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Abstract: Meta-Reinforcement Learning (Meta-RL) aims to acquire meta-
knowledge for quick adaptation to diverse tasks. However, applying these poli-
cies in real-world environments presents a significant challenge in balancing rapid
adaptability with adherence to environmental constraints. Our novel approach,
Constraint Model Agnostic Meta Learning (C-MAML), merges meta learning
with constrained optimization to address this challenge. C-MAML enables rapid
and efficient task adaptation by incorporating task-specific constraints directly into
its meta-algorithm framework during the training phase. This fusion results in
safer initial parameters for learning new tasks. We demonstrate the effectiveness
of C-MAML in simulated locomotion tasks with mobile robots of varying com-
plexity, where it outperforms standard Meta-RL methods.
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1 Introduction

Since its inception, Machine Learning, and particularly Reinforcement Learning (RL), have strived
to emulate human learning processes in machines. A notable early example is Rosenblatt’s devel-
opment of the Perceptron in 1957, modeled after the human brain [1]. This approach continued to
evolve, with RL drawing inspiration from the biological and psychological parallels observed in hu-
man and animal behavior [2]. Humans, unlike machines, begin learning new tasks not from scratch
but by harnessing previously acquired knowledge, thus optimizing the learning process and ensuring
safety. For instance, the knowledge of vehicle dynamics and road safety rules significantly accel-
erates learning how to drive a new car, showcasing a blend of adaptation and safety considerations.
Similarly, safe adaptation is crucial in robotic systems to prevent harm to both the environment and
the robot itself. Addressing this challenge, the field of meta learning has emerged, producing a di-
verse array of algorithms aimed at mimicking this human-like efficiency in learning [3, 4, 5]. The
objective is to train RL agents to adapt rapidly to various tasks with minimal new task-specific expe-
riences. This adaptability was illustrated by Beck et al. (2023) with the example of a cooking robot
that, during Meta-Training, learns to navigate different kitchen layouts and appliance arrangements.
Upon deployment in a customer’s kitchen, the robot adjusts to this new environment relatively easily.

However, a critical issue largely overlooked in meta learning literature is the safety of the meta learn-
ing process itself. The agent should not behave in a manner that endangers itself or its surroundings,
neither during the meta learning phase nor in subsequent deployment. For instance, a kitchen robot
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must be able to recognize the presence of people to prevent injuring them, even while adapting to
an unfamiliar kitchen layout. While there is substantial safety-oriented research in RL [7, 8, 9, 10],
these studies typically focus on adhering to constraints during the training of an agent for a specific
task. In contrast, this work presents a method that ensures safety during meta-training, generates
a safe set of initial parameters and adheres to constraints during fine-tuning. The combination of
safety and meta learning presents distinct challenges that have not been fully addressed in exist-
ing literature. The presented research introduces Constrained MAML (C-MAML), an innovative
approach designed to improve safety during training and adaptation phases in meta-learning. This
enhancement is achieved by incorporating constraint-based methods into the traditional Model Ag-
nostic Meta Learning (MAML) framework. Additionally, we have expanded the C-MAML frame-
work by developing a practical algorithm that incorporates first-order meta-gradient methods along
with a global safety critic in the outer loop. This enhancement is designed to ensure computational
efficiency and the safety of the learned meta-policy during its application. Furthermore, the results
demonstrate the adaptability of C-MAML, highlighting its capability to function effectively with
various safe RL methods in the inner loop. The paper’s structure is as follows: Section 2 presents
the state-of-the-art solutions in meta learning and safe RL, forming the foundation for our newly
developed algorithm. Section 3 introduces the essential preliminaries and notation. Our novel ap-
proach, C-MAML, is detailed in Chapter 4, followed by experiments and an outlook in sections 5
and 6.

2 Related Work

2.1 Meta Learning

Meta-learning, or ”learning to learn,” aims at discovering a meta-initialization to enhance the speed
of adaptation to new tasks, moving beyond traditional random initialization approaches [11]. In
Meta-RL, this concept is extended to train a meta-policy across varied environments to facilitate
quick adjustment to new challenges [12]. Early Meta Learning efforts, like those by Chalmers et al.
(1991), utilized black-box strategies to evolve update rules for neural net weights. Meta-RL’s black-
box methods, such as RL2 [14], embed the learning algorithm within an RNN, while gradient-based
strategies like MAML prioritize swift adaptation via gradient updates. Finn et al.’s (2017) MAML
optimizes a model’s initial parameters for improved task performance through a dual-level optimiza-
tion process, beneficial for both model-free [15] and model-based RL [16]. FoMAML, a variant by
Finn et al. (2017), simplifies MAML by omitting second-order gradients, offering efficiency with
minimal performance loss. Similarly, REPTILE by Nichol et al. (2018) updates meta-parameters
without second-order derivatives. iMAML [5] addresses information loss by indirectly incorpo-
rating the Jacobi matrix in the meta-gradient calculation. While these methodologies excel in fast
adaptability, they typically overlook safety considerations in learning initialization.

2.2 Safe Reinforcement Learning

Research in safe RL focuses on ensuring adherence to safety constraints through techniques like
gradient or parameter projection, exemplified by Projection-Based Constrained Policy Optimization
(PBCPO) [17] and related methods. Dalal et al. (2018) introduced a strategy employing safety
layers to adjust actions per state, bypassing the need for domain-specific action modifications. Con-
currently, Chow et al. (2018) explored using Linear Programming to derive Lyapunov functions
for enforcing agent safety constraints. Lagrangian duality methods, addressing optimization while
respecting constraints are pivotal. This category includes Trust Region Policy Optimization (TRPO)
and Proximal Policy Optimization (PPO), leveraging Lagrangian techniques [? ]. Achiam et al.
(2017) introduced Constrained Policy Optimization (CPO), a sophisticated second-order algorithm
for identifying feasible policies within a trust region, ensuring both performance improvement and
constraint adherence. Although these algorithms provide solutions for real-world RL applications,
it is critical to have agents that can quickly adapt to new tasks in dynamic environments. This aspect
is often overlooked in the pursuit of safety but is essential for practical deployment.
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3 Preliminaries

Meta-RL aims to find a meta-policy that can efficiently adapt to a wide range of tasks from a task
distribution T , aiming to maximize the expected return across these tasks. This is formalized as:

max
π

E
p∼T

(Jp(πp)) . (1)

Here, π denotes the meta-policy, which is adapted for each task p in T to a task-specific policy
πp, crucial for optimal performance across tasks. The adaptation of π to πp for task p is achieved
through an update mechanism Up:

πp = Up(π). (2)

In practice, Up might utilize an algorithm like gradient descent [3], updating the meta-policy based
on the gradient of Jp(π):

πp = π − α · ∇πJp(π). (3)

In the distribution T , tasks are modeled as unique Constrained Markov Decision Processes (CMDPs)
represented by the tuple (S,A, rp, Cp,M, µ,Dp). Here, S and A signify the state and action spaces,
respectively. The reward function specific to task p is rp : S × A × S → R, while Cp consists
of safety-related cost functions, with each cp,j : S × A × S → R. The CMDP framework also
includes the state transition probability M : S × A × S → [0, 1] and the initial state distribution
µ : S → [0, 1]. Furthermore, Dp details the predefined cost limits {dp,j ∈ R} for each cost function
cp,j in task p. Although all tasks utilize the same M , they are distinguished by their specific reward
and cost structures. The expected discounted returns and costs under a policy π(a|s) for task p are
given by:

Jp(π) = Eτ∼π

[ ∞∑
t=0

γtrp(st, at, st+1)

]
, Jcp,j (π) = Eτ∼π

[ ∞∑
t=0

γtcp,j(st, at, st+1)

]
.

In this context, τ represents trajectories starting from initial states s0, with actions a drawn according
to π(a|s), and subsequent states resulting from M . The discount factor is denoted by γ. A policy π is
safe if it meets the condition Jcp,j (π) ≤ dp,j for every j in Cp, thus establishing a set of acceptable
policies ΠCp

for task p. The aim of constrained policy optimization is thus to optimize expected
returns within these safety limits:

max
π

Jp(π) s.t. Jcp,j (π) ≤ dp,j ,∀j ∈ Cp.

Given Rp(τ) =
∑∞

t=0 γ
trp(st, at, st+1) as the return for a trajectory τ , the value function V π

p (s)
and action-value function Qπ

p (s, a) are defined as the expected returns from state s and from taking
action a in state s under policy π, respectively:

V π
p (s) = E

τ∼(π)
[Rp(τ)|s0 = s], Qπ

p (s, a) = E
τ∼(π)

[Rp(τ)|s0 = s, a0 = a].

The advantage function, Aπ
p (s, a) = Qπ

p (s, a)− V π
p (s), quantifies the relative benefit of action a in

state s under π. In addition to these functions, the CMDP setting also includes cost-related counter-
parts for each task p in T , defining the total trajectory cost as Cp,j(τ) =

∑∞
t=0 γ

t · cp,j(st, at, st+1).
For expected cost assessments, it introduces V π

cp,j (s), Q
π
cp,j (s, a), and Aπ

cp,j (s, a) corresponding to
each cost function cp,j in Cp. For simplicity, subsequent discussions assume each task has only one
constraint.

Analysis often employs the stationary discounted state distribution ρπ(s), the probability of visiting
state s under policy π with transition probability P . It is defined as ρπ(s) = (1−γ)

∑∞
t=0 γ

tP (st =
s|π), where P (st = s|π) is the probability of being in state s at time t following policy π.

Kakade and Langford (2002) describe the expected return difference between policies π and π′ as:

J(π′) = J(π) + E
s∼ρπ′

a∼π′

( ∞∑
t=0

γt ·Aπ(s, a)

)
. (4)
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Figure 1: Visual representation of the Constrained Model Agnostic Meta Learning (C-MAML)
framework. The meta-policy is trained across different tasks. Task-specific policies (π1, π2, π3)
are adjusted within their respective constraint surfaces C1, C2, C3, each with a dedicated safety
boundary d1, d2, d3.

This captures expected returns’ variation, combining state transitions and policy advantages. How-
ever, direct sampling for optimization is intractable. Schulman et al. (2015) used importance sam-
pling to address this:

J(π′) = J(π) + E
s∼ρπ′

a∼π

( ∞∑
t=0

γt · π
′(a|s)
π(a|s)

·Aπ(s, a)

)
. (5)

Additionally, they integrated this approach into a trust region optimization framework to facilitate
sampling from the state distribution ρπ

′.

4 Constrained Model Agnostic Meta Reinforcement Learning

Our framework, Constrained Model Agnostic Meta Learning (C-MAML), introduces a gradient-
based meta-learning approach designed to address both adaptability and safety in task learning.
C-MAML incorporates task-specific constraints in the inner loop a universal safety constraint in the
outer loop that integrates all individual task constraints across the task distribution. This method
ensures that each task’s learning process is sensitive to its specific context and demands, embedding
safety at the core of the adaptation process.

4.1 Incorporating Constraints in the Inner Loop

Our framework models each task as a constrained Markov decision process (CMDP), aiming to
optimize policies for maximum reward under specific constraints. The task-specific policy, denoted
as πp, is obtained by solving the following optimization problem:

πp = argmax
π̃

E
τ∼π̃

(Rp(τ |s0 = s)) s.t. E
τ∼π̃

(Cp(τ |s0 = s))− dp ≤ 0 (6)

One effective method for solving this CMDP is through Trust Region Policy Optimization with La-
grangian methods (TRPOLag) [9]. TRPOLag extends the robust performance guarantees of TRPO
by integrating a Lagrangian framework that specifically addresses constraints. This integration en-
ables the reformulation of the objective in Equation (6) to optimize task-specific goals within defined
safety constraints. The revised formulation is presented as follows:

Linner = Lp(πp, λp) = E
τ∼π

( ∞∑
t=0

γt · πp(at|st)
π(at|st)

·Aπ
p (st, at)

)
(7)

− λp ·

(
E

τ∼π

( ∞∑
t=0

γt · πp(at|st)
π(at|st)

·Aπ
Cp

(st, at)

)
+ JC(π)− d

)
s.t. DKL(πp∥π) ≤ ϵ

This formulation utilizes dual variables, λp, for each task p. The parameter ϵ serves as a predefined
threshold for the KL divergence. For a detailed derivation of this equation, please refer to C.
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4.2 Optimizing Meta-Parameter in the Outer Loop

Contrary to conventional Meta-RL algorithms that prioritize learning efficiency, our approach, C-
MAML, integrates an intrinsic safety mechanism within the learning framework. This is accom-
plished by identifying a meta-parameter in the solution space that adheres to all constraints. This
ensures that the selected initialization not only accelerates learning for newly encountered tasks in
the inner loop but also complies with all constraints faced during the meta-training phase. This
synthesis is encapsulated in the meta-objective function:

max
π

E
p∼T

(
E

τ∼πp

(Rp(τ |s0 = s))

)
s.t. E

p∼T

(
E

τ∼πp

(Cp(τ |s0 = s))− dp

)
≤ 0 (8)

4.3 Enhancing Safety of the Meta-Policy

Employing MAML to maximize the objective function (8) in the outer loop, introduces significant
computational challenges due to its reliance on second-order gradients. This reliance arises be-
cause MAML requires computing the gradient of the loss with respect to the meta-parameters after
a gradient update on the task-specific loss. This complexity is magnified when integrating inner
loop constraints, making the outer loop’s meta-policy π optimization notably intensive. A practi-
cal solution is to utilize First-Order Model-Agnostic Meta-Learning (FoMAML), which simplifies
the gradient estimation process by avoiding second-order derivatives. This approach enables more
manageable updates to π based on outcomes from task-specific policies. However, it is crucial to
incorporate safety information derived during the inner loop’s computations. Without this integra-
tion, the meta-policy might not consistently maintain safety standards across different task-specific
policies despite its flexibility.

max
π

E
p∼T

(
E

τ∼πp

(Rp(τ))

)
s.t. E

p∼T

(
E

τ∼πp

(Cp(τ |s0 = s))− dp

)
≤ 0 (9)

E
p∼T

(
E

τ∼π
(Cp(τ |s0 = s))− dp

)
≤ 0.

This secondary constraint in (9) ensures that π consistently exhibits safe behavior across all tasks,
leading to a modified Lagrangian optimization for the outer loop:

Louter(π, λ, η) = E
p∼T

[
E

τ∼πp

(Rp(τ |s0 = s))− λ

(
E

τ∼πp

(Cp(τ |s0 = s))− dp

)
(10)

− η

(
E

τ∼π
(Cp(τ |s0 = s))− dp

)]
.

Incorporating η as a crucial safety regulator enables the meta-policy π to efficiently adapt to new
tasks while steadfastly upholding safe practices across different task environments. Section ?? em-
pirically validates these benefits, demonstrating the significant advantage of integrating η into the
outer loop optimization. Ensuring safety across the diverse range of tasks requires finding an ini-
tial setting (meta-parameter) that satisfies the unique constraints of each task. However, conflicting
constraints among tasks make it challenging to identify a universally safe meta-parameter across the
parameter space. To overcome this challenge and enable the discovery of such a meta-parameter, we
refine the objective function (10). Initially configured for task-specific constraints cp and their re-
spective thresholds dp, our approach focuses on adopting constraints c and thresholds d independent
of any specific task. Such a substitution is possible when safety requirements are common across
tasks, allowing a unified constraint to represent multiple task-specific constraints. For example,
suppose all tasks involve robotic manipulation where joint limits must not be exceeded to prevent
damage. In that case, a general constraint on joint angles can replace individual constraints for each
task. However, this substitution must ensure that the general constraint is equally or more restrictive
than the most stringent task-specific constraint to ensure safety across all tasks. Should the general
constraint be less restrictive, it risks inadequately enforcing safety requirements for some tasks.
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(a) The point robot is shown
without LiDAR markers. The ar-
rows represent the two action di-
mensions. It has the task to reach
the designated green region.

(b) The environment is initial-
ized with a specific task, con-
trolling the configurations of ob-
stacles and goals, as well as the
agent’s position.

(c) The variation of the task re-
sults in a different configuration
of positions, yet the number of
obstacles remains constant.

Figure 2: Illustrations of the action space and two different tasks of the used environment.

Louter(π, λ, η) = E
p∼T

[
E

τ∼πp

(Rp(τ |s0 = s))− λ

(
E

τ∼πp

(C(τ |s0 = s))− d

)
(11)

− η

(
E

τ∼π
(C(τ |s0 = s))− d

)]
.

Leveraging Assumption (11) enables the development of a meta cost critic, which can be trained
with on-policy data gathered by the meta-policy across a variety of encountered tasks.

V π
C (s) = E

τ∼π
(C(τ |s0 = s)) . (12)

Integrating the meta cost critic, the updated objective function is introduced as follows:

Louter(π, λ, η) = E
p∼T

[
E

τ∼πp

(Rp(τ |s0 = s))− λ

(
E

τ∼πp

(C(τ |s0 = s))− d

)
− η (V π

C (s)− d)

]
.

(13)

Calculating the gradient of the objective function (13) with respect to the meta-policy π returns:

∇πLouter ≈ I · E
p∼T

(∇πLouter(πp))−
∂

∂π
η E
τ∼π

( ∞∑
t=0

log(π(at|st)) · V π
c (s)

)
︸ ︷︷ ︸

Independent of πp

(14)

Here, the identity matrix I approximates the Hessian, simplifying the gradient computation process
by assuming constant second derivatives and treating the loss surface as locally linear. This substi-
tution significantly reduces computational complexity, making the optimization more tractable for
high-dimensional problems. This approximation works reasonably well when the loss surface is
relatively smooth, and the second-order terms do not vary significantly. The gradient ∇πLouter(πp)
corresponds to FoMAML’s return gradient, which balances rewards and costs. The second term,
independent of task-specific updates πp, significantly affects the meta-policy’s adaptation by pro-
moting safer actions as evaluated by the safety critic. This effectively increases the propensity for
actions to reduce costs and diminishes those associated with higher costs. A detailed gradient deriva-
tion is provided in Appendix D, with a complete method diagram and pseudocode in Appendix E.

5 Evaluation

We evaluated the efficacy of C-MAML through simulations involving mobile tasks in the Safety-
Gymnasium environment [21], which provides pre-implemented costs and rewards. The benchmark
involves navigating a spherical robot towards a goal while avoiding obstacles like hazards (static)
and vases (movable cubes) that penalize the agent upon contact or movement. The robot moves
in the x-y plane by adjusting its velocity and rotating around the z-axis (see Figure 2 ). Its two-
dimensional action space and receives rewards based on proximity to the goal, calculated as the
distance difference before and after an action. The key questions addressed include:
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Figure 3: Evaluation of η on policy safety and adaptability: On the left, meta-training performance
across 106 tasks, showing the effect of an adaptive η (employing safety critic) versus η = 0 (no
safety critic) on maintaining safer cost margins. On the right, fine-tuning phase performance, illus-
trating how an adaptive η contributes to consistent adherence to the d = 5 cost threshold compared
to the absence of a safety critic.

• How does C-MAML ensure safety during training using first-order meta-learning and a
safety critic, and how does this impact policy safety and adaptability during fine-tuning?

• What effects do safety constraints integrated into meta-initialization parameters have on
adaptation speed and cost control in C-MAML compared to traditional methods?

• Is C-MAML agnostic to the specific safe RL methods utilized in the inner loop?

Utilizing First-Order Model Agnostic Meta Learning (FoMAML) instead of conventional MAML
leads to the omission of valuable second-order information during the inner loop’s optimization
phase. To mitigate this, we introduce a new constraint, regulated by the Lagrange multiplier η,
into the optimization objective (13). Our evaluation centers on assessing the impact of η on policy
safety and adaptability during both meta-training and fine-tuning stages. This involves a comparative
analysis between two methodologies: one employing a trainable η and the other proceeding without
it (Figure 3). During meta-training, the adaptive η, guided by the safety critic, helped maintain
safer cost margins, avoiding the volatility observed with a fixed η at zero. In the fine-tuning phase,
although both approaches occasionally breached the d = 5 cost limit, employing an adaptive η
resulted in more consistent adherence to the cost threshold. This underscores the value of integrating
an adaptive η and safety critic, ensuring safer policy adaptation and fine-tuning.

5.1 Safety Adaptation Across Task Spectrum
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Figure 4: Mean episode return and costs during fine-tuning across tasks. Policies are color-coded
as follows: C-MAML with TRPOLag in the inner loop is depicted in blue, the randomly initialized
policy in orange, the TRPOLag pretrained policy in green, and the MAML policy with TRPO in the
inner loop is shown in red, highlighting the diverse adaptation strategies explored.
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In the fine-tuning phase, the Trust Region Policy Optimization-Lagrangian (TRPOLag) algorithm
was utilized, focusing on four policy initializations: randomly initialized, TRPOLag pretrained pol-
icy, MAML with TRPO in the inner loop, and C-MAML with TRPOLag in the inner loop. Our
analysis across 106 tasks in Environment 2, shown in Figure 4, includes episode returns and costs
with confidence bands indicating standard deviation. Compared to random initialization, the C-
MAML initialization achieved faster adaptation, maintaining episode costs close to the cost limit
(d = 5). Conversely, the TRPOLag pretrained policy and the unconstrained MAML initialization
adapted more quickly but incurred higher costs during fine-tuning, highlighting their lack of safety
considerations. This emphasizes the significance of incorporating safety into the adaptation process,
as exemplified by C-MAML, to ensure both efficient and responsible policy development. Addi-
tional TRPOLag findings are detailed in Appendices H, G and J.

5.2 Model Agnosticity in C-MAML Framework
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Figure 5: Mean episode return and costs during fine-tuning across tasks: C-MAML with CPO in
the inner loop is depicted in blue, the randomly initialized policy in orange, CPO pretrained in
green, and the MAML policy with TRPO in the inner loop is shown in red. Each of these policies
(initialization) is fine-tuned using CPO.

Adhering to the MAML concept of model agnosticism, our C-MAML framework is crafted to func-
tion independently from any particular algorithm within its inner optimization loop, facilitating the
use of various constrained policy optimization strategies. To illustrate, we implemented Constrained
Policy Optimization (CPO) as the inner loop algorithm. Results depicted in Figure 5 reveal a per-
formance trajectory consistent with those seen using C-MAML TRPOLag (Figure 4), underscoring
our framework’s versatility and efficacy with different constrained policy optimization approaches.
C-MAML CPO adheres to the d = 10 cost limit, demonstrating efficient adaptability across tasks.
For expanded insights on employing CPO in the inner loop, see Appendix I.

6 Conclusion

We presented Constrained Model-Agnostic Meta-Learning (C-MAML), a novel meta-RL frame-
work that integrates gradient-based meta-learning with safe reinforcement learning to prioritize pol-
icy safety. It incorporates safe RL within its inner loop, resulting in policies that are adaptable
and comply with safety norms. Our method enhances meta-policy safety by introducing additional
constraints in the outer loop and employing a safety critic, ensuring adaptations prioritize safety.
Our experiments demonstrate that C-MAML leads to safer and more adaptable policies compared
to random or pre-trained starts. Future research could investigate other first-order meta-learning
techniques and safe RL algorithms in the inner loop.
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A Notation

To ensure clarity and precision in the equations throughout this document, we adopt the following
notational conventions:

• τ ∼ π indicates that the trajectory τ is sampled according to the policy π, where actions a
are sampled from π and states s follow the discounted state distribution ρπ .

• When actions a and states s are sampled from different policies or distributions, we explic-
itly specify each source in the equations. For example, a ∼ π and s ∼ ρπ̃ indicates that
actions are sampled according to policy π while states follow the distribution associated
with a different policy π̃.

B Mathematical Formulation of Constrained Meta Reinforcement Learning
Objective

In the domain of constrained Meta-RL, the overarching objective is to identify a meta-policy that is
not only swiftly adaptable to new tasks but also maintains safety. The formal mathematical repre-
sentation of this objective, along with the associated constraints, is detailed below.

Primary Objective and Constraints: The primary goal in our approach is to maximize the ex-
pected cumulative discounted reward while ensuring that the accumulated discounted costs across
tasks do not exceed a specific threshold. This is formalized in the following mathematical structure:

max
π

E
p∼T

 E
s0∼µp

at∼πp(·|st)
st+1∼M(·|st,at)

( ∞∑
t=0

γt · rp(st, at, st+1)

) (15)

s.t. E
p∼T

 E
s0∼µp

at∼πp(·|st)
st+1∼M(·|st,at)

( ∞∑
t=0

γt · cp(st, at, st+1)

)
− dp

 ≤ 0.

For clarity, Rp(τ) represents the expected value of discounted trajectory returns for task p, and Cp(τ)
indicates the expected value of discounted trajectory costs for the same task. The trajectories τ are
sampled from the policy πp, which is a task-specific policy derived from the general meta-policy π.

The reformulated objective is then expressed as:

max
π

E
p∼T

( E
τ∼πp

(Rp(τ))) (16)

s.t. E
p∼T

( E
τ∼πp

(Cp(τ))) ≤ dp

In this work, we consider a special case of the optimization problem mentioned above. Although
problem 16 accommodates task-specific cost functions cp and thresholds dp, in practice, constraints
that are uniform across all tasks are often more applicable. For instance, in robotic applications,
there may be universal constraints such as preventing self-damage due to excessive joint twisting.
Therefore, in the subsequent analysis, we explore a scenario with task-independent constraints, sim-
plifying the model to accommodate a single, overarching constraint that applies uniformly to all
tasks.

max
π

E
p∼T

( E
τ∼πp

(Rp(τ))) (17)

s.t. E
p∼T

( E
τ∼πp

(Cp(τ))) ≤ d

Lagrangian Formulation in the Inner Loop: In our approach, the Lagrangian method plays a
pivotal role in the inner loop optimization. Theoretically, if we consider θ′p as the actual stationary
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point, we encounter the following inner loop optimization problem:

πp = argmin
λ≥0

max
π̃

E
τ∼π̃

(Rp(τ))− λ E
τ∼π̃

(Cp(τ)− d) (18)

Since π̃ is an unknown policy to be determined, we can utilize the inequality by Kakade and Lang-
ford (2002) to consider a surrogate function, akin to the one used in TRPO [7], which approximately
corresponds to the above objective function. This eliminates the need to generate rollouts from a
policy π̃ to estimate the expected value.

πp = argmin
λ≥0

max
π̃

E
st∼ρπ̃

at∼π̃(·|st)

[ ∞∑
t=0

γt ·Aπ(st, at)

]

− λ

 E
st∼ρπ̃

at∼π̃(·|st)

[ ∞∑
t=0

γt ·Aπ
C(st, at)

]
− d


Importance
Sampling
= argmin

λ≥0
max
π̃

E
st∼ρπ̃

at∼π(·|st)

( ∞∑
t=0

γt · π̃(at|st)
π(at|st)

·Aπ(st, at)

)

− λ

 E
st∼ρπ̃

at∼π(·|st)

( ∞∑
t=0

γt · π̃(at|st)
π(at|st)

·Aπ
C(st, at)

)
− d


TRPO
≈ argmin

λ≥0
max
π

E
st∼ρπ

at∼π(·|st)

( ∞∑
t=0

γt · π̃(at|st)
π(at|st)

·Aπ(st, at)

)
(19)

− λ

 E
st∼ρπ

at∼π(·|st)

( ∞∑
t=0

γt · π̃(at|st)
π(at|st)

·Aπ
C(st, at)

)
− d


s.t. DKL(π̃, π) ≤ ϵ

By employing a primal-dual gradient approach, the optimization can be iteratively performed for
both π̃ and λ. This optimization problem must be resolved in the inner loop of the MAML-TRPOLag
algorithm for each selected task p.

First Order Optimization in Outer Loop: Transforming equation (17) from constrained to uncon-
strained optimization using the Lagrangian method, we derive the following outer loop optimization
problem:

Louter = E
p∼T

(
E

τ∼πp

(Rp(τ))− λ

(
E

τ∼πp

(Cp(τ)− d)

))
(20)

This equation reveals the presence of two meta-parameters: the policy parameter π and the Lagrange
multiplier λ. Therefore, it is necessary to compute the partial derivative for each of these parameters.

The calculation of the meta-gradient with respect to the meta-policy π is as follows:

∇πLouter =
∂

∂π
E

p∼T

(
E

τ∼πp

(Rp(τ))− λ

(
E

τ∼πp

(Cp(τ)− d)

))
.

=
∂πp

∂π

∂

∂πp
E

p∼T

(
E

τ∼πp

(Rp(τ))− λ

(
E

τ∼πp

(Cp(τ)− d)

))
=

∂Up(π)

∂π
· E
p∼P

(
∂

∂πp
E

τ∼πp

(Rp(τ))− λ · ∂

∂πp
E

τ∼πp

(Cp(τ)− d)

)
Policy

Gradient=
∂Up(π)

∂π
· E
p∼T

(
E

τ∼πp

( ∞∑
t=0

∇πp
log(πp(at|st)) ·Rp(τ)

)
− λ · E

τ∼πp

( ∞∑
t=0

∇πp
log(πp(at|st)) · Cp(τ)

))

In the First order MAML (FoMAML) framework, the derivative of the update rule Up(π) is approx-
imated as an identity matrix, simplifying the gradient computation. This approximation is essential
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for efficiently updating the meta-policy, aligning with the objective and constraints.

∇πLouter =
∂Up(π)

∂π
· E
p∼T

(
E

τ∼πp

( ∞∑
t=0

∇πp
log(πp(at|st)) ·Rp(τ)

)
− λ · E

τ∼πp

( ∞∑
t=0

∇πp
log(πp(at|st)) · Cp(τ)

))
FoMAML

≈ I · E
p∼T

(
E

τ∼πp

( ∞∑
t=0

∇πp
log(πp(at|st)) ·Rp(τ)

)
− λ · E

τ∼πp

( ∞∑
t=0

∇πp
log(πp(at|st)) · Cp(τ)

))
(21)

For the meta Lagrange parameter λ, the gradient is calculated as follows:

∇λLouter =
∂

∂λ
E

p∼T

(
E

τ∼πp

(Rp(τ))− λ

(
E

τ∼πp

(Cp(τ)− d)

))
= − E

p∼T

(
E

τ∼πp

(Cp(τ)− d)

)
, (22)

such that the constraint λ ≥ 0 is maintained.

C Solving CMDP with TRPO and Lagrangian Methods

In the domain of Constrained Markov Decision Processes (CMDP), we aim to optimize policies that
maximize expected rewards while adhering to predefined constraints on expected costs. The typical
CMDP problem is formulated as follows:

π∗ = argmax
π̃

E
τ∼π̃

[R(τ |s0 = s)] s.t. E
τ∼π̃

[C(τ |s0 = s)] ≤ d, (23)

where π∗ denotes the optimal policy, R(τ |s0 = s) and C(τ |s0 = s) represent the total reward and
cost from trajectory τ , respectively, and d is the allowable cost threshold.

To transform this CMDP into an unconstrained optimization problem, we employ the Lagrangian
method by introducing a Lagrange multiplier λ:

L(π, λ) = E
τ∼π

[R(τ |s0 = s)]− λ

(
E

τ∼π
[C(τ |s0 = s)]− d

)
, (24)

where λ penalizes the policy when the expected cost exceeds the threshold d.

C.1 Trust Region Policy Optimization (TRPO)

Trust Region Policy Optimization (TRPO) addresses the optimization of policies in Markov De-
cision Processes (MDPs) by introducing a KL divergence constraint. This constraint ensures that
policy updates remain within a predefined ”trust region”, thereby promoting stability. The objective
for unconstrained policy improvement using TRPO is given by:

π∗ = argmax
π̃

E
τ∼π

[ ∞∑
t=0

γt · π̃(at|st)
π(at|st)

·Aπ(s, a)

]
s.t. DKL(π∥π̃) ≤ ϵ, (25)

where Aπ(s, a) is the advantage function of the old policy π, and δ denotes the size of the trust
region as determined by the KL divergence threshold.

C.2 Incorporating Cost in Policy Optimization Strategies

Building upon TRPO, [8] introduced an extended framework that accommodates policy constraints.
This approach equates the policy’s performance regarding rewards to a similar measure for the ex-
pected value of accumulated future costs:

JC(π) = E
τ∼π

(C(τ)− d) .
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The performance concerning costs can also be approximated as:

JC(π̃) = JC(π) + E
a∼π
s∼ρπ̃

( ∞∑
t=0

γt · π̃(at|st)
π(at|st)

·Aπ
C(st, at)

)
,

where Aπ
c (s, a) is the advantage cost function of the old policy π.

Assuming the same approximation of discounted state distribution ρπ̃ as ρπ given the KL divergence
constraint between policies, the resulting optimization problem becomes:

max
π̃

E a∼π
s∼ρπ

( ∞∑
t=0

γt · π̃(at|st)
π(at|st)

·Aπ(st, at)

)
(26)

s.t. JC(π) + E a∼π
s∼ρπ

( ∞∑
t=0

γt · π̃(at|st)
π(at|st)

·Aπ
C(st, at)

)
≤ d

DKL(π̃∥π) ≤ δ.

C.3 Integrating TRPO with Lagrangian (TRPOLag)

A further extension is discussed in Ray et al. (2019) [9], which employs the Lagrangian method to
simplify CMDP solutions. This adaptation modifies the TRPO objective to incorporate both reward
maximization and constraint adherence by adjusting the Lagrange multiplier λ:

L(π, λ) = E
τ∼π

( ∞∑
t=0

γt · π̃(at|st)
π(at|st)

·Aπ
p (st, at)

)
(27)

− λp ·

(
E

τ∼π

( ∞∑
t=0

γt · π̃(at|st)
π(at|st)

·Aπ
cp(st, at)

)
+ JC(π)− d

)
s.t. DKL(π̃∥π) ≤ ϵ

where Aπold
R (s, a) and Aπold

C (s, a) are the advantage functions for the reward and cost, respectively.

This approach allows TRPOLag to effectively balance the trade-offs between maximizing rewards
and adhering to cost constraints, providing a robust solution framework for CMDPs.

D Mathematical Formulation of the Practical Algorithm

Our practical algorithm adapts the objective function (17) of the method by adding a new constraint
to ensure that the new meta-policy adheres to universal constraints.

max
π

E
p∼T

( E
τ∼πp

(Rp(τ))) (28)

s.t. E
p∼T

( E
τ∼πp

(Cp(τ)) ≤ d)

E
p∼T

( E
τ∼π

(Cp(τ)) ≤ d)

By rewriting Equation (28) using Lagrangian formulation, we obtain an unconstrained objective.
Additionally, by using the meta safety critic as an approximation for the expected cumulative sum
of the meta-policy, we arrive at the following equation.

Louter = E
p∼T

(
E

τ∼πp

(Rp(τ))

)
− λ E

p∼T

(
E

τ∼πp

(Cp(τ))− d

)
− η E

τ∼π
(V π

c (s))− d (29)

The gradient of the objective function with respect to the meta-policy π is approximated as follows:
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∇πLouter ≈ I · E
p∼T

 E
τ∼πp

( ∞∑
t=0

∇πp log(πp(at|st)) ·Rp(τ)

)
− λ · E

τ∼πp

( ∞∑
t=0

∇πp log(πp(at|st)) · Cp(τ)

)
︸ ︷︷ ︸

FoMAML’s return gradient balancing rewards and costs


− ∂

∂π
η E
τ∼π

( ∞∑
t=0

log(π(at|st)) · V π
c (s)

)
︸ ︷︷ ︸

Independent of πp

(30)

In this formulation, the first term under the approximation symbol represents the gradient derived
from FoMAML, which balances rewards and costs. The second term emphasizes the contribution
of the meta safety critic V π

c (s) to the overall gradient with respect to π.

For the meta Lagrange parameter λ, the gradient is calculated as in the equation (22). An additional
gradient is computed to optimize η:

∇ηLouter = E
τ∼π

(V π
c (s))− d (31)

E C-MAML with η and Safety Critic

The practical algorithm utilizes a first-order meta-learning approach, integrating safety-critic with
the Lagrangian multiplier η for enhanced safety. This is illustrated in Figure 6.

Epoch 1

Meta Agent 

Meta Learner
Meta Safety
Parameter Buffer

Meta Policy

Training
 Tasks

Safety CriticGlobal Safety
Parameter

CMDP1 CMDP3CMDP2

Initialization

   

Interactions

Figure 6: Diagram depicting the TRPOLag-based algorithm’s execution: Initialization involves set-
ting up task-specific policies πp and safety parameters λp for each CMPDp, derived from the meta-
policy π and meta-parameter λ (black arrows). Data collection for each task employs these initial
parameters (purple arrows). This data informs the refinement of the meta safety critic and the task-
specific policy updates πp. Feedback from task performances, encapsulating both reward and safety,
guides the meta-policy π updates (blue dotted arrows). Simultaneously, the meta-policy is rein-
forced by the meta safety critic to align with overarching constraints (green dotted arrows), while
aggregate signals from λp adjustments inform the meta-parameter λ updates (red dotted arrows).

The pseudocode detailing our method is presented below.
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Algorithm 1 Constrained Model Agnostic Meta Learning (C-MAML)

1: Input: Number of outer iteration steps N , number of tasks for computing the meta-gradient B
2: Output: Meta-Policy πθ and Cost Critic VC,θ̂

3: Initialize the meta-policy πθ and the meta-cost critic VC,θ̂ randomly
4: for counter ≤ N do
5: Randomly select a subset P of the support of P with |P| = B
6: for task p in P do
7: π′

p := πθ, VC,p := VC,θ̂

8: Randomly initialize the Reward Critic VR,p

9: for number of adaptation steps do
10: Generate rollouts with π′

p

11: Update the policy π′
p using a constrained optimization algorithm

12: Update the critics VC,p and VR,p

13: end for
14: Compute the meta-gradient for task p for the meta-policy and the meta-cost critic
15: end for
16: Average the task-specific meta-gradients and update πθ and VC,θ̂ using a meta-learning al-

gorithm
17: end for
18: return πθ, VC,θ̂

F Task Distributions

The positions of the agent, obstacles, and the goal vary randomly with each task. The seeds were
chosen solely to require the agent to search for goals within a 140-degree arc.
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F.1 Environment 1

Environment 1 encompasses 107 tasks, illustrated in Figure 7, representing all seeds within this arc
in the seed range of 0 to 300. The number of hazards is limited to 9, while only one vase exists.
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Figure 7: All 107 seeds of the task distribution under Environment 1 are depicted. The tasks were
drawn uniformly without replacement.
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F.2 Environment 2

Environment 2 consists of 106 tasks, illustrated in Figure 8, encompassing all seeds within the arc
for the seed range of 0 to 300. The number of hazards and vases has now increased to ten each,
obstructing a direct line of sight between the starting position and the goal in most cases due to
several obstacles.
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Figure 8: Illustrated are all 106 seeds comprising the task distribution within Environment 2. The
tasks were uniformly drawn without replacement.
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G Fine-Tuning

This section clarifies the fine-tuning process for two specific tasks, namely task 122 and task 233,
which are part of the broader task distribution denoted by T . The fine-tuning process was meticu-
lously examined using three distinct policy initializations to ensure a comprehensive understanding
of the dynamics involved. The initializations are as follows:

1. Random Initialization: This approach simulates the commencement of training from a
foundational level, devoid of any prior learning or optimization.

2. Pre-Optimized Policy Using TRPOLag: Here, the policy has been previously fine-tuned
with the Trust Region Policy Optimization-Lagrangian (TRPOLag) algorithm, allowing us
to assess the impact of prior optimization on the fine-tuning process.

3. C-MAML Initialization with TRPOLag: This method involves initializing the policy
through C-MAML, with TRPOLag being applied within the inner optimization loop, of-
fering a unique perspective on the adaptability and efficiency of meta learning strategies in
conjunction with TRPOLag.
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(b) Rollout of a pretrained policy
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(c) Rollout of a randomly initialized policy

Figure 9: The figure illustrates the behavior of a meta-policy trained with TRPOLag, a pretrained
policy, and a randomly initialized policy during the fine-tuning process on two randomly selected
tasks from the task distribution.
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H Additional Results of C-MAML TRPOLag
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Figure 10: Progression of the mean episode returns and mean episode costs throughout the fine-
tuning process. In contrast to Figure 4, an average has been computed across the means of three
different seeds, along with the indication of the mean standard deviation of these three seeds. The
constrained meta-policy has undergone meta-training using TRPOLag. In fine-tuning, all policies
have been adjusted with TRPOLag.

I Additional Results of C-MAML CPO
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Figure 11: Progression of the mean episode returns and mean episode costs throughout the fine-
tuning process. In contrast to Figure 5, an average has been computed across the means of three
different seeds, along with the indication of the mean standard deviation of these three seeds. The
constrained meta-policy has undergone meta-training using CPO. In fine-tuning, all policies have
been adjusted with CPO.
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J Impact of Difficulty Level

The transition from Environment 2 to Environment 1 allows for the modulation of difficulty levels,
as the latter incorporates only ten obstacles, in contrast to the 20 obstacles depicted in Figure 12.

(a) Task 0 of Environment 2 (b) Task 0 of Environment 1

Figure 12: In the left illustration, Environment 2 consists of precisely ten hazards and ten vases in
all tasks. Environment 1 mitigates the task’s difficulty level by featuring only ten hazards and a
single vase. Due to the reduced number of obstacles along the path from the agent to the goal, it is
anticipated that the task becomes easier to solve.

The reduction in environmental complexity is theoretically expected to facilitate the achievement
of an agent’s objectives while incurring lower episode costs. In order to assess the impact of vary-
ing difficulty levels on performance, we conducted additional experiments utilizing C-MAML with
TRPOLag in Environment 1. The outcomes of these experiments are presented in Figure 13. The
results reveal a notably quicker adaptation of the meta-policy compared to both the randomly ini-
tialized and pretrained policies. The pretrained policy fails to exhibit improvement after the initial
adaptation step, maintaining a consistently low return level.
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Figure 13: The trajectory of the mean episode return and mean episode costs during the course
of fine-tuning on Environment 1 is depicted. As before, averaging was conducted across all tasks
within the task distribution.

For all three policy types, the average episode costs exhibit a decrease during fine-tuning in both the
meta-policy and the pretrained policy. After ten adaptation steps, the meta-policy reaches the cost
limit of d = 0.75. In contrast, the random policy begins exploration during fine-tuning, resulting in
a sharp increase in mean episode costs.

These results emphasize the robustness of the meta-policy in response to changes in the difficulty
level of tasks and the environment.
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