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Abstract

Predictions of the reduced partition function ratios (RPFRs) of isotopologues, ver-
sions of molecules differing in position and numbers of isotopes, form a predictive
framework for interpreting isotopic data from natural samples, offering insights into
formation pathways and environmental conditions. However, traditional computa-
tional approaches are either computationally expensive or insufficiently accurate.
Here, we employ OrbNet-Equi, a state-of-the-art orbital-based deep learning frame-
work, speeding up predictions of RPFRs by a factor of 1000 to 10000 while
maintaining accuracy comparable to density functional theory (DFT). To optimize
isotopic predictions, we incorporate element-wise pooling and masking strategies.
OrbNet-Equi achieves target accuracy (sub-percent for 2H and sub-permille for
3¢, 15N, 180) with training sets as small as 500 molecules. Using the full dataset
of 100,000 molecules at 300 K, the model yields a mean absolute permille error
six times below the target threshold and predicts ~98% of RPFRs within the de-
sired accuracy. Compared to other non-DFT approaches, OrbNet-Equi reduces
mean absolute permille error by up to 15-fold. This lays the groundwork for
hypothesis-driven predictor of molecular isotopic fingerprints in reaction networks.

1 Introduction

Isotopes have subtle differences in their chemical and physical properties, resulting in measurable
differences in their distributions throughout natural materials. The enrichment or depletion of rare
isotopes between phases and chemical species is quantified by the fractionation factor aw and when
coupled with isotopic measurements provides a powerful tool for reconstructing paleoclimate, tracing
metabolic and environmental pathways, and interpreting forensics signatures [[1-4]]. Predictions of
fractionation factors are important for translating isotopic observations into answers about underlying
processes. Although analytical techniques have advanced substantially, expanding the range of iso-
topic measurements and measurable molecule [5], comparable improvements in predictive modeling
of the fractionation factors are lacking, leaving a gap between measurement and interpretation [6].

The reduced partition function ratio (RPFR) provides a statistical-mechanical basis for predicting
isotopic fractionation factors. Because heavier isotopes lower molecular vibrational energies, they
preferentially partition into isotopologues—molecules that differ only in the number and placement
of rare isotopes—that minimize the system’s free energy at equilibrium. This behavior is commonly
quantified within the Urey-Bigeleisen—Mayer (UBM) framework, which expresses RPFRs as func-
tions of temperature and the harmonic vibrational frequencies of the unsubstituted and isotopically
substituted isotopologues. Equilibrium fractionation factors can be predicted from the RPFRs of
reactions and products, and kinetic fractionation factors can be derived from those of reactants and
transition states. Coupled with reaction networks, these predictions yield condition-specific (e.g.,
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temperature-dependent) isotopic fingerprints that can be used to trace chemical and physical processes.
In the UBM framework, the RPFR can be approximated as:

/ O e W2 e
s=5=TI1=2 — (1)
where the prime symbol (') denotes the isotopically substituted molecules, 3 is RPFR, « is the number
of vibrational modes, w is the harmonic vibrational frequency, and u = wh/(kgT).

Several approaches exist for obtaining RPFRs, each with distinct advantages and limitations. Density
functional theory (DFT) is commonly employed to calculate the isotopologue-specific harmonic
frequencies required by the UBM framework to predict equilibrium isotope effects (EIEs), with
applications ranging from distinguishing biotic and abiotic methane sources to reconstructing pa-
leotemperatures [2, 7]. However, the cubic scaling of geometry optimizations and force constant
calculations with system size makes DFT prohibitively expensive for larger molecules, limiting its
practical use. Alternative strategies that reduce computational cost, such as the cut-off method [_8] or
the fully empirical Galimov bond additivity model [9], compromise accuracy and therefore fall short
for reliable RPFR predictions.

Machine learning (ML) has emerged as a powerful tool in quantum chemistry, offering a practical
balance between computational cost and accuracy. A growing body of work has shown that ML
models can reliably predict molecular properties with significantly reduced computational demands
[L0H13]]. Among these, orbital learning has demonstrated notable improvements in both accuracy
and data-efficiency by leveraging orbital-based features that more closely align with the underlying
quantum mechanics [14-22]]. Given the high cost of traditional quantum calculations, the enhanced
data-efficiency of orbital learning makes it especially useful for data-scarce applications.

In this study, we utilize the state-of-the-art orbital-based deep learning method, OrbNet-Equi [/15]], to
predict the RPFRs of singly-substituted isotopologues. Leveraging the dataset of RPFRs calculated
using DFT/B3LYP [23,[24], we train models that can predict the RPFRs of deuterium (*H)-substituted
isotopologues (the H model) and models that can predict the RPFRs of 13C-, 15N-, and '8O-substituted
isotopologues (the non-H model). For this, we reformulate the singly-substituted isotopologues
RPFRs prediction task to a node-wise property prediction task, and apply several task-specific
operations, such as element-wise masking and element-wise decoding.

The results reveal the robust performance of OrbNet-Equi as an RPFR predictor. Only with 500
molecules, both the H and the non-H models for 300 K achieve the initially targeted accuracies, which
are 10 permille (%o) for 2H and 1%o for 3C, 1°N, and '#0. Furthermore, OrbNet-Equi achieves high
accuracy in RPFR prediction, with 98.0% of deuterium, 98.3% of '3C, 98.6% of '°N, and 97.4%
of 180 isotopologue predictions falling within their corresponding targeted accuracies. The notable
data-efficiency and accuracy of OrbNet-Equi for the RPFR predictions highlight its robustness and
utility for accelerating isotope-related applications.

2 Methods

2.1 The QM9s-RPFR Dataset

We use the QM9s-RPFR dataset, a dataset based on the QM9s dataset [23]], to train OrbNet-Equi for
predicting RPFRs calculated at the B3LYP/def-TZVP level of theory. The dataset will be publicly
available upon the upcoming publication, with several analyses including data distribution and
comparison to experimental values. The molecules represented in QM9 are all neutral closed-shell
molecules, each with up to 9 heavy atoms (C, N, O, F). The RPFRs are derived from the vibrational
frequencies for each isotopologue, converted into RPFRs using (T)).

The dataset comprises 128,817 data points in total. We partitioned this into a training set of 100,000
molecules, a validation set of 5,000 molecules, and a test set containing the remaining molecules. To
evaluate the performance of OrbNet-Equi across different training sizes, the training and validation
sets were further subdivided into smaller subsets. In all cases, the size of the validation subset
was fixed at 5% of the corresponding training subset. For example, a training case using 10,000
molecules was validated using 500 molecules. The number of atoms per molecule ranges from 3
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Figure 1: Overview of the project.

to 29, meaning a single molecule can contribute up to 29 RPFR data points, which correspond to
different singly-substituted isotopologues.

2.2 The OrbNet-Equi Framework

Achieving DFT-level accuracy without incurring prohibitive computational cost is essential for
predictive modeling of equilibrium isotope effects in reaction networks. Traditional approaches, such
as the cut-off method and the Galimov model, fall short of this requirement. To address this, we
employ OrbNet-Equi, a state-of-the-art orbital-based deep learning framework that has demonstrated
the highest accuracy across a wide range of quantum chemical property predictions.

The OrbNet-Equi framework [|15] is a QM-informed geometric deep learning framework. The method
consists of two main operations: (1) the SEQM calculations using GFN1-xTB [25] to create quantum
mechanical matrices (QMMs), and (2) predicting chemical properties using QMMs with an E(3) (or
SE(3)) equivariant GNN. The overall process, including both the SEQM calculation and the neural
network inference, delivers a speedup of about 1,000 to 10,000 times compared to DFT/B3LYP [16].

Geometry Optimization The goal of this work is to predict RPFRs of singly-substituted isotopo-
logues without the excessive cost of quantum chemical calculations using DFT. We intend to use
OrbNet-Equi [[15] to predict RPFRs, which requires the atomic coordinates information of molecules.
However, in typical practical situations, only the structural information (i.e., atoms and their connec-
tivity) is provided, and geometrical information (i.e., 3D coordinates of atoms) is missing. Therefore,
a reliable and consistent method is required to generate the geometries of molecules inexpensively.

For this purpose, we employ GFN1-xTB [25]], an SEQM method, to optimize the geometries of
molecules inexpensively. GFN1-xTB offers an excellent balance between speed and accuracy. Several
studies revealed the robust performance of GFN1-xTB in predicting chemical interactions [26} 27]
and geometry optimization [28-30]. The GFN1-xTB-level optimized geometries are then used
directly as inputs to the OrbNet-Equi models.

Orbital Features GFN1-xTB performs self-consistent field (SCF) procedures to create QMMs of
molecules, O, which are given by:

(0)45 = (¢41016%), 2



110
111

112
113
114
115
116
117

118
119

120
121
122

123
124
125

126
127
128
129
130

131
132

134
135

136

137

139
140
141
142
143
144
145

146
147
148
149
150

151
152

where 1 = (n,l,m) and v = (n’,l’,m’) are orbital indices, A and B are atom indices, n, [, and m
are principal, angular, and magnetic quantum numbers, and O is an operator.

The QMMs, T = (F, P, S, H), each represents different aspects of the converged electronic structure.
The Fock matrix F reflects electronic energies, while the core Hamiltonian H includes kinetic energy
and nuclear attraction. The density matrix P encodes the electronic charge distribution, and the
overlap matrix S describes the extent of orbital overlap. Together, these matrices characterize the
electronic structures of each molecule at the GFN1-xTB level of theory. Relevant studies exhibited
superior accuracy, data-efficiency, and generalization using this set of features [[14-16].

The QMMs are SE(3)-equivariant, where each block corresponding to the interaction between two
shells with angular quantum numbers [ and I transforms predictably for a roto-translational action R,

(R-0)'f, = D'(R)(©O) (P (R)) ®

where D!(R) is the Wigner-D matrix of degree I, and the dagger denotes the Hermitian conjugate.
This construction guarantees that the features transform consistently with the underlying group action,
thereby ensuring that the overall framework preserves both rotational and translational symmetries.

To effectively predict RPFRs, we introduce modifications to the default OrbNet-Equi model. The two
primary changes are: (1) element-wise decoding (pooling), and (2) element-wise masking, both of
which are described below.

Element-wise Decoding To enhance OrbNet’s ability to predict RPFRs across different elements,
we introduce an additional element-specific decoding layer, where the biases are initialized with the
average RPFRs of each element. Because different elements exhibit distinct mass ratios relative to
their heavier isotopes, this element-specific decoding helps the model to account for such variations.
Together, these operations constitute the pooling mechanism. The predicted RPFRs are given by:

(b2)ip = Wi, 2, - (W), @

ga = w/. HthH + b2,
where hﬁ denotes the hidden representation of atom A after the final layer, p is the parity index, and
W;, ., 18 a learnable weight matrix specific to the spherical degree [, parity p, and atomic number

ZA. W/ is a shared learnable final pooling matrix, and b, is an element-wise bias initialized to the
mean RPFR values for each element number z 4. To reiterate, the prediction 4 corresponds to the
RPFR of the singly-substituted isotopologue in which atom A is replaced by a heavier isotope.

2.3 Target and Loss

Problem Setting We aim to predict the RPFRs of isotopologues containing 3C, 1°N, 180, or
2H, which are SE(3)-invariant scalar molecular properties. For singly-substituted isotopologues, we
reformulate the RPFRs prediction as an atom-wise (node-wise) prediction task. Since the deviation
in RPFR arises from substituting a specific atom with a heavier isotope, the RPFR becomes a local
atomic property—one per atom per molecule. This formulation is valid under the assumption that
only one heavy isotope per element is considered, which holds for our study. It significantly reduces
computational cost and allows batch prediction of multiple RPFRs per molecule in a single model
inference. Moreover, for elements with multiple rare isotopes (e.g., 7O and #0), RPFRs associated
with other isotopes can be inferred from the predicted value using mass-based scaling laws.

The experimental precision of high-dimensional isotopic measurements from natural samples is
typically 1-5 %o for non-hydrogen elements and >10 %o for deuterium [3,[31]]. Accordingly, we set
target accuracies for RPFR prediction at 1 %o for isotopologues singly substituted with >C, 1°N, or
180, and 10 %o for those singly substituted with deuterium (*H). Model performance is evaluated by
reporting both the mean permille error and the fraction of species within these thresholds.

Loss Deuterium-substituted isotopologues and those containing heavier isotopes of carbon, nitrogen,
or oxygen exhibit RPFRs of different magnitudes, resulting in distinct target accuracies and loss
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scales. To account for this, we train two separate models for RPFR prediction: a non-H model and
an H model. The non-H model is designed to predict RPFRs for singly substituted isotopologues
with 13C, 1N, or 180, while the H model targets ?H (deuterium) substitutions. For each model, the
loss function £ is computed selectively by applying an atom-type-specific mask: hydrogen atoms are
excluded in the non-H model, and non-hydrogen atoms are excluded in the H model. This masking
ensures that each model learns only from the atomic substitutions it is intended to predict. The loss
functions are defined as follows:

N,
1 u 1, ifatom AisC,N, or O
ﬁnon—H _ . ,C ~ _ ) } s 1N, 5 5
‘ SN ma EA: ma - L(§a,ya), A {0, otherwise, ©)
L 1, ifatom AisH
- _ - L1 =7 ’ 6
i Z% ma § ma - L(Ja,ya), A {O7 otherwise, ©

where £2°"H and £ are the losses of the i-th training batch in non-H and H models, IV; is the number
of atoms in the batch, §j4 and y 4 are the predicted and true RPFR of the isotopologue formed by
substituting the atom A, and m 4 is the mask. Each training batch has a fixed number of molecules
but a varying number of atoms, thus the losses are formulated by averaging each atom’s loss for a
consistent size of gradients. Here, we define the loss function £ as the SmoothL1 function [32].

sple—y)?,  iflz—yl<p
|z —y| — %B, otherwise,

L(z,y) = SmoothL1(z,y) = { (N

and f is a hyperparameter, the threshold for the linear-quadratic transition. The models learn the
mapping between orbital features and RPFRs by minimizing the corresponding loss function. We use
£ = 0.0001 for training H models and 8 = 0.01 for training non-H models.

Metric To evaluate the performance of the models during training, validations were performed
after each epoch of training. Mean absolute permille (%o) error (MAPE) was used as the metric for
evaluations, which is defined by:

Ja —ya

N

1

MAPE = 1000 x —
N2

A

(%), @®)

where N is the number of atoms for the RPFR predictions within the evaluation set, A is the atomic
index, and g4 and y4 are the predicted RPFR and the ground-truth RPFR, respectively, of the
isotopologue with a substition on atom A. The best model with the lowest validation MAPE was
taken to be evaluated with the test set.

3 Results

Table 1: Performance of Cut-Off (N=2), Galimov, and OrbNet-Equi models trained using 100,000
molecules for RPFRs at 300 K. Here, N denotes the cut-off (N-hop) from the atom of interest. All
metrics reported are such that lower values indicate better performance.

MAPE Std Q975

Model Type (%o) (%0) (%0)

Galimov H 26.620 24.040 93.710
Cut-Off (N=2) H 26.760 26.230 95.760
OrbNet-Equi (Ours) H 1.710 3.940 8.780
Galimov non-H 2.710 3.070 10.050
Cut-Off (N=2) non-H 1.100 1.340 4410

OrbNet-Equi (Ours) non-H  0.180 0.320 0.840
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OrbNet-Equi achieves MAPESs of 0.18%o for non-Hydrogen isotopologues and 1.71%o for hydrogen
isotopologues, which is a factor of six improvement for non-H and a factor of 15 improvement for
H, as shown in Table[I} Furthermore, 97.5 percent of all predictions are within the target threshold
of 10%o, for H substituted isotopologues and 1%o, for non-H substituted isotopologues, showing
incomparable performance compared to traditional models.
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Figure 2: Learning curves of OrbNet-Equi to the 300 K RPFRs prediction. (A) Learning curve of
the H OrbNet-Equi model. With only 500 molecules, it reaches the experimental accuracy (10%o).
(B) Learning curve of the non-H OrbNet-Equi model. With only 500 molecules, it reaches the
experimental accuracy (1%o).

Learning curves for the H (Figure[2JA) and non-H (Figure2B) models at 300 K show that OrbNet-Equi
achieves sub-permille accuracy for non-H RPFR predictions and sub-percent accuracy for H RPFR
predictions with as few as 500 training molecules. Furthermore, as the training set size increases,
prediction accuracy improves further.
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Figure 3: Test set error distribution violin plots for the RPFRs prediction at 300 K using models trained
with 100,000 molecules. (A) Violin plot of the permille error distribution for 2H isotopologues RPFRs
prediction. (B) Violin plot of the permille error distribution for '3C, 15N, and 20 isotopologues
RPFRs prediction.

For both the H and the non-H models trained using 100,000 molecules at 300 K, the test error
distributions exhibit bell-shaped curves centered around zero, as shown in Figure [3| Most predictions
fall within error thresholds: below 10%o for deuterium and below 1%. for C, N, and '%0.
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Specifically, 98.0% of deuterium isotopologue predictions fall within 10%o, while 98.3% of 3C,
98.6% of "N, and 97.4% of 180 isotopologue predictions fall within 1%o.

Additionally, we observe a higher MAPE and a lower ratio of species under the target accuracy for
180-substituted isotopologue RPFR predictions, with the error distribution more spread than for other
species, as shown in Figure[3| This higher error likely originates from the greater mass ratio relative
to its lighter isotope counterpart, 10. The greater mass ratio induces larger RPFR values, causing
both the magnitude of labels and the prediction uncertainty to increase.
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Temperature (K)
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Figure 4: Temperature dependence of test MAPEs for the RPFRs prediction. All models are trained
using 100,000 molecules. (A) Test set MAPEs for 2H isotopologues RPFRs prediction at different
temperatures. (B) Test set MAPEs for 13C, 15N, and *#0 isotopologues RPFRs prediction at different
temperatures.

We investigate the temperature dependence of RPFR training, with test MAPEs of OrbNet-Equi
models trained at various temperatures shown in Figure ] Interestingly, the test MAPE exhibits a
clear power-law decay with temperature, showing log-linear behavior. We explain this behavior from
separate model biases in the temperature-dependent and independent terms, in Section[A.2]

4 Discussion

Performance This study demonstrates the effectiveness of OrbNet-Equi in predicting RPFRs of
singly substituted isotopologues. The model is highly data-efficient, where with only 500 training
molecules, it achieves mean absolute percentage errors (MAPEs) below 10%o for 2H and below 1%o
for 13C, 1°N, and 80, with further reductions as the training set size increases. Remarkably, 98.0%
of deuterium isotopologue predictions fall within 10%o, while 98.3% of 3C, 98.6% of '°N, and
97.4% of 180 predictions fall within 1%o. Compared to traditional models, OrbNet-Equi delivers a
5 to 15-fold reduction in MAPEs while maintaining orders-of-magnitude speedups relative to DFT.
These results establish OrbNet-Equi as a robust and accurate RPFR predictor with the potential to
accelerate isotopic modeling.

Limitations While this work demonstrates the effectiveness of OrbNet-Equi for predicting RPFRs,
the model necessarily inherits the limitations of its training data, arising from both DFT and the
UBM framework. First, because the QM9s-RPFR dataset is derived from DFT molecular constants,
predictions remain dependent on the chosen level of theory and basis set; the implications of this
dependency are discussed in a companion paper. In practice, such model-dependent biases often
partially cancel when comparing RPFRs between molecules, yielding more reliable equilibrium
isotope effects than absolute RPFRs [33]]. Second, the UBM model relies on the Born—-Oppenheimer
(BO) and harmonic approximations [34]. For non-hydrogen isotopologues, corrections are generally
only important at very low temperatures [34, [35]], whereas for hydrogen isotopologues, neglecting
anharmonic and BO corrections can introduce errors even above 200 K. These contributions, omitted
in QM9s-RPFR due to their computational expense, will be evaluated in the companion paper.
Nonetheless, errors from the BO and harmonic approximations tend to cancel between unsubstituted
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and substituted isotopologues, reducing their overall impact [36]]. Addressing such limitations is an
active area of research.

Possible Extensions Our dataset provides a valuable foundation for developing models to accurately
predict RPFRs. However, its limited diversity of elements and the small size of its molecules present
challenges, particularly since chemical reactions often involve larger species with a more diverse set
of elements, such as sulfur and phosphorus. In addition, the dataset lacks charged, open-shell, and
solvated species, which are commonly encountered in practical chemical reactions. These limitations
can be addressed by incorporating alternative datasets that offer greater diversity in elements, larger
molecules, or solvated species [[37539]. Modeling such more complex species can be done with
appropriate unified models, such as OrbitAll [[16]. Furthermore, including RPFRs of transition states,
which are needed for modeling kinetically controlled reactions, would benefit from datasets that
explicitly contain reactive species and associated transition states [40].

Furthermore, the current implementation is not applicable to predicting RPFRs of multiply substituted
isotopologues. For example, predicting the RPFR of a doubly substituted isotopologue requires
specifying the pair of atomic sites substituted with heavier isotopes, making it no longer a purely node-
wise property. A natural extension of the current method would involve predicting an (Nyom )? matrix,
where each element represents the RPFR of the isotopologue in which the atoms corresponding to the
given row and column are both substituted. This approach can be further generalized to predicting an
(Natom)™ tensor for RPFRs of n-tuply substituted isotopologues. In parallel, the framework could
be extended to predict isotopic mass laws, relationships among isotope effects, that would facilitate
RPFR prediction for elements with more than two stable isotopes.

5 Conclusion

We present a method for predicting RPFRs of singly substituted isotopologues by reformulating
the problem as a node-wise property prediction task and employing OrbNet-Equi, which delivers
~1,000-10,000x speedups over DFT. OrbNet-Equi achieves target accuracy with as few as 500
training molecules, and when trained on 100,000 molecules, 97-98% of RPFR predictions fall within
experimental thresholds—representing a 5—15 fold improvement over previous models. This orbital-
based deep learning framework substantially accelerates equilibrium fractionation factor predictions,
a key bottleneck for constructing equilibrium reference frames and developing mechanistic models of
isotopic fingerprints unique to specific reaction networks. In doing so, our approach contributes to
the work necessary for the interpretation of high-dimensional isotopic data, constraining reaction
mechanisms, situating observations within equilibrium—kinetic contexts, and providing testable
baselines to distinguish competing isotopic signatures, including those relevant to the search for
extraterrestrial life—thereby expanding the interpretive power of isotopic measurements across
geochemistry, environmental science, planetary science, and beyond.
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A Proofs

A.1 Temperature Dependence of RPFR

According to the UBM model, the RPFR is defined by
e~Uil2 1 —emu
efu]' /2 1 _ e—u;. ?
UerL

where u; = ;=% The vibrational temperature of molecules for the j-th vibrational mode is defined
by,

®

B:H<wj-

j=1

(Ujh

9vib,j = Ev (10)

which then u; = 6y, ;/T. Typically, the vibrational temperatures of molecules with the relatively

light atoms (H, C, N, O, F) are much larger than the room temperature [41]. This effectively makes
the right side term of () the multiplicand to approximate to 1. Le.,
o w/. e_ey’,iij/QT 1— efevih,j/T
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A.2 Temperature Dependence of model error
MAPE is defined by,
A lnB _ ,ng
MAPE(T) = 228 _ ¢ —
B en (13)
— BB _ AlB g o Aln g3, for [Alnfg| <« 1,
where
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AlnB(T) =InB(T) —In B(T)

= (A-&-AA)—FB%AB} — [A—F%} (14)
AB
=AA+ T
Combining (T3] and (T4)), we get:

MAPE(T) ~ ‘ AA+ AT—B , (15)
In(MAPE(T)) =~ In|AA+ A—TB , (16)

Since 1/T term dominates (i.e., AA = 0 or low T,
In(MAPE(T)) ~ In|AB| — InT, (17)

which shows the approximate linearity of In MAPE linear to —In 7.

As derived above, Figure [5|illustrates three key relationships: In 8 versus 1/T (Equation (12)),
In MAPE versus 1/T (Equation (I3))), and In MAPE versus In 7" (Equation (T7)). Consistent with
these trends, Figure 4] shows that OrbNet-Equi exhibits similar temperature dependence: the MAPE
decreases approximately linearly with increasing temperature, with slopes near -1 for both the H and
the non-H models.

B Geometry Optimization

To generate input geometries for the SEQM calculations, we employed the GFN1-xTB method [25].
Geometry optimization requires an initial structure sufficiently close to a local energy minimum. For
this purpose, we used the QM9s dataset geometries as starting points. Each DFT-level geometry
was re-optimized at the GFN1-xTB level, yielding structures consistent with the level of theory used
throughout our workflow. This choice is deliberate: our goal is to base the RPFR predictions entirely
on GFN1-xTB-optimized geometries, thereby accelerating the overall computational pipeline without
sacrificing reliability. Consequently, at inference time, the systematic procedure is to generate an
initial geometry, perform geometry optimization with GFN1-xTB, and then run SEQM calculations
on the optimized structure.
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Figure 5: Temperature scaling for RPFR and mean absolute permille error. Row 1: Mean In RPFR vs
1/T illustrating the log-linear relationship between the inverse of temperature and RPFR following
the UBM equation. Row 2: Mean In MAPE vs 1/T Row 3: In(MAPE) versus In 7' (Power law).
Columns split H and non-H; points are per temperature, dashed lines are OLS fits per model.
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