
Kevin: Multi-Turn RL for Generating CUDA Kernels

Carlo Baronio * 1 Pietro Marsella * 1 Ben Pan * 1 Simon Guo 1 Silas Alberti 2

Abstract
Writing GPU kernels is a challenging task and
critical for AI systems’ efficiency. It is also highly
iterative: domain experts write code and improve
performance through execution feedback. More-
over, it presents verifiable rewards like correctness
and speedup, making it a natural environment to
apply Reinforcement Learning (RL). To explicitly
incorporate the iterative nature of this process
into training, we develop a flexible multi-turn
RL recipe that addresses unique challenges en-
countered in real-world settings, such as learning
from long trajectories and effective reward attri-
bution across turns. We present Kevin the Kernel
Writer, the first model trained with multi-turn RL
for CUDA kernel generation and optimization.
In our evaluation setup, Kevin shows significant
gains over its base model (QwQ-32B), improving
correctness of generated kernels (in pure CUDA)
from 56% to 82% and mean speedup from 0.53x
to 1.10x of baseline (PyTorch Eager), and surpass-
ing frontier models like o4-mini (0.78x). Finally,
we study its behavior across test-time scaling axes:
we found scaling serial refinement more beneficial
than parallel sampling. In particular, when given
more refinement turns, Kevin shows a higher rate
of improvement.

1. Introduction
Writing efficient GPU kernels (Dao et al., 2022; Zhao et al.,
2025; Ye et al., 2025) in domain-specific languages such as
CUDA (Nickolls et al., 2008), Triton (Tillet et al., 2019),
ThunderKittens (Spector et al., 2024), CUTLASS (NVIDIA
Corporation, 2025) is critical for enabling AI systems’ effi-
ciency at scale, yet it remains difficult and costly due to the
deep domain expertise required. This has led to a surge of
interest in exploring how Large Language Models (LLMs)

*Equal contribution 1Stanford University, Stanford, CA, USA
2Cognition AI, USA. Correspondence to: Carlo Baronio <cbaro-
nio@stanford.edu>, Pietro Marsella <marsella@stanford.edu>,
Ben Pan <benpan@stanford.edu>.

Published at the Exploration in AI Today (EXAIT) Workshop, ICML
2025, Vancouver, Canada. Copyright 2025 by the author(s).

could help generate GPU kernels (Ouyang et al., 2025; Li
et al., 2025; NVIDIA, 2025) using agentic systems (Damani
et al., 2024; Chen et al., 2025; METR, 2025; Lange et al.,
2025; Google DeepMind, 2025) that leverage extensive test-
time compute. These inference-based approaches are inher-
ently limited by the base models’ capability in this domain.
On the other hand, the presence of verifiable rewards in
the form of correctness and speedup against a reference im-
plementation makes reinforcement learning (RL) a natural
approach. This leads to our investigation: How can we train
a model using RL to solve the real-world engineering task
of CUDA kernel generation?

GPU kernel generation emphasizes not just functional cor-
rectness, but more importantly performance — distinguish-
ing this code optimization problem from binary-reward tasks
that involve passing unit tests (Jimenez et al., 2024) or pro-
ducing an acceptable proof (Zheng et al., 2022). Since
speedup is a continuous goal, performance engineers take
an iterative approach: they conduct many rounds of opti-
mization based on previous kernel code, its execution result,
and timing profiles. Hence, arriving at an optimized solution
relies on multiple turns conditioned on previous execution
feedback. In contrast, popular RL methods to train LLMs on
verifiable rewards (Shao et al., 2024; Lambert et al., 2025)
rely on the outcome reward of a single turn (“single-turn RL
training”). We hypothesize that explicitly incorporating suc-
cessive turns of code generation, execution, and feedback
into each RL training step (“multi-turn RL training”) better
mirrors the iterative nature of kernel development, helping
the model to learn more advanced code generation strategies
that span multiple refinement turns.

We design a simple yet effective multi-turn RL training
recipe, shown in Figure 1, that addresses the key challenges
of training for CUDA kernel generation and optimization:

1. Long trajectories lead to sparse rewards and context
explosion. To improve sample efficiency, we split trajec-
tories and use each turn as an individual training sample.
To address context explosion from long CoTs while pre-
serving reasoning information, we summarize CoTs of
prior turns.

2. Finding an optimal solution may require rewarding
suboptimal kernels that eventually lead to more per-
formant ones. Therefore, we study approaches to aggre-

1

Kevin: Multi-Turn RL for Generating CUDA Kernels

Figure 1. Within each training step, the model iteratively generates, executes, and refines kernels over multiple turns. Kernels are rewarded
individually, based both on their performance and their contribution to subsequent speedups: K1, for example, while incorrect, leads to
both a correct, slow kernel, K2, and a correct, performant kernel, K3, and should thus be rewarded accordingly. This setup enables Kevin
to learn advanced code generation strategies that span multiple turns. Note: CoT’ is the summarized chain of thought (CoT).

gate intermediate rewards across turns, finding a config-
uration that balances the correctness-performance trade-
off.

3. Reward hacking is prevalent as kernel generation is
an open-ended, real-world engineering task: e.g. the
model can trick the evaluation harness, lazily copying
the reference implementation instead of actually imple-
menting kernels. To prevent this, we analyze the model’s
failure modes and enforce strict rule-based checks.

Enabled by our multi-turn RL training method on 180 Ker-
nelBench tasks from Level 1 and 2, we present Kevin the
Kernel Writer, the first RL-trained model to generate CUDA
kernels. We compare Kevin and other models in our evalua-
tion setting on a representative KernelBench eval set. Kevin
improves upon its base model (QwQ-32B (Team, 2025c))
both in correctness (56% → 82%) and mean speedup of
generated kernels (in pure CUDA): from 0.53x to 1.10x
over PyTorch Eager, while outperforming frontier models
like OpenAI o4-mini (0.78x).

We then study the characteristics of Kevin in a test-time
scaling setting, comparing it to a single-turn RL-baseline.
We systematically compare the benefits of scaling along
two axes of test-time compute: sequentially with more re-
finement turns (Ehrlich et al., 2025; Wang et al., 2025a)
or in parallel with more trajectories (Brown et al., 2024;

Snell et al., 2024). In our setting, we find that sequential
scaling is much more effective, highlighting the importance
of iterating upon execution feedback. We observe that the
model trained with multi-turn RL exhibits better scaling
characteristics with more refinement turns, compared to
the base model and the single-turn RL baseline. Our core
contributions include:

1. We design an effective yet flexible multi-turn RL train-
ing strategy that significantly improves model’s ca-
pability on CUDA kernel generation. This strategy
addresses challenges that arise in real-world settings,
and may be applicable to other environments that benefit
from iterative optimizations.

2. We found multi-turn is more effective both for train-
ing and inference through systematic ablations: the
multi-turn trained model outperforms the single-turn
trained model across different evaluation setups. Further-
more, we found multi-turn inference is more effective
across both models under a fixed inference budget.

3. Kevin exhibits strong test-time scaling trends on both
serial and parallel axes, with a faster rate of improve-
ment than its single-turn RL counterpart and its base
model, while maintaining exploration capacity.

2

Kevin: Multi-Turn RL for Generating CUDA Kernels

2. Background and Related Work
2.1. LLM for GPU Kernel Optimization

There has been a surge of interest in exploring how to lever-
age LLMs to generate GPU kernels (NVIDIA, 2025), driven
by the high cost and the long engineering cycles required to
develop them (e.g. 2 years for efficient FlashAttention (Dao,
2023) port after Hopper GPU release). However, frontier
models underperform on representative benchmarks like
KernelBench (Ouyang et al., 2025) and TritonBench (Li
et al., 2025), likely due to GPU code being severely un-
derrepresented in the training data (CUDA, for example,
accounts for less than 0.01% of pretraining data in the Stack
(Kocetkov et al., 2022; Li et al., 2023)). Collecting more
expert-written code is expensive, as only a limited number
of developers are able to implement high-quality kernels. To
tackle this task, there has been an explosion of agentic sys-
tems (Damani et al., 2024; Chen et al., 2025; METR, 2025)
with custom workflows and evolutionary search methods
(Lange et al., 2025; Google DeepMind, 2025). Yet these
approaches typically incur high inference cost — e.g. $15
per kernel (Lange et al., 2025). Improving the base LLM’s
kernel-generation ability is therefore essential — and could
significantly boost the efficiency for downstream agentic
workflows.

2.2. RL Optimization for LLMs Targeting Verifiable
Domains

Reinforcement Learning techniques like GRPO (Shao et al.,
2024) have been shown to significantly enhance LLMs’ per-
formance on verifiable domains (Lambert et al., 2025) such
as math (Team, 2025b; Wang et al., 2025b) and competitive
programming (Team, 2025c; Luo et al., 2025a;b). These
approaches can be further adapted for real-world software
tasks, using fine-grain unit tests (Liu et al., 2023) or com-
parisons between code edits (Wei et al., 2025) as outcome
rewards. Existing methods for code optimizations — where
objective concerns performance beyond correctness — have
been largely confined to supervised fine-tuning (Waghjale
et al., 2024) and imitation learning (Shypula et al., 2024),
highlighting Kevin’s RL approach a novel contribution for
this setting.

Given that tasks like performance optimization or long-
horizon planning require multiple sequences of interrelated
actions, several works (Goldie et al., 2025; Cao et al., 2025;
Wang et al., 2025c; Zhou et al., 2024; Zhuang* et al., 2025)
have explored RL training for multi-turn optimizations be-
yond optimizing for outcome from a single turn. Specific for
the code setting, RLEF (Gehring et al., 2025) frames code
generation as a multi-turn RL task: the model is allowed
a fixed number of refinements turns and assigned a single
binary pass/fail reward for final generation — training with
such an approach yields notable sample-efficiency gains.

Unlike RLEF, which assigns rewards only at the final turn,
our multi-turn RL framework for Kevin trains on every turn
regardless of how optimal the code is, and optimizes for
performance beyond just correctness. It is worth noting
that Kevin’s multi-turn RL training could be viewed as a
variant of Meta-Learning (Xiang et al., 2025; Duan et al.,
2016) or In-Context Reinforcement Learning (Nie et al.,
2024; Tajwar et al., 2025; Schmied et al., 2025), where the
focus is to improve solution quality during test-time with
feedback (Qu et al., 2025); but adapted in a novel way to
the challenging real-world setting of GPU kernel generation
and code optimization.

3. Task and Baseline
3.1. Environment and Evaluation

We use KernelBench (Ouyang et al., 2025), a popular bench-
mark for evaluating LLMs’ ability to generate CUDA ker-
nels for deep learning workloads in PyTorch. We chose 180
of the 100 Level 1 problems (basic operators: convolutions,
matrix multiplies, loss functions, etc.) and 100 Level 2 prob-
lems (sequences of operators with fusion opportunities) as
training environments. Since KernelBench does not provide
a train-test split, we asked the authors to construct 80 ad-
ditional tasks following the same methodology. We build
the evaluation set (Appendix A) by combining our 80 newly
created tasks with the 20 remaining original KernelBench
tasks, for a total of 100 evaluation tasks.

Each KernelBench task consists in generating a CUDA ker-
nel given a PyTorch reference implementation, which is
used to evaluate correctness and speedup. In our set up,
we evaluate the model-generated kernels as follows: we
verify the output is in the correct format (ensure resultant
code is only implemented with inline CUDA) and check
for reward hacking (Section 6.2). We then evaluate the
kernel for compilation, runtime errors, and correctness. If
the implementation is correct, we profile the kernel for its
runtime.

3.2. Kernel Score Design

As we are concerned both with correctness and speedup,
we assign a score S for each kernel evaluation result that
effectively balances the correctness-performance tradeoff.

S = 0.3 · 1{correct} +
Tbaseline

Tkernel
· 1{correct}

Correctness is checked against the reference program when
tested with randomized inputs; speedup is computed as the
ratio between PyTorch baseline time and kernel runtime.
We experimented with various weights of correctness and
speedup, finding this configuration through ablations on
models ranging from 7B to 32B. (Appendix B)

3

Kevin: Multi-Turn RL for Generating CUDA Kernels

In addition, we explored rewarding intermediate objectives
(successfully compile or execute), yet this caused model
to over-optimize for intermediate steps (e.g. generating
kernels that only compile, but aren’t necessarily correct).
We also experimented with a length penalty on the response,
as suggested by (Team, 2025a), but found that it degrades
our model’s performance during training.

3.3. Single-Turn Training

We apply GRPO (Shao et al., 2024) to train the model on
kernel generation without iterating on external feedback
(”single-turn” training). In each training step, we sample
16 responses per task and assign the evaluated score as
the reward for each kernel. We compute the GRPO loss
according to (Shao et al., 2024), which updates the policy
by maximizing the following objective:

JGRPO(θ) = E
[
q ∼ P (Q), {oi}Gi=1 ∼ πθold(O | q)

]
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
Âi,t,

clip
(πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

]

− β DKL(πθ∥πref)

}

where Âi,t =
ri −mean(r)

std(r)
,

ri is the score of a specific kernel.
(1)

We note the importance of using a base model with strong
enough priors to obtain a non-sparse reward for correctness
and speedup in the beginning of training. For instance, train-
ing on DeepSeek-R1-Distill-Qwen7B (DeepSeek-
AI, 2025) exhibited reward hacking (see Section 6.2) and
failed to learn.

Hence, we use a stronger base model, Qwen QwQ-32B
(Team, 2025c). We perform two gradient steps for a batch
(1 on-policy, 1 off-policy) following (Shao et al., 2024). We
use max response length = 16384.

Following (Yu et al., 2025), we apply Clip-Higher, de-
coupling the lower and higher clipping range (0.2 and 0.28
respectively). We sample with temperature = 0.9 for
both training and inference. We set the KL coefficient to 0
to allow the model to deviate freely from the base policy,
following (Luo et al., 2025a).

We observe that reward plateaus after 50 steps, likely be-
cause single-turn training prevents the model from refining
its kernels. Many generated kernels are nearly correct–often
a syntax or compilation fix away–but still receive 0 reward,
discouraging the model from producing them. Similarly, the

Figure 2. Reward plateaus during single-turn training.
correct kernels do not achieve high speedup, as the model
optimizes for correctness rather than attempting a risky ap-
proach. We address these limitations through multi-turn
training.

4. Multi-Turn Training
In each multi-turn training step:

1. For each task, we sample m parallel trajectories with
n refinement turns. To improve sample efficiency, each
refinement turn (CoT + response) in a trajectory becomes
a single training sample. The response of the model after
the CoT consists of a kernel and a CoT summary.

2. We construct the context of a sample by including the
history of previous responses, which include generated
kernels along with their summarized CoTs, and evalua-
tion feedback.

3. We evaluate the generated kernel and compute its score
as shown in Section 3.2. The reward of each turn (CoT
+ response) is the discounted sum of current and subse-
quent scores, which we elaborate in Section 4.3.

4. For each task, we normalize the rewards across the mn
samples for advantage calculation. Then we compute the
GRPO loss over the entire batch.

4.1. Managing Context

Reasoning models generate long CoTs, especially for com-
plex tasks like kernel generation. Including all CoTs causes
the context to grow rapidly, reaching 50-100k tokens within
a few turns, surpassing the model’s context length. To pre-
vent context explosion, we discard CoTs of previous turns;
yet to preserve information regarding the reasoning process,
we ask the model to summarize the changes applied. This
summary, along with the generated kernels and evaluation
results, is passed to subsequent turns.

4

Kevin: Multi-Turn RL for Generating CUDA Kernels

Figure 3. Sum with γ = 0.4 is the most effective reward formulation. Here we compare how models trained with different reward
formulations scale with refinement turns.

4.2. Training On Every Refinement Turn

In a naive implementation, each n-turn trajectory is a single
training sample. To improve sample efficiency, we split a n-
turn trajectory into n training samples, each corresponding
to the kernel + CoT summary of a refinement turn with the
context containing the history. Hence, the kernel and CoT
summary receives the reward of that particular turn.

4.3. Reward Aggregation and Discounting

We initially explored two naive strategies for multi-turn
credit assignment. The greedy approach assigns to each turn
its corresponding kernel score, while the outcome-based
approach assigns to all turns the best score in the trajectory.
The former failed to reward early suboptimal turns that
lead to performant kernels later, while the latter ignores
individual contributions and is sample inefficient.

Our method balances both approaches by aggregating the
future kernels scores with a discount factor. We conduct
ablations on the reward formulation. For score aggregation,
we can either take the sum Rt =

∑T
i=t γ

i−tri or maximum
Rt = maxi=t,...,T

{
γi−tri

}
over future scores. Sum favors

generating multiple good kernels, while max prioritizes
achieving one high-performing kernel. We evaluate both
forms with γ = 0.4 and γ = 0.8.

Experiments show that sum with γ = 0.4 scales best over 8
turns, though max performs better with γ = 0.8 with fewer
turns. (See Appendix B for more details)

4.4. Multi-Turn Training Behavior

Figure 4. Reward climbs steadily for multi-turn training.
For our final training run for Kevin, we use 16 parallel
trajectories and 4 refinement turns per task. Each batch
contains 8 tasks. We use the sum reward formulation with
discount factor γ = 0.4.

Unlike single-turn training, reward now steadily increases.
We also observe response length behaviors similar to (Luo
et al., 2025b): the response length initially decreases, and
then it starts increasing again as the model attempts more
sophisticated solutions. Following (Luo et al., 2025b), we
extend the max response length from 16K to 22K tokens at
step 30.

5

Kevin: Multi-Turn RL for Generating CUDA Kernels

5. Evaluation
As kernel generation is a challenging task, models are of-
ten given extensive test-time compute to tackle it. In our
inference setting, we employ multiple parallel trajectories,
where each trajectory is made up of several serial turns.

We mark a given trajectory correct if it contains at least one
correct kernel. Its performance is the speedup of the fastest
kernel (within the trajectory) overx PyTorch Eager reference
(0 speedup if no kernel is correct). We also consider the
fastp metric, introduced by (Ouyang et al., 2025), which is
a binary indicator for whether a trajectory contains a correct
kernel with performance of p or more. To aggregate a metric
across k parallel trajectories for a given task, we compute:
best@k, the maximum for that metric across all trajectories;
avg@k, the average value across trajectories.

5.1. Result on KernelBench Eval Set

We compare Kevin against frontier models and the single-
turn RL baseline on our aforementioned KernelBench eval
set of 100 tasks (Section 3.1), with 16 parallel trajectories, 8
serial refinement turns. As shown in Table 1, Kevin achieves
a higher performance than its single-turn trained counterpart
and other frontier models, demonstrating significant im-
provement from its base model (QwQ-32B). Qualitatively,
Kevin is able to more effectively implement more aggressive
optimizations across several turns. (See Appendix G)

5.2. Scaling Refinement Turns

Leveraging execution feedback is crucial at test time
(Ehrlich et al., 2025; Wang et al., 2025a). Thus, we evalu-
ate how Kevin scales with additional refinement turns. As
shown in Figure 5, the single-turn model achieves slightly
better performance with 1 turn, as its training objective op-
timizes for a single attempt. However, when given more
refinement turns, the multi-turn trained model achieves sig-
nificantly higher performance, with its curve showing the
highest slope. This shows that multi-turn training enhances
the model’s ability to refine and optimize kernels over turns.

Figure 5. Kevin effectively leverages multiple turns. Here we
vary the number of refinement turns for each trajectory; Kevin
exhibits better scaling characteristics at test-time.

5.3. Scaling Parallel Samples

We study how best@k performance scales when increas-
ing the number of parallel trajectories k, while fixing the
number of serial refinements turns. Prior work for RLVR
on math problems (Yue et al., 2025) found that RL train-
ing limits models’ exploration capacity, leading to worse
best@k metrics than the base model at large k. As shown in
Figure 6, the performance curve of the single-turn RL model
presents a lower slope compared to the base model, possibly
hinting at this phenomenon. In contrast, our model trained
with multi-turn RL achieves a higher slope compared to both
the single-turn counterpart and the base model, suggesting
that multi-turn training could maintain model’s exploration
capacity while improving model’s performance.

Model Correctness Performance fast1 fast1.5
best@16 avg@16 best@16 avg@16 best@16 avg@16 best@16 avg@16

Kevin (Multi-Turn) 82% 46% 1.10x 0.40x 43% 15% 20% 6%
Single-Turn RL 82% 45% 0.85x 0.35x 43% 16% 16% 4%
Qwen QwQ-32B 56% 11% 0.53x 0.08x 23% 3% 10% 1%
OpenAI o4-mini 38% 22% 0.78x 0.27x 21% 7% 13% 6%
OpenAI o3-mini 27% 8% 0.30x 0.08x 9% 2% 4% 2%

Table 1. Kevin, trained with multi-turn RL, outperforms other models in correctness and performance. Here we evaluate models on
100 unseen KernelBench tasks, under a test-time compute setup of 16 parallel trajectories with 8 refinement turns each trajectory.

6

Kevin: Multi-Turn RL for Generating CUDA Kernels

Figure 6. Multi-turn training maintains exploration capacity.
Here we vary k, the number of parallel samples, while refinement
turns are fixed to 8. best@k performance is computed with the
estimator according to (Chen et al., 2021).

5.4. Parallel vs Sequential Scaling

As scaling test-time compute through parallel sampling
(Snell et al., 2024) and sequential iterative refinement
(Ehrlich et al., 2025) are both helpful, we want to system-
ically understand and compare their effectiveness in the
context of kernel generation. To investigate, we evaluate 3
inference-time configurations with 128 generated kernels:
128 trajectories with 1 turn, 32 trajectories with 4 turns, and
16 trajectories with 8 turns. As shown in Table 2, we find
that in our experimental setup, allocating more refinement
turns during test-time is consistently better across the multi-
turn RL trained, single-turn RL trained, and base model,
with 16 trajectories and 8 turns being the most optimal con-
figuration for most cases.

As demonstrated in Section 5.1, multi-turn outperforms
single-turn training when evaluated in a multi-turn inference
setting. However, given that single-turn training optimizes
for one-shot performance, a natural question arises: does
the single-turn trained model perform better by generat-
ing more one-shot responses in parallel? In Table 2, we
observe that in a single-turn inference setting with 128 par-
allel trajectories, the single-turn model achieves slightly
better performance than the multi-turn model; yet its cor-
rectness and performance quickly improve with more turns.
This strengthens the case for training a model that could
use feedback effectively across multiple turns. Moreover,
the multi-turn trained model achieves significantly higher
performance, with faster improvements compared to the
single-turn trained model. This shows that multi-turn train-
ing enhances the model’s ability to improve performance
over turns at test-time.

6. Discussion
6.1. Diagnosing Model Instability

We observe that training for longer often leads to the model
producing repetitive and nonsensical outputs (”junk”). Dur-
ing multi-turn training, the junk first appears in the final turn
and gradually spreads to earlier turns, resulting in model
collapse afterwards.

To investigate this issue, we identified a proxy signal,
which we call the ”Not Okay Ratio”. QwQ-32B always
begins its chain of thought with "Okay, " but after 40
steps of training, the model begins with erratic variants
like "Okay Amigos, so I need to optimize
this 3D tensor-matrix multiplication"
and "Okay Holy crap, I need to get this
code optimized". These ”Not Okay” responses

Inference Configuration Performance Correctness

Model Total # Trajectories # Turns pass@128 pass@128

Multi-Turn RL 128 16 8 1.10x 82.00%
Multi-Turn RL 128 32 4 1.02x 83.00%
Multi-Turn RL 128 128 1 0.65x 76.00%

Single-Turn RL 128 16 8 0.85x 82.00%
Single-Turn RL 128 32 4 0.81x 79.00%
Single-Turn RL 128 128 1 0.70x 73.00%

QwQ-32B 128 16 8 0.53x 57.00%
QwQ-32B 128 32 4 0.47x 52.00%
QwQ-32B 128 128 1 0.42x 54.00%

Table 2. Multi-turn inference with 16 trajectories and 8 turns is our most optimal setup. Here we compare inference configurations
and their corresponding performance (× speedup) and correctness rates, on multi-turn (Kevin), single-turn RL trained models, and base
model QwQ-32B. We compute pass@128 by taking the best kernel out of the 128 generated kernels.

7

Kevin: Multi-Turn RL for Generating CUDA Kernels

Figure 7. ”Not okay ratio” is a proxy for model instability and
predicts junk. It starts rising around step 48, while junk appears 15
steps later. ”Clipping Ratio” (Luo et al., 2025b) reflects responses
truncated for junk.

indicate early signs of model instability and appear well
before junk, making the ”Not Okay Ratio” a valuable
predictor.

We initially tried to mitigate instability by adding a KL
penalty (0.001 and 0.01) to the GRPO loss, but it slowed
learning without affecting model stability. Instead, by using
constant length normalization in the GRPO loss (Liu et al.,
2025) and gradient norm clipping of 0.05, we are able to
effectively delay the onset of junk until step 100.

6.2. Reward Hacking

In our early experiments with smaller models like
DeepSeek-R1-Distill-Qwen-7B, we observed fre-
quent reward hacking: the model calls the reference imple-
mentation (PyTorch) by directly copying it, wrapping it in
try-except statements, or inheriting the reference implemen-
tation method. See Appendix F for detailed examples.

Reward hacking typically emerges when the model capabil-
ities falls short of task difficulty (Amodei et al., 2016). In
our setting, when model fails to produce correct kernels, the
”hacked’ kernels are likely the only ones receiving positive
reward and get disproportionately reinforced due to advan-
tage normalization. To prevent this, we upgraded our base
model to the more capable QwQ-32B model as a stronger
prior.

However, we observe instances of reward hacking even for
stronger models. For Level 2 tasks (targeting kernel fusion),
we observe that the model only fuses simple operators (e.g.
ReLU, Max), leaving the operator worth optimizing (e.g.
convolutions) unfused and unmodified (left in PyTorch). To

prevent this, we impose stricter format checks that assign 0
reward to responses with any PyTorch functional operators.

6.3. Data Distribution

We found it critical to have a balanced difficulty distri-
bution across the dataset, so that on average each batch
contains both easier and harder tasks. In one experiment
with DeepSeek-R1-Distill-Qwen-14B (DeepSeek-
AI, 2025), we trained on a subset of only easy tasks. We
observed that the reward quickly plateaus as the model over-
fits to a single difficulty level. Thus, we address this issue by
using a stronger base model QwQ-32B and training on both
level 1 and 2 of the dataset, which contained tasks with a
variety of difficulty and associated optimization techniques.

7. Conclusion
7.1. Summary

We designed a multi-turn RL training recipe that addresses
challenges when applied to the real-world task of kernel
generation: specifically, effective context management and
credit attribution across every turn to enable better sample
efficiency. We also implemented mechanisms to prevent re-
ward hacking, found an interesting proxy reward to diagnose
instability, and experimented with approaches to constrain
this issue.

We present Kevin the Kernel Writer, the first model trained
with RL to generate CUDA kernels, on KernelBench Level 1
and 2 tasks. Evaluated on an unseen KernelBench evaluation
set, Kevin outperforms its single-turn RL counterpart and
frontier models, demonstrating that our training recipe en-
ables the model to learn more effective refinement strategies.
Multi-turn training also enables better test-time scaling, both
when increasing sequential refinement and parallel sampling
compute, while preserving the exploration capacity of the
model.

7.2. Limitations

Since the base model (QwQ-32B Team, 2025c) is already
heavily post-trained, additional RL training could easily
destabilize it (Team et al., 2025). Due to limited compute
and long RL training time for this task, we perform training
up to 80 gradient steps. Consequently, we were unable to
run more exhaustive ablations (e.g. varying the number
of turns during Multi-Turn RL) and defer those studies to
future work.

We further note limitations regarding kernel optimizations.
As KernelBench tasks are specified with a specific pre-
defined tensor input size, the speedups we measure in Sec-
tion 3.2 are only accurate for those dimensions on our
NVIDIA H200 GPUs.

8

Kevin: Multi-Turn RL for Generating CUDA Kernels

7.3. Future Work

We outline several directions for extending our method.
Incorporating a learned value network and using Proximal
Policy Optimization (Schulman et al., 2017) might improve
the baseline estimation during training. At training and
test-time, we could implement more sophisticated search
methods such as beam search or Monte-Carlo Tree Search
(Silver et al., 2017). Inspired by recent works (Sareen et al.,
2025), we could also leverage the value network as a verifier
for search at test-time.

Our multi-turn RL process demonstrates success in the real-
world engineering task of GPU kernel generation. However,
we designed this recipe in a flexible manner, potentially
applicable to a wider range of tasks that feature verifiable
rewards and execution feedback across a trajectory (such
as code and software system optimization). We believe ex-
plicitly training models to reason about complex tasks over
multiple turns to be a key step towards enabling autonomous
AI systems.

8. Acknowledgment
We are grateful to Allen Nie, Alex Zhang, Anna Goldie,
Anikait Singh, Anne Ouyang, Azalia Mirhoseini, Benjamin
Spector, Bradley Brown, Jerry Liu, Jon Saad-Falcon, Jor-
dan Juravsky, Justus Mattern, Karina Nguyen, Konwoo
Kim, Lynn Cherif, Michael Zhang, Neil Band, Qijing Jenny
Huang, Shafin Khan, Shayan Talaei, Tatsunori Hashimoto,
and William Li for their helpful discussions and feedback
on this project.

References
Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schul-

man, J., and Mané, D. Concrete problems in ai safety,
2016. URL https://arxiv.org/abs/1606.0
6565.

Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V., Ré,
C., and Mirhoseini, A. Large language monkeys: Scaling
inference compute with repeated sampling, 2024. URL
https://arxiv.org/abs/2407.21787.

Cao, S., Hegde, S., Li, D., Griggs, T., Liu, S., Tang, E., Pan,
J., Wang, X., Malik, A., Neubig, G., Hakhamaneshi, K.,
Liaw, R., Moritz, P., Zaharia, M., Gonzalez, J. E., and
Stoica, I. Skyrl-v0: Train real-world long-horizon agents
via reinforcement learning, 2025.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-

ian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D.,
Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage,
M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, I., and Zaremba,
W. Evaluating large language models trained on code,
2021. URL https://arxiv.org/abs/2107.0
3374.

Chen, T., Xu, B., and Devleker, K. Automating gpu kernel
generation with deepseek-r1 and inference-time scaling.
https://developer.nvidia.com/blog/au
tomating-gpu-kernel-generation-with-d
eepseek-r1-and-inference-time-scaling
/, February 2025. Accessed: 2025-05-15.

Damani, S., Hari, S. K. S., Stephenson, M., and Kozyrakis,
C. Warpdrive: An agentic workflow for ninja gpu trans-
formations. In Proceedings of the Machine Learning
for Systems Workshop at NeurIPS 2024, 2024. URL
https://mlforsystems.org/assets/pape
rs/neurips2024/paper32.pdf. Accessed: 2025-
05-15.

Dao, T. Flashattention-2: Faster attention with better par-
allelism and work partitioning, 2023. URL https:
//arxiv.org/abs/2307.08691.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness, 2022. URL https://arxiv.org/ab
s/2205.14135.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning ca-
pability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Doshi, T. Gemini 2.5: Our most intelligent models are
getting even better. https://blog.google/te
chnology/google-deepmind/google-gem
ini-updates-io-2025/, May 2025. Accessed:
2025-05-21.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. Rl2: Fast reinforcement learning via
slow reinforcement learning, 2016. URL https://ar
xiv.org/abs/1611.02779.

Ehrlich, R., Brown, B., Juravsky, J., Clark, R., Ré, C., and
Mirhoseini, A. Codemonkeys: Scaling test-time compute
for software engineering, 2025. URL https://arxi
v.org/abs/2501.14723.

9

https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://developer.nvidia.com/blog/automating-gpu-kernel-generation-with-deepseek-r1-and-inference-time-scaling/
https://developer.nvidia.com/blog/automating-gpu-kernel-generation-with-deepseek-r1-and-inference-time-scaling/
https://developer.nvidia.com/blog/automating-gpu-kernel-generation-with-deepseek-r1-and-inference-time-scaling/
https://developer.nvidia.com/blog/automating-gpu-kernel-generation-with-deepseek-r1-and-inference-time-scaling/
https://mlforsystems.org/assets/papers/neurips2024/paper32.pdf
https://mlforsystems.org/assets/papers/neurips2024/paper32.pdf
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2501.12948
https://blog.google/technology/google-deepmind/google-gemini-updates-io-2025/
https://blog.google/technology/google-deepmind/google-gemini-updates-io-2025/
https://blog.google/technology/google-deepmind/google-gemini-updates-io-2025/
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/2501.14723
https://arxiv.org/abs/2501.14723

Kevin: Multi-Turn RL for Generating CUDA Kernels

Gehring, J., Zheng, K., Copet, J., Mella, V., Carbonneaux,
Q., Cohen, T., and Synnaeve, G. Rlef: Grounding code
llms in execution feedback with reinforcement learning,
2025. URL https://arxiv.org/abs/2410.0
2089.

Goldie, A., Mirhoseini, A., Zhou, H., Cai, I., and Manning,
C. D. Synthetic data generation & multi-step rl for rea-
soning & tool use, 2025. URL https://arxiv.or
g/abs/2504.04736.

Google DeepMind. Alphaevolve: A gemini-powered coding
agent for designing advanced algorithms, May 2025. URL
https://deepmind.google/discover/blo
g/alphaevolve-a-gemini-powered-codin
g-agent-for-designing-advanced-algor
ithms/. Accessed: 2025-05-15.

Hu, J., Wu, X., Zhu, Z., Xianyu, Wang, W., Zhang, D.,
and Cao, Y. Openrlhf: An easy-to-use, scalable and
high-performance rlhf framework, 2024. URL https:
//arxiv.org/abs/2405.11143.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,
O., and Narasimhan, K. Swe-bench: Can language
models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Kocetkov, D., Li, R., Allal, L. B., Li, J., Mou, C., Ferrandis,
C. M., Jernite, Y., Mitchell, M., Hughes, S., Wolf, T.,
Bahdanau, D., von Werra, L., and de Vries, H. The stack:
3 tb of permissively licensed source code, 2022. URL
https://arxiv.org/abs/2211.15533.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

Lambert, N., Morrison, J., Pyatkin, V., Huang, S., Ivison, H.,
Brahman, F., Miranda, L. J. V., Liu, A., Dziri, N., Lyu, S.,
Gu, Y., Malik, S., Graf, V., Hwang, J. D., Yang, J., Bras,
R. L., Tafjord, O., Wilhelm, C., Soldaini, L., Smith, N. A.,
Wang, Y., Dasigi, P., and Hajishirzi, H. Tulu 3: Pushing
frontiers in open language model post-training, 2025.
URL https://arxiv.org/abs/2411.15124.

Lange, R. T., Prasad, A., Sun, Q., Faldor, M., Tang, Y.,
and Ha, D. The ai cuda engineer: Agentic cuda kernel
discovery, optimization and composition, 2025. URL ht
tps://pub.sakana.ai/static/paper.pdf.
Accessed: 2025-05-15.

Li, J., Li, S., Gao, Z., Shi, Q., Li, Y., Wang, Z., Huang,
J., Wang, H., Wang, J., Han, X., Liu, Z., and Sun, M.

Tritonbench: Benchmarking large language model ca-
pabilities for generating triton operators, 2025. URL
https://arxiv.org/abs/2502.14752.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., Liu, Q.,
Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene, O.,
Davaadorj, M., Lamy-Poirier, J., Monteiro, J., Shliazhko,
O., Gontier, N., Meade, N., Zebaze, A., Yee, M.-H., Uma-
pathi, L. K., Zhu, J., Lipkin, B., Oblokulov, M., Wang,
Z., Murthy, R., Stillerman, J., Patel, S. S., Abulkhanov,
D., Zocca, M., Dey, M., Zhang, Z., Fahmy, N., Bhat-
tacharyya, U., Yu, W., Singh, S., Luccioni, S., Villegas,
P., Kunakov, M., Zhdanov, F., Romero, M., Lee, T., Timor,
N., Ding, J., Schlesinger, C., Schoelkopf, H., Ebert, J.,
Dao, T., Mishra, M., Gu, A., Robinson, J., Anderson,
C. J., Dolan-Gavitt, B., Contractor, D., Reddy, S., Fried,
D., Bahdanau, D., Jernite, Y., Ferrandis, C. M., Hughes,
S., Wolf, T., Guha, A., von Werra, L., and de Vries, H.
Starcoder: may the source be with you!, 2023. URL
https://arxiv.org/abs/2305.06161.

Liu, J., Zhu, Y., Xiao, K., Fu, Q., Han, X., Yang, W., and Ye,
D. Rltf: Reinforcement learning from unit test feedback,
2023. URL https://arxiv.org/abs/2307.0
4349.

Liu, Z., Chen, C., Li, W., Qi, P., Pang, T., Du, C., Lee,
W. S., and Lin, M. Understanding r1-zero-like training:
A critical perspective, 2025. URL https://arxiv.
org/abs/2503.20783.

Luo, M., Tan, S., Huang, R., Patel, A., Ariyak, A., Wu,
Q., Shi, X., Xin, R., Cai, C., Weber, M., Zhang, C.,
Li, L. E., Popa, R. A., and Stoica, I. Deepcoder: A
fully open-source 14b coder at o3-mini level. https:
//pretty-radio-b75.notion.site/DeepC
oder-A-Fully-Open-Source-14B-Coder-a
t-O3-mini-Level-1cf81902c14680b3bee5e
b349a512a51, 2025a. Notion Blog.

Luo, M., Tan, S., Wong, J., Shi, X., Tang, W. Y., Roongta,
M., Cai, C., Luo, J., Li, L. E., Popa, R. A., and Stoica, I.
Deepscaler: Surpassing o1-preview with a 1.5b model by
scaling rl. https://pretty-radio-b75.notio
n.site/DeepScaleR-Surpassing-O1-Previ
ew-with-a-1-5B-Model-by-Scaling-RL-1
9681902c1468005bed8ca303013a4e2, 2025b.
Notion Blog.

METR. Measuring automated kernel engineering, February
2025. URL https://metr.org/blog/2025-0
2-14-measuring-automated-kernel-engin
eering/. Accessed: 2025-05-15.

Nickolls, J., Buck, I., Garland, M., and Skadron, K. Scalable
parallel programming with cuda. In ACM SIGGRAPH

10

https://arxiv.org/abs/2410.02089
https://arxiv.org/abs/2410.02089
https://arxiv.org/abs/2504.04736
https://arxiv.org/abs/2504.04736
https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://arxiv.org/abs/2405.11143
https://arxiv.org/abs/2405.11143
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2411.15124
https://pub.sakana.ai/static/paper.pdf
https://pub.sakana.ai/static/paper.pdf
https://arxiv.org/abs/2502.14752
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2307.04349
https://arxiv.org/abs/2307.04349
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://metr.org/blog/2025-02-14-measuring-automated-kernel-engineering/
https://metr.org/blog/2025-02-14-measuring-automated-kernel-engineering/
https://metr.org/blog/2025-02-14-measuring-automated-kernel-engineering/

Kevin: Multi-Turn RL for Generating CUDA Kernels

2008 Classes, SIGGRAPH ’08, New York, NY, USA,
2008. Association for Computing Machinery. ISBN
9781450378451. doi: 10.1145/1401132.1401152. URL
https://doi.org/10.1145/1401132.1401
152.

Nie, A., Su, Y., Chang, B., Lee, J. N., Chi, E. H., Le, Q. V.,
and Chen, M. Evolve: Evaluating and optimizing llms
for exploration, 2024. URL https://arxiv.org/
abs/2410.06238.

NVIDIA. Gpu mode at nvidia gtc 2025, 2025. URL https:
//www.youtube.com/watch?v=mdDVkBeFy9A.
Accessed: 2025-05-15.

NVIDIA Corporation. Cutlass: Cuda templates for linear
algebra subroutines, May 2025. URL https://gith
ub.com/NVIDIA/cutlass. Accessed: 2025-05-15.

Ouyang, A., Guo, S., Arora, S., Zhang, A. L., Hu, W., Ré,
C., and Mirhoseini, A. Kernelbench: Can llms write
efficient gpu kernels?, 2025. URL https://arxiv.
org/abs/2502.10517.

Qu, Y., Yang, M. Y. R., Setlur, A., Tunstall, L., Beeching,
E. E., Salakhutdinov, R., and Kumar, A. Optimizing test-
time compute via meta reinforcement fine-tuning, 2025.
URL https://arxiv.org/abs/2503.07572.

Sareen, K., Moss, M. M., Sordoni, A., Agarwal, R., and
Hosseini, A. Putting the value back in rl: Better test-time
scaling by unifying llm reasoners with verifiers, 2025.
URL https://arxiv.org/abs/2505.04842.

Schmied, T., Bornschein, J., Grau-Moya, J., Wulfmeier,
M., and Pascanu, R. Llms are greedy agents: Effects of
rl fine-tuning on decision-making abilities, 2025. URL
https://arxiv.org/abs/2504.16078.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms,
2017. URL https://arxiv.org/abs/1707.0
6347.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X.,
Zhang, H., Zhang, M., Li, Y. K., Wu, Y., and Guo,
D. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models, 2024. URL
https://arxiv.org/abs/2402.03300.

Shypula, A., Madaan, A., Zeng, Y., Alon, U., Gardner, J.,
Hashemi, M., Neubig, G., Ranganathan, P., Bastani, O.,
and Yazdanbakhsh, A. Learning performance-improving
code edits, 2024. URL https://arxiv.org/abs/
2302.07867.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I.,
Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran,

D., Graepel, T., Lillicrap, T., Simonyan, K., and Has-
sabis, D. Mastering chess and shogi by self-play with
a general reinforcement learning algorithm, 2017. URL
https://arxiv.org/abs/1712.01815.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm
test-time compute optimally can be more effective than
scaling model parameters, 2024. URL https://arxi
v.org/abs/2408.03314.

Spector, B. F., Arora, S., Singhal, A., Fu, D. Y., and Ré,
C. Thunderkittens: Simple, fast, and adorable ai kernels,
2024. URL https://arxiv.org/abs/2410.2
0399.

Tajwar, F., Jiang, Y., Thankaraj, A., Rahman, S. S., Kolter,
J. Z., Schneider, J., and Salakhutdinov, R. Training a
generally curious agent, 2025. URL https://arxiv.
org/abs/2502.17543.

Team, K. Kimi k1.5: Scaling reinforcement learning with
llms, 2025a. URL https://arxiv.org/abs/25
01.12599.

Team, N. Sky-t1: Train your own o1 preview model within
$450. https://novasky-ai.github.io/posts/sky-t1, 2025b.
Accessed: 2025-01-09.

Team, P. I., Jaghouar, S., Mattern, J., Ong, J. M., Straube,
J., Basra, M., Pazdera, A., Thaman, K., Ferrante, M. D.,
Gabriel, F., Obeid, F., Erdem, K., Keiblinger, M., and
Hagemann, J. Intellect-2: A reasoning model trained
through globally decentralized reinforcement learning,
2025. URL https://arxiv.org/abs/2505.0
7291.

Team, Q. Qwq-32b: Embracing the power of reinforcement
learning, March 2025c. URL https://qwenlm.git
hub.io/blog/qwq-32b/.

Tillet, P., Kung, H. T., and Cox, D. Triton: an intermediate
language and compiler for tiled neural network compu-
tations. In Proceedings of the 3rd ACM SIGPLAN Inter-
national Workshop on Machine Learning and Program-
ming Languages, MAPL 2019, pp. 10–19, New York,
NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450367196. doi: 10.1145/3315508.3329973.
URL https://doi.org/10.1145/3315508.
3329973.

Waghjale, S., Veerendranath, V., Wang, Z. Z., and Fried, D.
Ecco: Can we improve model-generated code efficiency
without sacrificing functional correctness?, 2024. URL
https://arxiv.org/abs/2407.14044.

Wang, G., Qin, H., Jacobs, S. A., Holmes, C., Rajbhandari,
S., Ruwase, O., Yan, F., Yang, L., and He, Y. Zero++:
Extremely efficient collective communication for giant

11

https://doi.org/10.1145/1401132.1401152
https://doi.org/10.1145/1401132.1401152
https://arxiv.org/abs/2410.06238
https://arxiv.org/abs/2410.06238
https://www.youtube.com/watch?v=mdDVkBeFy9A
https://www.youtube.com/watch?v=mdDVkBeFy9A
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://arxiv.org/abs/2502.10517
https://arxiv.org/abs/2502.10517
https://arxiv.org/abs/2503.07572
https://arxiv.org/abs/2505.04842
https://arxiv.org/abs/2504.16078
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2302.07867
https://arxiv.org/abs/2302.07867
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2410.20399
https://arxiv.org/abs/2410.20399
https://arxiv.org/abs/2502.17543
https://arxiv.org/abs/2502.17543
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2505.07291
https://arxiv.org/abs/2505.07291
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://arxiv.org/abs/2407.14044

Kevin: Multi-Turn RL for Generating CUDA Kernels

model training, 2023. URL https://arxiv.org/
abs/2306.10209.

Wang, X., Li, B., Song, Y., Xu, F. F., Tang, X., Zhuge, M.,
Pan, J., Song, Y., Li, B., Singh, J., Tran, H. H., Li, F.,
Ma, R., Zheng, M., Qian, B., Shao, Y., Muennighoff, N.,
Zhang, Y., Hui, B., Lin, J., Brennan, R., Peng, H., Ji,
H., and Neubig, G. Openhands: An open platform for
ai software developers as generalist agents, 2025a. URL
https://arxiv.org/abs/2407.16741.

Wang, Y., Yang, Q., Zeng, Z., Ren, L., Liu, L., Peng, B.,
Cheng, H., He, X., Wang, K., Gao, J., Chen, W., Wang,
S., Du, S. S., and Shen, Y. Reinforcement learning for
reasoning in large language models with one training
example, 2025b. URL https://arxiv.org/abs/
2504.20571.

Wang, Z., Wang, K., Wang, Q., Zhang, P., Li, L., Yang,
Z., Yu, K., Nguyen, M. N., Liu, L., Gottlieb, E., Lam,
M., Lu, Y., Cho, K., Wu, J., Fei-Fei, L., Wang, L., Choi,
Y., and Li, M. Ragen: Understanding self-evolution in
llm agents via multi-turn reinforcement learning, 2025c.
URL https://arxiv.org/abs/2504.20073.

Wei, Y., Duchenne, O., Copet, J., Carbonneaux, Q., Zhang,
L., Fried, D., Synnaeve, G., Singh, R., and Wang, S. I.
Swe-rl: Advancing llm reasoning via reinforcement learn-
ing on open software evolution, 2025. URL https:
//arxiv.org/abs/2502.18449.

Xiang, V., Snell, C., Gandhi, K., Albalak, A., Singh, A.,
Blagden, C., Phung, D., Rafailov, R., Lile, N., Mahan,
D., Castricato, L., Franken, J.-P., Haber, N., and Finn, C.
Towards system 2 reasoning in llms: Learning how to
think with meta chain-of-thought, 2025. URL https:
//arxiv.org/abs/2501.04682.

Ye, Z., Chen, L., Lai, R., Lin, W., Zhang, Y., Wang, S.,
Chen, T., Kasikci, B., Grover, V., Krishnamurthy, A.,
and Ceze, L. Flashinfer: Efficient and customizable
attention engine for llm inference serving. arXiv preprint
arXiv:2501.01005, 2025. URL https://arxiv.or
g/abs/2501.01005.

Yu, Q., Zhang, Z., Zhu, R., Yuan, Y., Zuo, X., Yue, Y., Fan,
T., Liu, G., Liu, L., Liu, X., Lin, H., Lin, Z., Ma, B.,
Sheng, G., Tong, Y., Zhang, C., Zhang, M., Zhang, W.,
Zhu, H., Zhu, J., Chen, J., Chen, J., Wang, C., Yu, H.,
Dai, W., Song, Y., Wei, X., Zhou, H., Liu, J., Ma, W.-Y.,
Zhang, Y.-Q., Yan, L., Qiao, M., Wu, Y., and Wang, M.
Dapo: An open-source llm reinforcement learning system
at scale, 2025. URL https://arxiv.org/abs/25
03.14476.

Yue, Y., Chen, Z., Lu, R., Zhao, A., Wang, Z., Yue, Y., Song,
S., and Huang, G. Does reinforcement learning really

incentivize reasoning capacity in llms beyond the base
model?, 2025. URL https://arxiv.org/abs/25
04.13837.

Zhao, C., Zhao, L., Li, J., and Xu, Z. Deepgemm: clean and
efficient fp8 gemm kernels with fine-grained scaling. ht
tps://github.com/deepseek-ai/DeepGEMM,
2025.

Zheng, K., Han, J. M., and Polu, S. Minif2f: a cross-system
benchmark for formal olympiad-level mathematics, 2022.
URL https://arxiv.org/abs/2109.00110.

Zhou, Y., Zanette, A., Pan, J., Levine, S., and Kumar, A.
Archer: Training language model agents via hierarchical
multi-turn rl, 2024. URL https://arxiv.org/ab
s/2402.19446.

Zhuang*, R., Vu*, T., Dimakis, A., and Sathiamoorthy,
M. Improving multi-turn tool use with reinforcement
learning. https://www.bespokelabs.ai/blog/improving-
multi-turn-tool-use-with-reinforcement-learning, 2025.
Accessed: 2025-04-17.

12

https://arxiv.org/abs/2306.10209
https://arxiv.org/abs/2306.10209
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2504.20571
https://arxiv.org/abs/2504.20571
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2501.04682
https://arxiv.org/abs/2501.04682
https://arxiv.org/abs/2501.01005
https://arxiv.org/abs/2501.01005
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2504.13837
https://arxiv.org/abs/2504.13837
https://github.com/deepseek-ai/DeepGEMM
https://github.com/deepseek-ai/DeepGEMM
https://arxiv.org/abs/2109.00110
https://arxiv.org/abs/2402.19446
https://arxiv.org/abs/2402.19446

Kevin: Multi-Turn RL for Generating CUDA Kernels

A. KernelBench Modifications
We use KernelBench (Ouyang et al., 2025) as our training environments. KernelBench is a popular benchmark for evaluating
LLMs’ ability to generate performant CUDA kernels for deep learning workloads in PyTorch. Each KernelBench task
consists in generating a CUDA kernel given a PyTorch reference implementation, which is used to evaluate correctness and
speedup.

A.1. Task Improvements

We identify several limitations in the original KernelBench and introduce targeted modifications to address them. These
changes are crucial to mitigate reward hacking, as shown in Section 6.2.

• We sand-boxed the kernel evaluation process so that fatal errors, such as CUDA illegal memory accesses, do
not crash the RL training process.

• A significant issue we noted in KernelBench was that for many tasks, the input tensors used to measure performance
are quite small. This causes kernel launch overhead to take up a significant portion of the runtime. To address this, we
enlarged the tensor dimensions of the affected tasks.

• A sneakier bug in the KernelBench’s evaluation harness caused the tested kernel to recycle the output tensor from the
reference implementation (which was run immediately before) as its own tensor output. As a result of this, a kernel that
only computes (correctly) a portion of the output tensor would still pass the correctness check. We address this by
running the tested kernel first and only after the reference implementation, thus avoiding this hack.

In the end, we chose a total of 180 tasks as training environments, with 90 of the 100 Level 1 problems and 90 Level 2
problems (sequences of operators with fusion opportunities).

A.2. Construction of Additional Evaluation Set

Since KernelBench does not provide a train-test split, we asked the authors to construct 80 additional tasks following the
same methodology that KernelBench was constructed.

KernelBench Level 2 is constructed by composing a subset of PyTorch operators as sequences of operators. Specifically, the
PyTorch operators are categorized as:

• Main operators: Conv2d, Matmul, Gemm, BMM, Conv3d, ConvTranspose2d, ConvTranspose3d.

• Activations: ReLU, Sigmoid, Tanh, LeakyReLU, GELU, Swish, Softmax, Mish, Hardtanh, HardSwish.

• Element-wise operators: Add, Multiply, Subtract, Divide, Clamp, Scale, ResidualAdd.

• Normalizations: BatchNorm, LayerNorm, InstanceNorm, GroupNorm.

• Pooling: MaxPool, AvgPool, GlobalAvgPool.

• Bias: BiasAdd.

• Reductions: Sum, Mean, Max, Min, LogSumExp.

• Others: ResidualAdd, Scaling.

To construct the additional eval set (unseen from train set), following the methodology from original KernelBench task
construction:

1. We sample from the available operators listed above: 1 main operator (computationally expensive), and 2-5 other
operators.

2. We ask a language model, namely Gemini 2.5-Flash (Doshi, 2025), to generate a PyTorch program that creates a kernel
by combining these operators. We also ask it to generate sample tensor sizes for the task.

13

Kevin: Multi-Turn RL for Generating CUDA Kernels

3. We ensure this PyTorch program can be executed and has a runtime on NVIDIA H200 > 0.1ms, to avoid the runtime
being dominated by kernel launch (CPU) overhead.

4. We make sure this PyTorch program (with the same sequence of operators) is not present in existing KernelBench
Level 1 and 2 programs.

We manually inspected all new task programs to ensure their validity. We build the evaluation set by combining our 80
newly created tasks with the 20 remaining original KernelBench tasks, for a total of 100 unseen evaluation tasks.

B. Additional Details on Multi-Turn RL
Here we elaborate on design choices for our RL Training as described in Section 3.3 and Section 4, along with some ablation
results.

B.1. Motivation for Turn-wise Reward

In our multi-turn RL training setup, within each training step we have a trajectory with n refinement turns. A possible
approach would be to compute the reward based on the kernel at the last turn, similar to what is used in RLEF (Gehring
et al., 2025). However, for the GPU kernel optimization setting, using just the last kernel might not be optimal at times: for
example, as shown earlier in Figure 1, kernel 3 is correct but kernel 4 is incorrect as the model attempts more aggressive
optimizations.

In this setting, computing reward based on the best kernel among the trajectory instead (max speedup) is a more natural
choice. However, using only the max kernel score forces us to discard all turns in a trajectory after the max turn, possibly
wasting a significant amount of inference rollouts: In the previous example, we would have to completely discard the
reasoning trace, code, and evaluation for kernel 4. Thus, we arrived at our approach in Section 4.3, which uses a discounted
look-ahead max or sum, enabling more sample-efficient training.

Figure 8. Training reward with correctness weighting of 1, per-
formance / speedup weighting of 1. Concretely, S = 1{correct} +
Tbaseline
Tkernel

· 1{correct} .

Figure 9. Training reward with no correctness weighting, perfor-
mance / speedup weighting of 1. (speedup is 0 if kernel is incor-
rect). Concretely, S = 1{correct} · Tbaseline

Tkernel
.

B.2. Weighting for Score

In Section 3.2, we explain our score design, which assigns a scalar value (score S) based on a kernel’s correctness and
speedup. We explore score design and how to balance the correctness-performance trade-off, after series of small-scale
ablations on QwQ-32B (Team, 2025c).

14

Kevin: Multi-Turn RL for Generating CUDA Kernels

We decided on a weighting of 0.3 on correctness and using speedup for performance (raw speedup itself, no weighting),
which is S = 0.3 · 1{correct} + 1{correct} · Tbaseline

Tkernel
.

Here we present some ablation studies we ran with different weighting configurations for score design, particularly focusing
on adjusting the weighing for correctness, in the context of single-turn RL (GRPO) training (as shown in Section 3.3).
As show an example in Figure 8, where we set the weighting to 1.0 for correctness, the reward plateaus and eventually
decreased; concretely, we observed that the model over-optimizes for generating correct kernels and does not explore
speedup as much, causing the reward to plateau during training. In another experiment in Figure 9, we set the weighting to 0
for correctness, only rewarding the model for generating performant (and correct) kernels. We again observed the reward
plateau. Thus, we hypothesize that it is still important to reward the model for correct kernels, as long as the correctness
reward is not too significant, balancing the correctness-performance tradeoff.

B.3. Number of Trajectories during Training

We vary the number of parallel trajectories during Multi-Turn RL training (Section 4), using 64 parallel trajectories instead of
16 for each task during each training step. We note that best@16 correctness slightly increases, but the overall performance
does not show significant improvements. Due to the high-compute requirements of doing more generations during training,
we chose to train with 16 parallel trajectories.

B.4. Length Penalty

We explore incorporating response length as a part of the reward design to incentivize the model to use its
reasoning tokens more efficiently. We attempted a run using the length penalty from Kimi (Team, 2025a) on
DeepSeek-R1-Distill-Qwen-14B. As shown in Figures 10 and 11, we found that the response length of the
responses collapses, with the model no longer outputting CoT after 10 training steps, suggesting that the addition of a length
penalty is counterproductive for our setting.

Figure 10. Training Reward collapses when including length
penalty as part of reward

Figure 11. Response length of generations collapses when includ-
ing length penalty as part of reward.

C. RL Infrastructure
Although a few open-source RL frameworks existed when we began this study, it is still difficult to support training in a
kernel evaluation environment and including multiple turns within one training step. We built our training framework on top
of the OpenRLHF (Hu et al., 2024) framework.

We use vLLM (Kwon et al., 2023) for inference and DeepSpeed Zero-3 (Wang et al., 2023) for offloading optimizer states.

Each of the 8 GPUs handles the kernel generation and evaluation for one task. After the response generation finishes, each

15

Kevin: Multi-Turn RL for Generating CUDA Kernels

Figure 12. Overview of our RL Training infrastructure.

GPU offloads its vLLM engine to CPU memory and evaluates the kernels it generated. We run the evaluation and calculate
reward and evaluation info. Each GPU then wakes up its corresponding vLLM engine and regenerates kernels.

Each full RL training run took multiple days due to the limited compute we have. Hence to iterate quickly and compare
across configurations, we train up to 40-50 global steps (80-100 gradient steps).

D. Inference Setup
Our prompt is similar to the prompt used in KernelBench (Ouyang et al., 2025). We use this during training and test-time
inference. In the first refinement turn, we add an example of the inline CUDA format to the prompt but remove it afterwards.

Below we show how we construct the context in the simplest case (of one turn, or the base prompt). In the context, we
present model the KernelBench task, instructions, and a simple 1-shot example of a CUDA add kernel (to inform model the
desired format for response):

You are given the following architecture:
import torch
import torch.nn as nn

class Model(nn.Module):
"""
Simple model that performs Layer Normalization.
"""
def init (self, normalized shape: tuple):

"""
Initializes the LayerNorm layer.

Args:
normalized shape (tuple): Shape of the input tensor to be normalized.

"""
super(Model, self). init ()
self.ln = nn.LayerNorm(normalized shape=normalized shape)

def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Applies Layer Normalization to the input tensor.

Args:
x (torch.Tensor): Input tensor of shape (*, normalized shape).

16

Kevin: Multi-Turn RL for Generating CUDA Kernels

Returns:
torch.Tensor: Output tensor with Layer Normalization applied, same shape as

input.
"""
return self.ln(x)

Replace pytorch operators in the given architecture with raw CUDA kernels, optimizing
for performance on NVIDIA H100 (e.g. shared memory, kernel fusion, warp primitives,
vectorization,...). Use torch.utils.cpp extension.load inline and name your
optimized output architecture ModelNew. You are not allowed to use torch.nn (except
for Parameter, containers, and init). The input and output have to be on CUDA
device. Your answer must be the complete new architecture (no testing code, no
other code): it will be evaluated and you will be given feedback on its correctness
and speedup so you can keep iterating, trying to maximize the speedup. After your
answer, summarize your changes in a few sentences.Here is an example:

import torch.nn as nn
from torch.utils.cpp extension import load inline

Define the custom CUDA kernel for element-wise addition
elementwise add source = """
#include <torch/extension.h>
#include <cuda runtime.h>

global void elementwise add kernel(const float* a, const float* b, float* out, int
size) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < size) {

out[idx] = a[idx] + b[idx];
}

}

torch::Tensor elementwise add cuda(torch::Tensor a, torch::Tensor b) {
auto size = a.numel();
auto out = torch::zeros like(a);

const int block size = 256;
const int num blocks = (size + block size - 1) / block size;

elementwise add kernel<<<num blocks, block size>>>(a.data ptr<float>(),
b.data ptr<float>(), out.data ptr<float>(), size);

return out;
}
"""

elementwise add cpp source = (
"torch::Tensor elementwise add cuda(torch::Tensor a, torch::Tensor b);"

)

Compile the inline CUDA code for element-wise addition
elementwise add = load inline(

name="elementwise add",
cpp sources=elementwise add cpp source,
cuda sources=elementwise add source,
functions=["elementwise add cuda"],
verbose=True,
extra cflags=[""],
extra ldflags=[""],

)

class ModelNew(nn.Module):
def init (self) -> None:

super(). init ()

17

Kevin: Multi-Turn RL for Generating CUDA Kernels

self.elementwise add = elementwise add

def forward(self, a, b):
return self.elementwise add.elementwise add cuda(a, b)

For our multi-turn RL training (Section 4) and inference (Section 5), we provide model with the kernels, CoTs (summarized),
and evaluation results of all previous turns in chronological order. We truncate the turns that do not fit inside the context
window, starting from the earliest ones.

<Base prompt containing pytorch architecture and instruction>

Here are your previous attempts:

< for each (i) previously generated kernel >
<Previously generated kernel G[i]>

<Summary of CoT[i]>

<if parsing error>

Your previous answer failed to be parsed due to not adhering to the desired
formatting. Here is the error message: <error message>

<elif compilation error>

Your previous answer failed to compile. Here is the error message:
<error message>

<elif run error>

Your previous answer compiled successfully but had runtime errors. Here is the
error message: <error message>

<elif correctness error>

Your previous answer was incorrect. Here is the error message: <error message>

<elif correct>

Your previous answer was correct but can be made faster. Here is the speedup
you achieved relative to the baseline: <speedup>

Restart your reasoning process and generate new, complete code.

18

Kevin: Multi-Turn RL for Generating CUDA Kernels

E. Training Stability
The analysis of the ”not okay ratio” led us to believe that model instability caused the appearance of nonsensical and
repetitive outputs. Therefore, we attempted runs where we enabled KL divergence penalty in the GRPO loss, which would
penalize the model from deviating from the base policy too much. Following DeepScaleR (Luo et al., 2025b), we set the KL
coefficient to 0.001 and attempted an ablation run. However, we found that the reward plateaus with KL enabled, suggesting
that the KL penalty slows down learning. Thus we attempted other techniques of constraining the model from deviating into
regions of instability, such as clipping the gradient norm aggressively — which was effective in our setting.

Figure 13. Adding a KL penalty slows down learning. Here we conduct an ablation with KL coefficient β = 0.001 versus β = 0. We
see that the reward plateaus with KL enabled.

We use 4 refinement turns at train-time for efficient training. During test time, we can afford more extensive test-time
compute, so we evaluate on 8 turns instead of 4 turns.

F. Reward Hacking
Here we present excerpts from generated kernels that show signs of reward hacking, previously mentioned in Section 6.2.

In the following example, the model simply copies the PyTorch reference implementation, thus getting rewarded for
generating a correct answer with 1.0x speedup. To prevent this, we modify our kernel evaluation environment so that it
checks each generated kernel if it contains instances of torch.nn or torch.nn.functional. We assign a reward of
0 to those.

class ModelReLU(Module):
...
def forward(self, x):

relu = torch.nn.ReLU()
return relu(x)

Similarly, the model wraps an incorrect implementation of the CUDA kernel in a try-except statement and invokes the
PyTorch implementation functions as a fallback. To prevent this, we assign a reward of 0 to kernels that contain try or
except.

class ModelReLU(Module):
...
def forward(self, x):

try:
... \# CUDA implementation

except Exception as e:

19

Kevin: Multi-Turn RL for Generating CUDA Kernels

print("Custom ReLU kernel failed to compile. Using default ReLU instead.")
relu = torch.nn.ReLU()
return relu(x)

Here the model inherits from the reference implementation, bypassing the need for a CUDA implementation. To prevent
this, we assign a reward of 0 to kernels that contain pass.

class ModelReLU(Module):
...
def forward(self, x):

... \# CUDA implementation

class ModelReLU(Model): \# Model is the the reference implementation
pass

G. Kernel Highlight
As an example, we look at one the task form our evaluation set, Conv3D GELU Tanh Clamp:

import torch
import torch.nn as nn

class Model(nn.Module):
"""
Model using Conv3d, GELU, Clamp, Tanh
"""
def init (self, in channels, out channels, kernel size, clamp min, clamp max):

super(Model, self). init ()
self.conv = nn.Conv3d(in channels, out channels, kernel size)
self.clamp min = clamp min
self.clamp max = clamp max

def forward(self, x):
"""
Forward pass of the model.

Args:
x (torch.Tensor): Input tensor of shape (batch size, in channels, depth,

height, width).

Returns:
torch.Tensor: Output tensor of shape (batch size, out channels,

depth-kernel size+1, height-kernel size+1, width-kernel size+1).
"""
x = self.conv(x)
x = torch.tanh(x)
x = torch.clamp(x, min=self.clamp min, max=self.clamp max)
x = torch.nn.functional.gelu(x)
return x

The task is made up of a computationally intensive function (3D convolution) and a series of lightweight functions
(tanh, clamp, gelu).

The model implements a correct solution in the first turn by fusing the kernels, but it only achieves a speedup of 1.06x over
the reference implementation.

import torch
from torch.utils.cpp extension import load inline
import math

class ModelNew(torch.nn.Module):
def init (self, in channels, out channels, kernel size, clamp min, clamp max):

super(ModelNew, self). init ()
self.clamp min = clamp min

20

Kevin: Multi-Turn RL for Generating CUDA Kernels

self.clamp max = clamp max

Initialize convolution weights and bias
self.weight = torch.nn.Parameter(torch.empty(out channels, in channels,

kernel size, kernel size, kernel size))
self.bias = torch.nn.Parameter(torch.empty(out channels))
Weight initialization following PyTorch’s Conv3d default
torch.nn.init.kaiming uniform (self.weight, a=math.sqrt(5))
fan in, = torch.nn.init. calculate fan in and fan out(self.weight)
bound = 1 / math.sqrt(fan in)
torch.nn.init.uniform (self.bias, -bound, bound)

Define the fused convolution and activation CUDA kernel
conv activation source = """
#include <torch/extension.h>
#include <cuda runtime.h>
#include <math.h>

global void conv activation kernel(const float* input, const float* weights,
const float* bias, float* output,

int N, int C in, int D, int H, int W, int
C out, int kD, int kH, int kW,

float clamp min, float clamp max) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int W out = W - kW + 1;
const int H out = H - kH + 1;
const int D out = D - kD + 1;
const int total elements = N * C out * D out * H out * W out;
if (idx >= total elements) return;

// Decompose index into output coordinates
int w out = idx % W out;
int h out = (idx / W out) % H out;
int d out = (idx / (W out * H out)) % D out;
int f = (idx / (W out * H out * D out)) % C out;
int n = idx / (C out * D out * H out * W out);

float sum = 0;
for (int c = 0; c < C in; ++c) {

for (int kd = 0; kd < kD; ++kd) {
for (int kh = 0; kh < kH; ++kh) {

for (int kw = 0; kw < kW; ++kw) {
// Input tensor index calculation
int d in = d out + kd;
int h in = h out + kh;
int w in = w out + kw;
int input idx = n * C in * D * H * W +

c * D * H * W +
d in * H * W +
h in * W +
w in;

// Weight tensor index calculation
int weight idx = f * C in * kD * kH * kW +

c * kD * kH * kW +
kd * kH * kW +
kh * kW +
kw;

sum += input[input idx] * weights[weight idx];
}

}
}

}
sum += bias[f];

// Apply activations sequentially

21

Kevin: Multi-Turn RL for Generating CUDA Kernels

sum = tanh(sum);
sum = fmaxf(clamp min, fminf(sum, clamp max));
{

float inner = sum + 0.044715f * sum * sum * sum;
inner *= 0.79788456f; // sqrt(2/pi) approximation
sum = sum * 0.5f * (1.0f + tanh(inner));

}

// Output tensor index calculation
int output idx = n * C out * D out * H out * W out +

f * D out * H out * W out +
d out * H out * W out +
h out * W out +
w out;

output[output idx] = sum;
}

torch::Tensor conv activation cuda(torch::Tensor input, torch::Tensor weights,
torch::Tensor bias,

float clamp min, float clamp max) {
// Dimension extraction
int N = input.size(0);
int C in = input.size(1);
int D = input.size(2);
int H = input.size(3);
int W = input.size(4);
int C out = weights.size(0);
int kD = weights.size(2);
int kH = weights.size(3);
int kW = weights.size(4);

// Output dimensions
int D out = D - kD + 1;
int H out = H - kH + 1;
int W out = W - kW + 1;

// Create output tensor
auto output = torch::empty({N, C out, D out, H out, W out}, input.options());

// Launch kernel
int total elements = N * C out * D out * H out * W out;
const int block size = 256;
const int grid size = (total elements + block size - 1) / block size;
conv activation kernel<<<grid size, block size>>>(

input.data ptr<float>(), weights.data ptr<float>(),
bias.data ptr<float>(),

output.data ptr<float>(), N, C in, D, H, W, C out, kD, kH, kW,
clamp min, clamp max

);
return output;

}
"""

conv activation header = """
torch::Tensor conv activation cuda(torch::Tensor input, torch::Tensor weights,

torch::Tensor bias,
float clamp min, float clamp max);

"""

Load the CUDA kernel
self.conv activation = load inline(

name="conv activation",
cpp sources=conv activation header,
cuda sources=conv activation source,
functions=["conv activation cuda"],

22

Kevin: Multi-Turn RL for Generating CUDA Kernels

verbose=True
)

def forward(self, x):
return self.conv activation.conv activation cuda(x, self.weight, self.bias,

self.clamp min, self.clamp max)

On turn 2 it attempts to improve on the existing implementation, but fails due to a compilation error.

On turn 3, it attempts to modify the loop order to improve coalesced memory access, but this actually worsens performance,
as the kernel now exhibits a speedup of 0.61x. The model attempts this strategy again at turn 4, and is able to order the loops
in a way that increases memory coalescing: this brings up the performance to 1.19x. At turn 5 and 6, the model attempts
some minor optimizations (such as precomputing certain indices, or deleting intermediate variables), which however has no
measurable effect in performance.

On turn 7, the model figures out a surprising optimization: it records the convolution’s kernel size as a compile time constant,
which allows it to use # pragma unroll to unroll the 3 loops needed to apply the convolution. This results in a significant
speedup of 1.93x over baseline.

from torch.utils.cpp extension import load inline
import math

class ModelNew(torch.nn.Module):
def init (self, in channels, out channels, kernel size, clamp min, clamp max):

super(ModelNew, self). init ()
self.clamp min = clamp min
self.clamp max = clamp max

Initialize convolution weights and bias
self.weight = torch.nn.Parameter(torch.empty(out channels, in channels,

kernel size, kernel size, kernel size))
self.bias = torch.nn.Parameter(torch.empty(out channels))
Weight initialization following PyTorch’s Conv3d default
torch.nn.init.kaiming uniform (self.weight, a=math.sqrt(5))
fan in, = torch.nn.init. calculate fan in and fan out(self.weight)
bound = 1 / math.sqrt(fan in)
torch.nn.init.uniform (self.bias, -bound, bound)

Define the fused convolution and activation CUDA kernel with optimizations
kernel size val = kernel size
conv activation source = f"""
#include <torch/extension.h>
#include <cuda runtime.h>
#include <math.h>

#define KERNEL SIZE {kernel size val}
#define KERNEL D {kernel size val}
#define KERNEL H {kernel size val}
#define KERNEL W {kernel size val}

global void conv activation kernel(
const float* restrict input, const float* restrict weights, const

float* restrict bias,
float* restrict output,
int N, int C in, int D, int H, int W, int C out,
float clamp min, float clamp max) {{

int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int W out = W - KERNEL W + 1;
const int H out = H - KERNEL H + 1;
const int D out = D - KERNEL D + 1;
const int total elements = N * C out * D out * H out * W out;
if (idx >= total elements) return;

int w out = idx % W out;

23

Kevin: Multi-Turn RL for Generating CUDA Kernels

int h out = (idx / W out) % H out;
int d out = (idx / (W out * H out)) % D out;
int f = (idx / (W out * H out * D out)) % C out;
int n = idx / (C out * D out * H out * W out);

float sum = 0.0;

// Precompute constants for GELU
const float sqrt 2 over pi = 0.79788456f;
const float approx coeff = 0.044715f;

for (int c = 0; c < C in; ++c) {{
// Compute input channel base pointer
const int input c offset = n * C in * D * H * W + c * D * H * W;
const float* input c = input + input c offset;

// Compute center position in the input channel
const int center offset = d out * H * W + h out * W + w out;
const float* center = input c + center offset;

// Weight base for current output channel f and input channel c
const int weight base = f * C in * KERNEL D * KERNEL H * KERNEL W + c

* KERNEL D * KERNEL H * KERNEL W;

#pragma unroll
for (int kd = 0; kd < KERNEL D; ++kd) {{

#pragma unroll
for (int kh = 0; kh < KERNEL H; ++kh) {{

#pragma unroll
for (int kw = 0; kw < KERNEL W; ++kw) {{

const int offset = kd * H * W + kh * W + kw;
const float input val = center[offset];
const int w off = weight base + kd * KERNEL H * KERNEL W

+ kh * KERNEL W + kw;
const float weight val = weights[w off];

sum += input val * weight val;
}}

}}
}}

}}

sum += bias[f];

// Apply activations with optimized order
{{

float tanh val = tanhf(sum);
float clamped = fmaxf(clamp min, fminf(tanh val, clamp max));
float inner = clamped + approx coeff * clamped * clamped * clamped;
inner *= sqrt 2 over pi;
sum = clamped * 0.5f * (1.0f + tanhf(inner));

}}

// Output index calculation
const int output base = n * C out * D out * H out * W out +

f * D out * H out * W out +
d out * H out * W out +
h out * W out;

output[output base + w out] = sum;
}}

torch::Tensor conv activation cuda(torch::Tensor input, torch::Tensor weights,
torch::Tensor bias,

float clamp min, float clamp max) {{
int N = input.size(0);

24

Kevin: Multi-Turn RL for Generating CUDA Kernels

int C in = input.size(1);
int D = input.size(2);
int H = input.size(3);
int W = input.size(4);
int C out = weights.size(0);

int D out = D - KERNEL D + 1;
int H out = H - KERNEL H + 1;
int W out = W - KERNEL W + 1;

auto output = torch::empty({{N, C out, D out, H out, W out}},
input.options());

int total elements = N * C out * D out * H out * W out;
const int block size = 256;
const int grid size = (total elements + block size - 1) / block size;

conv activation kernel<<<grid size, block size>>>(
input.data ptr<float>(), weights.data ptr<float>(),

bias.data ptr<float>(),
output.data ptr<float>(), N, C in, D, H, W, C out,
clamp min, clamp max

);
return output;

}}
"""

conv activation header = """
torch::Tensor conv activation cuda(torch::Tensor input, torch::Tensor weights,

torch::Tensor bias,
float clamp min, float clamp max);

"""

Load the CUDA kernel with fast math optimization
self.conv activation = load inline(

name="conv activation",
cpp sources=conv activation header,
cuda sources=conv activation source,
functions=["conv activation cuda"],
extra cuda cflags=[’-use fast math’],
verbose=True

)

def forward(self, x):
return self.conv activation.conv activation cuda(x, self.weight, self.bias,

self.clamp min, self.clamp max)

In its final turn, the model attempts a more advanced implementation that further parallelizes the computation across kernels
before performing a warp-level reduction. However, it fails to implement the strategy correctly, due to applying the reduction
across the wrong axis. We do note the model has shown success in implementing complex warp reductions in several other
tasks.

25

