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Abstract

Missing data imputation is a core challenge in socioeconomic surveys, where data is often
longitudinal, hierarchical, high-dimensional, not independent and identically distributed, and
missing under complex mechanisms. Socioeconomic datasets like the Consumer Pyramids
Household Survey (CPHS)—the largest continuous household survey in India since 2014,
covering 174,000 households—highlight the importance of robust imputation, which can
reduce survey costs, preserve statistical power, and enable timely policy analysis. This
paper systematically evaluates these methods under three missingness mechanisms: missing
completely at random (MCAR), missing at random (MAR), and missing not at random
(MNAR), across five missingness ratios ranging from 10% to 50%. We evaluate imputation
performance on both continuous and categorical variables, assess the impact on downstream
tasks, and compare the computational efficiency of each method. Our results indicate that
classical machine learning methods such as MissForest and HyperImpute remain strong
baselines with favorable trade-offs between accuracy and efficiency, while deep learning
methods perform better under complex missingness patterns and higher missingness ratios,
but face scalability challenges. We ran experiments on CPHS and multiple synthetic survey
datasets, and found consistent patterns across them. Our framework aims to provide a
reliable benchmark for structured socioeconomic surveys, and addresses the critical gap in
reproducible, domain-specific evaluation of imputation methods. The open-source code is

provided in Appendix

1 Introduction

Missing data is a pervasive challenge in data science and machine learning, especially in real-world socioe-
conomic survey datasets (Silva-Ramirez et al., |2015; [Wang et al., 2021). Data is often incomplete due to
nonresponse or privacy concerns (Rubin, [2004). Imputation mitigates nonresponse bias and supports policy
evaluation (Chen & Shaol [2000; [Little & Rubin, [2019; [Yang et all 2024; |Abdelnaby et al.| [2024).

Despite the proliferation of imputation methods, there is a conspicuous lack of benchmarks to evaluate them
on publicly available, large-scale, realistic datasets that capture the complexity of real-world socioeconomic
survey data while allowing controlled introduction of missingness. Most empirical studies on missing data
rely on relatively small datasets—such as the UCI machine learning repository (Zhang et al.l 2025; |Du et al.
2024; Miao et al., 2023; Bertsimas et al., [2018b]) or limited clinical datasets (Zheng & Charoenphakdee,
2022)—or on synthetically generated data with simplistic assumptions (e.g., features drawn from a standard
normal distribution) (Sun et al., [2023)). Missingness is often simulated by randomly masking data under
MCAR or MAR assumptions, which fail to reflect complex real-world patterns. In practice, missingness
often follows the more challenging MNAR mechanism, where whether a value is missing depends directly
on its unobserved value. Furthermore, numerous current benchmarks emphasize exclusively the accuracy of
imputation, specifically evaluating the proximity of the imputed values to the actual values, while neglecting
the consequences on downstream tasks (Zhang et al.} 2025} |Jarrett et al.l [2022; [Hastie et al. |2015; |Biessmann
et al.,[2019)). In practical applications, the goal of imputation is usually to enable reliable analysis or predictive
modeling; thus, evaluating how different imputation methods affect the performance of subsequent tasks is
crucial.
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Table 1: Comparison of imputation benchmark datasets cited in > 3 studies. #Con = number of continuous
features, #Cat = number of categorical features. MCAR/MAR/MNAR = number of missingness ratios per
mechanism. “Train/Test Evaluation” indicates evaluation with a train/test split.

Dataset # Rows # Con # Cat MCAR MAR MNAR Train/Test Evaluation Downstream Task Hierarchical Longitudinal
Housing 20k 9 - 1 1 1 v - -

Letter 20k 16 - 1 1 1 v - -

Credit 30k 14 9 1 1 1 v - -

News 40k 58 - 1 1 1 v - -

Concrete 1k 8 - 4 4 4 - - -

Wine 5k 11 - 4 4 4 - - -

Diabetes 20k 7 14 4 4 4 - - -

Spam 4k 56 - 4 4 4 - - -

CPHS 1.4M 16 8 5 5 5 v v v v
SynthCPHS 1M 16 8 5 5 5 v v v v
SubSDIC 500k 6 12 5 5 5 v v v

Although benchmarks exist for imputation on socioeconomic survey data (Wang et al. 2021} [Li et al.,
2024} [Kalton & Kasprzykl [1982)), they typically suffer from several limitations, such as excluding MNAR
scenarios, relying on a small set of missingness ratios (Bertsimas et all |2018b)), and lacking a systematic
evaluation framework. To address these gaps, our work bridges the divide between restricted real-world data
and reproducible experimentation by introducing a comprehensive and open benchmark for missing data
imputation in socioeconomic surveys. To the best of our knowledge, we are the first to provide a large-scale,
publicly shareable benchmark that integrates real, synthetic, and open socioeconomic datasets under diverse
missingness scenarios and systematic evaluation metrics. Our contributions include the following:

e Evaluations on Real, Synthetic, and Public Datasets: We benchmark imputation methods on
three datasets: the real-world CPHS (Pais & Rawall, [2021)), its high-fidelity synthetic counterpart
SynthCPHS, and the publicly shareable SubSDIC derived from the World Bank’s SDIC.

e Comprehensive Missingness Scenarios: We evaluate 14 imputation methods under three
missingness mechanisms (MCAR, MAR, MNAR) and five missingness ratios, offering a broad and
realistic spectrum of evaluation conditions.

e Multi-metric Analysis & Downstream Task Evaluation: In addition to the imputation accuracy
on both continuous and categorical variables, we assess performance on downstream classification
and regression tasks using multiple models to ensure robustness. We also systematically compare the
computational efficiency of each method.

The remainder of this paper is organized as follows. Section 2 reviews related work on benchmark datasets,
imputation methodologies, and synthetic data. Section 3 introduces the datasets used in our study. Section 4
defines the problem and missingness mechanisms. Section 5 describes our experimental setup and evaluation
protocols. Section 6 presents results and analysis. Finally, Section 7 concludes the paper.

2 Related Work

2.1 Benchmark Datasets for Tabular Imputation

Research on imputation for tabular data often uses small, flat datasets like those from UCI machine learning
repository (Kelly et al., |2025). As shown in Table these datasets usually contain a few thousand to
100k samples with dozens of features, lacking clear hierarchical or temporal dependencies between variables.
Details of these datasets are in Appendix [A-4] Even more limiting, most studies simulate missing data,
focusing on simplified MCAR or MAR scenarios with a single missingness level, which limits generalizability,
since real-world data have more complex patterns.

A notable exception is the work of [Jager et al.| (2021)), who conducted a large-scale benchmark of imputation
methods across 69 heterogeneous datasets from OpenML. Although their study offers valuable insight into
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general-purpose imputation performance, the datasets used are not drawn from the socioeconomic survey
domain and lack the hierarchical and longitudinal structures typically present in national household surveys.

Recently, synthetic data benchmarks (Sun et al., 2023|) have gained traction to test imputation algorithms
under controlled conditions (e.g., varying missing rates or mechanisms); but most synthetic setups do not
capture the complexity of real-world structured data. In particular, few, if any, existing benchmarks replicate
the large-scale, multi-level characteristics of national socioeconomic surveys, which span millions of entries
with state or regional hierarchies and repeated observations over time.

2.2 Imputation Methodologies

Approaches to imputing missing values can be grouped by their modeling philosophy. Statistical and iterative
methods use repeated estimation cycles, including mean or mode filling, and classic algorithms like MICE
(Van Buuren & Groothuis-Oudshoorn, 2011) and MissForest (Stekhoven & Bithlmann|, 2012)) that iteratively
train predictors for each feature, as well as matrix-completion methods like SoftImpute (Hastie et al.|
2015). These methods assume linear or low-rank structures and often struggle with complex nonlinear feature
interactions. Recent methods such as MIRACLE (Kyono et al., 2021)) introduce a causally aware regularization
that models the missingness mechanism jointly with the data, encouraging imputations consistent with the
underlying causal structure. Distribution-matching methods align observed and imputed distributions: MOT
(Missing-data Optimal Transport) (Muzellec et all 2020) formulates imputation as finding the allocation
of missing values that minimizes the optimal transport distance between batches of incomplete data, while
its successor TDM (Transformed Distribution Matching) (Zhao et al.| 2023) learns a nonlinear mapping
before applying optimal transport to better capture the data’s intrinsic geometry. These methods achieve
state-of-the-art accuracy on many benchmark tasks and are particularly effective for in-sample imputation
but generalize poorly to new records since they treat missing entries as learned model parameters.

Deep generative models (VAE (Mattei & Frellsen, 2019), GAN (Yoon et al., 2018]), diffusion (Zheng &
Charoenphakdee| 2022))) capture joint distributions of observed and missing data. While these models
can capture complex nonlinear dependencies, they often face challenges in estimating distributions from
incomplete data and in performing conditional inference, especially under high missingness. To overcome
these issues, recent methods combine generation with iterative refinement. For example, DiffPuter (Zhang
et al., [2025) integrates diffusion models into an EM framework, using iterative E- and M-steps to improve
imputation quality.

Hybrid deep learning methods blends machine learning pipelines with automated model selection or specialized
architectures. HyperImpute (Jarrett et al., |2022)) employs an AutoML-style pipeline that selects the best
model for each variable and updates imputations iteratively. Other architectures leverage advanced designs:
DSAN (Lee & Kiml| 2023) applies self-attention to learn feature and sample dependencies via masked
reconstruction, while ReMasker (Du et al.l |2024)) extends masked autoencoding by re-masking observed
entries during training, promoting robustness across different missingness patterns. Deep learning models
have demonstrated robust performance on challenging imputation tasks, especially when missing rates are
high or feature types are heterogeneous (Zhang et al.| 2025]).

Some recent studies have empirically evaluated the “impute-then-predict” pipeline. For example, Bertsimas
et al.| (2018al) and [Poulos & Valle (2018) proposed frameworks that highlight the importance of integrating
imputation with supervised learning tasks. More recent work by [Paterakis et al. (2024]) questions whether
explicit imputation is always necessary in predictive pipelines, particularly within the context of AutoML.
However, our work places equal emphasis on two complementary objectives: restoring incomplete datasets to
reduce the need for costly follow-up surveys, and ensuring robust performance on downstream tasks.

2.3 Synthetic Data for Imputation

When real-world socioeconomic data is private or lacks ground truth, synthetic data provides a practical
alternative for benchmarking imputation methods. Prior work has used synthetic simulations to evaluate
methods under controlled conditions (Kyono et al |2021; |Sun et al |2023), but most rely on simple i.i.d. data
or low-dimensional toy settings (Muzellec et all |2020; Bertsimas et al.| [2024), lacking the structural and
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Figure 1: Overview of selected features in the CPHS and SynthCPHS datasets. Household-level (orange)
and individual-level (blue) features form a hierarchical structure. The target variable (green) indicates

individual health status for downstream classification. The wave number indexes each survey round, capturing
longitudinal structure.

statistical complexity of real surveys. National household surveys like CPHS feature multi-level hierarchies,
repeated measurements, and non-random missingness, but their proprietary nature limits open evaluation.
To address this, we introduce a synthetic benchmark dataset, SynthCPHS, which we design to replicate the
structure and distribution of CPHS. We validate the similarity using the Kolmogorov—Smirnov (KS) test
and Jensen—Shannon (JS) divergence, and the synthetic construction enables GPU-supported evaluation
beyond CPHS’s secure CPU-only server environment. We also present SubSDIC, a public subset derived
from World Bank data (World Bankl, 2023), which supports systematic and reproducible benchmarking in
the socioeconomic domain.

3 Datasets

3.1 CPHS & The SynthCPHS Dataset
3.1.1 CPHS

The Consumer Pyramids Household Survey (CPHS) by CMIE is the largest continuous household survey in
India, running since 2014 and covering a panel of over 174,000 sample houses (about 111,000 rural and 63,400
urban) spread across most states in India surveyed thrice yearly (Pais & Rawal, [2021; Somanchi, [2021)). Tt
captures a broad array of household attributes including labor supply, income, consumption (expenditure on
various needs), borrowing, and asset ownership (Pais & Rawal, 2021). This breadth makes it highly valuable
for socioeconomic analysis (Chatterjee & Devl [2023; [Kathuria & Dev, [2024; |Jagannarayan & Prasunal 2024)).
In this paper, we select 25 socioeconomic features, as shown in Figure [I). Because some variables were
missing in earlier waves, we restrict the analysis to complete cases from waves 18-30 (each wave is a survey
round), preserving the longitudinal and hierarchical structure and yielding 1,341,651 records.

3.1.2 SynthCPHS

As CPHS is proprietary, available only by subscription, and restricted to a secure CPU-only server, benchmark-
ing is severely constrained, especially for GPU-based imputation. To address this, we construct SynthCPHS,
a synthetic dataset that mirrors the statistical properties and structure of CPHS but can be used on external
GPU systems, enabling full-scale evaluation of imputation accuracy and efficiency. SynthCPHS includes
1,000,000 records and shares the same feature sets with the CPHS dataset as shown in Figure The
dataset was generated using the synthpop package in R (Nowok et al., [2016)), a widely used tool to produce



Under review as submission to TMLR

artificial microdata that preserve the statistical properties of the original survey while protecting individual
confidentiality (Nowok et al.,2017). To support its validity, we compared the marginal and joint distributions
of key features in SynthCPHS and CPHS using the Kolmogorov—Smirnov (KS) test and Jensen-Shannon (JS)
divergence, finding no significant distributional differences.

3.2 SubSDIC

To ensure reproducibility, we introduce SubSDIC, a public subset dataset derived from the World Bank’s
Synthetic Data for an Imaginary Country (SDIC)-a fully synthetic census dataset representing an imaginary
middle-income country. SDIC was generated using REaLLTabFormer (Solatorio & Dupriez), [2023]), a deep
generative model trained on global household survey data, including IPUMS International, DHS, and the
World Bank Global Consumption Database. SDIC consists of two flat tables for household- and individual-
level attributes. We join these tables via household ID, select 19 mixed-type variables spanning both
levels, and randomly sample 500k records from the full 10 million to construct SubSDIC. We designate
the individual’s highest educational attainment (cat_educ_attain) as the target variable for downstream
classification and years of schooling (con_yrs_school) as the target variable for downstream regression.
SubSDIC preserves realistic socioeconomic frameworks, including hierarchical relationships among households,
individuals, provinces, and districts, allowing for regulated evaluation of imputation accuracy, efficiency, and
downstream performance across different missing data scenarios. Kolmogorov-Smirnov tests and Jensen-
Shannon divergence analysis confirm that SubSDIC closely mimics the marginal distributions of the original
SDIC dataset. Detailed feature descriptions are provided in Appendix [AZ5]

4 Problem Definition and Missing Mechanism

4.1 Problem Definition

Let X denote the matrix n x d that contains the complete data values in the variables d for all n units in the
sample. Define the mask variable M as an n X d 0-1 matrix indicating whether a data point of X is observed
(1) or missing (0). The elements of X and M are denoted by z;; and m;;, respectively, where ¢ =1, ...,n and

j=1,...,d. We further define the partially observed data matrix as X, and its elements Z;;, such that

P Tij, if mij:1
4 @, if mij:O ’

Here 0 represents an unobserved value. In the missing data imputation problem, the task is imputing data
matrix X from the observed data matrix X and make it as similar as possible to the complete data matrix X.

4.2 Missingness Mechanism

Little & Rubin/ (2019) find it helpful to differentiate between the missingness mechanisms, which refers to the
relationship between the occurrence of missing data and the values of the variables in the data matrix. The
missing mechanism indicates whether the occurrence of missingness is connected to the underlying values of
the variables in the dataset. The importance of missingness mechanisms lies in the fact that the effectiveness
of data imputation methods is highly influenced by the specific dependencies present in these mechanisms.
Therefore, we introduce the three missingness mechanisms as defined by |Rubin| (1976]) here. Let X and M
be defined as in Section Assume the rows (x;,m;) are i.i.d. across . The missingness mechanism is
specified by the conditional distribution pyyx (m; | x4, 8), where 8 denotes unknown parameters.

e MCAR: If the missingness is independent of the data values, either missing or observed, this means
for all ¢ and any distinct values x;,x} in the sample space of X, the conditional distributions are
equal:

Imx (m; | x4,0) = fpx(m; | 7, 0)
where x} serves as a placeholder for a distinct, hypothetical value that could take the place of x; in
the sample space of X.
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e MAR: Let x(1); represent the observed components of x; and x(g); represent the missing components
of x;. A less restrictive assumption than MCAR is that the missingness depends on x; only through
the observed components x(1);. This implies that for any distinct values x(g);, X(0); of the missing
components within the sample space of x(gy;, the probability of missingness remains the same. In
mathematical terms, the conditional distribution of the missingness mechanism can be expressed as:

Sy (my | x0)i, X(1)i, 0) = faax (M | X(g), X(1)i, 0)

e MNAR: Unlike the MAR mechanism, where missingness is related to the observed values, if
missingness is dependent on the unobserved (missing) values, the mechanism is classified as MNAR.
The distribution of m; depends on the missing components of x;, which means that equation [1.2] is
not valid for some units i and some values X(gy;, X(0y; of the missing components.

5 Experimental Setup and Evaluation

5.1 Dataset Distribution Comparison

We evaluate how closely the synthetic dataset (SynthCPHS) reproduces the marginal distributions of the real
CPHS across continuous and categorical variables.

« Method for continuous variables: two-sample KS test. Let {z;}}; and {y;}]; be two ii.d.

samples with empirical CDFs F,, and G,,. The two-sample Kolmogorov—Smirnov statistic is

Dn,m = igg‘Fn(l‘) - G7n(x)|- (1)

nm
n+m 1M

converges in distribution to the Kolmogorov distribution, which yields exact or asymptotic p-values
(Massey Jr| [1951)). In all our results we report the unscaled statistic D, ,, in Eq., denoted as “KS”
in the figures, together with its two-sided p-value.

Under the null hypothesis that both samples come from the same continuous distribution,

e Method for categorical variables: JS divergence. For two discrete distributions P and @ over
the same support &', the JS divergence is the symmetrised, smoothed version of the Kullback-Leibler
(KL) divergence:

IS(PIQ) = SKL(P|a1) + L KL(Q|[M). 0 = § (P + Q). @

where KL(P||Q) = > c» P(x) logggg. JS is always finite, bounded between 0 (identical distribu-
tions) and log 2 (base-e), and admits a metric square root (Lin, [2002} [Endres & Schindelinl [2003)).

We report values in [0, 1] by dividing by log 2.

5.2 Benchmark Experimental Settings

5.2.1 Missingness Mechanism and Ratio

The effectiveness of missing data imputation methods is strongly influenced by factors such as the missingness
mechanism and ratio. To rigorously evaluate imputation methods, we introduce missing values under 3
missingness mechanisms: MCAR, MAR, and MNAR. The missingness implementation details are provided
in Appendix We create versions of the dataset with missingness ratios of 10%, 20%, 30%, 40%, and
50%. The missingness ratio is calculated as the fraction of all entries that are masked, and each feature
gets roughly the same fraction of its values missing, though in MAR/MNAR this can vary slightly due to
the conditioning. Each missing scenario is generated with five samples and then fixed, so all methods are
evaluated on the exact same missing data patterns for fairness.
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5.2.2 Imputation Methods

We provide a comprehensive benchmark of 14 widely used imputation methods across four categories: (1) a
statistical baseline — Mean/Mode imputation; (2) distribution-matching methods such as MOT (Muzellec
et al.l |2020]), which uses optimal transport to align observed and imputed distributions; (3) iterative machine
learning methods including MICE (Van Buuren & Groothuis-Oudshoorn, |2011)), MIRACLE (Kyono et al.
2021), SoftImpute (Hastie et all 2015), and MissForest (Stekhoven & Biihlmann) 2012); and (4) deep
generative models — MIWAE (VAE) (Mattei & Frellsen| 2019), GAIN (GAN) (Yoon et al,, 2018), DSAN
(self-attention) (Lee & Kiml [2023), and TabCSDI (diffusion) (Zheng & Charoenphakdee, |2022). We also
include three recent state-of-the-art approaches: ReMasker (Du et al.| 2024), HyperImputer (Jarrett
et al., 2022)), and DiffPuter (Zhang et al., 2025)), along with a DSAN variant (DSIN) without attention to
assess its contribution. Implementation details and hyperparameters are in Appendix

5.2.3 Imputation Performance

For each dataset with missingness, 80% of samples are used for training and 20% for testing. All methods
are trained on the training set and then used to impute both in-sample and out-of-sample data. Imputation
performance is measured using RMSE for continuous and F1 score for categorical variables to provide
a balanced evaluation given class imbalance. The RMSE is computed on standardized inputs (zero mean,
unit variance) based on training-set statistics, and accuracy for categorical variables is also reported as a
supplementary metric.

5.2.4 Downstream Task Performance

To robustly assess the downstream impact of imputation, we test two task types: classification and
regression. For classification, all three datasets are evaluated with Random Forest (RF) and XGBoost
models; for regression, only SubSDIC is used, with the same model pair. Using multiple models reduces
model-specific bias. Models are trained on complete training data and evaluated on imputed test sets. For
classification, we report the ROC-AUC degradation—the drop in ROC-AUC from the fully observed test
set—as the main metric, while accuracy is provided in the supplement. For regression, we report the RMSE
increase, the percentage rise in RMSE relative to the fully observed test set. Smaller ROC-AUC degradation
or RMSE increase indicates better imputation quality and stronger preservation of predictive signal.

5.2.5 Runtime and Efficiency

To provide practical insight for real-world deployment under resource constraints, we report the total wall-clock
time for each method, including both training and imputation. For iterative algorithms such as MICE and
MissForest, time covers all iterations; for deep learning models, it includes all training epochs. Appendix
details the experimental setup. Each experiment is repeated five times, and we report mean values and
standard deviations as final metrics.

5.3 Ranking Consistency Across Datasets

We assess cross-dataset performance consistency using Kendall’s coefficient of concordance W as described by
Abdi (2007)), computed over the 13 methods common to all datasets. Although the full benchmark includes
14 methods, DiffPuter could not be executed on the proprietary CPHS dataset hosted on a CPU-only server
and is therefore excluded from the consistency analysis. For £ datasets and N methods, let R;; be the rank

of method ¢ on dataset j, R; = Zle R;; the aggregate rank, and R = w Then

W:ﬁi(m—ﬁ)? (3)

i=1

W € [0,1] (0 = no agreement; 1 = perfect concordance). For k > 2, k(N —1)W is asymptotically x%,_; under
independence (Abdi, 2007). In our study, & = 3 datasets and N = 13 methods. We use common thresholds:
strong (W > 0.70), moderate (0.50 < W < 0.70), and weak (W < 0.50) agreement (De Maere et al.l 2022).
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Figure 2: Empirical CDF comparison between CPHS (red) and SynthCPHS (blue) for four representative
continuous variables. The double-headed arrow indicates the KS gap Dy, .

6 Results and Analysis

This section begins with distribution comparison results. We then present a multi-metric benchmark of 14
imputation methods, covering imputation performance, downstream task performance, and computational
efficiency. In all figures, the numbers after method names in the legend indicate the average rank of that
metric across missingness ratios (shown for the top nine methods only). Full hyperparameter settings and
complete results for all datasets and metrics are provided in Appendix[A.7 and in the supplementary material.
Finally, we quantify the performance consistency between datasets using the Kendall coefficient of concordance
computed on the 13 methods available on all datasets.

6.1 Distribution Comparison Results

« Continuous variables (KS). For each variable we compute the two-sample KS statistic D, .,
in Eq., comparing CPHS and SynthCPHS. The KS values displayed in Fig. [2| are exactly this
maximum CDF gap D,, ,,,. In most cases D,, ,, < 1072 and the corresponding two-sided p-values are
close to 1, providing no evidence against the null of identical distributions.

« Categorical variables (JS). For each categorical variable we compute the normalized JS divergence,

defined as JSp) = %g\lg@)’ where JS(P||Q) is defined in Eq. and we simply rescale it to [0, 1].
Across all examined variables, JSp;; = 0 (to numerical precision), indicating identical empirical

distributions between CPHS and SynthCPHS; therefore, we omit plots.

Detailed per-variable values for both continuous and categorical features are provided in the supplementary
material.

6.2 Imputation Performance

Figures [3| and 4| compare in-sample and out-of-sample performance across methods for continuous (RMSE)
and categorical (F1 score) variables, respectively. We observe four key findings:
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o Missingness Mechanism Impact. MCAR yields lower error (lower RMSE and higher F1) than
MAR or MNAR, reflecting the challenge of imputing structured missingness. For MAR and MNAR,
RMSE does not always increase with higher missingness ratios as one might expect. In some methods,
such as Mean, SoftImpute, and MIWAE—RMSE slightly decrease as missingness increases, because
these models revert to imputing global averages, which limits variability and reduces error compared
to poorly estimated values under lower missingness. F1 scores for categorical data typically exhibit
two trends: either remaining nearly constant across missingness levels, indicating a failure to learn
meaningful patterns, or decreasing linearly with higher missingness ratios. An exception is observed
in DSAN and its variant DSN, where F1 scores drop sharply under high missingness, suggesting
these models are ineffective and unstable in such settings.

o Method Comparison. For continuous variables (Figure , MissForest typically performs best
at low missingness ratios (e.g., 10%) but its performance steadily declines as the missingness ratio
increases. In contrast, deep learning methods such as ReMasker, DSAN, and DSN outperform
MissForest under MCAR, MAR, and MNAR when the missingness ratio is high. For categorical
variables (Figure , MissForest continues to outperform other models at low missingness ratios
regardless of the missingness mechanism. However, as the missingness increases, ReMasker and
DiffPuter begin to achieve the highest F1 scores. DSAN and DSN, while strong performers for
continuous variables, show noticeably worse performance on categorical data, with F1 scores degrading
significantly as missingness increases. In summary, MissForest is highly sensitive to the missingness
ratio rather than to the type of missingness or variable; it is among the top performers under low
missingness (up to 20%), but deep learning methods often become more effective as missingness
becomes more severe.

o Self-Attention Analysis. As shown in Figures[3|and [4] DSN outperforms DSAN in average ranking
across most cases, suggesting limited benefit from the self-attention mechanism. In particular, as
shown in Figure [3] while DSAN achieves the best in-sample performance for continuous imputation,
DSN outperforms it on average in out-of-sample evaluations, indicating that the attention layer in

DSAN introduces a higher risk of overfitting compared to DSN, a phenomenon also observed in a
previous study by [Dehimi & Tolba| (2024)).

e Overfitting Assessment. Out-of-sample RMSE and F1 scores closely match in-sample results,
indicating minimal overfitting for most methods.

6.3 Downstream Task Performance

As shown in Figure [5] we report the downstream impact of imputation on both classification and regression
tasks, using Random Forest models as examples.

o Missingness Mechanism. The results show that missingness under MCAR and MAR leads to
slightly lower performance degradation than MNAR. ROC-AUC scores decrease and RMSE increases
with higher missingness ratios, highlighting the adverse effect of missing data on downstream
performance.

o Robustness Analysis. A clear alignment is observed between raw imputation quality (RMSE/F1)
and downstream results: methods with lower degradation also achieve top imputation scores. For
instance, DSAN and DSN perform best on continuous variables, while ReMasker, MissForest, and
DiffPuter excel in categorical imputation, all showing minimal downstream impact. Those top-
performing imputation methods maintain their rankings in both regression and classification settings.
In two other datasets, while some methods’ rankings vary, ReMasker and Hyperlmpute consistently
perform well across all datasets. Figure 5| shows results using Random Forest models; similar patterns
are observed with XGBoost (see the "Experiment_ result" folder in the supplementary material).
This consistency suggests that the influence of imputation methods on downstream performance is
stable across task types and model choices.
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Figure 5: Top: ROC-AUC degradation for downstream classification using Random Forest. Bottom: RMSE
increase for downstream regression using Random Forest. Lower ROC-AUC degradation and smaller RMSE
increase indicate better preservation of predictive performance.
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Figure 6: Comparison of imputation runtime.
6.4 Computational Efficiency

As shown in Figure [6] the runtime efficiency analysis indicates that the imputation time is relatively stable
across varying missingness ratios and missing mechanisms for most methods. Statistical methods (e.g.,
Mean/Mode, MICE) and traditional machine learning methods (e.g., HyperImpute, MissForest) demonstrate
significantly faster performance, approximately an order of magnitude faster than deep learning-based methods.
Among these methods, MissForest stands out for its strong performance on continuous variables at low
missingness ratios, solid categorical imputation accuracy, and exceptional time efficiency, making it well
suited for large-scale practical applications. For more complex missingness scenarios, ReMasker proves to
be a powerful imputation method for both continuous and categorical data, offering competitive efficiency
compared to other deep learning approaches and resulting in minimal degradation in downstream task
performance.

6.5 Consistency Analysis
We evaluate the consistency of the rankings across the three datasets using Kendall’s coefficient of concordance

(W) described in Eq.. As shown in Table [2| agreement is strong in scenarios A and D, moderate in B,
and lower in C. Considering the generally consistent performance across scenarios, we center our discussion

11
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Table 2: Ranking agreement across 3 datasets measured by Kendall’'s W (higher is better).

Scenario w Consensus

A: RMSE (numeric, out-of-sample)  0.857 Strong
B: F1 (categorical, out-of-sample) ~ 0.629  Moderate
C: ROC-AUC degradation (RF) 0.411 Weak
D: Time efficiency 0.904 Strong

above on SubSDIC. This dataset is publicly accessible, facilitates both classification and regression tasks,
represents the other datasets well, and prevents repetitive reporting across all three.

6.6 Analysis

Overall, by aggregating the average rankings of 14 imputation methods (13 on the CPHS dataset) on three
missingness mechanisms and five missingness ratios, across three datasets and four representative tasks (1)
Imputation RMSE rank, (2) Imputation F1 rank, (3) downstream regression rank, and (4) downstream
classification rank using Random Forest, we find that HyperImpute and MissForest consistently achieve
the best overall performance with a clear margin over all other methods. This suggests that although deep
learning—based models such as DSAN, DSN, and ReMasker perform competitively, traditional methods like
HyperImpute and MissForest deliver more consistent and superior overall results. Our findings therefore
reinforce the strong practical competitiveness of traditional machine learning—based methods for missing
data imputation, consistent with prior studies (Lalande & Doyal, 2022; |Zhang et al.l [2025; |Suh & Song]
2023; [Jolicoeur-Martineau et al., 2024} |Jager et al 2021). Furthermore, our benchmark also suggests that
incorporating attention layers may increase the risk of overfitting, in line with the observations of |Dehimi &
Tolba) (2024).

7 Conclusion

Conclusion: This work presents a comprehensive benchmark study across three large-scale socioeconomic
survey datasets—both real and synthetic—that reflect key characteristics of the domain: longitudinal,
hierarchical, large-scale, and non-i.i.d. Using these datasets, we systematically evaluate 14 diverse imputation
methods under controlled missingness mechanisms, varying missingness ratios, and across continuous and
categorical variables. Beyond imputation accuracy and downstream task performance, we also assess
computational efficiency, providing a well-rounded evaluation of each method’s practicality.

Our results confirm the strong performance of classical approaches observed in prior studies, while emphasizing
the value of multimetric evaluation, including downstream task impact and efficiency, for understanding
real-world applicability. The proposed benchmark offers a realistic, robust testbed for missing data research in
structured socioeconomic contexts. By releasing the SubSDIC dataset and evaluation framework, we support
reproducible research and foster progress in addressing complex missingness patterns in the survey domain.

Limitations & Future Work: While CPHS and SynthCPHS provide robust validation of our conclusions,
third-party licensing restrictions prevent public dataset release. We note that certain baselines were evaluated
using default hyperparameters, though we acknowledge this may conservatively estimate their potential.
Graph-based methods (e.g., GRAPE, IGRM) were intentionally excluded from comparison, as they generate
non-standard output representations incompatible with our evaluation framework. Finally, we recognize
the substantial computational demands of comprehensive benchmarking, particularly for modern deep
architectures. Future work will (1) release this framework as an open-source Python package for standardized
evaluation, (2) integrate graph-based methods, and (3) continuously incorporate emerging imputation
techniques.
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Table 3: Related imputation benchmark datasets.

Dataset Full Name Link

Housing California Housing (Zhang et al.|[2025][Du et al.|[2024] [Jarrett et al.|[2022 https://ww.kaggle.com/datasets/camnugent/california-housing-prices

Letter Letter Recognition (Zhang et al.[[2025/IDu et al.[|2024{}Jarrett et al.[[2022{]Yoon et al.||2018 https://archive.ics.uci.edu/dataset/59/letter+recognition

Credit Default of Credit Card Clients {Zhang et al.[12025/|Du et al.|[202411Yoon et al.|[2018 https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
News Online News Popularity (Zhang et al.||2025]| Yoon et al.|[2018 https://archive.ics.uci.edu/dataset/332/online+news+popularity

Concrete  Concrete Compressive Strength {Du et al.|[20341[Jarrett et al.|[2092{|Zheng & Charoenphakdee] 2022 https://archive.ics.uci.edu/dataset/165/concrete+compressive+strength
Wine Wine Quality (Du et al.|[2024][Jarrett et al.|[2022][Zheng & Charoenphakdee! 2022 https://archive.ics.uci.edu/dataset/186/wine+quality’

Diabetes Diabetes (Du et al.[12024{|Jarrett et al.||2022{[Zheng & Charoenphakdee|[2022 https://wwu.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset/data
Spam Spam Base (Du et al.[[2024]|Jarrett et al.]12022{|Yoon et al.{2018! https://archive.ics.uci.edu/dataset/94/spambase

A Appendix

A.1 Ethical Considerations and Limitations

SynthCPHS was generated with the goal of maintaining data utility while ensuring strong privacy protection.
We leveraged the synthpop framework for fully synthetic data generation, an approach known for its statistical
disclosure control properties (Nowok et al., 2017). By design, the synthesized records contain no actual
individuals, and thus the risk of re-identification or sensitive attribute disclosure is extremely low. Prior
evaluations support this: Nowok et al.| (2017) note that fully synthetic data pose minimal disclosure risk,
and an independent risk analysis by [Elliot| (2015) similarly found the disclosure risk in a synthpop-generated
dataset to be “very small”. In practice, additional safeguards (such as excluding any accidentally replicated
unique cases) can be applied to further reduce even the perceived risk of identification.

Nevertheless, this synthetic dataset is not intended as a substitute for the original CMIE CPHS data. For
real-world policy and socioeconomic research, direct access to the authentic CPHS data remains indispensable,
as only the original data can provide fully reliable and legally accountable insights for decision-making.

A.2 Code

Code is available here: https://anonymous.4open.science/r/1H249F74N5F-3J4G8-JJ80/

A.3 Configurations

We conduct all 14 methods’ experiments (SynthCPHS and SubSDIC) with:

o Operating System: Rocky Linux 8 (a rebuild of Red Hat Enterprise Linux 8)
o CPU: 2x AMD EPYC 7763 64-Core Processor 1.8GHz (128 cores in total)

« RAM: 1000 GiB

o GPU: 4x NVIDIA A100-SXM-80GB GPUs (each with 6912 FP32 CUDA cores)
e Interconnect: Dual-rail Mellanox HDR200 InfiniBand

e Cluster: 90 Dell PowerEdge XE8545 servers

o Software: CUDA 11.4, Python 3.9.20, PyTorch Paszke| (2019) 2.6.0

A.4 Datasets

We include only those datasets that have been used in at least three imputation studies. The full names and
links for these datasets are provided in Table

A.5 SubSDIC: Feature Descriptions and Construction Details

Table [ lists the 19 variables, including the target variables, in the dataset along with the corresponding
SDIC "fake" survey questions created to collect the data. Features prefixed with "cat_" indicate categorical
variables, while those prefixed with "con_ " indicate continuous variables.
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Table 4: Detailed Feature Description of SubSDIC

Feature Name Question Construct (H=households, I=individuals)

cat_ hid Household identifier / Machine Generated (H)

cat_ geol Geographic area - Admin 1 (H)

cat_ geo2 Geographic area - Admin 2 (H)

cat_ urbrur Urban or rural indicator of household location (H)

con__hhsize Household size, i.e., number of individuals in the household (H)
cat_ statocc Does the household own, rent, or occupies this dwelling for free? (H)
con_exp_ 09 How much does the household spend per year on? (H)
con_exp_ 10 How much does the household spend per year on? (H)
con__tot_exp Total monthly household expenditure across all categories (H)
cat_relation What is the relationship of [name] to the head of household? (I)
cat_ sex Is [name] male or female? (I)

con_age How old is [name]? (I)

cat_ marstat What is [name’s] marital status? (I)

cat_ religion What is the religion of [name|? (I)

cat_school attend Is [name] attending school or preschool? (I)

con_ yrs_ school How many years has [name| attended school? (I)
cat_act_status What is [name’s] status of activity? (I)

cat__occupation What is/was [name’s| main occupation? (I)

cat_educ_attain What is the highest level of school that [name] has completed? (I)

A.6 Generate Missingness

In this paper, missing values are synthetically introduced using procedures adapted from the R-miss-tastic
platform (Mayer et al) |2019), a widely used repository for standardized missing data workflows and
reproducible experiments. Specifically, we rely on their R implementation to generate missingness under three
mechanisms: MCAR, MAR, and MNAR. The missingness is generated feature-wise using logistic models,
without relying on fixed missingness patterns. This section briefly describe how missing values are
generated under MCAR, MAR, and MNAR mechanisms in their framework, using the notation
in the main text problem definition section.

A.6.1 Missing Completely at Random (MCAR)

In the MCAR setting, missingness is independent of both observed and unobserved data. For each selected
variable j, missing entries are assigned uniformly at random:

m;; ~ Bernoulli(1 — p),

where p € (0,1) denotes the target missingness ratio. This mechanism ensures no structural dependence in
the missingness pattern.

A.6.2 Missing at Random (MAR)

Under MAR, the missingness in variable X; depends only on other observed variables. We define:

1
P(miyj = 1] x¢%)) = —
14 exp (— (x;?})fj) ﬂj)
where x¢P%, = {zj | mix = 1, k # j} and B; is a learned coefficient vector for feature X;. A logistic

regression model is fitted using these covariates to estimate observation probabilities.
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A.6.3 Missing Not at Random (MNAR)

In the MNAR setting, the missingness in X; depends on the value x;; itself (even if it is missing), in addition
to other features. The observation probability is defined as:

1
1+ exp (—[mij,x;ib_sj]Tﬂj) ’

Pmg; =1 25,x0%) =

Here, x;; is explicitly included as a predictor, distinguishing MNAR from MAR. If x;; is missing during mask
generation, it is temporarily imputed (e.g., with the mean) but removed prior to model training.

A.7 Implementations and Hyperparameters

Implementation of models: We implemented all 14 imputation methods based on open access GitHub
repository following:

o Mean/Mode: Implemented using the NumPy package.
o MOT (Muzellec et al, 2020): https://github.com/BorisMuzellec/MissingData0T.
o MissForest (Stekhoven & Buhlmann| 2012): Implemented using the missforest package.

« DSAN (Lee & Kim, 2023)): https://github.com/uos-dmlab/
Structued-Data-Quality-Analysis/tree/master.

o DSN (Lee & Kiml [2023): Developed from DSAN by removing the attention layer.
o TabCSDI (Zheng & Charoenphakdee, |2022): https://github.com/pfnet-research/TabCSDI.
o Remasker (Du et al.,2024)): https://github.com/tydusky/remaskerl

o DiffPuter (Zhang et al., 2025): Originally available at https://github.com/hengruizhang98/
DiffPuter, but now removed.

o For HyperImputer (Jarrett et al.l |2022), MICE (Van Buuren & Groothuis-Oudshoorn) [2011)), MIRA-
CLE (Kyono et al., [2021)), SoftImpute (Hastie et al., [2015), MIWAE (Mattei & Frellsen| [2019), and
GAIN (Yoon et al., 2018), we use implementations at: https://github.com/vanderschaarlab/
hyperimpute.

The codes for all methods are available in the anonymous GitHub repository.

Hyperparameter settings of models: Most of the methods included in our benchmark recommend
using a single set of hyperparameters across different datasets. For such methods, we adopt the default
hyperparameters provided in their official GitHub repositories and ensure sufficient training epochs or steps
to achieve convergence of the training loss. The anonymous GitHub repository provides the implementation
with the default hyperparameters applied across all methods.

A.8 Experiment Results

All the experiments results, including KS test, JS divergence, and Kendall’s W, can be found in the folder of
the supplementary material named “Experiment_ result”.
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https://github.com/BorisMuzellec/MissingDataOT
https://github.com/uos-dmlab/Structued-Data-Quality-Analysis/tree/master
https://github.com/uos-dmlab/Structued-Data-Quality-Analysis/tree/master
https://github.com/pfnet-research/TabCSDI
https://github.com/tydusky/remasker
https://github.com/hengruizhang98/DiffPuter
https://github.com/hengruizhang98/DiffPuter
https://github.com/vanderschaarlab/hyperimpute
https://github.com/vanderschaarlab/hyperimpute
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