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Abstract

The emergence of multilingual pre-trained lan-001
guage models makes it possible to adapt to tar-002
get languages with only few labeled examples.003
However, vanilla fine-tuning tends to achieve004
degenerated and unstable results, owing to the005
Language Interference among different lan-006
guages, and Parameter Overload under the007
few-sample transfer learning scenarios. To ad-008
dress two problems elegantly, we propose S4-009
Tuning, a Simple CroSS-lingual Sub-network010
Tuning method. S4-Tuning first detects the011
most essential sub-network for each target lan-012
guage, and only updates it during fine-tuning.013
In this way, the language sub-networks lower014
the scale of trainable parameters, and hence015
better suit the low-resource scenarios. Mean-016
while, the commonality and characteristics017
across languages are modeled by the overlap-018
ping and non-overlapping parts to ease the in-019
terference among languages. Simple but ef-020
fective, S4-Tuning gains consistent improve-021
ments over vanilla fine-tuning on three multi-022
lingual tasks involving 37 different languages023
in total (XNLI, PAWS-X, and Tatoeba).024

1 Introduction025

Recently, a variety of multilingual pre-trained lan-026

guage models (PLMs) have been proposed, includ-027

ing mBERT (Devlin et al., 2019) and XLM-R (Con-028

neau et al., 2020). Based on these PLMs, it is possi-029

ble to adapt the model to specific target languages,030

with only a handful of labeled examples in the031

downstream tasks, which is called few-shot cross-032

lingual transfer learning (Lauscher et al., 2020;033

Hedderich et al., 2020; Bari et al., 2021).034

However, traditional fine-tuning tends to obtain035

degenerated and unstable results, due to the fol-036

lowing two challenges. (1) Parameter Overload:037

Given only few labeled data for a target language,038

it is challenging to update all model parameters,039

and such a mismatch between the scale of data and040

trainable parameters can cause overfitting (Dodge041
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Figure 1: Utilizing full network during the forward
process (left), S4-Tuning only updates a specific sub-
network according to the language of the input example
(right). Sub-networks are detected based on the impor-
tance of model parameters towards different languages.

et al., 2020; Zhao et al., 2021). (2) Language 042

Interference: Sharing commonality though, dif- 043

ferent languages also possess their own charac- 044

teristics. Hence, the adaption towards a specific 045

target language can interfere with that of other lan- 046

guages (Lin et al., 2021), which also damages the 047

transfer performance. 048

Therefore, it is natural to ask the question, How 049

to address the Parameter Overload and Language 050

Interference problem elegantly? In this paper, we 051

propose a Simple CroSS-lingual Sub-network Tun- 052

ing method, S4-Tuning, which tries to deal with 053

these two problems jointly. As shown in Figure 1, 054

S4-Tuning detects the most fundamental language 055

sub-networks (with a simple and intuitive crite- 056

rion in Sec. 3.2), and only updates the specific 057

sub-network corresponding to the input language 058

during training. For one thing, we update the lan- 059

guage sub-network on a matching scale, which bet- 060

ter suits the low-resource scenarios and addresses 061

the Parameter Overload problem. For another, the 062

commonality across languages is modeled by the 063

overlap among different language sub-networks, 064

while the characteristics are also allowed by the 065

non-overlapping parts. With such a better trade-off, 066

the Language Interference problem is alleviated. 067
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Simple to implement, S4-Tuning also reveals ev-068

ident effectiveness in the downstream tasks in our069

experiments. Compared with vanilla fine-tuning,070

S4-Tuning consistently offer improvements across071

different multi-lingual downstream tasks. For ex-072

ample, it improves by 0.9 and 5.6 average points073

on XNLI and Tatoeba tasks, respectively.074

2 Related Work075

Towards better few-shot cross-lingual transfer,076

Zhao et al. (2021) freeze the embedding and en-077

coder layers of the PLM during fine-tuning, which078

is not effective and flexible enough. Nooralahzadeh079

et al. (2020) adopt the traditional meta-learning080

method MAML (Finn et al., 2017), but it is not081

practical enough, since it requires extra abundant082

labeled data for meta-training. Differently, we try083

a more elegant and effective way to handle the084

Parameter Overload and Language Interference085

problem through language sub-networks.086

Some works also find a sub-network for each087

language pair in machine translation (Lin et al.,088

2021; Xie et al., 2021), or each task in multi-task089

learning (Sun et al., 2020; Liang et al., 2021). How-090

ever, their forward and backward are both based on091

sub-networks, which is more like pruning. Instead,092

we update parameters within the sub-network dur-093

ing the backward process, but still forward on the094

whole network to fully utilize the knowledge stored095

in the entire model. Our work most closely re-096

sembles the work of Xu et al. (2021). However,097

S4-Tuning deals with multiple sub-networks simul-098

taneously rather than a single sub-network in more099

challenging few-shot multi-lingual scenarios, and100

adopts different criteria for language sub-network101

detection. We empirically show the superiority of102

S4-Tuning in Figure 3 in Section 4.5.103

3 S4-Tuning: Simple CroSS-lingual104

Sub-network Tuning105

We formally present the problem formulation106

(Sec. 3.1). Then we introduce our proposed method,107

S4-Tuning, which firstly detects the most important108

sub-network for each target language (Sec. 3.2),109

and then only updates the corresponding sub-110

network during the backward process (Sec. 3.3).111

3.1 Problem Formulation112

Given a specific task, the original multilingual PLM113

θpre is firstly fine-tuned on rich-resource labeled114

data Ds = (Xs,Ys) in source language s to ob- 115

tain θs (source training) following Lauscher et al. 116

(2020). Then, we aim to better adapt θs to multi- 117

ple target languages T =
{
t1, t2, . . . , t‖T ‖

}
with 118

target labeled data DT = {(Xt,Yt) | t ∈ T } (tar- 119

get adapting). Specifically, suppose there are C 120

different classes, we have K training examples for 121

each class c ∈ C in target language t, and K is re- 122

markably small in low-resource scenarios, leading 123

to |Ds| � |DT |. In our paper, we use English as 124

source language following Lauscher et al. (2020). 125

3.2 Language Sub-network Detection 126

In this section, we aim to identify the most impor- 127

tant sub-network for each target language. In detail, 128

for target language t, if parameter hi is essential 129

to language t, the change of loss would be large 130

once we remove hi (i.e., hi = 0) (Molchanov et al., 131

2017), which is shown in Equation 1 and H refers 132

to other parameters excluding hi. 133

Ωt(hi) =
∣∣Lt(H,hi = 0)− Lt(H,hi)

∣∣ (1) 134

Following Molchanov et al. (2017), we approxi- 135

mate with Taylor Expansion, and obtain Eq. 2. 136

Ωt(hi) =

∣∣∣∣∂Lt(H,hi)∂hi
hi

∣∣∣∣ (2) 137

Though different scoring criteria can be used, 138

we find this one works best. After deriving the 139

importance score of parameters for target language 140

t based on (Xt,Yt), parameters with the highest 141

score are selected as the sub-network for t. It can 142

be indicated by a mask Mt, where M t(hi) = 1 if 143

hi belongs to the sub-network, and M t(hi) = 0 144

otherwise. With N parameters in total, we can set 145

up sub-network scale by pt =
∑N

i=1 M
t(hi)

N . We 146

unify pt across different languages as p, that is, 147

p = p1 = p2 = · · · = p‖T ‖. 148

3.3 Constrained Language Adaption 149

According to the distinctive patterns of language 150

sub-networks, we adapt to the target languages with 151

their most essential parameters. 152

Forward During the forward procedure, we en- 153

code instances by the full network regardless of its 154

language. In this way, we can better make full use 155

of the knowledge contained in the whole model. 156

Backward Different from vanilla fine-tuning, we 157

only update the parameters within the significant 158

language sub-network. It can be achieved by mul- 159

tiplying the gradients with the mask M t. By this 160
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Method ar bg de el en es fr hi ru sw th tr ur vi zh Avg

K=64

FC Only 77.43 82.36 82.28 81.51 88.84 83.93 82.48 76.08 79.30 71.55 76.38 78.55 72.37 78.94 78.27 79.35±0.03
FC+Pooler 77.50 82.55 82.44 81.75 88.94 84.20 82.69 76.25 79.75 71.84 76.83 78.96 72.59 79.30 78.64 79.62±0.07
Full Model 78.77 83.73 83.05 81.98 88.32 84.16 83.05 76.67 80.54 72.35 77.42 79.65 73.45 80.10 79.34 80.17±0.53
S4-Tuning (Ours) 79.26 84.01 83.64 82.55 89.10 84.87 83.63 77.94 81.06 73.24 78.11 80.21 74.28 80.59 80.18 80.84±0.16

K=128

FC Only 77.97 83.01 82.70 81.99 89.04 84.62 82.99 76.63 80.11 72.49 77.13 79.25 73.23 79.54 79.41 80.01±0.02
FC+Pooler 78.06 83.07 82.78 82.10 89.08 84.66 83.15 76.70 80.17 72.79 77.44 79.44 73.31 79.85 79.46 80.14±0.11
Full Model 78.80 83.61 83.23 82.31 88.43 83.95 82.91 77.01 80.62 72.66 77.65 79.50 73.58 80.29 80.00 80.30±0.28
S4-Tuning (Ours) 79.70 84.43 84.04 82.90 89.08 84.61 83.75 77.93 81.38 73.67 79.03 80.47 74.64 81.24 81.13 81.20±0.04

Table 1: Comparison with other fine-tuning methods on XNLI. S4-Tuning consistently outperforms other meth-
ods under different K settings, and also achieves lower standard deviation compared with Full Model tuning.
Although with low standard deviation, FC Only and FC+Pooler yield inferior results.

means, we lower the scale of trainable parameters161

to address Parameter Overload, and maintain the162

commonality and characteristics across different163

languages to handle Language Interference.164

4 Experiments165

4.1 Datasets166

We conduct experiments on three multilingual167

tasks. Cross-lingual Natural Language Inference168

(XNLI) (Conneau et al., 2018) is a natural language169

inference task involving 15 different languages. Be-170

sides, Cross-lingual Paraphrase Adversaries from171

Word Scrambling (PAWS-X) (Yang et al., 2019)172

focuses on determining whether two sentences are173

paraphrases with 7 languages. Tatoeba (Artetxe174

and Schwenk, 2019) with 37 languages is a cross-175

lingual sentence retrieval task, which finds the near-176

est neighbor based on cosine similarity between177

multilingual representations of sentences.178

4.2 Experimental Setups179

Experiments are based on XLM-Rlarge (Conneau180

et al., 2020). Following Zhao et al. (2021), we181

firstly fine-tune the PLM for 10 epochs with batch182

size 32 on full English labeled examples for source-183

training, whose results are comparable to Hu et al.184

(2020) (details in Appendix A). Then we continue185

to fine-tune 5 epochs on K-shot data over target186

languages, and we use K ∈ {64, 128}. The trans-187

lated examples provided by Hu et al. (2020) are188

used as the training data for target languages. We189

search learning rate from {5e-6, 8e-6, 1e-5, 3e-5},190

and p from {0.1, 0.3, 0.5}. We report the average191

score on the test set of 5 runs with different seeds.192

4.3 Main Results193

Besides vanilla Full Model fine-tuning, we also194

compare with two strong baselines (Zhao et al.,195

2021): 1) FC Only: Only update the linear classi- 196

fier during training. 2) FC+Pooler: Only update 197

the linear classifier and pooler layer during training. 198

S4-Tuning helps the model better adapt to 199

target languages with strong and stable perfor- 200

mance. As shown in Table 1, S4-Tuning outper- 201

forms other fine-tuning methods on XNLI. For 202

example, compared with Full Model tuning, S4- 203

Tuning yields an improvement of up to 0.90 aver- 204

age points, and the standard deviation of multiple 205

random runs is also lowered, suggesting more sta- 206

ble performance. Although with lower standard 207

deviation, FC Only and FC+Pooler reveal infe- 208

rior performance. Similar results are observed on 209

PAWS-X task (shown in Appendix B due to lim- 210

ited space), in which S4-Tuning also beat other 211

methods on both K = 64 and K = 128 settings, 212

e.g., outperforms Full Model tuning by 0.7 average 213

points when K = 64. 214

S4-Tuning strengthens the model ability to 215

capture cross-lingual semantics, thanks to more 216

precise and flexible adaption for different target 217

languages. We adopt models fine-tuned on PAWS- 218

X through different methods, and search the best 219

encoder layer to derive multilingual sentence repre- 220

sentations for Tatoeba task. The most semantically 221

similar sentence is retrieved directly with cosine 222

similarity between representations. As shown in 223

Table 2, S4-Tuning yields an improvement of up to 224

5.64 average points across 36 target languages, in 225

comparison with vanilla Full Model tuning. 226

4.4 Similarity Between Sub-networks 227

In this section, we aim to understand the intrinsic 228

relations among different language sub-networks. 229

Specifically, we explore the similarity using the 230

Jaccard similarity coefficient to quantify the over- 231

lapping ratio between two sub-networks. Figure 2 232
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Method ar he vi id jv tl eu ml ta te af nl de el bn hi mr ur Avg

K=64

FC Only/FC+Pooler∗ 46.7 63.8 73.0 79.2 16.1 36.3 36.4 65.9 26.7 38.5 61.0 82.1 89.0 60.5 43.8 71.5 53.5 25.3 58.5
Full Model 48.8 65.6 76.4 79.8 17.7 38.5 39.5 66.4 31.1 43.5 61 82.6 89.9 61.4 44.4 72.7 55.2 30.8 60.5
S4-Tuning (Ours) 55.6 69.0 81.8 82.6 20.3 44.0 46.8 71.8 43.3 55.0 67.0 84.7 92.4 66.7 52.5 76.6 59.2 49.6 66.1

K=128

FC Only/FC+Pooler∗ 46.7 63.8 73.0 79.2 16.1 36.3 36.4 65.9 26.7 38.5 61.0 82.1 89.0 60.5 43.8 71.5 53.5 25.3 58.5
Full Model 55.5 69.0 82.6 83.6 21.4 42.3 44.9 76.1 38.1 51.9 67.2 85.7 92.6 67.2 51.7 79.6 63.2 43.6 66.2
S4-Tuning (Ours) 58.2 71.4 85.1 86.1 23.0 47.8 50.4 74.9 46.5 58.3 70.0 87.8 93.6 70.4 56.3 81.4 65.5 51.3 69.5

Table 2: Comparison with other fine-tuning methods on cross-lingual retrieval task Tatoeba across 36 lan-
guages. We only list 18 languages due to limited space, and the complete results are provided in Appendix D.
S4-Tuning consistently achieves the best performance across different target languages. ∗: Same as the result of
the model after source training (θs), since these two methods do not update the encoder layers of the model.

De En Es Fr Ja Ko

En

Es

Fr

Ja

Ko

Zh 56

58

60

62

64

Figure 2: The overlapping ratio between sub-networks
of different languages.

illustrates the results based on PAWS-X experi-233

ments with K = 128 and p = 0.5 settings, It234

can be observed that the eastern languages (Ja, Ko,235

Zh) are similar to each other, while different from236

the western languages (De, En, Es, Fr). For ex-237

ample, the sub-network of Japanese (Ja) is much238

more similar to that of Korean (Ko) and Chinese239

(Zh) than others. It suggests that the detected sub-240

networks potentially capture the inductive bias of241

language similarity, and model their commonality242

and characteristics through overlapping and non-243

overlapping parts flexibly.244

4.5 Comparison with Different Sub-network245

Strategies: Pruning and Random246

To further understand the effect of S4-Tuning, we247

compare with two sub-network strategies in XNLI248

and PAWS-X with K = 64: 1) Pruning (Lin et al.,249

2021; Xie et al., 2021): both forward and back-250

ward are through a pruned sub-network (while S4-251

Tuning uses the full network for forward). We252

adopt Equation 2 as the criterion to prune the253

model for all target languages. 2) Random: the254

sub-networks are detected randomly for S4-Tuning255

rather than following a specific criterion.256

As shown in Figure 3, for pruning, the model257

would collapse if p < 0.7, and the best score258

0.1 0.3 0.5 0.7 0.9
p
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cu
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(a) XNLI
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p
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Figure 3: Compare S4-Tuning with Pruning and Ran-
dom sub-network across various sub-network ratio p.
The red horizontal line denotes the result of vanilla full
model tuning. S4-Tuning reveals superior performance
over other strategies.

achieved in p = 0.9 is still lower than the vanilla 259

fine-tuning in XNLI. The performance of random 260

sub-network is slightly lower than vanilla fine- 261

tuning in XNLI, while slightly higher in PAWS- 262

X. Compared with these two strategies, S4-Tuning 263

achieves the best scores in an overwhelming ma- 264

jority of cases, which suggests the superiority of 265

S4-Tuning in few-shot cross-lingual transfer. 266

5 Conclusion 267

Towards better few-shot cross-lingual transfer 268

learning, we propose S4-Tuning. S4-Tuning de- 269

tects the most essential sub-network for each target 270

language, and only updates these parameters dur- 271

ing the backward process, while still utilizing the 272

full model for the forward process. In this way, 273

we reduce the scale of trainable parameters that 274

better suits low-resource scenarios to address over- 275

fitting, and better deal with the interference across 276

languages. Our experiments show that S4-Tuning 277

consistently outperforms other fine-tuning methods 278

in different downstream tasks. 279
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A Results on Source Training390

Since our work focuses on the target adapting, we391

ensure the results on source training are compara-392

ble to others. As shown in Table 3, the obtained393

results based on our implementation is comparable394

or even better than those of Hu et al. (2020) in three395

multi-lingual tasks.396

PAWS-X XNLI Tatoeba

Hu et al. (2020) 86.4 79.2 57.3
Ours 86.4 79.6 58.5

Table 3: Align initial results after source training.

B Results on PAWS-X397

Table 4 illustrates the results of different fine-tuning398

methods on PAWS-X task. Compared with vanilla399

full model tuning, S4-Tuning achieves better per-400

formance with lower standard deviation, which sug-401

gests that S4-Tuning helps the model better adapt402

to target languages and obtain more stable results.403

C Detailed Results on Tatoeba404

Table 5 demonstrates the results on the cross-405

lingual retrieval task, Tatoeba, across 36 differ-406

ent target languages in total. Since FC Only and407

FC+Pooler do not update the intermediate encoder408

layers, their results are both the same as that of409

the model after source training. It can be ob-410

served that S4-Tuning outperform other methods411

by 5.6 ∼ 7.6 average points under K = 64 setting,412

and 3.2 ∼ 11.0 average points under K = 128413

setting.414

D Results on XQuAD415

We also explore S4-Tuning in multilingual ques-416

tion answering task, XQuAD (Artetxe et al., 2020).417

As shown in Table 6, S4-Tuning provides improve-418

ments on both K = 64 and K = 128 settings,419

along with lower standard deviation.420
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Method de en es fr ja ko zh Avg

K=64

FC Only 89.07 94.07 90.26 89.70 80.33 79.03 82.81 86.47±0.05
FC + Pooler 89.34 93.90 90.05 89.41 80.12 79.42 82.77 86.43±0.07
Full Model 88.80 93.88 89.52 89.35 79.50 80.78 83.04 86.41±0.70
S4-Tuning (Ours) 90.13 94.53 90.69 90.41 79.96 80.86 83.22 87.11±0.16

K=128

FC Only 89.46 94.37 90.38 89.90 80.73 79.31 82.93 86.73±0.07
FC + Pooler 89.54 94.19 90.29 89.72 80.32 79.67 82.96 86.67±0.06
Full Model 89.19 94.54 90.85 90.43 80.21 80.93 83.23 87.05±0.41
S4-Tuning (Ours) 90.19 95.01 91.13 90.75 80.85 81.71 83.56 87.60±0.20

Table 4: Comparison with other fine-tuning methods on PAWS-X. S4-Tuning achieves the best average score
across different languages, and also lower the standard deviation compared with Full Model tuning.

Method ar he vi id jv tl eu ml ta te af nl de el bn hi mr ur fa

K=64

FC Only/FC+Pooler∗ 46.7 63.8 73.0 79.2 16.1 36.3 36.4 65.9 26.7 38.5 61.0 82.1 89.0 60.5 43.8 71.5 53.5 25.3 71.9
Full Model 48.8 65.6 76.4 79.8 17.7 38.5 39.5 66.4 31.1 43.5 61.0 82.6 89.9 61.4 44.4 72.7 55.2 30.8 73.4
S4-Tuning (Ours) 55.6 69.0 81.8 82.6 20.3 44.0 46.8 71.8 43.3 55.0 67.0 84.7 92.4 66.7 52.5 76.6 59.2 49.6 77.7

K=128

FC Only/FC+Pooler∗ 46.7 63.8 73.0 79.2 16.1 36.3 36.4 65.9 26.7 38.5 61.0 82.1 89.0 60.5 43.8 71.5 53.5 25.3 71.9
Full Model 55.5 69.0 82.6 83.6 21.4 42.3 44.9 76.1 38.1 51.9 67.2 85.7 92.6 67.2 51.7 79.6 63.2 43.6 78.8
S4-Tuning (Ours) 58.2 71.4 85.1 86.1 23.0 47.8 50.4 74.9 46.5 58.3 70.0 87.8 93.6 70.4 56.3 81.4 65.5 51.3 80.7

Method fr it pt es bg ru ja ka ko th sw zh kk tr et fi hu Avg

K=64

FC Only/FC+Pooler∗ 75.9 69.3 83.0 77.4 72.1 74.4 63.5 53.1 60.6 35.0 21.5 68.9 49.6 69.3 52.9 70.3 66.7 58.5
Full Model 77.0 71.6 82.9 79.5 73.0 76.3 65.7 53.8 64.9 39.9 24.0 70.3 48.7 71.8 56.9 74.1 68.7 60.5
S4-Tuning (Ours) 79.3 73.7 83.8 82.0 76.5 80.0 74.3 56.0 69.4 59.7 25.7 76.4 53.7 75.8 62.3 80.3 75.1 66.1

K=128

FC Only/FC+Pooler∗ 75.9 69.3 83.0 77.4 72.1 74.4 63.5 53.1 60.6 35.0 21.5 68.9 49.6 69.3 52.9 70.3 66.7 58.5
Full Model 80.9 75.0 86.4 83.4 77.3 80.7 73.7 56.9 70.7 54.1 25.2 78.4 54.5 77.6 61.7 79.9 75.2 66.3
S4-Tuning (Ours) 83.3 77.6 87.1 85.6 81.3 83.3 76.0 63.5 73.3 61.0 28.4 80.6 58.7 80.3 66.2 82.0 76.8 69.5

Table 5: Detailed results on cross-lingual retrieval task Tatoeba across 36 languages. S4-Tuning outperforms
vanilla Full Model tuning under a overwhelming majority of cases. ∗: Same as the result of the model after source
training (θs), since these two methods do not update the encoder layers of the model.

Method en es de el ru tr ar vi th zh hi Avg

K=64

Full Model 72.40 59.14 60.91 56.45 60.30 56.27 53.53 56.79 68.2 56.22 57.82 59.82±0.33
S4-Tuning (Ours) 72.13 60.30 60.89 57.45 59.87 55.93 53.92 56.92 68.44 55.09 57.87 59.89±0.10

K=128

Full Model 72.42 59.71 60.34 57.70 60.54 56.18 53.88 57.18 68.40 56.32 58.30 60.09±0.40
S4-Tuning (Ours) 72.48 59.35 60.54 57.68 60.47 56.03 54.13 57.98 68.79 57.24 58.62 60.30±0.20

Table 6: Comparison with Full Model tuning on XQuAD. S4-Tuning outperforms Full Model tuning on both
K = 64 and K = 128 settings, with lower standard deviation.
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