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Abstract
Combination therapies have become the stan-001
dard of care for diseases such as cancer, tu-002
berculosis, malaria and HIV. However, the003
combinatorial set of available multi-drug treat-004
ments creates a challenge, particularly in the005
presence of antagonistic drug combinations006
that may lead to negative patient outcomes.007
To assist medical professionals in identifying008
beneficial drug-combinations, we construct an009
expert-annotated dataset for extracting infor-010
mation about the efficacy of drug combina-011
tions from the scientific literature. Beyond012
its practical utility, the dataset also presents a013
unique NLP challenge, as it is the first relation014
extraction dataset consisting of variable-length015
relations. Furthermore, the relations in this016
dataset predominantly require language under-017
standing beyond the sentence level, adding to018
the challenge of this task. We provide a strong019
baseline model and identify clear areas for fur-020
ther improvement. We release our dataset and021
code1 publicly to encourage the NLP commu-022
nity to participate in this task.023

1 Introduction024

“So far, many monotherapies have been tested, but025

have been shown to have limited efficacy against026

COVID-19. By contrast, combinational therapies027

are emerging as a useful tool to treat SARS-CoV-2028

infection.” (Ianevski et al., 2021).029

Indeed, combining two or more drugs together030

or with non-drug treatments has proven to be use-031

ful for treatments of various medical conditions,032

including cancer (DeVita et al., 1975; Carew et al.,033

2008; Shuhendler et al., 2010), AIDS (Bartlett034

et al., 2006), malaria (Eastman and Fidock, 2009),035

tuberculosis (Bhusal et al., 2005), hypertension036

(Rochlani et al., 2017) and COVID-19 (Ianevski037

et al., 2020).038

1Dataset and code can be found at
https://anonymous.4open.science/r/
drug-synergy-models--C8B7/README.md

In this work, we examine the clinically signifi- 039

cant and challenging NLP task of extracting known 040

drug combinations from the scientific literature. 041

We present an expert-annotated dataset and strong 042

baseline models for this new task. Our dataset 043

contains 1600 manually annotated abstracts, each 044

mentioning between 2 and 15 drugs. 840 of these 045

abstracts describe one or more positive drug com- 046

binations, varying in size from 2 to 11 drugs. The 047

remaining 760 abstracts either contain mentions of 048

drugs not used in combination, or discuss combina- 049

tions of drugs that do not give a combined positive 050

effect. 051

From a clinical perspective, solving the drug 052

combination identification task will assist re- 053

searchers in suggesting and validating complex 054

treatment plans. For example, when searching 055

for effective treatments for cancer, knowing which 056

drugs interact synergistically with the first line treat- 057

ment allows researchers to suggest new treatment 058

plans that can subsequently be validated in-vivo 059

and become a standard protocol (Wasserman et al., 060

2001; Katzir et al., 2019; Ianevski et al., 2020; 061

Niezni et al., 2021). 062

From an NLP perspective, the drug combination 063

identification task and dataset pushes the bound- 064

aries of relation extraction (RE) research, by in- 065

troducing a relation extraction task with several 066

challenging characteristics: 067

Variable-length n-ary relations Most work on re- 068

lation extraction is centered on binary relations 069

(e.g. Li et al. (2016), see full listing in §5), or 070

on n-ary relations with a fixed n (e.g. Peng et al. 071

(2017)). In contrast, the drug combination task 072

involves variable-length n-ary relations: different 073

passages discuss drug combinations of different 074

sizes, and the model is tasked with predicting, for 075

each subset of drugs mentioned in a passage, if they 076

participate in a drug combination and whether this 077

drug combination is effective. 078

No type-hints As noted by Rosenman et al. (2020) 079
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“We tried adding Nifedipine , as Labetalol combined to Prazosin did not reduce blood pressure.
OTHER_COMB

POS_COMB

Indeed, the addition produced a marked decrease in blood pressure. No reduction of urinary NA
excretion was observed in our patient during the addition of the Nifedipine therapy, suggesting
that the decrease in blood pressure was not caused by suppression of NA release from pheochromo-
cytoma tissue.”

“In Thailand , artesunate and artemether are the mainly used antimalarials for treatment of

NO_COMB

severe or multidrug resistant falciparum malaria .”

Figure 1: Examples of our label scheme. The top example contains two relations: a binary OTHER_COMB
relation and a ternary POS_COMB relation. The evidence required to annotate the latter relation is found in a
different sentence (highlighted). In the bottom example, each drug is described as a separate treatment rather than
a combination theapy.

and Sabo et al. (2021), in many relation extraction080

benchmarks (Han et al., 2018; Sabo et al., 2021;081

Zhang et al., 2017), the argument types serve as082

an effective heuristic. However, this heuristic does083

not hold in the drug combination task, in which084

all possible relation arguments are entities of the085

same type (drugs) and we need to identify specific086

subsets of them.087

Long-range dependencies The information de-088

scribing the efficacy of a combination is often089

spread-out across multiple sentences. Indeed, our090

annotators reported that for 67% of the instances,091

the label could not be determined based on a single092

sentence, and require reasoning with a larger tex-093

tual context. Interestingly, our experiments show094

that our models are not helped by the availability of095

longer context, showing the limitations of current096

standard modeling approaches. This suggests our097

dataset can be a test-bed for models that attempt to098

incorporate longer context.099

Challenging inferences As we show in our error100

analysis (§4.2), instances in this dataset require pro-101

cessing a range of phenomena, including coordina-102

tion, numerical reasoning, and world knowledge.103

We hope that by releasing this dataset we will104

encourage NLP researchers to engage in this impor-105

tant clinical task, while also pushing the boundaries106

of relation extraction.107

2 The Drug Combinations Dataset108

A set of drugs in a biomedical abstract are classi-109

fied to one of the following labels:110

Positive combination (POS_COMB): the sen-111

tence indicates the drugs are used in combination, 112

and the text indicates that the combination has ad- 113

ditive, synergistic, or otherwise beneficial effects 114

which warrant further research. 115

Non-positive combination (OTHER_COMB): 116

the sentence indicates the drugs are used in com- 117

bination, but there is no evidence in the text that 118

the effect is positive (it is either negative or unde- 119

termined).2 120

Not a combination (NO_COMB): the sentence 121

does not state that the given drugs are used in com- 122

bination, even if a combination is indicated some- 123

where else in the wider context. An example is 124

given in the lower half of Figure 1, where each of 125

the drugs Artesunate and Artemether is given in 126

isolation, and no combination is reported. 127

Our primary interest is to identify sets of drugs 128

that match the POS_COMB case. 129

2.1 Relevant Context Size for Classifying 130

Drug Combinations 131

When formulating the extraction task and design- 132

ing our data collection methodology, we first es- 133

tablished the locality of the phenomenon: whether 134

drug combinations are typically expressed in a sin- 135

gle sentence or whether a larger context is needed. 136

We sampled a set of 275 abstracts which included 137

known drug combinations according to DrugCom- 138

2We also experimented with a another label for combi-
nations that are discouraged (antagonisitc, harmful or not
effective). The agreement for this label was low, leading us to
keep it as a subset of OTHER_COMB.

2



boDB.3 Analysis showed that 140/275 of these139

abstracts mentioned attempted drug combinations.140

In 136/140 of these cases, all participating drugs in141

the attempted combination could be located within142

a single sentence in the abstract (for an example,143

see the OTHER_COMB relation in Figure 1). How-144

ever, establishing the efficacy of the combination145

frequently required a larger context (such as the146

context accompanying the POS_COMB relation in147

Figure 1).148

2.2 Task Definition149

We define each instance in the Drug Combination150

Extraction (DCE) task to consist of a sentence, drug151

mentions within the sentence, and an enclosing152

context (e.g. paragraph or abstract).153

The output of the task is a set of relations, each154

consisting of a set of participating drug spans and155

a relation label (POS_COMB or OTHER_COMB).156

Each subset of drug mentions not included in the157

output set is implicitly considered to have relation158

label NO_COMB.159

More formally, DCE is the task of labeling an160

instance X = {C, i,D} with a set of relation in-161

stances R, where C = (S1, ...Sn) is an ordered list162

of context sentences (e.g. all the sentences in an ab-163

stract or paragraph), 1 ≤ i ≤ n is an index of a tar-164

get sentence Si = (w1, ..., wn(i)) with n(i) words,165

and D = {(d1start, d1end), ..., (dmstart, dmend)}166

is a set of m >= 2 spans of drug mentions in167

S. The output is a set R = {(ci, yi)} where168

ci ∈ P(D) is a drug combination from P(D),169

the set of all possible drug combinations, and170

yi ∈ {POS_COMB,OTHER_COMB} is a com-171

bination label.172

2.3 Evaluation Metric173

We consider two settings: “Exact Match”, a strict174

version which considers identifying exact drug175

combinations, and “Partial Match”, a more relaxed176

version which assigns partial credits to correctly177

identified subsets.178

For both cases, we use standard Precision,179

Recall and F1 metrics for relation extraction. For180

the partial-match case, we replace the binary181

0 or 1 score for a given combination with a182

refined score: shared_drugs/total_drugs when183

shared_drugs > 1. If there are multiple partial184

matches with the gold one, we take the one that185

3We used Syner&Antag_voting.csv taken from
http://drugcombdb.denglab.org/download/
and ranked according to the Voting metric.

maximizes the refined score. We compute recall as 186

identified_relations/all_gold_relations, 187

and precision as 188

correct_relations/identified_relations. 189

We consider two metrics, the averaged Pos- 190

itive Combination F1 score which compares 191

POS_COMB to the rest, and the averaged Any 192

Combination F1 score which counts correct predic- 193

tions for any combination label (POS or OTHER) 194

as opposed to NO_COMB. The latter is an easier 195

task, but still valuable for identifying drug combi- 196

nations irrespective of their efficacy. 197

2.4 Collecting Data for Annotation 198

To collect data for annotation we curated a list of 199

2411 drugs from DrugBank 4 and sampled from 200

PubMed a set of sentences which mention 2 or 201

more drugs. Analysis of the first 50 sentences from 202

this sample showed that only 8/50 of the sentences 203

included mentions of drug combinations. This 204

meant that annotating the full sample will be costly, 205

and will result in a dataset that’s highly skewed 206

toward relatively trivial NO_COMB instances. 207

We therefore repeated this experiment, this time 208

sampling sentences whose PubMed abstract in- 209

cluded a trigger phrase indicative of a drug combi- 210

nation context.5 This time 24/50 of the sampled 211

sentences included mentions of drug combinations. 212

Evaluating the coverage of the trigger list against 213

a new sample of abstracts with known drug com- 214

binations showed that 90% of these new abstracts 215

included one of the trigger words. This implied that 216

the trigger list is useful in creating a more balanced 217

sample without prohibitively restricting coverage 218

and diversity. 219

Based on these results, we decided to collect the 220

majority of instances for annotation, 90%, using a 221

basic search for sentences that contain at least two 222

different drugs, and whose abstract contains one 223

of the trigger phrases. To account for the lexical 224

restrictions imposed by our trigger list, we sampled 225

the remaining 10% of instances using distant super- 226

vision, curating sentences which include pairs of 227

drugs known to be synergistic according DrugCom- 228

boDB, but whose abstract does not include one 229

of our trigger phrases. All data collecting queries 230

were performed using the SPIKE Extractive Search 231

4Curation included downloading a premade drug list from
DrugBank’s website, while removing non pharmacological
intervention such as Vitamins and Supplements. The later we
got from the FDA orange book.

5See the full trigger phrase list in Appendix A.3
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Figure 2: Illustration of the data construction process. First we construct the required knowledge resources. Then,
we collect data using SPIKE –an extractive search tool– over the PubMed database. The train and test sets were
annotated using Prodigy over the curated data. For test data, we collected two annotations for each sample, and
then had a domain expert resolve annotation disagreements.

tool (Shlain et al., 2020; Taub-Tabib et al., 2020).232

The process is illustrated in the top part of Figure233

2.234

2.5 The Annotation Process235

Seven graduate students in biomedical engineer-236

ing took part in the annotation task. The students237

all completed a course in combination therapies238

for cancer and were supervised by a principled re-239

searcher with expertise in this field.240

We provided the participants with annotation241

guidelines which specified how the annotation pro-242

cess should be carried out (see Appendix A.1) and243

conducted an initial meeting where we reviewed244

the guidelines with the group and discussed some245

of the examples together.246

Each of the participants had access to a separate247

instance of the Prodigy annotation tool (Montani248

and Honnibal, 2018), pre-loaded with the candidate249

annotation instances. Once a session starts, the250

instances (containing of a sentence with marked251

drug entities, and its context) appear in a sequential252

manner, with no time limit. For each instance we253

instructed the annotators to mark all subsets of254

drugs that participated in a combination, and for255

each subset to indicate its label (POS_COMB or256

OTHER_COMB). Moreover, we instructed them257

to indicate whether the context was needed in order258

to determine the positive efficacy of the relation.259

Out of a total of 1634 instances, 272 were as-260

Metric Partial Match Exact Match
Avg. Any Combination F1 88.9 86.1

Avg. Positive Combination F1 83.4 79.6

Table 1: Agreement scores using our adaptation of F1
score to allow for partial-match.

signed to at least two annotators. After further 261

arbitration by the lead researcher, these were used 262

to construct the test set. The process is illustrated 263

in the bottom part of Figure 2. 264

2.6 Inter-annotator Agreement 265

During the course of the task we calculated Inter- 266

annotator agreement multiple times. Each time, a 267

set of 25 instances were randomly selected and as- 268

signed to all annotators. Agreement was calculated 269

based on a pairwise F1 measure (with some mod- 270

ifications as described in §2.3) and averaged over 271

all pairs of annotators (see discussion of alternative 272

metrics in Appendix A.2). The results were used to 273

identify cases of disagreement, provide feedback to 274

annotators and prompt refinement of the annotation 275

guidelines. 276

Results of the final agreement round are reported 277

in Table 1 and are overall satisfactory (Aroyo and 278

Welty, 2013; Araki et al., 2018). 279
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Contextualized Embedding

"[...] of protein kinase C-alpha. This study evaluated the response rate of the combination therapy of 
<<m>>  aprinocarsen  <</m>> , <<m>>  gemcitabine  <</m>> , and <<m>>  carboplatin  <</m>> in 
previously untreated patients with advanced non-small cell lung cancer…    [200 tokens later] … 
However, this combination resulted in severe thrombocytopenia in the majority of patients."

Feedforward Neg.

Figure 3: Our baseline architecture, adapted from the PURE model (Zhong and Chen, 2021)

2.7 Resulting Dataset280

The dataset consists of 1634 annotated instances281

(sentences with drug mentions and abstract con-282

text). The final split of train and test is 1362 train283

instances, and 272 test instances. These include284

1248 relations, 835 are POS_COMB and 374 are285

OTHER_COMB, while keeping this label ratio in286

the train and test sets. 591 sentences contain no287

drug combination, the majority (877) contain one288

relation (either POS_COMB or OTHER_COMB),289

and 166 contain two or more different combina-290

tions. Of the relations, 900 are binary, 226 are291

3-ary, 69 are 4-ary, and 53 are 5-ary or more.292

For each instance in the resulting dataset we293

include the context-required indication provided294

by the annotators. In 835 out of 1248 relations the295

annotator marked the context as needed which is296

67% of the time, showing the importance of the297

context in the DCE task.298

3 Experiments299

3.1 Baseline Model Architecture300

We establish a baseline model to measure the diffi-301

culty of our dataset and reveal areas for improve-302

ment. For our underlying baseline model architec-303

ture, we adopt the PURE architecture from Zhong304

and Chen (2021), which is state-of-the-art on sev-305

eral relation classification benchmarks, including306

the SciERC binary scientific RE dataset (Luan307

et al., 2018). The PURE architecture, designed308

for 2-ary and 3-ary relation extraction, consists of309

three components. First, special “entity marker"310

tokens are inserted around all entities in a candidate311

relation. Next, these marker tokens are encoded312

with a contextualized embedding model. Finally,313

the entity marker embeddings are concatenated and314

fed to a feedforward layer for prediction. 315

Unlike the original PURE architecture, we con- 316

sider the more challenging case of extracting rela- 317

tions of variable arity. To support this setting, we 318

average the entity marker tokens in a relation rather 319

than concatenate. The final baseline model architec- 320

ture is shown in Figure 3. For the contextual embed- 321

ding component of this architecture, we experiment 322

with four different pretrained scientific language 323

understanding models (SciBERT (Beltagy et al., 324

2019), BlueBERT (Peng et al., 2019), Pubmed- 325

BERT (Gu et al., 2020), and BioBERT (Lee et al., 326

2020)). During training, we only finetune the final 327

*BERT layer. We train each model architecture 328

for 10 epochs on a single NVIDIA Tesla T4 GPU 329

with 15GB of GPU memory, which takes roughly 330

7 hours to train for each model. 331

To our knowledge, there are no other models 332

designed for variable-length N -ary relation extrac- 333

tion, so we consider no other baselines. 334

3.2 Domain-Adaptive Pretraining 335

Our baseline model architecture relies heavily on 336

a pretrained contextual embedding model to pro- 337

vide discriminative features to the relation classifier. 338

Gururangan et al. (2020) showed that continued 339

domain-adaptive pretraining almost always leads 340

to significantly improved downstream task perfor- 341

mance. Following this paradigm, we performed 342

continued domain-adaptive pretraining (“DAPT”) 343

on our contextual embedding models. 344

We acquired in-domain pretraining data us- 345

ing the same procedure used to collect data 346

for annotation: running a SPIKE query against 347

PubMed to find all abstracts containing multi- 348

ple drug names and a “trigger phrase" (from the 349

list in Appendix A.3). This query resulted in 350
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Model Positive Combination F1 Any Combination F1
Exact Match Partial Match Exact Match Partial Match

Human-Level 79.6 83.4 86.1 88.9

SciBERT 44.6 (± 4.6) 55.0 (± 5.9) 50.2 (± 1.9) 63.6 (± 2.7)
w/ DAPT 54.8 (± 3.2) 63.6 (± 2.0) 61.8 (± 2.7) 72.8 (± 2.1)

BlueBERT 41.2 (± 4.8) 51.7 (± 6.0) 47.3 (± 4.2) 59.9 (± 6.2)
w/ DAPT 56.6 (± 2.3) 63.5 (± 3.1) 64.2 (± 2.6) 74.7 (± 2.7)

PubmedBERT 50.7 (± 5.5) 59.6 (± 5.8) 55.9 (± 3.2) 66.7 (± 3.8)
w/ DAPT 61.8 (± 5.1) 67.7 (± 4.8) 69.4 (± 1.7) 77.5 (± 2.2)

BioBERT 45.4 (± 3.7) 55.8 (± 2.2) 46.7 (± 3.6) 58.3 (± 5.1)
w/ DAPT 56.0 (± 6.5) 63.5 (± 7.5) 65.6 (± 1.8) 75.7 (± 2.2)

Table 2: Comparing different foundation models (with and without continued domain-adaptive pretraining) on
Exact-Match and Partial-Match relation extraction metrics. Mean score from 4 different random seeds is reported,
and standard deviation is computed across seeds.

190K unique abstracts. We performed domain-351

adaptive training against this dataset using the352

Huggingface Transformers library. We353

trained for 10 epochs using a learning rate of 5e-4,354

finetuning all *BERT layers and using the same355

optimization parameters specified by Gururangan356

et al. (2020). This pretraining took roughly 8 hours357

per model using four NVIDIA Tesla T4 GPUs, each358

with 15GB of GPU memory.359

3.3 Relation Prediction360

To apply the model to drug combination extraction,361

we reduce the RE task to an RC task by consider-362

ing all subsets of drug combinations in a sentence,363

treating each one as a separate classification in-364

put, and combining the predictions. This poses365

two challenges: there may be a large number of366

predicted candidate relations for a given document,367

and each relation is classified independently despite368

the combinatorial structure. To handle these issues,369

we add a filtering step based on a greedy heuristic370

to choose the smallest set of disjoint relations that371

collectively cover as many drug entities as possible372

in the sentence. We do this iteratively: at each step,373

we simply choose the largest predicted candidate374

relation (i.e. the N -ary relation with largest N ) that375

has no overlap with relations chosen at previous376

steps. In case of a tie we take the first occurring377

drug spans. One downside of this greedy heuristic378

is that it favors large relations (i.e. N -ary relations379

with larger n). Nonetheless, we empirically find it380

is critical to extracting high-precision drug combi-381

nation relations in our architecture.382

4 Results 383

4.1 Effect of Pretrained LMs and 384

Domain-Adaptive Pretraining 385

We show results of our baseline model architec- 386

ture in Table 2. For each model, we report the 387

mean and standard deviation of each metric over 388

four identical models trained with different seeds.6 389

Among the four base scientific language under- 390

standing models in our experiments, we observe 391

PubmedBERT to be the strongest on every metric. 392

We additionally find that domain-adaptive pretrain- 393

ing provides significantly improvements for every 394

base model, consistently giving 5-10 points of im- 395

provement on Positive Combination F1 score. The 396

value of domain-adaptive pretraining supports our 397

observation that encoding domain knowledge is 398

critical to solving this new task. 399

4.2 Qualitative Error Analysis 400

We identify classes of challenges that make this 401

task difficult, both in terms of humam annotation 402

and machine prediction. 403

Coordination Ambiguity: A known linguistic 404

challenge is the ambiguity that stems from vague 405

coordination. In cases where explicit combination 406

words (e.g. combination, plus, together with, etc) 407

are not used, it may be unclear whether two drugs 408

are being used together or separately. For example 409

in “These findings may help clinicians identify pa- 410

tients for whom acamprosate and naltrexone may 411

be most beneficial” it is unclear if acamprosate and 412

naltrexone are being described in combination or 413

as independent treatments, leading to either a POS 414

label for the former or NO_COMB for the latter. 415

6Seeds used are 2021, 2022, 2023, and 2024
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Model Positive Combination F1 Any Combination F1
Exact Match Partial Match Exact Match Partial Match

PubmedBERT (DAPT) with context 61.8 (± 5.1) 67.7 (± 4.8) 69.4 (± 1.7) 77.5 (± 2.2)
PubmedBERT (DAPT) without context 63.4 (± 0.6) 68.5 (± 1.1) 69.7 (± 1.3) 76.8 (± 1.7)
PubmedBERT (no DAPT) with context 50.7 (± 5.5) 59.6 (± 5.8) 55.9 (± 3.2) 66.7 (± 3.8)
PubmedBERT (no DAPT) without context 64.9 (± 1.8) 70.2 (± 2.8) 70.8 (± 1.7) 78.7 (± 1.2)

Table 3: The effect of extra-sentential context on model performance. Mean and standard deviation of each metric
are reported over 4 different random seeds. Models without domain-adaptive pretraining are surprisingly much
more effective without exposure to paragraph-level context.

Numerical and Relative Reasoning: In some416

cases, the effect of a treatment is described in rel-417

ative or numerical terms, rather than an absolute418

claim. Consider the example, “The infection rate419

in the control group was 3.5% and in the treated420

group 0.5%.”. Here, the reader must compare the421

control vs experimental groups and deduce that the422

experimental outcome is positive, because the treat-423

ment yields a lower infection rate.424

Domain Knowledge: Similarly, classifying rela-425

tions in this dataset may require an understand-426

ing of domain knowledge. In “Growth inhibition427

and apoptosis were significantly higher in BxPC-3,428

HPAC, and PANC-1 cells treated with celecoxib429

and erlotinib than cells treated with either cele-430

coxib or erlotinib”, one must understand that hav-431

ing higher values of Growth inhibition and apopto-432

sis in specific cells is a positive outcome, in order433

to classify this combination as positive.434

Context related Complications: The following435

are kinds of complications found when the evi-436

dence lies in the wider part of the context.437

Coreference Resolution: Sometimes anaphoric or438

complex coreference reasoning is needed to solve439

the efficacy of the relation e.g. “it was demon-440

strated that they could be combined with accept-441

able toxicity.”.442

Contradicting Evidence: the reader often must in-443

fer a conclusion given opposing claims within a444

given abstract. This can happen as combinations445

can be referred as e.g. toxic but effective.446

Long Distance: The target sentence can be as far as447

the entire context—in our case up to 41 sentences448

apart— from the evidence sentence. Which makes449

it harder for a reader let alone a machine to solve.450

4.3 Quantitative Error Analysis451

To probe the nature of this task, we analyze the per-452

formance of our strongest model—the one using453

a PubmedBERT base model tuned with domain- 454

adaptive pretraining—along different partitions of 455

test data. We trained our model for four differ- 456

ent seeds, and perform each comparison using a 457

paired multi-bootstrap hypothesis test where boot- 458

strap samples are generated by sampling hierarchi- 459

cally over the available model seeds and subsets 460

of the test set (Sellam et al., 2021). We use 1000 461

bootstrap samples for each tests. 462

4.3.1 Do models leverage context effectively? 463

Each relation in our dataset consists of entities con- 464

tained within a single sentence, but labeling the 465

relation frequently requires extra-sentential con- 466

text to make a decision. In our dataset, annota- 467

tors record whether or not each relation actually 468

requires paragraph-level context to label, and re- 469

ported that 67% of drug combinations required 470

such context to annotate their relation label. 471

To understand the extent to which models can 472

leverage and benefit from paragraph-level context, 473

we experiment with using our PubmedBERT-based 474

model with extra-sentential context concealed - i.e., 475

the model only sees a single sentence containing 476

drug entities at both training and evaluation time. 477

In the results in Table 3, we first observe that our 478

strongest model (the PubmedBERT-DAPT model) 479

shows almost identical performance with or with- 480

out paragraph-level context. Second, we observe 481

that a weaker version of this model without addi- 482

tional domain-adaptive pretraining performs signif- 483

icantly worse when equipped with paragraph-level 484

context. 485

These results suggest there is ample room for im- 486

provement in effectively extracting evidence from 487

other sentences in this document-level RE task. We 488

believe this can make our dataset a useful bench- 489

mark for document-level language understanding. 490

4.3.2 Binary vs. higher-arity relations 491

Given that our dataset is the first relation extrac- 492

tion dataset where the relation arity is variable, do 493
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Figure 4: Comparing models performance on binary
vs higher-order N -ary relations, averaged over 4 seeds
of the PubmedBERT-DAPT model. No consistent sig-
nificant differences were observed; p-values for these
comparisons are 0.456, 0.149, 0.240, and 0.276.
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Figure 5: Comparing relation extraction on test set drug
combinations that are observed in the training set or not,
using the PubmedBERT-DAPT model. Paired multi-
bootstrap test p-values for these four comparisons are
0.262, 0.025, 0.103, and 0.009, respectively.

higher-order relations pose a particular challenge494

for current models? To answer this question, we495

partition all predicted and ground truth relations496

for the test set into two categories: binary relations,497

and higher-arity relations. We then report precision498

among each subset of predicted relations, and re-499

call among each subset of ground truth relations.500

We perform this experiment across four different501

model seeds, and report results in aggregate using502

a paired multi-bootstrap procedure. In the results503

in Figure 4, we see no consistent significant dif-504

ferences between models of different arities, sug-505

gesting that our technique of computing relation506

representations by averaging entity representations507

scales well to higher-order relations.508

4.3.3 Generalizing to new drug combinations509

How well can relation extraction models classify510

drug combinations not seen during training? Sim-511

ilar to the setup in §4.3.2, we divide all predicted512

and ground truth relations for the test set into the513

set of drug combinations which are also annotated514

in our training set, and the set that have not been. In515

our dataset, over 80% of annotated test set relations516

are not found in the training set. 517

In Figure 5, performance is consistently better 518

for relations observed in the training set than for 519

unseen relations, by a margin of 10-15 points. Re- 520

call, in particular, is significantly worse for rela- 521

tions unseen during training (at 95% confidence), 522

and precision is potentially also worse. Consider- 523

ing that unseen drug combinations are practically 524

more valuable than already-known combinations, 525

improving generalization to new combinations is a 526

critical area of improvement for this task. 527

5 Related Work 528

The DDI dataset (Herrero-Zazo et al., 2013) is the 529

only work to our knowledge that annotates drug 530

interactions for text mining. However, it funda- 531

mentally differs from our dataset in the type of 532

annotations provided: the DDI annotates the type 533

of discourse context in which a drug combination is 534

mentioned, without providing explicit information 535

about combination efficacy. In contrast, our dataset 536

is focused on semantically classifying the efficacy 537

of drug combinations as stated in text. 538

Other RE datasets exist in the biomedical field 539

(Peng et al., 2017; Li et al., 2016; Wu et al., 2019; 540

Krallinger et al., 2017), but do not focus on drug 541

combinations. Similarly, several RE datasets tackle 542

the N -arity problem in the scientific domain (Peng 543

et al., 2017; Jain et al., 2020; Kardas et al., 2020; 544

Hou et al., 2019), and in the non-scientific domain 545

(Akimoto et al., 2019; Nguyen et al., 2016), how- 546

ever, all of them consider a fixed choice of N . 547

6 Conclusions 548

We present a new resource for drug combination 549

and efficacy identification. We establish strong 550

baseline models that achieve promising results 551

but reveal clear areas for improvement. Beyond 552

the immediate, application-ready value of this 553

task, this task poses unique relation extraction 554

challenges as the first dataset containing variable- 555

arity relations. We also highlight challenges with 556

document-level representation learning and incor- 557

porating domain knowledge. We encourage oth- 558

ers to participate in this task, and our dataset 559

and modeling code are all available to the public 560

at https://anonymous.4open.science/ 561

r/drug-synergy-models--C8B7. 562
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A Appendices 783

A.1 Annotation Guidelines 784

Figure 6: Annotation instance in the Prodigy environment. The screen is constructed of the sentence where they
should mark relations, a button to show the full context and a selection per relation to indicate the necessity of the
context.

All participating annotators were provided with annotation guidelines. The guidelines specified how 785

the annotation process should be carried out and provided definitions and examples for the different labels 786

used. As the task progressed, the guidelines were also expanded to include discussion of frequently 787

encountered issues. 788

For a given instance, such as presented in the top of Figure 6 the annotator needs to first recognize any 789

missing drugs and mark them, and then label any interactions they find among the drugs. In case they need 790

to consult a wider context they can press on a ‘show more context’ button and a text box with the wider 791

context will appear. This context can be again hidden by clicking the same button if needed. Lastly, in the 792

bottom of the sample page, we present a table with questions regarding the necessity of using the context. 793

Then the annotator should decide if they need to ignore the current sample or to complete the current 794

instance and accept it, by pressing the accept and ignore buttons. 795

The annotators are instructed as follows. They should read the sentence carefully, and try to answer a 796

two phase question to themselves. first, if the drugs are mentioned in any form of combination or they 797

should be given separately. Second, if indeed the annotator recognized the drugs as a combination can 798

they determine the efficacy of the combination by the sole sentence. 799

In case they can not determine the efficacy they are instructed to press on the ‘get more context’ button 800

and read the entire context in order to determine what is the correct efficacy. If after reading the context 801

they can still not determine the efficacy then the label of the interaction should be OTHER_COMB (aside 802

from negative label experimentation mentioned in Footnote 2). Otherwise it should be POS_COMB. In 803

case that they recognized that there is no combination between the drugs in the sentence then they should 804

not use any label and simply accept the current instance. Then they should answer the context related 805

questions for the POS_COMB label in order to signal if the context was needed. 806

While reading the sentence if the annotators find unmarked drugs they can mark them before continuing 807

to the interaction-labeling phase and treat them the same as the other drugs, but, it is not required to mark 808

a word as drug in order to use it in an interaction. If a drug is marked in a wrong manner they should try 809
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and fix it, e.g. the span of the drug is incorrect.810

In order to achieve more consistent and accurate annotations, they are also instructed to annotate all the811

interactions that they can find in a given sentence. They should always use the accept button even if there812

are no interactions in the sentence. Only in cases where they want to skip a sentence (e.g. when there813

is an inherent problem with it) or leave it for a future discussion they should use the ignore button. An814

interaction can occur between more than two drugs, if so they should notice that they don’t need each815

pair from this group to have a marked interaction, as long as they all connect to the same graph. e.g.816

“Drugs A, B and C are synergistic.” connecting A to B and B to C is sufficient, no need to connect drug817

A to drug C. Each interaction should be marked with a different tag (POS_COMB1, POS_COMB2...,818

OTHER_COMB1, OTHER_COMB2...).819

A.2 Evaluation Metric Discussion820

For measuring the agreement, we chose to use our adaptation of F1 score and not other common metrics821

such as Cohen’s Kappa (Cohen, 1960) or one of its variations (e.g. Feliss’s Kappa (Fleiss, 1971) and822

Krippendorf’s Alpha (Hayes and Krippendorff, 2007)). These metrics expect a setup where the relation823

candidates are already marked and the task is only to label them – a labeling task and not an extraction824

task. This causes two problems, one is that they inherently do not need to handle partial match. So if825

for example there are three drugs in a sentence, the first annotator annotated a relation between drugs826

A and B, while a second annotator annotated the same relation between drugs A, B and C. So we will827

either underestimate or overestimate their agreement score if we considered this a mismatch or a match828

respectively. Moreover, their calculations depends on the hypothetical agreement by chance normalization829

factor, but this will not reflect the difficulty of random choosing in our setup as they ignore the size of the830

combinatorial set of relation candidates we can possibly have.831

A.3 Trigger List832
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Figure 7: Abstracts percentage including each trigger word (1634 abstracts included; 43 words in the full word list;
Words <1% were neglected from the figure.

In Figure 7 we show the triggers that we used in the Spike queries. We show the percentage of abstracts833

12



that included each trigger (others under 1%: conjunction, two-drug, first choice, additivity, combinational, 834

synergetic, simultaneously with, supra-additive, five-drug, combinatory, over-additive, timed-sequential, 835

co-blister, super-additive, synergisms, synergic, synergistical, less-than-additive, greater-than-additive, 836

2-drug, sub-additive, more-than-additive, 3-drug). 837
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