
 305 **test set** (Cobbe et al., 2021), **MATH500** (Hendrycks et al., 2021), **AIME24** (Li et al., 2024) and
 306 **AMC23** (Li et al., 2024), detailed introduction of these benchmarks can be found at Appendix D.
 307

308 Performance is measured along two dimensions: Accuracy (Acc) and the number of Generated
 309 Tokens (Tok), with a generation length cap of 16,384 tokens. Following the evaluation protocol of
 310 Guo et al. (2025), we adopt sampling with temperature set to 0.6 and top-p set to 0.95. Answer
 311 extraction and verification are carried out following the methodology of Yang et al. (2024).
 312

313 4.2 EFFECTIVENESS OF PEAR

314 As shown in Table 1, PEAR achieves the most substantial reduction in response length across all
 315 benchmarks and evaluated models, while maintaining accuracy at a level comparable to original
 316 models. Compared to original reasoning models, PEAR achieves an average response length re-
 317 duction of 37.8% to 55.2%, while preserving the same performance with the decrease of only 0.9%
 318 in accuracy. This indicates that encouraging models to lower entropy level at thinking phase dur-
 319 ing training provides an effective mechanism for eliminating redundant reasoning steps, thereby
 320 producing more concise outputs without compromising correctness.
 321

322 Compared to the 1.5B model, the results for the 4B and 8B models suggest that larger models,
 323 which are prone to verbose reasoning, benefit more from PEAR by achieving over 50% reduction
 324 in response length. This supports the intuition that bigger models tend to “over-explain”, creating
 325 greater opportunities for efficiency gains. Moreover, PEAR delivers a superior efficiency-accuracy
 326 trade-off on larger models relative to other baselines. In the case of Qwen3-8B, while Step Entropy
 327 and LCPO enforce shorter responses, they incur larger accuracy drops of 1.23% and 2.68%, respec-
 328 tively. In contrast, PEAR achieves even greater compression while limiting performance decline
 329

324
 325 Table 1: Acc@1 results on four mathematical reasoning benchmarks across three LRM_s. ↓ indicates
 326 the relative change with respect to the *Original* row of each model. PEAR consistently achieves the
 327 largest reduction in token usage across model scales, while maintaining comparable accuracy.

Method	GSM8K		MATH500		AIME24		AMC23		Average	
	Acc	Tok	Acc	Tok	Acc	Tok	Acc	Tok	Acc	Tok
DeepSeek-RI-Distill-Qwen-1.5B										
Original	85.97	1496	75.00	3620	26.66	8843	70.00	5253	64.41	4853
GRPO	87.86	1493	76.80	3132	33.33	7839	67.50	4899	66.37	4341 (↓ 10.6%)
Step Entropy	85.59	1629	76.80	3298	26.66	5640	70.00	4911	64.76	3870 (↓ 20.3%)
LCPO	87.11	2149	76.00	2895	26.66	5358	70.00	3324	64.94	3432 (↓ 29.3%)
PEAR	87.94	624	77.20	2358	23.33	5379	70.00	3705	64.62	3016 (↓ 37.8%)
Qwen3-4B										
Original	94.69	2634	85.40	5795	56.66	16792	87.50	9234	81.06	8614
GRPO	94.38	2321	84.80	5434	63.33	14061	90.00	8568	83.13	7596 (↓ 11.8%)
Step Entropy	94.84	2261	85.40	4704	60.00	9467	87.50	7317	81.93	5937 (↓ 31.1%)
LCPO	93.47	1846	84.20	3569	63.33	8528	85.00	6518	81.50	5115 (↓ 40.6%)
PEAR	94.01	1439	84.00	2695	56.66	5685	87.50	4173	80.54	3498 (↓ 59.4%)
Qwen3-8B										
Original	96.13	2335	86.60	5532	63.33	14977	90.00	8161	84.02	7751
GRPO	95.83	1999	85.20	5375	66.66	13195	90.00	7881	84.42	7113 (↓ 8.2%)
Step Entropy	95.14	2087	86.00	4658	60.00	6816	90.00	7352	82.79	5228 (↓ 32.6%)
LCPO	94.54	1645	85.00	4234	63.33	7173	82.50	6961	81.34	5003 (↓ 35.5%)
PEAR	94.54	1092	85.40	2664	60.00	6104	92.50	4045	83.11	3476 (↓ 55.2%)

351 to just 0.91%. This underscores PEAR’s adaptive nature, enabling it to compress reasoning traces
 352 aggressively without compromising accuracy.
 353

354 In addition, the benefits of PEAR extend beyond the training distribution, demonstrating strong out-
 355 of-distribution (OOD) robustness. Although trained solely on GSM8k, our method yields consistent
 356 improvements across all four benchmarks. For example, on Qwen3-4B, PEAR matches the vanilla
 357 model’s accuracy on AIME24 and AMC23 while consuming only 34% and 45% of the original
 358 reasoning budget, respectively. These results highlight that phase-dependent entropy serves as a
 359 universal, domain-agnostic signal for controlling reasoning efficiency, enabling our approach to
 360 generalize effectively across diverse reasoning tasks.
 361

362 Overall, these results validate the central hypothesis of our work: incorporating phase-dependent
 363 entropy into the reward design enables LRM_s to generate shorter and more efficient reasoning tra-
 364 jectories, while preserving accuracy and demonstrating strong generalization across domains.
 365

4.3 HOW PEAR AFFECTS REASONING

366 We further analyze how PEAR influences model reasoning across different phases, focusing on
 367 changes in entropy, number of reasoning steps, and average tokens per step after training with PEAR.
 368

369 As shown in Figure 4(a), PEAR consistently reduces the overall entropy across all evaluated mod-
 370 els. Crucially, the largest reduction occurs in the thinking phase, where excessive exploration had
 371 previously contributed to unnecessarily long reasoning traces. This demonstrates that our reward
 372 effectively steers models toward more confident and focused reasoning, eliminating redundant ex-
 373 ploratory steps in the thinking process. In contrast, the final answer phase shows a slight increase in
 374 entropy, indicating that the model retains flexibility when articulating its conclusions. Such phase-
 375 specific adjustments highlight PEAR’s ability to suppress over-exploration during reasoning while
 376 still supporting diversity and completeness in the final answer through the control towards entropy.
 377

Figure 4(b) illustrates the changes in the number of reasoning steps and tokens per step for the
 Qwen3-4B model across all benchmarks before and after applying PEAR. The results show that

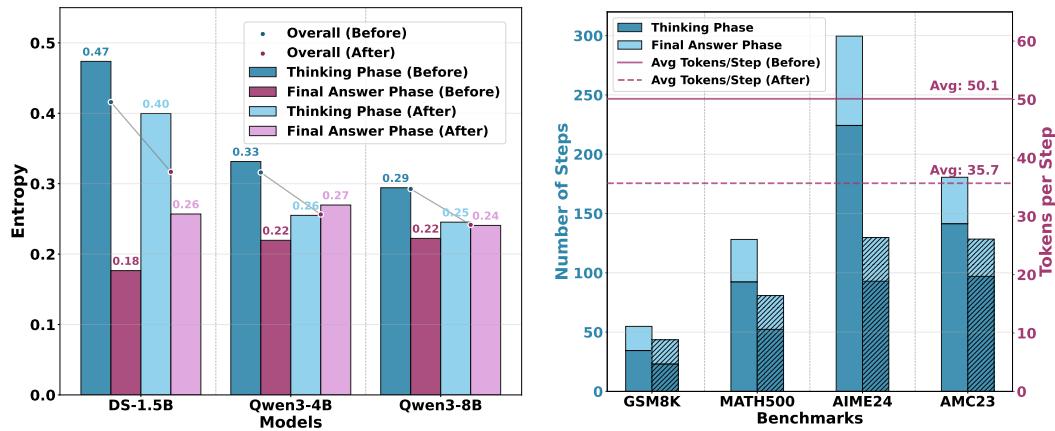


Figure 4: (a) Entropy changes before and after training with PEAR across thinking and final answer phases. (b) Changes in the number of reasoning steps and average tokens per step for Qwen3-4B. PEAR reduces both the number of reasoning steps and the average tokens per step.

PEAR not only reduces the total number of reasoning steps but also decreases the average tokens per step, reflecting a shift toward more deterministic and efficient reasoning. Importantly, the reduction is concentrated in the thinking phase, consistent with PEAR’s objective of discouraging excessive exploration while maintaining entropy in the final answer phase. This effect is especially pronounced on more challenging datasets such as AIME24, where the number of thinking steps is reduced by more than half. These results further validate the effectiveness of PEAR in producing concise reasoning trajectories without compromising solution quality.

Crucially, these findings explain why PEAR achieves substantial reductions in response length without sacrificing accuracy, highlighting phase-dependent entropy as a powerful control signal for balancing efficiency and performance in large reasoning models.

4.4 HYPERPARAMETER STUDY

A central hyperparameter in our reward design is the coefficient α for final answer phase’s entropy. This parameter directly controls the extent to which the model is encouraged for higher entropy in the final answer phase. Figure 5 illustrates the impact of the hyperparameter α on Qwen3-4B across four benchmarks. By default, α is set to a positive value in order to avoid “reward gaming”, where the model drives entropy down indiscriminately to maximize reward, which often leads to degraded performance.

The experiments confirm this hypothesis. When $\alpha = 0$, post-thinking entropy is ignored, and the model is optimized solely to minimize entropy in the thinking phase. While efficient, this strict reduction harms accuracy, as the model loses the flexibility needed in the answer phase to refine or adjust its predictions. The problem becomes even more pronounced when $\alpha = -1$, where both the reasoning and answer phases are simultaneously penalized for entropy. In this setting, the model is overly constrained, producing shorter but less reliable responses and further degrading performance.

As α increases, the penalty on post-thinking entropy becomes stronger. This relaxes the restrictive effect on the answer phase, allowing the model to preserve higher entropy where needed and thereby improving accuracy. At moderate values of α (e.g., 1), we observe a favorable balance: the model reduces redundancy in its reasoning while maintaining strong performance. However, when α is set too high, the penalty effect becomes negligible, and the model’s behavior converges toward the baseline, producing longer responses and diminishing the efficiency gains.

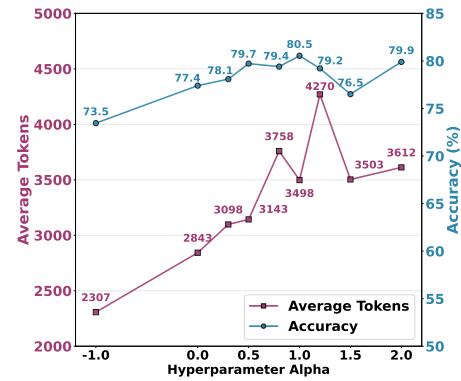


Figure 5: Average accuracy and response length of Qwen3-4B trained with different α .

432

5 RELATED WORK

433

5.1 EFFICIENT REASONING

436 A growing body of research has focused on improving the efficiency of LRM_s. Early exit stops
 437 model dynamically once certain criteria has been reached (Liao et al., 2025). Typical methods in-
 438 clude designing stopping rules based on internal reasoning state (Yang et al., 2025b; Qiao et al.,
 439 2025; Zhu et al., 2025; Xu et al., 2025), generation behavior (Wang et al., 2025a;d; Liu & Wang,
 440 2025), or without relying on pre-defined triggers (Dai et al., 2025). Another complementary re-
 441 search direction focuses on compressing chain-of-thought reasoning traces, such as parallel thinking
 442 compression (Munkhbat et al., 2025; Ghosal et al., 2025), filtering or summarizing intermediate re-
 443 reasoning tokens and steps (Yu et al., 2025; Luo et al., 2025a; Yuan et al., 2025; Xia et al., 2025; Zhao
 444 et al., 2025a), and compression reward mechanisms (Cheng et al., 2025b; Zeng et al., 2025). Not-
 445 ably, Li et al. (2025) introduce step entropy for quantifying the informational contribution of each
 446 reasoning step within CoT trajectories, enabling selective removal of low-entropy steps. Besides,
 447 adaptive reasoning methods attempt to dynamically adjust the depth or length of reasoning depend-
 448 ing on the difficulty of the input, this includes carefully designed reward (Jiang et al., 2025; Wang
 449 et al., 2025e; Luo et al., 2025b) and reasoning mode switching (Zhang et al., 2025d; Huang et al.,
 450 2025; Zhang et al., 2025a). For example, LCPO (Aggarwal & Welleck, 2025) include user-specified
 451 length constraint into the training reward to guide the model toward answering within the constraint.
 452 However, such methods discard valuable intermediate reasoning that could improve accuracy. In
 453 contrast, our method utilizes the intrinsic phase-dependent entropy as reward signal, making it an
 454 adaptive and model-driven approach to helps the model reason more efficiently.

455

5.2 REASONING THROUGH ENTROPY CONTROL

456 With the increasing research focus on Reinforcement Learning with Verifiable Rewards (RLVR),
 457 model entropy (Shannon, 1948) has emerged as a powerful internal signal for shaping reasoning
 458 behaviors in large language models. Recent work has investigated how policy entropy evolves during
 459 reinforcement learning-based post-training of reasoning models. Zhang et al. (2025f) reveal the
 460 correlation between entropy collapse and performance saturation as well as subsequent degradation.
 461 Cui et al. (2025) further shows how high-probability/high-advantage updates systematically reduce
 462 entropy. Another complementary direction treats entropy minimization itself as supervision by di-
 463 rectly minimizing token-level entropy via finetuning or using negative entropy as the sole reward in
 464 RL (Agarwal et al., 2025; Prabhudesai et al., 2025). Besides, recent work has explored augmenting
 465 reinforcement learning approaches by incorporating entropy-based mechanisms to encourage ex-
 466 ploration in reasoning chains (Zhang et al., 2025e; Cheng et al., 2025a). Furthermore, Wang et al.
 467 (2025c) reveal that the effectiveness of RLVR stems primarily from optimizing high-entropy to-
 468 kens that determine critical reasoning directions. Selectively targeting these high-entropy minority
 469 tokens during optimization can substantially enhance reasoning capabilities while improving com-
 470 putational efficiency. While most existing studies leverage entropy to improve reasoning capability,
 471 our approach uses entropy as a control signal for efficiency, enabling adaptive length control with-
 472 out explicit token budgets while preserving accuracy. This reframes entropy not only as a tool for
 473 capability shaping but also as a principled knob for controlling the cost of reasoning.

474

6 CONCLUSION

475 In this work, we conduct empirical analysis and observed the consistent positive relation between
 476 entropy and response length across reasoning stages: the thinking phase exhibits higher entropy,
 477 reflecting exploratory behavior of longer response, while the final answer phase shows lower en-
 478 tropy, indicating more deterministic solution. Based on this finding, we address the challenge of
 479 efficient reasoning by introducing Phase Entropy Aware Reward (PEAR), a reward mechanism that
 480 distinguishes entropy between thinking phase and final answer phase during training. By discour-
 481 aging entropy in thinking phase while preserving flexibility in final answer phase, PEAR enables
 482 adaptive control of response length without requiring explicit length targets or rigid truncation rules.
 483 Extensive experiments across four benchmarks have demonstrated that PEAR reduces token redun-
 484 dancy by a large percentage of 37.8% to 59.4% while preserving accuracy. Besides, PEAR also
 485 demonstrate strong generalization capability to out-of-distribution tasks.

486 ETHICS STATEMENT
487488 This work adheres to the ICLR Code of Ethics.¹ Our research focuses on improving the efficiency
489 of Large Reasoning Models (LRMs) through phase-dependent entropy reward design. No human
490 subjects, personally identifiable information, or sensitive user data were used in this study. All
491 datasets employed (GSM8K, MATH500, AIME24, and AMC23) are publicly available benchmarks
492 designed for evaluating mathematical reasoning tasks. The methods proposed in this paper aim to re-
493 duce computational overhead by shortening reasoning traces, which contributes to lowering energy
494 consumption and improving the sustainability of large-scale model deployment. We do not anticipate
495 direct harmful applications; however, as with all advances in language modeling, there exists
496 a risk of misuse in generating misleading or harmful reasoning traces. We encourage responsible
497 use and recommend that future work continue to consider fairness, transparency, and accountability
498 in the deployment of reasoning models. No conflicts of interest or external sponsorships influenced
499 this work.
500501 REPRODUCIBILITY STATEMENT
502503 We have made extensive efforts to ensure the reproducibility of our work. All datasets used in our
504 experiments (GSM8K, MATH500, AIME24, and AMC23) are publicly available and referenced
505 in Section 4.1 and Appendix D. Detailed descriptions of our training setup, hyperparameters, and
506 evaluation protocol are provided in Section 4.1 and Appendix C. For baselines, we follow official im-
507 plementations and cite the corresponding repositories to ensure faithful comparison in Appendix C.
508 Our method is implemented using the open-sourced `ver1` framework (Sheng et al., 2025), and we
509 will release the complete source code and training scripts in the future to facilitate replication of
510 results. Together, these resources provide a clear pathway for reproducing both the training process
511 and reported results.
512513 REFERENCES
514515

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effec-
516 tiveness of entropy minimization in llm reasoning. *arXiv preprint arXiv:2505.15134*, 2025. URL
517 <https://arxiv.org/abs/2505.15134>.

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
518 reinforcement learning. *arXiv preprint arXiv:2503.04697*, 2025. URL <https://arxiv.org/abs/2503.04697>.

Sohyun An, Ruochen Wang, Tianyi Zhou, and Cho-Jui Hsieh. Don’t think longer, think wisely:
519 Optimizing thinking dynamics for large reasoning models. *arXiv preprint arXiv:2505.21765*,
520 2025. URL <https://arxiv.org/abs/2505.21765>.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qizhi Liu,
521 Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for $2+3=?$ on the overthinking
522 of o1-like llms. *arXiv preprint arXiv:2412.21187*, 2024.

Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and
523 Furu Wei. Reasoning with exploration: An entropy perspective. *arXiv preprint arXiv:2506.14758*,
524 2025a. URL <https://arxiv.org/abs/2506.14758>.

Zhengxiang Cheng, Dongping Chen, Mingyang Fu, and Tianyi Zhou. Optimizing length com-
525 pression in large reasoning models. *arXiv preprint arXiv:2506.14755*, 2025b. URL <https://arxiv.org/abs/2506.14755>.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
526 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
527 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021. URL <https://arxiv.org/abs/2110.14168>.

528
529
530
531
532
533
534
535
536
537
538
539
1¹<https://iclr.cc/public/CodeOfEthics>

540 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
 541 Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
 542 reasoning language models. *arXiv preprint arXiv:2505.22617*, 2025. URL <https://arxiv.org/abs/2505.22617>.

543

544 Muzhi Dai, Chenxu Yang, and Qingyi Si. S-grpo: Early exit via reinforcement learning in reasoning
 545 models. *arXiv preprint arXiv:2505.07686*, 2025. URL <https://arxiv.org/abs/2505.07686>.

546

547 Soumya Suvra Ghosal, Souradip Chakraborty, Avinash Reddy, Yifu Lu, Mengdi Wang, Dinesh
 548 Manocha, Furong Huang, Mohammad Ghavamzadeh, and Amrit Singh Bedi. Does thinking
 549 more always help? understanding test-time scaling in reasoning models. *arXiv preprint
 550 arXiv:2506.04210*, 2025. URL <https://arxiv.org/abs/2506.04210>.

551

552 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 553 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 554 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025. URL <https://arxiv.org/abs/2501.12948>.

555

556 Michael Hassid, Gabriel Synnaeve, Yossi Adi, and Roy Schwartz. Don't overthink it. preferring
 557 shorter thinking chains for improved llm reasoning. *arXiv preprint arXiv:2505.17813*, 2025.
 558 URL <https://arxiv.org/abs/2505.17813>.

559

560 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 561 and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In *Ad-*
 562 *vances in Neural Information Processing Systems (NeurIPS), Track on Datasets and Benchmarks*,
 563 2021.

564

565 Shijue Huang, Hongru Wang, Wanjun Zhong, Zhaochen Su, Jiazhan Feng, Bowen Cao, and Yi R
 566 Fung. Adactrl: Towards adaptive and controllable reasoning via difficulty-aware budgeting. *arXiv
 567 preprint arXiv:2505.18822*, 2025. URL <https://arxiv.org/abs/2505.18822>.

568

569 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 570 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv
 571 preprint arXiv:2412.16720*, 2024. URL <https://arxiv.org/abs/2412.16720>.

572

573 Lingjie Jiang, Xun Wu, Shaohan Huang, Qingxiu Dong, Zewen Chi, Li Dong, Xingxing Zhang,
 574 Tengchao Lv, Lei Cui, and Furu Wei. Think only when you need with large hybrid-reasoning
 575 models. *arXiv preprint arXiv:2505.14631*, 2025. URL <https://arxiv.org/abs/2505.14631>.

576

577 Martin Kuo, Jianyi Zhang, Aolin Ding, Qinsi Wang, Louis DiValentin, Yujia Bao, Wei Wei, Hai Li,
 578 and Yiran Chen. H-cot: Hijacking the chain-of-thought safety reasoning mechanism to jailbreak
 579 large reasoning models, including openai o1/o3, deepseek-r1, and gemini 2.0 flash thinking. *arXiv
 580 preprint arXiv:2502.12893*, 2025. URL <https://arxiv.org/abs/2502.12893>.

581

582 Shiye Lei, Zhihao Cheng, Kai Jia, and Dacheng Tao. Revisiting llm reasoning via information bot-
 583 tleneck. *arXiv preprint arXiv:2507.18391*, 2025. URL <https://arxiv.org/abs/2507.18391>.

584

585 Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
 586 Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
 587 ai4maths with 860k pairs of competition math problems and solutions. *Hugging Face repository*,
 588 13(9):9, 2024.

589

590 Zeju Li, Jianyuan Zhong, Ziyang Zheng, Xiangyu Wen, Zhijian Xu, Yingying Cheng, Fan
 591 Zhang, and Qiang Xu. Compressing chain-of-thought in llms via step entropy. *arXiv preprint
 592 arXiv:2508.03346*, 2025. URL <https://arxiv.org/abs/2508.03346>.

593

594 Baohao Liao, Hanze Dong, Yuhui Xu, Doyen Sahoo, Christof Monz, Junnan Li, and Caiming Xiong.
 595 Fractured chain-of-thought reasoning. *arXiv preprint arXiv:2505.12992*, 2025. URL <https://arxiv.org/abs/2505.12992>.

594 Xin Liu and Lu Wang. Answer convergence as a signal for early stopping in reasoning. *arXiv*
 595 *preprint arXiv:2506.02536*, 2025. URL <https://arxiv.org/abs/2506.02536>.
 596

597 Feng Luo, Yu-Neng Chuang, Guanchu Wang, Hoang Anh Duy Le, Shaochen Zhong, Hongyi Liu,
 598 Jiayi Yuan, Yang Sui, Vladimir Braverman, Vipin Chaudhary, et al. Autol2s: Auto long-short
 599 reasoning for efficient large language models. *arXiv preprint arXiv:2505.22662*, 2025a. URL
 600 <https://arxiv.org/abs/2505.22662>.

601 Haotian Luo, Haiying He, Yibo Wang, Jinluan Yang, Rui Liu, Naiqiang Tan, Xiaochun Cao,
 602 Dacheng Tao, and Li Shen. Adar1: From long-cot to hybrid-cot via bi-level adaptive reasoning
 603 optimization. *arXiv preprint arXiv:2504.21659*, 2025b. URL <https://arxiv.org/abs/2504.21659>.
 604

605 Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-
 606 training elicits concise reasoning in large language models. *arXiv preprint arXiv:2502.20122*,
 607 2025. URL <https://arxiv.org/abs/2502.20122>.
 608

609 Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak.
 610 Maximizing confidence alone improves reasoning. *arXiv preprint arXiv:2505.22660*, 2025. URL
 611 <https://arxiv.org/abs/2505.22660>.
 612

613 Ziqing Qiao, Yongheng Deng, Jiali Zeng, Dong Wang, Lai Wei, Fandong Meng, Jie Zhou, Ju Ren,
 614 and Yaoxue Zhang. Concise: Confidence-guided compression in step-by-step efficient reasoning.
 615 *arXiv preprint arXiv:2505.04881*, 2025. URL <https://arxiv.org/abs/2505.04881>.
 616

617 Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
 618 Liu, Shuxian Liang, Junxian He, et al. A survey of efficient reasoning for large reasoning models:
 619 Language, multimodality, and beyond. *arXiv preprint arXiv:2503.21614*, 2025. URL <https://arxiv.org/abs/2503.21614>.
 620

621 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 622 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017. URL <https://arxiv.org/abs/1707.06347>.
 623

624 Claude E Shannon. A mathematical theory of communication. *The Bell system technical journal*,
 625 27(3):379–423, 1948.
 626

627 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 628 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 629 reasoning in open language models, 2024. *arXiv preprint arXiv:2402.03300*, 2(3):5, 2024. URL
 630 <https://arxiv.org/abs/2402.03300>.
 631

632 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 633 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings
 634 of the Twentieth European Conference on Computer Systems*, pp. 1279–1297, 2025.
 635

636 Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
 637 Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
 638 reasoning for large language models. *arXiv preprint arXiv:2503.16419*, 2025. URL <https://arxiv.org/abs/2503.16419>.
 639

640 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 641 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement learning with
 642 llms. *arXiv preprint arXiv:2501.12599*, 2025. URL <https://arxiv.org/abs/2501.12599>.
 643

644 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
 645 <https://qwenlm.github.io/blog/qwq-32b/>.
 646

647 Chenlong Wang, Yuanning Feng, Dongping Chen, Zhaoyang Chu, Ranjay Krishna, and Tianyi
 648 Zhou. Wait, we don't need to "wait"! removing thinking tokens improves reasoning efficiency.
 649 *arXiv preprint arXiv:2506.08343*, 2025a. URL <https://arxiv.org/abs/2506.08343>.
 650

648 Jiakang Wang, Runze Liu, Fuzheng Zhang, Xiu Li, and Guorui Zhou. Stabilizing knowledge, pro-
 649 moting reasoning: Dual-token constraints for rlvr. *arXiv preprint arXiv:2507.15778*, 2025b. URL
 650 <https://arxiv.org/abs/2507.15778>.

651 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 652 Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
 653 effective reinforcement learning for llm reasoning. *arXiv preprint arXiv:2506.01939*, 2025c. URL
 654 <https://arxiv.org/abs/2506.01939>.

655 Yue Wang, Qiuwei Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu,
 656 Juntao Li, Zhuosheng Zhang, et al. Thoughts are all over the place: On the underthinking of
 657 o1-like llms. *arXiv preprint arXiv:2501.18585*, 2025d. URL <https://arxiv.org/abs/2501.18585>.

658 Yunhao Wang, Yuhao Zhang, Tinghao Yu, Can Xu, Feng Zhang, and Fengzong Lian. Adaptive deep
 659 reasoning: Triggering deep thinking when needed. *arXiv preprint arXiv:2505.20101*, 2025e. URL
 660 <https://arxiv.org/abs/2505.20101>.

661 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 662 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 663 neural information processing systems*, 35:24824–24837, 2022.

664 Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable
 665 chain-of-thought compression in llms. *arXiv preprint arXiv:2502.12067*, 2025. URL <https://arxiv.org/abs/2502.12067>.

666 Yuhui Xu, Hanze Dong, Lei Wang, Doyen Sahoo, Junnan Li, and Caiming Xiong. Scalable chain
 667 of thoughts via elastic reasoning. *arXiv preprint arXiv:2505.05315*, 2025. URL <https://arxiv.org/abs/2505.05315>.

668 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 669 Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. *arXiv preprint
 670 arXiv:2407.10671*, 2024. URL <https://arxiv.org/abs/2507.10671>.

671 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 672 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 673 arXiv:2505.09388*, 2025a. URL <https://arxiv.org/abs/2505.09388>.

674 Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin, Li Cao,
 675 and Weiping Wang. Dynamic early exit in reasoning models. *arXiv preprint arXiv:2504.15895*,
 676 2025b. URL <https://arxiv.org/abs/2504.15895>.

677 Bin Yu, Hang Yuan, Haotian Li, Xueyin Xu, Yuliang Wei, Bailing Wang, Weizhen Qi, and Kai
 678 Chen. Long-short chain-of-thought mixture supervised fine-tuning eliciting efficient reasoning in
 679 large language models. *arXiv preprint arXiv:2505.03469*, 2025. URL <https://arxiv.org/abs/2505.03469>.

680 Hang Yuan, Bin Yu, Haotian Li, Shijun Yang, Christina Dan Wang, Zhou Yu, Xueyin Xu, Weizhen
 681 Qi, and Kai Chen. Not all tokens are what you need in thinking. *arXiv preprint arXiv:2505.17827*,
 682 2025. URL <https://arxiv.org/abs/2505.17827>.

683 Linan Yue, Yichao Du, Yizhi Wang, Weibo Gao, Fangzhou Yao, Li Wang, Ye Liu, Ziyu Xu, Qi Liu,
 684 Shimin Di, et al. Don't overthink it: A survey of efficient r1-style large reasoning models. *arXiv
 685 preprint arXiv:2508.02120*, 2025. URL <https://arxiv.org/abs/2508.02120>.

686 Zihao Zeng, Xuyao Huang, Boxiu Li, Hao Zhang, and Zhijie Deng. Done is better than per-
 687 fect: Unlocking efficient reasoning by structured multi-turn decomposition. *arXiv preprint
 688 arXiv:2505.19788*, 2025. URL <https://arxiv.org/abs/2505.19788>.

689 Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adapthink: Reasoning models can
 690 learn when to think. *arXiv preprint arXiv:2505.13417*, 2025a. URL <https://arxiv.org/abs/2505.13417>.

702 Jinghan Zhang, Xiting Wang, Fengran Mo, Yeyang Zhou, Wanfu Gao, and Kunpeng Liu. Entropy-
 703 based exploration conduction for multi-step reasoning. In *Findings of the Association for Compu-*
 704 *tational Linguistics: ACL 2025*, pp. 3895–3906, 2025b. doi: 10.18653/v1/2025.findings-acl.201.
 705 URL <https://aclanthology.org/2025.findings-acl.201/>.

706 Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
 707 is already half the answer: Fully unsupervised llm reasoning incentivization. *arXiv preprint*
 708 *arXiv:2504.05812*, 2025c. URL <https://arxiv.org/abs/2504.05812>.

710 Shengjia Zhang, Junjie Wu, Jiawei Chen, Changwang Zhang, Xingyu Lou, Wangchunshu Zhou,
 711 Sheng Zhou, Can Wang, and Jun Wang. Othink-r1: Intrinsic fast/slow thinking mode switch-
 712 ing for over-reasoning mitigation. *arXiv preprint arXiv:2506.02397*, 2025d. URL <https://arxiv.org/abs/2506.02397>.

714 Xingjian Zhang, Siwei Wen, Wenjun Wu, and Lei Huang. Edge-grpo: Entropy-driven grpo with
 715 guided error correction for advantage diversity. *arXiv preprint arXiv:2507.21848*, 2025e. URL
 716 <https://arxiv.org/abs/2507.21848>.

718 Yanzhi Zhang, Zhaoxi Zhang, Haoxiang Guan, Yilin Cheng, Yitong Duan, Chen Wang, Yue Wang,
 719 Shuxin Zheng, and Jiyan He. No free lunch: Rethinking internal feedback for llm reasoning.
 720 *arXiv preprint arXiv:2506.17219*, 2025f. URL <https://arxiv.org/abs/2506.17219>.

721 Haoran Zhao, Yuchen Yan, Yongliang Shen, Haolei Xu, Wenqi Zhang, Kaitao Song, Jian Shao,
 722 Weiming Lu, Jun Xiao, and Yueteng Zhuang. Let llms break free from overthinking via self-
 723 braking tuning. *arXiv preprint arXiv:2505.14604*, 2025a. URL <https://arxiv.org/abs/2505.14604>.

725 Shangziqi Zhao, Jiahao Yuan, Guisong Yang, and Usman Naseem. Can pruning improve reason-
 726 ing? revisiting long-cot compression with capability in mind for better reasoning. *arXiv preprint*
 727 *arXiv:2505.14582*, 2025b. URL <https://arxiv.org/abs/2505.14582>.

729 Zihao Zhu, Hongbao Zhang, Ruotong Wang, Ke Xu, Siwei Lyu, and Baoyuan Wu. To think or
 730 not to think: Exploring the unthinking vulnerability in large reasoning models. *arXiv preprint*
 731 *arXiv:2502.12202*, 2025. URL <https://arxiv.org/abs/2502.12202>.

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

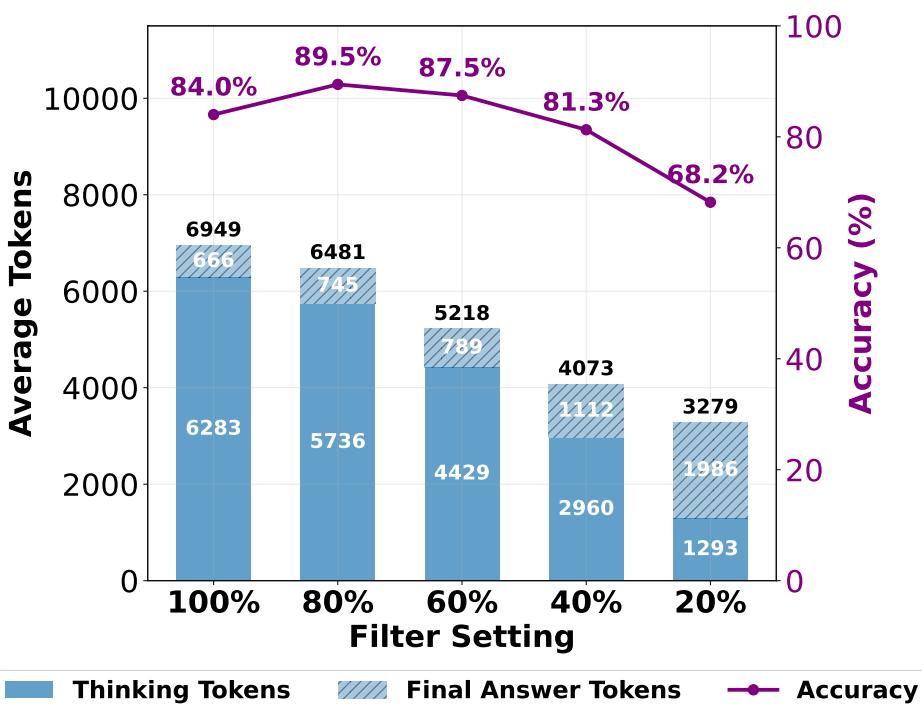


Figure 6: Accuracy and average response length in the entropy filtering experiments on Qwen3-8B.

A THE USE OF LARGE LANGUAGE MODELS (LLMs)

Large Language Models (LLMs) were used solely for polishing the writing and improving the clarity of presentation. They were **NOT** involved in research ideation, methodology design, experiments, analysis, or any other substantive aspect of this work. All scientific contributions, results, and conclusions are the sole responsibility of the authors.

B ENTROPY FILTERING EXPERIMENTS FOR QWEN3-8B

Figure 6 demonstrates the entropy filtering experiment result on Qwen3-8B. The results reveal a similar trend as Qwen3-4B discussed in Section 2.3. When retaining 80% or 60% of low-entropy tokens, accuracy remains stable or even improves compared to the unfiltered baseline. Performance degradation only emerges under more aggressive filtering: retaining 40% or fewer low-entropy tokens leads to a sharp drop in accuracy, showing that essential reasoning steps are lost when the trace is compressed too heavily. Notably, the length of the final answer phase also remains relatively unchanged across filtering levels, reinforcing that redundancy is concentrated in the thinking phase.

This result further supports the conclusion that the high-entropy tokens being removed mainly drive excessive exploration rather than contributing to correct reasoning, and their absence reduces noise in the reasoning process.

C EXPERIMENT DETAILS FOR BASELINE METHODS

We evaluate three baseline methods: **GRPO** (Group Relative Policy Optimization) (Shao et al., 2024), **Step Entropy** (Li et al., 2025), and **LCPO** (Length-Controlled Policy Optimization) (Aggarwal & Welleck, 2025) using the GSM8K training set (Cobbe et al., 2021). Experiments are conducted across three model sizes: DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025), Qwen3-4B, and Qwen3-8B (Yang et al., 2025a). The implementation details for each baseline are provided below.

810 For GRPO (Shao et al., 2024), we use the open-source `ver1` framework (Sheng et al., 2025)² with
 811 the original rule-based reward, which assigns a reward of 1 for correct answers and 0 otherwise. We
 812 set the rollout number to 8 and the KL penalty coefficient to 1×10^{-3} .

813 For Step Entropy (Li et al., 2025), we use the official implementation provided by the authors³. The
 814 method follows a two-stage training strategy: Supervised Fine-Tuning (SFT) with pruned CoT data,
 815 followed by Reinforcement Learning (RL) with GRPO. During the SFT stage, training is performed
 816 with mixed precision (FP16), a learning rate of 2×10^{-5} , and a weight decay of 0.01. In the RL
 817 stage, the learning rate is set to 1×10^{-5} and the KL penalty is fixed at 0.1.

818 For LCPO (Aggarwal & Welleck, 2025), we use the official codebase provided by the authors⁴ and
 819 follow the L1-Exact setup. Training is performed with GRPO under length control and a maximum
 820 length constraint. We set the learning rate to 1×10^{-6} with a batch size of 64, and restrict the context
 821 length to 4K tokens during training. Rollout number is fixed at 8 with a sampling temperature of
 822 0.6, and the KL penalty coefficient is set to 1×10^{-3} .

824 D EVALUATION BENCHMARKS

825 To evaluate the effectiveness and generalizability of our compression method, we benchmark on
 826 four standard mathematical reasoning datasets.

827 **GSM8K test set** (Cobbe et al., 2021) is a carefully designed benchmark comprising 1,319 grade-
 828 school mathematics word problems. Each question typically requires two to eight sequential rea-
 829 soning steps, primarily involving basic arithmetic operations applied across multiple intermediate
 830 stages. **MATH500** (Hendrycks et al., 2021) contains a subset of 500 problems drawn from high
 831 school mathematics competitions. We follow the evaluation setup of OpenAI by adopting the same
 832 curated subset. **AIME24** (Li et al., 2024) features 30 problems from the 2024 American Invita-
 833 tional Mathematics Examination (AIME). As one of the most prestigious secondary-level com-
 834 petitions, AIME problems demand sophisticated reasoning across diverse topics, including algebra,
 835 combinatorics, geometry, number theory, and probability. **AMC23** (Li et al., 2024) consists of 40
 836 problems taken from the 2023 American Mathematics Competition (AMC). The dataset covers core
 837 high school mathematics domains such as algebra, geometry, combinatorics, and number theory,
 838 providing a broad yet rigorous evaluation of mathematical reasoning ability.

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862 ²<https://github.com/volcengine/ver1>

863 ³https://github.com/staymylove/COT_Compression_via_Step_entropy

864 ⁴<https://github.com/cmu-13/11>