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Abstract

Predictions of the reduced partition function ratios (RPFRs) of isotopologues, ver-1

sions of molecules differing in position and numbers of isotopes, form a predictive2

framework for interpreting isotopic data from natural samples, offering insights into3

formation pathways and environmental conditions. However, traditional computa-4

tional approaches are either computationally expensive or insufficiently accurate.5

Here, we employ OrbNet-Equi, a state-of-the-art orbital-based deep learning frame-6

work, speeding up predictions of RPFRs by a factor of 1000 to 10000 while7

maintaining accuracy comparable to density functional theory (DFT). To optimize8

isotopic predictions, we incorporate element-wise pooling and masking strategies.9

OrbNet-Equi achieves target accuracy (sub-percent for 2H and sub-permille for10
13C, 15N, 18O) with training sets as small as 500 molecules. Using the full dataset11

of 100,000 molecules at 300 K, the model yields a mean absolute permille error12

six times below the target threshold and predicts ∼98% of RPFRs within the de-13

sired accuracy. Compared to other non-DFT approaches, OrbNet-Equi reduces14

mean absolute permille error by up to 15-fold. This lays the groundwork for15

hypothesis-driven predictor of molecular isotopic fingerprints in reaction networks.16

1 Introduction17

Isotopes have subtle differences in their chemical and physical properties, resulting in measurable18

differences in their distributions throughout natural materials. The enrichment or depletion of rare19

isotopes between phases and chemical species is quantified by the fractionation factor α and when20

coupled with isotopic measurements provides a powerful tool for reconstructing paleoclimate, tracing21

metabolic and environmental pathways, and interpreting forensics signatures [1–4]. Predictions of22

fractionation factors are important for translating isotopic observations into answers about underlying23

processes. Although analytical techniques have advanced substantially, expanding the range of iso-24

topic measurements and measurable molecule [5], comparable improvements in predictive modeling25

of the fractionation factors are lacking, leaving a gap between measurement and interpretation [6].26

The reduced partition function ratio (RPFR) provides a statistical–mechanical basis for predicting27

isotopic fractionation factors. Because heavier isotopes lower molecular vibrational energies, they28

preferentially partition into isotopologues—molecules that differ only in the number and placement29

of rare isotopes—that minimize the system’s free energy at equilibrium. This behavior is commonly30

quantified within the Urey–Bigeleisen–Mayer (UBM) framework, which expresses RPFRs as func-31

tions of temperature and the harmonic vibrational frequencies of the unsubstituted and isotopically32

substituted isotopologues. Equilibrium fractionation factors can be predicted from the RPFRs of33

reactions and products, and kinetic fractionation factors can be derived from those of reactants and34

transition states. Coupled with reaction networks, these predictions yield condition-specific (e.g.,35
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temperature-dependent) isotopic fingerprints that can be used to trace chemical and physical processes.36

In the UBM framework, the RPFR can be approximated as:37

β =
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Q
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e−uj/2
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where the prime symbol (′) denotes the isotopically substituted molecules, β is RPFR, α is the number38

of vibrational modes, ω is the harmonic vibrational frequency, and u = ωℏ/(kBT ).39

Several approaches exist for obtaining RPFRs, each with distinct advantages and limitations. Density40

functional theory (DFT) is commonly employed to calculate the isotopologue-specific harmonic41

frequencies required by the UBM framework to predict equilibrium isotope effects (EIEs), with42

applications ranging from distinguishing biotic and abiotic methane sources to reconstructing pa-43

leotemperatures [2, 7]. However, the cubic scaling of geometry optimizations and force constant44

calculations with system size makes DFT prohibitively expensive for larger molecules, limiting its45

practical use. Alternative strategies that reduce computational cost, such as the cut-off method [8] or46

the fully empirical Galimov bond additivity model [9], compromise accuracy and therefore fall short47

for reliable RPFR predictions.48

Machine learning (ML) has emerged as a powerful tool in quantum chemistry, offering a practical49

balance between computational cost and accuracy. A growing body of work has shown that ML50

models can reliably predict molecular properties with significantly reduced computational demands51

[10–13]. Among these, orbital learning has demonstrated notable improvements in both accuracy52

and data-efficiency by leveraging orbital-based features that more closely align with the underlying53

quantum mechanics [14–22]. Given the high cost of traditional quantum calculations, the enhanced54

data-efficiency of orbital learning makes it especially useful for data-scarce applications.55

In this study, we utilize the state-of-the-art orbital-based deep learning method, OrbNet-Equi [15], to56

predict the RPFRs of singly-substituted isotopologues. Leveraging the dataset of RPFRs calculated57

using DFT/B3LYP [23, 24], we train models that can predict the RPFRs of deuterium (2H)-substituted58

isotopologues (the H model) and models that can predict the RPFRs of 13C-, 15N-, and 18O-substituted59

isotopologues (the non-H model). For this, we reformulate the singly-substituted isotopologues60

RPFRs prediction task to a node-wise property prediction task, and apply several task-specific61

operations, such as element-wise masking and element-wise decoding.62

The results reveal the robust performance of OrbNet-Equi as an RPFR predictor. Only with 50063

molecules, both the H and the non-H models for 300 K achieve the initially targeted accuracies, which64

are 10 permille (‰) for 2H and 1‰ for 13C, 15N, and 18O. Furthermore, OrbNet-Equi achieves high65

accuracy in RPFR prediction, with 98.0% of deuterium, 98.3% of 13C, 98.6% of 15N, and 97.4%66

of 18O isotopologue predictions falling within their corresponding targeted accuracies. The notable67

data-efficiency and accuracy of OrbNet-Equi for the RPFR predictions highlight its robustness and68

utility for accelerating isotope-related applications.69

2 Methods70

2.1 The QM9s-RPFR Dataset71

We use the QM9s-RPFR dataset, a dataset based on the QM9s dataset [23], to train OrbNet-Equi for72

predicting RPFRs calculated at the B3LYP/def-TZVP level of theory. The dataset will be publicly73

available upon the upcoming publication, with several analyses including data distribution and74

comparison to experimental values. The molecules represented in QM9 are all neutral closed-shell75

molecules, each with up to 9 heavy atoms (C, N, O, F). The RPFRs are derived from the vibrational76

frequencies for each isotopologue, converted into RPFRs using (1).77

The dataset comprises 128,817 data points in total. We partitioned this into a training set of 100,00078

molecules, a validation set of 5,000 molecules, and a test set containing the remaining molecules. To79

evaluate the performance of OrbNet-Equi across different training sizes, the training and validation80

sets were further subdivided into smaller subsets. In all cases, the size of the validation subset81

was fixed at 5% of the corresponding training subset. For example, a training case using 10,00082

molecules was validated using 500 molecules. The number of atoms per molecule ranges from 383

2



B

GFN1-xTB
Orbital-based Deep Learning

Graph Neural Network

𝐓 = (𝐅, 𝐏, 𝐒, 𝐇core)

Semi-empirical

QM Simulation

OrbNet-Equi

(H)

OrbNet-Equi

(non-H)

1
1
0

Element-wise

Masking

A
Non-

substituted

Singly-

substituted
RPFR

Node-wise

Property
2

13

15

1.136

9.222

1.076

H
C

N

H
C

N

H
C

N

H
C

N

H
C

N

9.222

1.136
1.076

9.22

1.14
1.08

1.14
1.08

Generated

Geometry

RPFR

Prediction

Figure 1: Overview of the project.

to 29, meaning a single molecule can contribute up to 29 RPFR data points, which correspond to84

different singly-substituted isotopologues.85

2.2 The OrbNet-Equi Framework86

Achieving DFT-level accuracy without incurring prohibitive computational cost is essential for87

predictive modeling of equilibrium isotope effects in reaction networks. Traditional approaches, such88

as the cut-off method and the Galimov model, fall short of this requirement. To address this, we89

employ OrbNet-Equi, a state-of-the-art orbital-based deep learning framework that has demonstrated90

the highest accuracy across a wide range of quantum chemical property predictions.91

The OrbNet-Equi framework [15] is a QM-informed geometric deep learning framework. The method92

consists of two main operations: (1) the SEQM calculations using GFN1-xTB [25] to create quantum93

mechanical matrices (QMMs), and (2) predicting chemical properties using QMMs with an E(3) (or94

SE(3)) equivariant GNN. The overall process, including both the SEQM calculation and the neural95

network inference, delivers a speedup of about 1,000 to 10,000 times compared to DFT/B3LYP [16].96

Geometry Optimization The goal of this work is to predict RPFRs of singly-substituted isotopo-97

logues without the excessive cost of quantum chemical calculations using DFT. We intend to use98

OrbNet-Equi [15] to predict RPFRs, which requires the atomic coordinates information of molecules.99

However, in typical practical situations, only the structural information (i.e., atoms and their connec-100

tivity) is provided, and geometrical information (i.e., 3D coordinates of atoms) is missing. Therefore,101

a reliable and consistent method is required to generate the geometries of molecules inexpensively.102

For this purpose, we employ GFN1-xTB [25], an SEQM method, to optimize the geometries of103

molecules inexpensively. GFN1-xTB offers an excellent balance between speed and accuracy. Several104

studies revealed the robust performance of GFN1-xTB in predicting chemical interactions [26, 27]105

and geometry optimization [28–30]. The GFN1-xTB-level optimized geometries are then used106

directly as inputs to the OrbNet-Equi models.107

Orbital Features GFN1-xTB performs self-consistent field (SCF) procedures to create QMMs of108

molecules, O, which are given by:109

(O)µνAB = ⟨ϕµ
A|Ô|ϕν

B⟩, (2)
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where µ = (n, l,m) and ν = (n′, l′,m′) are orbital indices, A and B are atom indices, n, l, and m110

are principal, angular, and magnetic quantum numbers, and Ô is an operator.111

The QMMs, T = (F,P,S,H), each represents different aspects of the converged electronic structure.112

The Fock matrix F reflects electronic energies, while the core Hamiltonian H includes kinetic energy113

and nuclear attraction. The density matrix P encodes the electronic charge distribution, and the114

overlap matrix S describes the extent of orbital overlap. Together, these matrices characterize the115

electronic structures of each molecule at the GFN1-xTB level of theory. Relevant studies exhibited116

superior accuracy, data-efficiency, and generalization using this set of features [14–16].117

The QMMs are SE(3)-equivariant, where each block corresponding to the interaction between two118

shells with angular quantum numbers l and l′ transforms predictably for a roto-translational action R,119

(R · O)l,l
′

AB = Dl(R)(O)l,l
′

AB

(
Dl′(R)

)†
, (3)

where Dl(R) is the Wigner-D matrix of degree l, and the dagger denotes the Hermitian conjugate.120

This construction guarantees that the features transform consistently with the underlying group action,121

thereby ensuring that the overall framework preserves both rotational and translational symmetries.122

To effectively predict RPFRs, we introduce modifications to the default OrbNet-Equi model. The two123

primary changes are: (1) element-wise decoding (pooling), and (2) element-wise masking, both of124

which are described below.125

Element-wise Decoding To enhance OrbNet’s ability to predict RPFRs across different elements,126

we introduce an additional element-specific decoding layer, where the biases are initialized with the127

average RPFRs of each element. Because different elements exhibit distinct mass ratios relative to128

their heavier isotopes, this element-specific decoding helps the model to account for such variations.129

Together, these operations constitute the pooling mechanism. The predicted RPFRs are given by:130

(ho
A)lp = Wo

lp,zA · (hf
A)lp,

ŷA = Wf · ∥ho
A∥+ bzA ,

(4)

where hf
A denotes the hidden representation of atom A after the final layer, p is the parity index, and131

Wo
lp,zA is a learnable weight matrix specific to the spherical degree l, parity p, and atomic number132

zA. Wf is a shared learnable final pooling matrix, and bzA is an element-wise bias initialized to the133

mean RPFR values for each element number zA. To reiterate, the prediction ŷA corresponds to the134

RPFR of the singly-substituted isotopologue in which atom A is replaced by a heavier isotope.135

2.3 Target and Loss136

Problem Setting We aim to predict the RPFRs of isotopologues containing 13C, 15N, 18O, or137
2H, which are SE(3)-invariant scalar molecular properties. For singly-substituted isotopologues, we138

reformulate the RPFRs prediction as an atom-wise (node-wise) prediction task. Since the deviation139

in RPFR arises from substituting a specific atom with a heavier isotope, the RPFR becomes a local140

atomic property–one per atom per molecule. This formulation is valid under the assumption that141

only one heavy isotope per element is considered, which holds for our study. It significantly reduces142

computational cost and allows batch prediction of multiple RPFRs per molecule in a single model143

inference. Moreover, for elements with multiple rare isotopes (e.g., 17O and 18O), RPFRs associated144

with other isotopes can be inferred from the predicted value using mass-based scaling laws.145

The experimental precision of high-dimensional isotopic measurements from natural samples is146

typically 1–5 ‰ for non-hydrogen elements and >10 ‰ for deuterium [3, 31]. Accordingly, we set147

target accuracies for RPFR prediction at 1 ‰ for isotopologues singly substituted with 13C, 15N, or148
18O, and 10 ‰ for those singly substituted with deuterium (2H). Model performance is evaluated by149

reporting both the mean permille error and the fraction of species within these thresholds.150

Loss Deuterium-substituted isotopologues and those containing heavier isotopes of carbon, nitrogen,151

or oxygen exhibit RPFRs of different magnitudes, resulting in distinct target accuracies and loss152
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scales. To account for this, we train two separate models for RPFR prediction: a non-H model and153

an H model. The non-H model is designed to predict RPFRs for singly substituted isotopologues154

with 13C, 15N, or 18O, while the H model targets 2H (deuterium) substitutions. For each model, the155

loss function L is computed selectively by applying an atom-type-specific mask: hydrogen atoms are156

excluded in the non-H model, and non-hydrogen atoms are excluded in the H model. This masking157

ensures that each model learns only from the atomic substitutions it is intended to predict. The loss158

functions are defined as follows:159

Lnon-H
i =

1∑Ni

A mA

Ni∑
A

mA · L(ŷA, yA), mA =

{
1, if atom A is C, N, or O,
0, otherwise,

(5)

LH
i =

1∑Ni

A mA

Ni∑
A

mA · L(ŷA, yA), mA =

{
1, if atom A is H,
0, otherwise,

(6)

where Lnon-H
i and LH

i are the losses of the i-th training batch in non-H and H models, Ni is the number160

of atoms in the batch, ŷA and yA are the predicted and true RPFR of the isotopologue formed by161

substituting the atom A, and mA is the mask. Each training batch has a fixed number of molecules162

but a varying number of atoms, thus the losses are formulated by averaging each atom’s loss for a163

consistent size of gradients. Here, we define the loss function L as the SmoothL1 function [32].164

L(x, y) = SmoothL1(x, y) =

{
1
2β (x− y)2, if |x− y| < β

|x− y| − 1
2β, otherwise,

(7)

and β is a hyperparameter, the threshold for the linear-quadratic transition. The models learn the165

mapping between orbital features and RPFRs by minimizing the corresponding loss function. We use166

β = 0.0001 for training H models and β = 0.01 for training non-H models.167

Metric To evaluate the performance of the models during training, validations were performed168

after each epoch of training. Mean absolute permille (‰) error (MAPE) was used as the metric for169

evaluations, which is defined by:170

MAPE = 1000× 1

N

N∑
A

∣∣∣∣ ŷA − yA
yA

∣∣∣∣ (‰), (8)

where N is the number of atoms for the RPFR predictions within the evaluation set, A is the atomic171

index, and ŷA and yA are the predicted RPFR and the ground-truth RPFR, respectively, of the172

isotopologue with a substition on atom A. The best model with the lowest validation MAPE was173

taken to be evaluated with the test set.174

3 Results175

Table 1: Performance of Cut-Off (N=2), Galimov, and OrbNet-Equi models trained using 100,000
molecules for RPFRs at 300 K. Here, N denotes the cut-off (N-hop) from the atom of interest. All
metrics reported are such that lower values indicate better performance.

Model Type MAPE
(‰)

Std
(‰)

Q97.5
(‰)

Galimov H 26.620 24.040 93.710
Cut-Off (N=2) H 26.760 26.230 95.760
OrbNet-Equi (Ours) H 1.710 3.940 8.780

Galimov non-H 2.710 3.070 10.050
Cut-Off (N=2) non-H 1.100 1.340 4.410
OrbNet-Equi (Ours) non-H 0.180 0.320 0.840
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OrbNet-Equi achieves MAPEs of 0.18‰ for non-Hydrogen isotopologues and 1.71‰ for hydrogen176

isotopologues, which is a factor of six improvement for non-H and a factor of 15 improvement for177

H, as shown in Table 1. Furthermore, 97.5 percent of all predictions are within the target threshold178

of 10‰, for H substituted isotopologues and 1‰, for non-H substituted isotopologues, showing179

incomparable performance compared to traditional models.180

1000 10000 100000
Number of Molecules in Training Set

1

2

5

10

Te
st

 M
AP

E 
(

)

H model (2H)

A

1000 10000 100000
Number of Molecules in Training Set

0.1

0.2

0.5

1.0

Te
st

 M
AP

E 
(

)

non-H model (13C, 15N, 18O)

B

Figure 2: Learning curves of OrbNet-Equi to the 300 K RPFRs prediction. (A) Learning curve of
the H OrbNet-Equi model. With only 500 molecules, it reaches the experimental accuracy (10‰).
(B) Learning curve of the non-H OrbNet-Equi model. With only 500 molecules, it reaches the
experimental accuracy (1‰).

Learning curves for the H (Figure 2A) and non-H (Figure 2B) models at 300 K show that OrbNet-Equi181

achieves sub-permille accuracy for non-H RPFR predictions and sub-percent accuracy for H RPFR182

predictions with as few as 500 training molecules. Furthermore, as the training set size increases,183

prediction accuracy improves further.184
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Figure 3: Test set error distribution violin plots for the RPFRs prediction at 300 K using models trained
with 100,000 molecules. (A) Violin plot of the permille error distribution for 2H isotopologues RPFRs
prediction. (B) Violin plot of the permille error distribution for 13C, 15N, and 18O isotopologues
RPFRs prediction.

For both the H and the non-H models trained using 100,000 molecules at 300 K, the test error185

distributions exhibit bell-shaped curves centered around zero, as shown in Figure 3. Most predictions186

fall within error thresholds: below 10‰ for deuterium and below 1‰ for 13C, 15N, and 18O.187
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Specifically, 98.0% of deuterium isotopologue predictions fall within 10‰, while 98.3% of 13C,188

98.6% of 15N, and 97.4% of 18O isotopologue predictions fall within 1‰.189

Additionally, we observe a higher MAPE and a lower ratio of species under the target accuracy for190
18O-substituted isotopologue RPFR predictions, with the error distribution more spread than for other191

species, as shown in Figure 3. This higher error likely originates from the greater mass ratio relative192

to its lighter isotope counterpart, 16O. The greater mass ratio induces larger RPFR values, causing193

both the magnitude of labels and the prediction uncertainty to increase.194
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Figure 4: Temperature dependence of test MAPEs for the RPFRs prediction. All models are trained
using 100,000 molecules. (A) Test set MAPEs for 2H isotopologues RPFRs prediction at different
temperatures. (B) Test set MAPEs for 13C, 15N, and 18O isotopologues RPFRs prediction at different
temperatures.

We investigate the temperature dependence of RPFR training, with test MAPEs of OrbNet-Equi195

models trained at various temperatures shown in Figure 4. Interestingly, the test MAPE exhibits a196

clear power-law decay with temperature, showing log-linear behavior. We explain this behavior from197

separate model biases in the temperature-dependent and independent terms, in Section A.2.198

4 Discussion199

Performance This study demonstrates the effectiveness of OrbNet-Equi in predicting RPFRs of200

singly substituted isotopologues. The model is highly data-efficient, where with only 500 training201

molecules, it achieves mean absolute percentage errors (MAPEs) below 10‰ for 2H and below 1‰202

for 13C, 15N, and 18O, with further reductions as the training set size increases. Remarkably, 98.0%203

of deuterium isotopologue predictions fall within 10‰, while 98.3% of 13C, 98.6% of 15N, and204

97.4% of 18O predictions fall within 1‰. Compared to traditional models, OrbNet-Equi delivers a205

5 to 15-fold reduction in MAPEs while maintaining orders-of-magnitude speedups relative to DFT.206

These results establish OrbNet-Equi as a robust and accurate RPFR predictor with the potential to207

accelerate isotopic modeling.208

Limitations While this work demonstrates the effectiveness of OrbNet-Equi for predicting RPFRs,209

the model necessarily inherits the limitations of its training data, arising from both DFT and the210

UBM framework. First, because the QM9s-RPFR dataset is derived from DFT molecular constants,211

predictions remain dependent on the chosen level of theory and basis set; the implications of this212

dependency are discussed in a companion paper. In practice, such model-dependent biases often213

partially cancel when comparing RPFRs between molecules, yielding more reliable equilibrium214

isotope effects than absolute RPFRs [33]. Second, the UBM model relies on the Born–Oppenheimer215

(BO) and harmonic approximations [34]. For non-hydrogen isotopologues, corrections are generally216

only important at very low temperatures [34, 35], whereas for hydrogen isotopologues, neglecting217

anharmonic and BO corrections can introduce errors even above 200 K. These contributions, omitted218

in QM9s-RPFR due to their computational expense, will be evaluated in the companion paper.219

Nonetheless, errors from the BO and harmonic approximations tend to cancel between unsubstituted220
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and substituted isotopologues, reducing their overall impact [36]. Addressing such limitations is an221

active area of research.222

Possible Extensions Our dataset provides a valuable foundation for developing models to accurately223

predict RPFRs. However, its limited diversity of elements and the small size of its molecules present224

challenges, particularly since chemical reactions often involve larger species with a more diverse set225

of elements, such as sulfur and phosphorus. In addition, the dataset lacks charged, open-shell, and226

solvated species, which are commonly encountered in practical chemical reactions. These limitations227

can be addressed by incorporating alternative datasets that offer greater diversity in elements, larger228

molecules, or solvated species [37–39]. Modeling such more complex species can be done with229

appropriate unified models, such as OrbitAll [16]. Furthermore, including RPFRs of transition states,230

which are needed for modeling kinetically controlled reactions, would benefit from datasets that231

explicitly contain reactive species and associated transition states [40].232

Furthermore, the current implementation is not applicable to predicting RPFRs of multiply substituted233

isotopologues. For example, predicting the RPFR of a doubly substituted isotopologue requires234

specifying the pair of atomic sites substituted with heavier isotopes, making it no longer a purely node-235

wise property. A natural extension of the current method would involve predicting an (Natom)
2 matrix,236

where each element represents the RPFR of the isotopologue in which the atoms corresponding to the237

given row and column are both substituted. This approach can be further generalized to predicting an238

(Natom)
n tensor for RPFRs of n-tuply substituted isotopologues. In parallel, the framework could239

be extended to predict isotopic mass laws, relationships among isotope effects, that would facilitate240

RPFR prediction for elements with more than two stable isotopes.241

5 Conclusion242

We present a method for predicting RPFRs of singly substituted isotopologues by reformulating243

the problem as a node-wise property prediction task and employing OrbNet-Equi, which delivers244

∼1,000–10,000× speedups over DFT. OrbNet-Equi achieves target accuracy with as few as 500245

training molecules, and when trained on 100,000 molecules, 97–98% of RPFR predictions fall within246

experimental thresholds—representing a 5–15 fold improvement over previous models. This orbital-247

based deep learning framework substantially accelerates equilibrium fractionation factor predictions,248

a key bottleneck for constructing equilibrium reference frames and developing mechanistic models of249

isotopic fingerprints unique to specific reaction networks. In doing so, our approach contributes to250

the work necessary for the interpretation of high-dimensional isotopic data, constraining reaction251

mechanisms, situating observations within equilibrium–kinetic contexts, and providing testable252

baselines to distinguish competing isotopic signatures, including those relevant to the search for253

extraterrestrial life—thereby expanding the interpretive power of isotopic measurements across254

geochemistry, environmental science, planetary science, and beyond.255
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A Proofs404

A.1 Temperature Dependence of RPFR405

According to the UBM model, the RPFR is defined by406

β =

α∏
j=1

(
ω′
j

ωj
· e

−u′
j/2

e−uj/2
· 1− e−uj

1− e−u′
j

)
, (9)

where uj =
ωjℏ
kBT . The vibrational temperature of molecules for the j-th vibrational mode is defined407

by,408

θvib,j =
ωjℏ
kB

, (10)

which then uj = θvib,j/T . Typically, the vibrational temperatures of molecules with the relatively409

light atoms (H, C, N, O, F) are much larger than the room temperature [41]. This effectively makes410

the right side term of (9) the multiplicand to approximate to 1. I.e.,411

β =

α∏
j=1

(
ω′
j

ωj
· e

−θ′
vib,j/2T

e−θvib,j/2T
· 1− e−θvib,j/T

1− e−θ′
vib,j/T

)
,

≈
α∏

j=1

(
ω′
j

ωj
· e

−θ′
vib,j/2T

e−θvib,j/2T

)
,

=

α∏
j=1

ω′
j

ωj
·

(
e−θ′

vib,j

e−θvib,j

)1/2T
 .

(11)

Therefore,412

lnβ(T ) ≈
α∑

j=1

[
ln

(
ω′
j

ωj

)
+

θvib,j − θ′vib,j
2T

]

≡

(
α∑

j=1

ln
ω′
j

ωj

)
︸ ︷︷ ︸

A

+
1

T

(
1

2

α∑
j=1

(
θvib,j − θ′vib,j

))
︸ ︷︷ ︸

B

.
(12)

A.2 Temperature Dependence of model error413

MAPE is defined by,414

MAPE(T ) =
β̂ − β

β
=

eln β̂ − eln β

eln β

= eln β̂−ln β − 1 = e∆ ln β − 1 ≈ ∆ lnβ, for |∆ lnβ| ≪ 1,

(13)

where415

12



∆ lnβ(T ) = ln β̂(T )− lnβ(T )

=
[
(A+∆A) + B+∆B

T

]
−
[
A+ B

T

]
= ∆A+

∆B

T
.

(14)

Combining (13) and (14), we get:416

MAPE(T ) ≈
∣∣∣∣∆A+

∆B

T

∣∣∣∣ , (15)

ln
(
MAPE(T )

)
≈ ln

∣∣∣∣∆A+
∆B

T

∣∣∣∣ , (16)

Since 1/T term dominates (i.e., ∆A ≈ 0 or low T ),417

ln
(
MAPE(T )

)
≈ ln |∆B| − lnT, (17)

which shows the approximate linearity of lnMAPE linear to − lnT .418

As derived above, Figure 5 illustrates three key relationships: lnβ versus 1/T (Equation (12)),419

lnMAPE versus 1/T (Equation (15)), and lnMAPE versus lnT (Equation (17)). Consistent with420

these trends, Figure 4 shows that OrbNet-Equi exhibits similar temperature dependence: the MAPE421

decreases approximately linearly with increasing temperature, with slopes near -1 for both the H and422

the non-H models.423

B Geometry Optimization424

To generate input geometries for the SEQM calculations, we employed the GFN1-xTB method [25].425

Geometry optimization requires an initial structure sufficiently close to a local energy minimum. For426

this purpose, we used the QM9s dataset geometries as starting points. Each DFT-level geometry427

was re-optimized at the GFN1-xTB level, yielding structures consistent with the level of theory used428

throughout our workflow. This choice is deliberate: our goal is to base the RPFR predictions entirely429

on GFN1-xTB–optimized geometries, thereby accelerating the overall computational pipeline without430

sacrificing reliability. Consequently, at inference time, the systematic procedure is to generate an431

initial geometry, perform geometry optimization with GFN1-xTB, and then run SEQM calculations432

on the optimized structure.433
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Figure 5: Temperature scaling for RPFR and mean absolute permille error. Row 1: Mean ln RPFR vs
1/T illustrating the log-linear relationship between the inverse of temperature and RPFR following
the UBM equation. Row 2: Mean ln MAPE vs 1/T Row 3: ln(MAPE) versus lnT (Power law).
Columns split H and non-H; points are per temperature, dashed lines are OLS fits per model.
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