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Abstract

Missing data imputation is a core challenge in socioeconomic surveys, where data is
often longitudinal, hierarchical, high-dimensional, not independent and identically
distributed, and missing under complex mechanisms. Socioeconomic datasets like the
Consumer Pyramids Household Survey (CPHS)—the largest continuous household
survey in India since 2014, covering 174,000 households—highlight the importance
of robust imputation, which can reduce survey costs, preserve statistical power, and
enable timely policy analysis. This paper systematically evaluates these methods
under three missingness mechanisms: missing completely at random (MCAR),
missing at random (MAR), and missing not at random (MNAR), across five
missingness ratios ranging from 10% to 50%. We evaluate imputation performance
on both continuous and categorical variables, assess the impact on downstream tasks,
and compare the computational efficiency of each method. Our results indicate that
classical machine learning methods such as MissForest and HyperImpute remain
strong baselines with favorable trade-offs between accuracy and efficiency, while deep
learning methods perform better under complex missingness patterns and higher
missingness ratios, but face scalability challenges. We ran experiments on CPHS
and multiple synthetic survey datasets, and found consistent patterns across them.
Our framework aims to provide a reliable benchmark for structured socioeconomic
surveys, and addresses the critical gap in reproducible, domain-specific evaluation
of imputation methods. The open-source code is provided in Appendix

1 Introduction

Missing data is a pervasive challenge in data science and machine learning, especially in real-world
socioeconomic survey datasets (Silva-Ramirez et all [2015; [Wang et all [2021)). Data is often
incomplete due to nonresponse or privacy concerns (Rubin, 2004)). Imputation mitigates nonresponse
bias and supports policy evaluation (Chen & Shaol, 2000} [Little & Rubin, [2019; [Yang et al.l 2024;
Abdelnaby et al.| [2024).

Despite the proliferation of imputation methods, there is a conspicuous lack of benchmarks to
evaluate them on publicly available, large-scale, realistic datasets that capture the complexity of
real-world socioeconomic survey data while allowing controlled introduction of missingness. Most
empirical studies on missing data rely on relatively small datasets—such as the UCI machine
learning repository (Zhang et al. 2025; Du et al.| [2024; [Miao et al., [2023} Bertsimas et al.| 2018b)
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or limited clinical datasets (Zheng & Charoenphakdee, |2022)—or on synthetically generated data
with simplistic assumptions (e.g., features drawn from a standard normal distribution) (Sun et al.
2023)). Missingness is often simulated by randomly masking data under MCAR or MAR assumptions,
which fail to reflect complex real-world patterns. In practice, missingness often follows the more
challenging MNAR mechanism, where whether a value is missing depends directly on its unobserved
value. Furthermore, numerous current benchmarks emphasize exclusively the accuracy of imputation,
specifically evaluating the proximity of the imputed values to the actual values, while neglecting
the consequences on downstream tasks (Zhang et al., |2025; Jarrett et all 2022} Hastie et al., [2015;
Biessmann et al., [2019)). In practical applications, the goal of imputation is usually to enable
reliable analysis or predictive modeling; thus, evaluating how different imputation methods affect
the performance of subsequent tasks is crucial.

Although benchmarks exist for imputation on socioeconomic survey data (Wang et al., 2021} |[Li et al.|
2024; [Kalton & Kasprzykl, [1982), they typically suffer from several limitations, such as excluding
MNAR scenarios, relying on a small set of missingness ratios (Bertsimas et al., |2018b)), and lacking
a systematic evaluation framework. To address these gaps, our work bridges the divide between
restricted real-world data and reproducible experimentation by introducing a comprehensive and
open benchmark for missing data imputation in socioeconomic surveys. To the best of our knowledge,
we are the first to provide a large-scale, publicly shareable benchmark that integrates real, synthetic,
and open socioeconomic datasets under diverse missingness scenarios and systematic evaluation
metrics. Our contributions include the following;:

o Evaluations on Real, Synthetic, and Public Datasets: We benchmark imputation
methods on three datasets: the real-world CPHS (Pais & Rawall 2021), its high-fidelity
synthetic counterpart SynthCPHS, and the publicly shareable SubSDIC derived from the
World Bank’s SDIC.

¢ Comprehensive Missingness Scenarios: We evaluate 14 imputation methods under
three missingness mechanisms (MCAR, MAR, MNAR) and five missingness ratios, offering
a broad and realistic spectrum of evaluation conditions.

e Multi-metric Analysis & Downstream Task Evaluation: In addition to the imputation
accuracy on both continuous and categorical variables, we assess performance on downstream
classification and regression tasks using multiple models to ensure robustness. We also
systematically compare the computational efficiency of each method.

The remainder of this paper is organized as follows. Section 2 reviews related work on benchmark
datasets, imputation methodologies, and synthetic data. Section 3 introduces the datasets used
in our study. Section 4 defines the problem and missingness mechanisms. Section 5 describes our
experimental setup and evaluation protocols. Section 6 presents results and analysis. Finally, Section
7 concludes the paper.

2 Related Work

2.1 Benchmark Datasets for Tabular Imputation

Research on imputation for tabular data often uses small, flat datasets like those from UCI machine
learning repository (Kelly et al.l |2025)). As shown in Table [1} these datasets usually contain a few
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Table 1: Comparison of our proposed socioeconomic benchmarks against existing datasets commonly
used in imputation literature (cited in > 3 studies). Columns Definition: Samples: Total
number of rows; Features: Number of continuous (N, ) and categorical (N.,¢) variables; Evaluated
Scenarios: The number of different missingness ratios tested under MCAR, MAR, and MNAR
mechanisms; Capabilities: Whether the benchmark supports Train/Test split evaluation, Downstream
task evaluation, and contains hierarchical or longitudinal structures. Unlike standard UCI datasets
(top), our proposed datasets (bottom) capture the complex, structured nature of real-world survey
data.

Dataset Samples Features Evaluated Scenarios (Nyatios) Benchmark Capabilities

(N) Neon Neaw MCAR MAR MNAR Train/Test Downstream  Hierarchical ~Longitudinal
Existing General-Purpose Benchmarks (UCI)
California Housing 20k 9 - 1 1 1 v -
Letter Recognition 20k 16 - 1 1 1 v -
Credit Card Clients 30k 14 9 1 1 1 v -
Online News 40k 58 - 1 1 1 v -
Concrete Strength 1k 8 - 4 4 4 - -
Wine Quality 5k 11 - 4 4 4 -
Diabetes Health 20k 7 14 4 4 4 -
SpamBase 4k 56 - 4 4 4 -
Proposed Socioeconomic Benchmarks
CPHS (Real) 14M 16 5 5 5 v v v v
SynthCPHS (Synthetic) 1M 16 8 5 5 v v v v
SubSDIC (Public) 500k 6 12 5 5 5 v v v -

thousand to 100k samples with dozens of features, lacking clear hierarchical or temporal dependencies
between variables. Details of these datasets are in Appendix [A74] Even more limiting, most studies
simulate missing data, focusing on simplified MCAR or MAR scenarios with a single missingness
level, which limits generalizability, since real-world data have more complex patterns.

A notable exception is the work of |[Jager et al| (2021)), who conducted a large-scale benchmark of
imputation methods across 69 heterogeneous datasets from OpenML. Although their study offers
valuable insight into general-purpose imputation performance, the datasets used are not drawn from
the socioeconomic survey domain and lack the hierarchical and longitudinal structures typically
present in national household surveys.

Recently, synthetic data benchmarks (Sun et all, [2023)) have gained traction to test imputation
algorithms under controlled conditions (e.g., varying missing rates or mechanisms); but most synthetic
setups do not capture the complexity of real-world structured data. In particular, few, if any, existing
benchmarks replicate the large-scale, multi-level characteristics of national socioeconomic surveys,
which span millions of entries with state or regional hierarchies and repeated observations over time.

2.2 Imputation Methodologies

Approaches to imputing missing values can be grouped by their modeling philosophy. Statistical
and iterative methods use repeated estimation cycles, including mean or mode filling, and classic
algorithms like MICE (Van Buuren & Groothuis-Oudshoorn, 2011)) and MissForest
Biihlmann) 2012) that iteratively train predictors for each feature, as well as matrix-completion
methods like SoftImpute (Hastie et al.,|2015). These methods assume linear or low-rank structures
and often struggle with complex nonlinear feature interactions. Recent methods such as MIRACLE
(Kyono et all[2021)) introduce a causally aware regularization that models the missingness mechanism
jointly with the data, encouraging imputations consistent with the underlying causal structure.
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Distribution-matching methods align observed and imputed distributions: MOT (Missing-data
Optimal Transport) (Muzellec et al.l 2020) formulates imputation as finding the allocation of missing
values that minimizes the optimal transport distance between batches of incomplete data, while
its successor TDM (Transformed Distribution Matching) (Zhao et al. 2023) learns a nonlinear
mapping before applying optimal transport to better capture the data’s intrinsic geometry. These
methods achieve state-of-the-art accuracy on many benchmark tasks and are particularly effective
for in-sample imputation but generalize poorly to new records since they treat missing entries as
learned model parameters.

Deep generative models (VAE (Mattei & Frellsen, [2019)), GAN (Yoon et al., [2018)), diffusion (Zheng &
Charoenphakdee| [2022))) capture joint distributions of observed and missing data. While these models
can capture complex nonlinear dependencies, they often face challenges in estimating distributions
from incomplete data and in performing conditional inference, especially under high missingness. To
overcome these issues, recent methods combine generation with iterative refinement. For example,
DiffPuter (Zhang et al., |2025|) integrates diffusion models into an EM framework, using iterative E-
and M-steps to improve imputation quality.

Hybrid deep learning methods blends machine learning pipelines with automated model selection or
specialized architectures. HyperImpute (Jarrett et al., |2022) employs an AutoML-style pipeline
that selects the best model for each variable and updates imputations iteratively. Other architectures
leverage advanced designs: DSAN (Lee & Kiml 2023) applies self-attention to learn feature and
sample dependencies via masked reconstruction, while ReMasker (Du et all 2024)) extends masked
autoencoding by re-masking observed entries during training, promoting robustness across different
missingness patterns. Deep learning models have demonstrated robust performance on challenging
imputation tasks, especially when missing rates are high or feature types are heterogeneous (Zhang
et al., [2025).

Some recent studies have empirically evaluated the “impute-then-predict” pipeline. For example,
Bertsimas et al.| (2018a)) and [Poulos & Valle| (2018)) proposed frameworks that highlight the importance
of integrating imputation with supervised learning tasks. More recent work by |Paterakis et al.| (2024])
questions whether explicit imputation is always necessary in predictive pipelines, particularly within
the context of AutoML. However, our work places equal emphasis on two complementary objectives:
restoring incomplete datasets to reduce the need for costly follow-up surveys, and ensuring robust
performance on downstream tasks.

2.3 Synthetic Data for Imputation

When real-world socioeconomic data is private or lacks ground truth, synthetic data provides
a practical alternative for benchmarking imputation methods. Prior work has used synthetic
simulations to evaluate methods under controlled conditions (Kyono et al.l2021; |Sun et al.||2023), but
most rely on simple i.i.d. data or low-dimensional toy settings (Muzellec et al., 2020; Bertsimas et al.|
2024)), lacking the structural and statistical complexity of real surveys. National household surveys
like CPHS feature multi-level hierarchies, repeated measurements, and non-random missingness,
but their proprietary nature limits open evaluation. To address this, we introduce a synthetic
benchmark dataset, SynthCPHS, which we design to replicate the structure and distribution of
CPHS. We validate the similarity using the Kolmogorov—Smirnov (KS) test and Jensen—Shannon
(JS) divergence, and the synthetic construction enables GPU-supported evaluation beyond CPHS’s
secure CPU-only server environment. We also present SubSDIC, a public subset derived from
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Figure 1: Overview of selected features in the CPHS and SynthCPHS datasets. Household-level
(orange) and individual-level (blue) features form a hierarchical structure. The target variable
(green) indicates individual health status for downstream classification. The wave number indexes
each survey round, capturing longitudinal structure.

World Bank data (World Bank| 2023|), which supports systematic and reproducible benchmarking
in the socioeconomic domain.

3 Datasets

3.1 CPHS & The SynthCPHS Dataset
3.1.1 CPHS

The Consumer Pyramids Household Survey (CPHS) by CMIE is the largest continuous household
survey in India, running since 2014 and covering a panel of over 174,000 sample houses (about
111,000 rural and 63,400 urban) spread across most states in India surveyed thrice yearly (Pais &
Rawal, |2021; Somanchi, 2021)). It captures a broad array of household attributes including labor
supply, income, consumption (expenditure on various needs), borrowing, and asset ownership (Pais
& Rawall [2021). This breadth makes it highly valuable for socioeconomic analysis (Chatterjee &
Dev}, 2023} [Kathuria & Devl 2024; |Jagannarayan & Prasunaj 2024). In this paper, we select 25
socioeconomic features, as shown in Figure . Because some variables were missing in earlier waves,
we restrict the analysis to complete cases from waves 18-30 (each wave is a survey round), preserving
the longitudinal and hierarchical structure and yielding 1,341,651 records.

3.1.2 SynthCPHS

As CPHS is proprietary, available only by subscription, and restricted to a secure CPU-only server,
benchmarking is severely constrained, especially for GPU-based imputation. To address this, we
construct SynthCPHS, a synthetic dataset that mirrors the statistical properties and structure
of CPHS but can be used on external GPU systems, enabling full-scale evaluation of imputation
accuracy and efficiency. SynthCPHS includes 1,000,000 records and shares the same feature sets with
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the CPHS dataset as shown in Figure [I] The dataset was generated using the synthpop package in
R (Nowok et al.l|2016]), a widely used tool to produce artificial microdata that preserve the statistical
properties of the original survey while protecting individual confidentiality (Nowok et al., |2017)). To
support its validity, we compared the marginal and joint distributions of key features in SynthCPHS
and CPHS using the Kolmogorov—Smirnov (KS) test and Jensen—Shannon (JS) divergence, finding
no significant distributional differences.

3.2 SubSDIC

To ensure reproducibility, we introduce SubSDIC, a public subset dataset derived from the World
Bank’s Synthetic Data for an Imaginary Country (SDIC)-a fully synthetic census dataset representing
an imaginary middle-income country. SDIC was generated using REaLTabFormer (Solatorio &
Dupriez, [2023)), a deep generative model trained on global household survey data, including TIPUMS
International, DHS, and the World Bank Global Consumption Database. SDIC consists of two
flat tables for household- and individual-level attributes. We join these tables via household ID,
select 19 mixed-type variables spanning both levels, and randomly sample 500k records from the
full 10 million to construct SubSDIC. We designate the individual’s highest educational attainment
(cat_educ_attain) as the target variable for downstream classification and years of schooling
(con_yrs_school) as the target variable for downstream regression. SubSDIC preserves realistic
socioeconomic frameworks, including hierarchical relationships among households, individuals,
provinces, and districts, allowing for regulated evaluation of imputation accuracy, efficiency, and
downstream performance across different missing data scenarios. Kolmogorov-Smirnov tests and
Jensen-Shannon divergence analysis confirm that SubSDIC closely mimics the marginal distributions
of the original SDIC dataset. Detailed feature descriptions are provided in Appendix [A5]

4 Problem Definition and Missing Mechanism

4.1 Problem Definition

Let X denote the matrix n x d that contains the complete data values in the variables d for all n
units in the sample. Define the mask variable M as an n x d 0-1 matrix indicating whether a data
point of X is observed (1) or missing (0). The elements of X and M are denoted by x;; and m;;,
respectively, where ¢ = 1,...,n and j = 1,...,d. We further define the partially observed data matrix
as X, and its elements Z;;, such that

- Tij, if mijzl
e @, if mi]‘:O ’

Here represents an unobserved value. In the missing data imputation problem, the task is imputing
data matrix X from the observed data matrix X and make it as similar as possible to the complete
data matrix X.

4.2 Missingness Mechanism

Little & Rubin| (2019)) find it helpful to differentiate between the missingness mechanisms, which
refers to the relationship between the occurrence of missing data and the values of the variables
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in the data matrix. The missing mechanism indicates whether the occurrence of missingness is
connected to the underlying values of the variables in the dataset. The importance of missingness
mechanisms lies in the fact that the effectiveness of data imputation methods is highly influenced by
the specific dependencies present in these mechanisms. Therefore, we introduce the three missingness
mechanisms as defined by Rubin| (1976)) here. Let X and M be defined as in Section Assume
the rows (x;,m;) are i.i.d. across i. The missingness mechanism is specified by the conditional
distribution pyx (m; | x;, 0), where 8 denotes unknown parameters.

e MCAR: If the missingness is independent of the data values, either missing or observed,
this means for all ¢ and any distinct values x;,x} in the sample space of X, the conditional

K3
distributions are equal:
pmix(m; | x;,0) = pvx (m; | %7, 6)

where x serves as a placeholder for a distinct, hypothetical value that could take the place
of x; in the sample space of X.

¢ MAR: Let x(1); represent the observed components of x; and x(g); represent the missing
components of x;. A less restrictive assumption than MCAR is that the missingness depends
on x; only through the observed components x(1y;. This implies that for any distinct values
X(0)i» X(0)i of the missing components within the sample space of x(g);, the probability of
missingness remains the same. In mathematical terms, the conditional distribution of the
missingness mechanism can be expressed as:

pM|X(mi | X(0)ir X(1)i» 0) = pM\x(mz‘ | X?o)ivx(l)iv 0)

e MNAR: Unlike the MAR mechanism, where missingness is related to the observed values,
if missingness is dependent on the unobserved (missing) values, the mechanism is classified
as MNAR. The distribution of m; depends on the missing components of x;, which means
that equation is not valid for some units 7 and some values x(g);,X(0); of the missing
components.

4.3 Missingness Generation

In this study, missing values are synthetically introduced into complete datasets to establish ground-
truth benchmarks. We adapt procedures from the R-miss-tastic platform (Mayer et al.,|2019) to
generate missingness under MCAR, MAR, and MNAR mechanisms. Crucially, the generation process
is fully independent for every experimental configuration; a new missingness mask is generated for
each sample dataset.

Missing Completely at Random (MCAR) Missingness is independent of observed and
unobserved data. For each feature j and sample ¢, the missingness indicator m;; follows a Bernoulli
distribution P(m;; = 1) = «, where « is the target proportion.

Missing at Random (MAR) Missingness in feature X, depends on other observed features
but not on X itself. We employ a feature-wise logistic model as outlined in Algorithm To
strictly adhere to the MAR assumption, the weight matrix W is constructed with a zero diagonal
(W, ; =0). The influencing covariates are assigned uniform weights 8y, = 1/(d — 1) for all k¥ # j in
a d-dimensional dataset, ensuring bias-free dependency on the remaining features.
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Missing Not at Random (MNAR) MNAR allows missingness to depend on the feature’s own
value. As shown in Algorithm [1] this is achieved by initializing W as an all-ones matrix (retaining
W, ; = 1) and normalizing the weights row-wise to i = 1/d, thereby allowing the missingness of a
variable to depend on all features, including itself.

Algorithm 1: Generation of Missing Values under MAR/MNAR Mechanism

Input :Complete Matrix X (n x d), Missingness Ratio a, Mechanism="MAR" or "MNAR"
Output : Partially Observed Data Matrix X
// Initialization

X X, Woxd 11T, // Initialize d X d matrix with ones

// Step 1: Define Dependency Structure

2 if Mechanism=="MAR" then

© 0w N o w;

10
11
12
13
14

15

W—W-1;; // Remove self-dependency
W < Normalize(W, axis = row) ; // ensure >, W;; =1
// Step 2: Generate Missingness
S+ XWT' ; // Compute weighted scores (n X d)
Z + Normalize(S, axis = col) ; // Standardize scores feature-wise
Determine vector v € R? such that mean(o(Z + =), axis = col) ~ «;
P«o(Z+7~); // Compute probability matrix (n X d)

Generate M from Bernoulli distribution with parameter P ; // Mask matrix (1 = Missing)

// Step 3: Post-processing Safety Check

Find indices Z <« {i | Z?:l M, ; =d}; // Find rows that are fully missing
if 7 is not empty then

L Sample indices k € {1,...,d}?! uniformly;

MI[Z,k] + 0 ; // Ensure at least one observed value per row
X[M] + NA; // Apply final mask to data
return X

Distributional Bias and Extrapolation. The logistic missingness generation mechanism (Algo-
rithm (1)) inherently introduces distributional bias by assigning higher missingness probabilities to
extreme values. This simulates tail censoring, aligning with empirical findings in survey methodol-
ogy where high- and low-income households are significantly less likely to disclose earnings (Riphahn
& Serfling), 2005; Meyer et al., 2015).

5 Experimental Setup and Evaluation

5.1 Dataset Distribution Comparison

We evaluate how closely the synthetic dataset (SynthCPHS) reproduces the marginal distributions
of the real CPHS across continuous and categorical variables.

¢ Method for continuous variables: two-sample KS test. Let {z;}]"; and {y;}72; be
two 1.i.d. samples with empirical CDFs F,, and G,,. The two-sample Kolmogorov—Smirnov
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statistic is

Dy = ilég‘Fn(x) — Gm(2)]. (1)

Under the null hypothesis that both samples come from the same continuous distribution,

nm
n+m

or asymptotic p-values (Massey Jr, [1951). In all our results we report the unscaled statistic
Dy, in Eq., denoted as “KS” in the figures, together with its two-sided p-value.

Dy, .m converges in distribution to the Kolmogorov distribution, which yields exact

e Method for categorical variables: JS divergence. For two discrete distributions P
and @ over the same support X, the JS divergence is the symmetrised, smoothed version of
the Kullback-Leibler (KL) divergence:

IS(PIIQ) = 3 KL(P[|M) + 3 KL(Q[[M), M = 3 (P +Q), (2)

where KL(P|Q) = >, cx P() logggz;. JS is always finite, bounded between 0 (identical
distributions) and log2 (base-¢), and admits a metric square root (Lin) |2002; [Endres &

Schindelin| [2003). We report values in [0, 1] by dividing by log 2.

5.2 Benchmark Experimental Settings

5.2.1 Missingness Mechanism and Ratio

The effectiveness of missing data imputation methods is strongly influenced by factors such as the
missingness mechanism and ratio. To rigorously evaluate imputation methods, we introduce missing
values under 3 missingness mechanisms: MCAR, MAR, and MNAR. The missingness implementation
details are provided in Section We create versions of the dataset with missingness ratios of
10%, 20%, 30%, 40%, and 50%. The missingness ratio is calculated as the fraction of all entries
that are masked, and each feature gets roughly the same fraction of its values missing, though in
MAR/MNAR this can vary slightly due to the conditioning. Each missing scenario is generated with
five samples and then fixed, so all methods are evaluated on the exact same missing data patterns
for fairness.

5.2.2 Imputation Methods

We provide a comprehensive benchmark of 14 widely used imputation methods across four categories:
(1) a statistical baseline — Mean/Mode imputation; (2) distribution-matching methods such as MOT
(Muzellec et al., [2020)), which uses optimal transport to align observed and imputed distributions;
(3) iterative machine learning methods including MICE (Van Buuren & Groothuis-Oudshoorn),
2011), MIRACLE (Kyono et al., [2021), SoftImpute (Hastie et al. [2015)), and MissForest
(Stekhoven & Biihlmann, [2012)); and (4) deep generative models — MIWAE (VAE) (Mattei &
Frellsen, 2019), GAIN (GAN) (Yoon et al., |2018), DSAN (self-attention) (Lee & Kim, [2023), and
TabCSDI (diffusion) (Zheng & Charoenphakdeel 2022). We also include three recent state-of-the-art
approaches: ReMasker (Du et al., [2024)), HyperImputer (Jarrett et al., [2022), and DiffPuter
(Zhang et al., 2025)), along with a DSAN variant (DSN) without attention to assess its contribution.
Implementation details and hyperparameters are in Appendix
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5.2.3 Imputation Performance

For each dataset with missingness, 80% of samples are used for training and 20% for testing.
All methods are trained on the training set and then used to impute both in-sample and out-of-
sample data. Imputation performance is measured using RMSE for continuous and F1 score for
categorical variables to provide a balanced evaluation given class imbalance. The RMSE is computed
on standardized inputs (zero mean, unit variance) based on training-set statistics, and accuracy for
categorical variables is also reported as a supplementary metric.

5.2.4 Downstream Task Performance

To robustly assess the downstream impact of imputation, we test two task types: classification and
regression. For classification, all three datasets are evaluated with Logistic Regression, Random
Forest (RF), XGBoost and Light GBM models; for regression, only SubSDIC is used, with Linear
Regression, Random Forest (RF), XGBoost and Light GBM models. Using multiple models reduces
model-specific bias. Models are trained on complete training data and evaluated on imputed test
sets. For classification, we report the ROC-AUC degradation—the drop in ROC-AUC from
the fully observed test set—as the main metric, while accuracy is provided in the supplement.
For regression, we report the RMSE increase, the percentage rise in RMSE relative to the fully
observed test set. Smaller ROC-AUC degradation or RMSE increase indicates better imputation
quality and stronger preservation of predictive signal.

5.2.5 Runtime and Efficiency

To provide practical insight for real-world deployment under resource constraints, we report the total
wall-clock time for each method, including both training and imputation. For iterative algorithms
such as MICE and MissForest, time covers all iterations; for deep learning models, it includes all
training epochs. Appendix details the experimental setup. Each experiment is repeated five
times, and we report mean values and standard deviations as final metrics.

5.3 Ranking Consistency

5.3.1 Across Datasets

We assess cross-dataset performance consistency using Kendall’s coefficient of concordance W as
described by [Abdi| (2007)), computed over the 13 methods common to all datasets. Although the full
benchmark includes 14 methods, DiffPuter could not be executed on the proprietary CPHS dataset
hosted on a CPU-only server and is therefore excluded from the consistency analysis. For k datasets
and N methods, let R;; be the rank of method i on dataset j, R; = 2?21 R;; the aggregate rank,

and R = w Then
13 N —\2
W:kQ(N?’—N) Z(Ri_R) : (3)

i=1

W € [0,1] (0 = no agreement; 1 = perfect concordance). For k > 2, k(N — 1) is asymptotically
X?Vfl under independence (Abdi, [2007). In our study, & = 3 datasets and N = 13 methods. We
use common thresholds: strong (W > 0.70), moderate (0.50 < W < 0.70), and weak (W < 0.50)
agreement (De Maere et al., [2022)).

10
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Figure 2: Empirical CDF comparison between CPHS (red) and SynthCPHS (blue) for four represen-
tative continuous variables. The double-headed arrow indicates the KS gap Dy, .

5.3.2 Across Downstream Task Models

To quantify the ranking consistency of imputation methods’ rankings across different downstream
models, we employ Kendall’s coefficient of concordance W, defined in Eq. |3l This metric enables us
to assess whether the relative ordering of imputation methods remains stable across downstream
tasks and model families, independent of the absolute performance values.

6 Results and Analysis

This section begins with distribution comparison results. We then present a multi-metric benchmark
of 14 imputation methods, covering imputation performance, downstream task performance, and
computational efficiency. In all figures, the numbers after method names in the legend indicate
the average rank of that metric across missingness ratios (shown for the top nine methods only).
Full hyperparameter settings and complete results for all datasets and metrics are provided in
Appendix and in the supplementary material. Finally, we quantify the performance consistency
between datasets using the Kendall coefficient of concordance computed on the 13 methods available
on all datasets.

6.1 Distribution Comparison Results
o Continuous variables (KS). For each variable we compute the two-sample KS statistic

Dy, in Eq., comparing CPHS and SynthCPHS. The KS values displayed in Fig. [2| are
exactly this maximum CDF gap D, ,,. In most cases D, ,, < 103 and the correspond-

11
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Figure 3: Continuous variable imputation performance. Top row: in-sample; bottom row: out-of-
sample. Lower RMSE is better. MIRACLE and MOT are omitted due to excessively high RMSE.
Legend entries show in-sample/out-of-sample ranks (first/second number).

ing two-sided p-values are close to 1, providing no evidence against the null of identical
distributions.

» Categorical variables (JS). For each categorical variable we compute the normalized
JS divergence, defined as JSjp 1) = BLIQ) where JS(P||Q) is defined in Eq. and we

log2
simply rescale it to [0, 1]. Across all examined variables, JSp1; = 0 (to numerical precision),
indicating identical empirical distributions between CPHS and SynthCPHS; therefore, we

omit plots.

Detailed per-variable values for both continuous and categorical features are provided in the
supplementary material.

6.2 Imputation Performance

Figures [3| and 4] compare in-sample and out-of-sample performance across methods for continuous
(RMSE) and categorical (F1 score) variables, respectively. We observe four key findings:

o Missingness Mechanism Impact. MCAR yields lower error (lower RMSE and higher
F1) than MAR or MNAR, reflecting the challenge of imputing structured missingness. For
MAR and MNAR, RMSE does not always increase with higher missingness ratios as one
might typically expect.

Specifically, for methods like Mean, Softlmpute, and MIWAE, RMSE decreases as missing-
ness increases. As detailed in Appendix A.6, we empirically verified that this is due to
the dilution of extreme values inherent in the logistic missingness generation mechanism
(Algorithm [I): at low missingness ratios (e.g., 10%), the mechanism selectively masks
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Figure 4: Categorical variable imputation performance. Top row: in-sample; bottom row: out-of-
sample. Higher F1 is better. MIRACLE in-sample points are missing at some missingness ratios
due to failure. Legend entries show in-sample/out-of-sample ranks (first/second number).

outliers (which are highly erroneous to impute with the mean); however, at high ratios (e.g.,
50%), the missing set expands to include many data points near the global mean, thereby
reducing the average RMSE.

In contrast, F1 scores for categorical data typically exhibit two trends: either remaining
nearly constant, indicating a failure to learn patterns, or decreasing linearly. An exception is
observed in DSAN and its variant DSN, where F1 scores drop sharply under high missingness,
suggesting instability in such settings.

e Method Comparison. For continuous variables (Figure [3|), MissForest typically
performs best at low missingness ratios (e.g., 10%) but its performance steadily declines as
the missingness ratio increases. In contrast, deep learning methods such as ReMasker, DSAN,
and DSN outperform MissForest under MCAR, MAR, and MNAR when the missingness
ratio is high. For categorical variables (Figure, MissForest continues to outperform
other models at low missingness ratios regardless of the missingness mechanism. However,
as the missingness increases, ReMasker and DiffPuter begin to achieve the highest F1 scores.
DSAN and DSN, while strong performers for continuous variables, show noticeably worse
performance on categorical data, with F1 scores degrading significantly as missingness
increases. In summary, MissForest is highly sensitive to the missingness ratio rather than
to the type of missingness or variable; it is among the top performers under low missingness
(up to 20%), but deep learning methods often become more effective as missingness becomes
more severe.

o Self-Attention Analysis. Asshown in Figures[3|and[d] DSN outperforms DSAN in average
ranking across most cases, suggesting limited benefit from the self-attention mechanism.
In particular, as shown in Figure [3] while DSAN achieves the best in-sample performance
for continuous imputation, DSN outperforms it on average in out-of-sample evaluations,
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indicating that the attention layer in DSAN introduces a higher risk of overfitting compared
to DSN, a phenomenon also observed in a previous study by Dehimi & Tolba| (2024)).

e Overfitting Assessment. Out-of-sample RMSE and F1 scores closely match in-sample
results, indicating minimal overfitting for most methods.

Failure Analysis: MIRACLE and MOT. A notable observation in our benchmark is the
instability and high error rates of MIRACLE and MOT. We attribute these failures to three key
factors:

e MOT: Sinkhorn Instability and Geometric Mismatch. MOT relies on Sinkhorn
iterations to approximate Wasserstein distances. This approach is known to suffer from
numerical instability if the entropy regularization parameter (¢) is not meticulously tuned
for each dataset (Feydy et al., |2019). Furthermore, MOT relies on Euclidean distances in the
data space, which [Zhao et al. (2023) argue fails to capture the complex manifold structure
of tabular data, resulting in geometrically close but semantically wrong imputations.

« MIRACLE: Optimization Complexity and Divergence. MIRACLE involves a multi-
objective optimization problem involving causal DAG learning and moment matching
regularizers. First, this introduces high hyperparameter sensitivity; as shown in
(e.g., their Appendix Figures 8-9), MIRACLE frequently yields "empty results"
(execution failure) or extreme errors when default hyperparameters do not match the
data scale. Second, MIRACLE relies on iterative refinement from a baseline (e.g., Mean
imputation). In our datasets, initial baselines often have large errors (see Appendix A.6);
this poor initialization can lead the causal graph learning astray, causing the refinement
loop to diverge even under MAR mechanisms.

« MIRACLE: Assumption Violation in MINAR. Finally, specifically for MNAR, MIRA-
CLE assumes the absence of self-masking missingness (Assumption 3 in [Kyono et al. (2021)).
Our MNAR settings inherently involve self-masking. Violating this assumption renders the
moment regularizer invalid, further destabilizing the model.

6.3 Downstream Task Performance

As shown in Figure [b| we report the downstream impact of imputation on both classification and
regression tasks, using Random Forest models as illustrative examples. Unless otherwise specified,
downstream models are run with library default hyperparameters, with only minimal necessary
adjustments (e.g., setting class_weight="balanced" for classification) and a fixed random seed
of 42. All explicitly chosen hyperparameters are documented in the released scripts in our code
repository; any parameter not listed there is kept at its default value.

e Missingness Mechanism. The results show that missingness under MCAR and MAR
leads to slightly lower performance degradation than MNAR. ROC-AUC scores decrease and
RMSE increases with higher missingness ratios, highlighting the adverse effect of missing
data on downstream performance.

¢ Robustness Analysis. A clear alignment is observed between raw imputation quality
(RMSE/F1) and downstream results: methods with lower degradation also achieve top
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Figure 5: Top: ROC-AUC degradation for downstream classification using Random Forest. Bottom:
RMSE increase for downstream regression using Random Forest. Lower ROC-AUC degradation and
smaller RMSE increase indicate better preservation of predictive performance. Legend entries show
classification performance/regression performance ranks (first/second number).

imputation scores. For instance, DSAN and DSN perform best on continuous variables,
while ReMasker, MissForest, and DiffPuter excel in categorical imputation, all showing
minimal downstream impact. Those top-performing imputation methods maintain their
rankings in both regression and classification settings. In two other datasets, while some
methods’ rankings vary, ReMasker and HyperImpute consistently perform well across all
datasets.

e Sensitivity Analysis. Figure |5|reports the downstream performance using Random Forest
models; similar trends are observed when we replace Random Forest with Linear Regression,
XGBoost, or Light GBM (see the “Experiment_ result” folder in the supplementary material).
To more directly assess the stability of method rankings across different downstream models,
we visualize the ranks of all 14 imputers using bump charts for regression and classification
in Figure@ and Figure respectively. Across Logistic/Linear Regression, Random Forest,
XGBoost, and Light GBM, the curves in both bump charts are largely parallel, with only
minor local crossings. Top-performing methods remain in the upper part of the ranking for
all four models, while the weakest methods stay in the lower part, and no imputer exhibits
dramatic shifts from top to bottom or vice versa.

We further quantify this consistency using Kendall’s W defined in Eq.[3] For the classification
task, the rankings induced by 4 models yield a Kendall’'s W = 0.91; for the regression
task, the rankings give an even higher Kendall’s W = 0.95. These values indicate strong
concordance among the four downstream models in both settings. Taken together, the bump
charts and Kendall’'s W statistics suggest that our main conclusions about the relative
performance of imputation methods are not sensitive to the particular choice of downstream
model or task type.
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Figure 7: Comparison of imputation runtime.

6.4 Computational Efficiency

As shown in Figure [7] the runtime efficiency analysis indicates that the imputation time is relatively
stable across varying missingness ratios and missing mechanisms for most methods. Statistical
methods (e.g., Mean/Mode, MICE) and traditional machine learning methods (e.g., HyperImpute,
MissForest) demonstrate significantly faster performance, approximately an order of magnitude
faster than deep learning-based methods. Among these methods, MissForest stands out for its
strong performance on continuous variables at low missingness ratios, solid categorical imputation
accuracy, and exceptional time efficiency, making it well suited for large-scale practical applications.
For more complex missingness scenarios, ReMasker proves to be a powerful imputation method
for both continuous and categorical data, offering competitive efficiency compared to other deep
learning approaches and resulting in minimal degradation in downstream task performance.
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Table 2: Ranking agreement across 3 datasets measured by Kendall’'s W (higher is better).

Scenario w Consensus

A: RMSE (numeric, out-of-sample)  0.857 Strong
B: F1 (categorical, out-of-sample) ~ 0.629  Moderate
C: ROC-AUC degradation (RF) 0.411 Weak
D: Time efficiency 0.904 Strong

6.5 Consistency Analysis

We evaluate the consistency of the rankings across the three datasets using Kendall’s coefficient
of concordance (W) described in Eq.. As shown in Table [2 agreement is strong in scenarios A
and D, moderate in B, and lower in C. Considering the generally consistent performance across
scenarios, we center our discussion above on SubSDIC. This dataset is publicly accessible, facilitates
both classification and regression tasks, represents the other datasets well, and prevents repetitive
reporting across all three.

6.6 Analysis

Overall, by aggregating the average rankings of 14 imputation methods (13 on the CPHS dataset) on
three missingness mechanisms and five missingness ratios, across three datasets and four representa-
tive tasks (1) Imputation RMSE rank, (2) Imputation F1 rank, (3) downstream regression rank, and
(4) downstream classification rank using Random Forest, we find that HyperImpute and MissForest
consistently achieve the best overall performance with a clear margin over all other methods. This
suggests that although deep learning—based models such as DSAN, DSN, and ReMasker perform
competitively, traditional methods like HyperImpute and MissForest deliver more consistent and
superior overall results. Our findings therefore reinforce the strong practical competitiveness of
traditional machine learning—based methods for missing data imputation, consistent with prior
studies (Lalande & Doyay, 2022} [Zhang et al., |2025; |[Suh & Song, 2023} |Jolicoeur-Martineau et al.)
2024; [Jager et al., |2021). Furthermore, our benchmark also suggests that incorporating attention
layers may increase the risk of overfitting, in line with the observations of [Dehimi & Tolba/ (2024]).

6.7 Practical Recommendations

Based on our benchmarking results, we offer the following guidelines for method selection:

Optimal Balance of Efficiency and Performance: For general applications, MissForest offers
the best trade-off between accuracy and efficiency. It achieves superior raw imputation performance
at low missingness ratios and demonstrates exceptional stability in downstream tasks. While
HyperImpute is also efficient and effective at low ratios, its downstream utility is less consistent
compared to MissForest.

Prioritizing Imputation Performance: When prioritizing performance over computational cost,
deep learning methods outperform baselines as missingness increases (typically > 30%):
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 Categorical Variables: At high ratios (> 40%), ReMasker achieves the highest F1 scores,
followed by DiffPuter.

¢ Continuous Variables: Under MCAR, ReMasker remains the top performer. However, for
complex mechanisms (MAR/MNAR) at high ratios, DSAN and DSN provide the most
accurate reconstruction.

In summary, we suggest a hierarchical strategy: use MissForest for low missingness (< 30%) due
to its efficiency and robustness; switch to deep learning beyond 30% when imputation performance
is preferred. Specifically, ReMasker and DiffPuter are robust for general/categorical data, while
DSAN and DSN excel in continuous imputation under complex patterns. Regarding downstream
predictive stability, MissForest, ReMasker, DiffPuter, DSAN, and DSN constitute the
top-5 methods that most reliably preserve predictive signals. To ensure the robustness of these
recommendations, we conducted rigorous statistical significance tests across varying scenarios;
detailed analysis and p-values are provided in Appendix

7 Conclusion

Conclusion: This work presents a comprehensive benchmark study across three large-scale socioe-
conomic survey datasets—both real and synthetic—that reflect key characteristics of the domain:
longitudinal, hierarchical, large-scale, and non-i.i.d. Using these datasets, we systematically evaluate
14 diverse imputation methods under controlled missingness mechanisms, varying missingness ratios,
and across continuous and categorical variables. Beyond imputation accuracy and downstream task
performance, we also assess computational efficiency, providing a well-rounded evaluation of each
method’s practicality.

Our results confirm the strong performance of classical approaches observed in prior studies, while
emphasizing the value of multimetric evaluation, including downstream task impact and efficiency,
for understanding real-world applicability. The proposed benchmark offers a realistic, robust testbed
for missing data research in structured socioeconomic contexts. By releasing the SubSDIC dataset
and evaluation framework, we support reproducible research and foster progress in addressing
complex missingness patterns in the survey domain.

Limitations & Future Work: While CPHS and SynthCPHS provide robust validation of our
conclusions, third-party licensing restrictions prevent public dataset release. We note that certain
baselines were evaluated using default hyperparameters, though we acknowledge this may conser-
vatively estimate their potential. Graph-based imputers such as GRAPE and IGRM are excluded
because their public implementations perform imputation in a learned graph-embedding space
rather than the original feature space. Predictions are returned as node and edge representations,
and reconstruction losses (e.g., RMSE/MAE) are computed in the latent space. Our benchmark
requires per-variable imputations in the original domain and trains downstream models on the
reconstructed features. Making these methods compatible would require adding an extra layer that
maps graph embeddings back to each column (including discrete variables), thereby violating our
fixed-budget and fairness constraints. Finally, we recognize the substantial computational demands
of comprehensive benchmarking, particularly for modern deep architectures. Future work will (1)
release this framework as an open-source Python package and establish a community leaderboard on
PapersWithCode for standardized evaluation, (2) develop prediction models based on heterogeneous
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graphs that might be better aligned with the structural properties of socioeconomic survey data,
and compare graph-based imputers within that study, and (3) continuously incorporate emerging
imputation techniques.
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A.1 Ethical Considerations and Limitations

SynthCPHS was generated with the goal of maintaining data utility while ensuring strong privacy
protection. We leveraged the synthpop framework for fully synthetic data generation, an approach
known for its statistical disclosure control properties (Nowok et all [2017). By design, the synthesized
records contain no actual individuals, and thus the risk of re-identification or sensitive attribute
disclosure is extremely low. Prior evaluations support this: Nowok et al.| (2017) note that fully
synthetic data pose minimal disclosure risk, and an independent risk analysis by
similarly found the disclosure risk in a synthpop-generated dataset to be “very small”. In practice,
additional safeguards (such as excluding any accidentally replicated unique cases) can be applied to
further reduce even the perceived risk of identification.
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Nevertheless, this synthetic dataset is not intended as a substitute for the original CMIE CPHS
data. For real-world policy and socioeconomic research, direct access to the authentic CPHS data
remains indispensable, as only the original data can provide fully reliable and legally accountable
insights for decision-making.

A.2 Code

Code is available here: https://anonymous.4open.science/r/1H249F 74N5F-3J4G8-JJ80/

Reproducibility Guide: To facilitate reproduction, we provide the SubSDIC dataset in the
supplementary material. Researchers can reproduce the full benchmark results on SubSDIC by
following the README file included in the repository. The workflow requires only minimal
configuration (updating file paths marked in the scripts) to execute preprocessing, imputation, and
evaluation.

Data Availability Note: Please note that reproducibility is restricted to the SubSDIC dataset.
The CPHS dataset is proprietary, and the SynthCPHS dataset, due to its high statistical fidelity to
the original commercial data, is also subject to distribution restrictions. Consequently, while the
codebase supports all datasets, external execution is currently limited to SubSDIC.

A.3 Configurations

We conduct all 14 methods’ experiments (SynthCPHS and SubSDIC) with:

o Operating System: Rocky Linux 8 (a rebuild of Red Hat Enterprise Linux 8)
o CPU: 2x AMD EPYC 7763 64-Core Processor 1.8GHz (128 cores in total)

« RAM: 1000 GiB

o GPU: 4x NVIDIA A100-SXM-80GB GPUs (each with 6912 FP32 CUDA cores)
e Interconnect: Dual-rail Mellanox HDR200 InfiniBand

e Cluster: 90 Dell PowerEdge XE8545 servers

o Software: CUDA 11.4, Python 3.9.20, PyTorch Paszke, (2019)) 2.6.0

A.4 Datasets

We include only those datasets that have been used in at least three imputation studies. The full
names and links for these datasets are provided in Table [3]

A.5 SubSDIC: Feature Descriptions and Construction Details

Table [ lists the 19 variables, including the target variables, in the dataset along with the corre-
sponding SDIC "fake" survey questions created to collect the data. Features prefixed with "cat_"
indicate categorical variables, while those prefixed with "con_ " indicate continuous variables.
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Table 3: Related imputation benchmark datasets.

Dataset (link)

Full name

Brief context

California Housing

Letter Recognition

Credit Card Clients

Online News

Concrete Strength

Wine Quality

Diabetes Health

SpamBase

California Housing
Prices(Zhang et al.| 2025

Du et al.| [2024] |Jarrett|
et al.] 2022)

Letter Recognition (Zhang]

et al.] 2025] Du et al.|[2024]
Jarrett et al.] [2022] [Yoon|

et al.l 2018

Default of Credit Card
Clients (Zhang et al.|[2025
Du et al.| 2024 [Yoon et al.
201

Online News Popularity
(Zhang et al.| [2025] [Yoon|
et al.| [2018)

Concrete Compressive
Strength (Du et al.| 2024
Jarrett et al.| [2022] [Zheng
& Charoenphakdee| 2022)

Wine Quality (Du et al.
2024] [Jarrett et al.] 2022
Zheng & Charoenphakdee|

2022)
Diabetes Health Indica-
tors (Du et al.| [2024] [Jar-
rett et al.| [2022] [Zheng &
Charoenphakdee| [2022)

SpamBase (Du et al.||2024]

[Jarrett et al.] 2022] [Yoon|
et al.| [2018)

Regression of median house value for Califor-
nia districts, using numeric socioeconomic and
geographic covariates.

Multiclass classification of handwritten letters
based on extracted shape / pixel features.

Binary classification of credit-card default us-
ing demographic, repayment and bill-statement
variables.

Regression / classification of article popularity
from content and metadata features (social
media, keywords, etc.).

Regression of concrete compressive strength
based on mixture composition and curing age.

Quality prediction of red/white wines from
physicochemical measurements (regression /
ordinal classification).

Binary classification of diabetes status using
health survey indicators (BMI, lifestyle, comor-
bidities).

Binary classification of email spam based on
word and character frequency features.

A.6 Analysis of Missing Value Extremeness and RMSE Trends

In Section [6.2] we observed a counterintuitive trend for methods relying on mean-centering, where
the RMSE decreases as the missingness ratio increases under MAR and MNAR mechanisms. To
validate that this is a structural property of the missingness generation rather than an experimental

artifact, we conducted a quantitative analysis of the "extremeness" of the missing values.

A.6.1 Methodology

We define the extremeness of a missing value as its absolute standardized deviation from the
global mean (Z-score). For a continuous feature j with mean p; and standard deviation ¢;, the
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Table 4: Detailed Feature Description of SubSDIC

Feature Name Question Construct (H=households, I=individuals)

cat_ hid Household identifier / Machine Generated (H)

cat_geol Geographic area - Admin 1 (H)

cat_ geo2 Geographic area - Admin 2 (H)

cat_urbrur Urban or rural indicator of household location (H)

con__hhsize Household size, i.e., number of individuals in the household (H)
cat_statocc Does the household own, rent, or occupies this dwelling for free? (H)
con_exp_ 09 How much does the household spend per year on? (H)
con_exp_ 10 How much does the household spend per year on? (H)
con__tot_exp Total monthly household expenditure across all categories (H)
cat_ relation What is the relationship of [name] to the head of household? (I)
cat_ sex Is [name] male or female? (I)

con__age How old is [name]? (I)

cat_ marstat What is [name’s] marital status? (I)

cat_ religion What is the religion of [name]? (I)

cat_school attend Is [name| attending school or preschool? (I)

con__yrs_ school How many years has [name] attended school? (1)
cat_act_status What is [name’s] status of activity? (I)

cat__occupation What is/was [name’s] main occupation? (I)

cat_educ_ attain What is the highest level of school that [name] has completed? (I)

extremeness score F for the set of missing entries M; at a specific missingness ratio is calculated as:

3 |$ija_, 1l 4)

j| i€EM; J

1
E:|

A higher E indicates that the missing values are, on average, further from the center of the
distribution (i.e., outliers). We computed this metric across all continuous features in the SubSDIC
dataset under MCAR, MAR, and MNAR mechanisms across five missingness ratios.

A.6.2 Results and Interpretation

Figure [§|illustrates the relationship between the missingness ratio and the extremeness of the masked
values.

The results reveal distinct behaviors:
e MCAR (Blue Line): The curve is flat, indicating that the distribution of missing values

is consistent with the global distribution (E ~ 0.75) regardless of the ratio. This explains
why Mean Imputation performance is relatively stable under MCAR.

e« MAR and MNAR (Orange and Green Lines): There is a significant downward
trend. At a low missingness ratio (10%), the logistic generation mechanism is highly
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Figure 8: Average absolute deviation (Z-score) of the ground truth values of missing entries across
different missingness ratios. Under MAR and MNAR, the "extremeness" of missing data decreases
as the ratio increases.

selective, masking primarily observations with extreme values (outliers) that yield the
highest probabilities. Consequently, E' is high (> 0.85). As the ratio increases to 50%, the
threshold for missingness lowers, and the mechanism includes a larger proportion of data
points lying closer to the global mean, thus lowering the average extremeness (E drops to
~ 0.80).

A.7 Temporal Dependency Analysis

To evaluate whether our benchmark datasets and missingness mechanisms account for the longitu-
dinal characteristics of socioeconomic surveys, we performed a quantitative analysis of temporal
dependencies using the Autocorrelation Function (ACF).

A.7.1 Methodology: Pseudo-Panel Analysis

Since individual household identifiers were removed from the CPHS and SynthCPHS datasets to
ensure they are not used as semantic predictive features, we constructed a pseudo-panel to analyze
temporal signals. Households were aggregated by their Homogeneous Region (HR) (cat_HR), a
geographical unit designed to cluster households with similar socio-economic characteristics, and by
survey round (con_WAVE_NO).

To quantify the global temporal dependency, we adopted a two-step approach:
1. HR-Level Autocorrelation: First, we computed the Lag-1 autocorrelation (px) for each

specific Homogeneous Region k individually. Let xj ; represent the mean value of a feature
within region k at wave t. The autocorrelation for region k is calculated as:

o = Zzzz(fk,t — &) (Thp—1 — Tk) 5)
\/ZtT:Q(xk,t - fk)Q\/EZ;z(mk,t—l — Ty)?

where xj, is the temporal mean of the feature for region k.
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2. Global Aggregation: We then reported the average autocorrelation across all valid
regions to represent the dataset-level temporal dependency:

T
p=7 2Pk (6)
k=1
where K is the total number of HRs and K = 102.

A.7.2 Baseline Temporal Dependency

We utilized the effect size benchmarks established by (1988) (Chapter 3), where a correlation
of |r] = 0.30 is categorized as a medium effect and |r| = 0.50 as a large effect.

As detailed in Table E], we select the top 10 features ranked by porig. The original CPHS data
exhibit significant temporal dependencies: income-related features typically show autocorrelation
coeflicients above 0.30, with some member-level income variables reaching as high as 0.476. These
results confirm that the datasets contain moderate-to-strong longitudinal signals, distinguishing
them from traditional independent and identically distributed (i.i.d.) tabular benchmarks.

A.7.3 Impact of Missingness and Imputation

We further analyzed the autocorrelation of the masked (incomplete) data, presenting results at a
30% missingness ratio to assess structural preservation. We define the Relative Drop (d) using the
following equation: ~ -

5= porig__ Pmask (7)

Porig

where porig and pmask denote the average cohort-level Lag-1 autocorrelation in the original and
masked datasets, respectively.

Our analysis revealed that under MAR and MINAR, temporal dependencies are highly preserved,
with relative drops often smaller than 5%. In some MNAR scenarios, a slight increase in ACF
(negative §) was observed, likely due to "survivor bias," where the missingness mechanism selectively
censors highly volatile observations, artificially smoothing the observed cohort means.

Furthermore, we evaluated the ACF of the datasets with imputation. We observed that most
imputation methods yielded ACF values higher than those in the masked data, demonstrating their
capability to restore temporal dependencies. Comprehensive results—including ACF values for
every feature across the complete dataset, the masked datasets, and the datasets imputed by all 14
methods—are provided in the Supplementary_Material.

A.8 Implementations and Hyperparameters
A.8.1 Implementation of Models

We implemented all 14 imputation methods based on open access GitHub repository following:

e Mean/Mode: Implemented using the NumPy package.

o MOT (Muzellec et al. [2020): https://github.com/BorisMuzellec/MissingDatal0T.
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Table 5: Comparison of HR-Level Autocorrelation (Lag-1) Before and After Missingness Generation
(Missingness Ratio = 30%). The § column indicates the percentage decrease in autocorrelation
relative to the original data.

Original MCAR. (30%) MAR (30%) MNAR (30%)
Feature Name
ACF (forig) Pmask 0 %  Preserved? pmask 0%  Preserved?  pmask 5% Preserved?

con_INC_OF_MEM_FRM_ALL_SRCS_2 0.476 0.452  5.0% Yes 0.476 0.0% Yes 0.483 -1.5% Yes
con_INC_OF_MEM_FRM_ALL_SRCS_3 0.466 0.430  7.7% Yes 0.451  3.2% Yes 0.460 1.3% Yes
con_INC_OF_MEM_FRM_ALL_SRCS_1 0.400 0.376  6.0% Yes 0.378  5.5% Yes 0.378  5.5% Yes
con_TOT_INC_2 0.386 0.355  8.0% Yes 0.361  6.5% Yes 0372  3.6% Yes
con_INC_OF_MEM_FRM_ALL_SRCS_4 0.361 0.329  8.9% Yes 0.347  3.9% Yes 0.346  4.2% Yes
con_TOT_INC_3 0.355 0.335  5.6% Yes 0.331  6.8% Yes 0.335  5.6% Yes
con_INC_OF_HH_FRM_ALL_SRCS_2 0.335 0.298 11.0%  Partial  0.312 6.9% Yes 0.288  14.0% Partial
con_INC_OF_HH_FRM_ALL_SRCS_3 0.323 0.282 12.7% Partial 0.283  12.4% Partial 0.278  13.9% Partial
con_TOT_INC_1 0.297 0282  5.1% Yes 0.258 13.1% Partial 0.264 11.1% Partial
con_TS_ON_TRAVEL 0.290 0.281  3.1% Yes 0.282  2.8% Yes 0274 5.5% Yes

o MissForest (Stekhoven & Biithlmann| 2012): Implemented using the missforest package.

« DSAN (Lee & Kim), 12023)): https://github.com/uos-dmlab/
Structued-Data-Quality-Analysis/tree/master.

o DSN (Lee & Kim)| 2023): Developed from DSAN by removing the attention layer.

o TabCSDI (Zheng & Charoenphakdee| [2022): |https://github.com/pfnet-research/
TabCSDI.

o Remasker (Du et al., 2024): https://github.com/tydusky/remasker.

o DiffPuter (Zhang et all [2025):  Originally available at https://github.com/
hengruizhang98/DiffPuter, but now removed.

o For Hyperlmputer (Jarrett et all, 2022), MICE (Van Buuren & Groothuis-Oudshoorn),
2011)), MIRACLE (Kyono et al., 2021)), SoftImpute (Hastie et al.,[2015), MIWAE (Mattei
& Frellsen) 2019), and GAIN (Yoon et al., 2018), we use implementations at: https:
//github.com/vanderschaarlab/hyperimpute.

The codes for all methods are available in the anonymous GitHub repository.

A.8.2 Hyperparameter Settings of Models

Most of the methods included in our benchmark recommend using a single set of hyperparameters
across different datasets. For such methods, we adopt the default hyperparameters provided in their
official GitHub repositories and ensure sufficient training epochs or steps to achieve convergence of
the training loss. The anonymous GitHub repository provides the implementation with the default
hyperparameters applied across all methods.

A.8.3 Hyperparameter Sensitivity and Convergence Analysis

To assess the impact of default hyperparameters on our benchmark rankings, we conducted a focused
analysis on GAIN, a generative model known for its sensitivity to hyperparameter settings. We
selected the SubSDIC dataset under MNAR, (30% missingness) as the testbed, as GAIN exhibited a
notable performance drop in this specific setting (RMSE ~ 1.50) as shown in Figure
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1. Convergence Verification. First, we verified that the default training duration was sufficient.
We extended the training from the default 1,000 epochs to 10,000 epochs and monitored the total
training loss. As shown in Figure [J] the loss curves for multiple random seeds stabilize well before
1,000 epochs, confirming that the default settings do not suffer from under-fitting.

GAIN - Train Loss Convergence
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Figure 9: Total training loss convergence of GAIN on SubSDIC (MNAR 30%) over 10,000 epochs.
The model reaches convergence well within the default 1,000 epochs.

2. Grid Search and Ranking Stability. We performed a grid search over two critical hyperpa-
rameters for GAIN:

e hint_rate: {0.1,0.3,0.5,0.7,0.9}
o loss_alpha: {20,40,60,80,100}

The results indicated that the optimal configuration (with hint_rate=0.9 and loss_alpha €
{60, 80, 100}) achieved an RMSE of 1.20, a significant improvement over the default RMSE of 1.50.

Impact on Benchmarking Conclusions: While tuning improved GAIN’s absolute performance
and raised its rank by 3 positions, it remained significantly outperformed by the top-tier methods
identified in our benchmark. Specifically, models such as MissForest, DSAN, DSN, ReMasker,
and DiffPuter all achieved RMSE values below 1.0 on the same task. This suggests that while
hyperparameter tuning is beneficial, the relative performance gap between the most effective tabular
imputation methods and others is robust and primarily driven by model architecture capabilities
rather than hyperparameter configurations. The experiments results can be found in the folder of
the supplementary material named “Experiment_ result/SubSDIC/Imputation_ performance/Out-
sample”.

A.9 Experiment Results

All the experiments results, including KS test, JS divergence, and Kendall’s W, can be found in the
folder of the supplementary material named “Experiment_ result”. The following sections present
only a selection of representative results which are not listed in the main text.
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A.9.1 Statistical Significance Analysis

To ensure the statistical rigor of our benchmarking results and recommendations, we conducted
pairwise t-tests (based on 5 random seeds) for all 14 methods on the SubSDIC dataset. This
analysis generated 91 pairwise combinations across 15 experimental settings (3 mechanisms x 5
ratios) and 2 task types (continuous and categorical imputation), yielding a total of 2,730 p-values.
We found that 84% of these comparisons showed statistically significant differences (p < 0.05). The
full set of p-values is available in the Supplementary_Material.

Based on the practical recommendations outlined in Section 6.7, we highlight the statistical ver-
ification of the top-performing methods (MissForest, ReMasker, DiffPuter, DSAN, DSN,
HyperImpute) in four critical scenarios.

Continuous Variable Imputation (RMSE) We validated the imputation performance for
continuous variables, with detailed p-values provided in Table [f]

1. Low Missingness (10%, MAR/MNAR). MissForest is significantly superior to other top-tier
models (including ReMasker, DSAN, and HyperImpute) with p < 0.05. This statistically
confirms its dominance and suitability as a default choice in low-missingness regimes.

2. High Missingness (50%, MAR/MNAR). DSN significantly outperforms traditional baselines
and other deep models (p < 0.05). However, the difference between DSN and DSAN is not
statistically significant (p > 0.05). This aligns with our observation in Figure 3 that their
performance is comparable, suggesting that the attention layer in DSAN does not yield a
significant advantage over DSN in this specific context.

Categorical Variable Imputation (F1 Score) We conducted similar tests for categorical
variables (detailed tables omitted for brevity, full results in Supplementary Material):

1. Low-to-Medium Missingness (< 20%, All Mechanisms). MissForest significantly outper-
forms all 13 other methods (p < 0.05), demonstrating exceptional robustness for categorical
data in this regime.

2. High Missingness (50%). ReMasker significantly outperforms other methods (p < 0.05),
with the exception of DiffPuter. The difference between ReMasker and DiffPuter is not
statistically significant (p > 0.05), which is consistent with Figure 4, where both generative
models demonstrate similarly high performance at extreme missingness ratios.

A.9.2 Downstream Task Performance: LightGBM

To further examine the sensitivity of downstream evaluation to model choice, we additionally evaluate
LightGBM on the SubSDIC dataset, the only dataset in our benchmark that naturally supports
both a classification and a regression task. Light GBM is assessed in two modes:

1. using imputed data produced by each of the 14 imputation methods;

2. using LightGBM’s native handling of missing values as a naive “no-imputation” baseline.
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Table 6: P-values for pairwise comparisons of top-tier methods on SubSDIC (Continuous Variables).
Bold scenarios highlight the superior performance of Method A. (p < 0.05 indicates statistical
significance).

Task Type Scenario Method A (Hypothesis: Better) Method B p-value Significant?
Continuous Variable Imputation (Metric: RMSE)
MAR 10% MissForest ReMasker 0.0418 Yes
MAR 10% MissForest DSAN 0.0346 Yes
MAR 10% MissForest DSN 0.0044 Yes
MAR 10% MissForest DiffPuter 0.0000 Yes
Low Missingness MAR 10% MissForest HyperImpute  0.0001 Yes
MNAR 10% MissForest ReMasker 0.0061 Yes
MNAR 10% MissForest DSAN 0.0222 Yes
MNAR 10% MissForest DSN 0.0338 Yes
MNAR 10% MissForest DiffPuter 0.0089 Yes
MNAR 10% MissForest HyperImpute 0.0015 Yes
MAR 50% DSN ReMasker 0.0025 Yes
MAR 50% DSN MissForest 0.0005 Yes
MAR 50% DSN DiffPuter 0.0078 Yes
MAR 50% DSN HyperImpute  0.0022 Yes
High Missingness MNAR 50% DSN ReMasker 0.0021 Yes
MNAR 50% DSN MissForest 0.0086 Yes
MNAR 50% DSN DiffPuter 0.0000 Yes
MNAR 50% DSN HyperImpute 0.0069 Yes

As shown in Figure the “no-imputation” (marked as “w/o imputation”) baseline yields the
worst performance across all missingness mechanisms and across most missingness ratios, for
both classification and regression tasks. In classification, the ROC-AUC degradation under native
missing-value handling is substantially larger than that of any imputed alternative. Likewise, in
regression, the RMSE increase under the “w/o imputation” baseline dominates that of all imputed
variants.

Notably, even the weakest imputer in our pool outperforms Light GBM’s native missing-value strategy
under most experimental configuration. This finding provides a clear practical implication: in the
context of socioeconomic survey data, explicit imputation is consistently beneficial and should not
be replaced by relying solely on Light GBM’s built-in handling of missing values.

Together with the sensitivity analyses under linear/logistic regression, Random Forest, and XGBoost
in Section [6.3] these results further demonstrate that our conclusions regarding the relative ordering
of imputation methods are robust to the choice of downstream predictive model.
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Figure 10: Top: ROC-AUC degradation for downstream classification using Light GBM. Bottom:
RMSE increase for downstream regression using Light GBM. Lower ROC-AUC degradation and
smaller RMSE increase indicate better preservation of predictive performance. Legend entries show
classification performance/regression performance ranks (first/second number).
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