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Abstract

Proteins, serving as the fundamental architects of biological processes, interact with ligands
to perform a myriad of functions essential for life. The design and optimization of ligand-
binding proteins are pivotal for advancing drug development and enhancing therapeutic effi-
cacy. In this study, we introduce ProteinReDiff, a novel computational framework designed
to revolutionize the redesign of ligand-binding proteins. Distinguished by its utilization of
Equivariant Diffusion-based Generative Models and advanced computational modules, Pro-
teinReDiff enables the creation of high-affinity ligand-binding proteins without the need for
detailed structural information, leveraging instead the potential of initial protein sequences
and ligand SMILES strings. Our thorough evaluation across sequence diversity, structural
preservation, and ligand binding affinity underscores ProteinReDiff’s potential to signifi-
cantly advance computational drug discovery and protein engineering. We will release our
data and source code upon acceptance.

1 Introduction

Proteins, often referred to as the molecular architects of life, play a critical role in virtually all biological
processes. A significant portion of these functions involves interactions between proteins and ligands, under-
pinning the complex network of cellular activities. These interactions are not only pivotal for basic physi-
ological processes, such as signal transduction and enzymatic catalysis, but also have broad implications in
the development of therapeutic agents, diagnostic tools, and various biotechnological applications (Du et al.,
2016). Despite the paramount importance of protein-ligand interactions, the majority of existing studies
have primarily focused on protein-centric designs to optimize specific protein properties, such as stability,
expression levels, and specificity (Listov et al., 2024). This prevalent approach, despite leading to numerous
advancements, does not fully exploit the synergistic potential of optimizing both proteins and ligands for
redesigning ligand-binding proteins. By embracing an integrated design approach, it becomes feasible to
refine control over binding affinity and specificity, leading to applications such as tailored therapeutics with
reduced side effects, highly sensitive diagnostic tools, efficient biocatalysis, targeted drug delivery systems,
and sustainable bioremediation solutions (Yang & Lai, 2017), thus illustrating the transformative impact of
redesigning ligand-binding proteins across various fields.

Traditional methods for designing ligand-binding proteins have relied heavily on experimental techniques,
characterized by systematic but often inefficient trial-and-error processes. These methods, while founda-
tional, are time-consuming, resource-intensive, and sometimes fall short in precision and efficiency. The
emergence of computational design has marked a transformative shift, offering new pathways to accelerate
the design process and gain deeper insights into the molecular basis of protein-ligand interactions. However,
even with the advancements in computational approaches, significant challenges remain. Many existing mod-
els demand extensive structural information (Polizzi & DeGrado, 2020; Stärk et al., 2023; Dauparas et al.,
2023), such as detailed protein configurations and specific binding pocket data, limiting their applicability,
especially in urgent scenarios like the emergence of novel diseases. For instance, during the outbreak of a new
disease like COVID-19 (Lv et al., 2020), the spike proteins of the virus may not have well-characterized bind-
ing sites, delaying the development of effective drugs. Furthermore, the complexity of binding mechanisms,
including allosteric effects and cryptic pockets, adds another layer of difficulty. In addition, many proteins
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do not exhibit clear binding pockets until ligands are in close vicinity, necessitating extensive simulations
to reveal potential binding interfaces (Meller et al., 2023). This complexity underscores the need for a drug
design methodology that is agnostic to predefined binding pockets.

Our study addresses identified challenges by introducing ProteinReDiff, an innovative computational frame-
work developed to enhance the process of redesigning ligand-binding proteins. Originating from the founda-
tional concepts of the Equivariant Diffusion-Based Generative Model for Protein-Ligand Complexes (DPL)
(Nakata et al., 2023), ProteinReDiff incorporates key improvements inspired by the unparalleled capabilities
of advanced modules from the AlphaFold2 (AF2) model (Jumper et al., 2021). Specifically, we integrate the
Outer Product Mean, Single Representation Attention (adapted from MSA row attention module of AF2),
and Triangle Multiplicative Updates modules into our Residual Feature Update procedure. These modules
collectively enhance the framework’s ability to capture intricate protein-ligand interactions, improve the
fidelity of binding affinity predictions, and enable more precise redesigns of ligand-binding proteins.

The framework seamlessly combines the generation of diverse protein sequences with advanced blind docking
capabilities. Beginning with a selected protein-ligand pair, our approach strategically masks specific amino
acids to enable targeted protein redesign. Central to our strategy is the diffusion model’s proficiency in
capturing the joint distribution of ligand and protein conformations, meticulously optimized to enhance
the protein’s affinity for its ligand. A key feature of our method is blind docking, which predicts how the
redesigned protein interacts with its ligand without the need for predefined binding site information, relying
solely on initial protein sequences and ligand SMILES (Weininger, 1988) strings. This streamlined approach
significantly reduces reliance on detailed structural data, facilitating the redesign process of ligand-binding
proteins and expanding the scope for sequence-based exploration of protein-ligand interactions. The final
outcome is a new protein sequence with an anticipated higher binding affinity for the ligand, underscoring
the substantial potential of our model to significantly impact computational drug discovery and protein
engineering.
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Figure 1: Overview of the proposed framework. The process begins with utilizing a protein amino acid
sequence and a ligand SMILES string as inputs. The conformational sampling process includes iteratively
applying input featurization, updating residual features, and denoising equivariantly, ultimately yielding
novel protein sequences alongside their corresponding Cα protein backbone and ligand complexes.

In summary, the contributions of our paper are outlined as follows:
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• We introduce ProteinReDiff, a novel computational framework for ligand-binding protein redesign,
rooted in Equivariant Diffusion-based Generative Models. Our innovation lies in integrating ad-
vanced modules to enhance the framework’s ability to capture intricate protein-ligand interactions.

• Our framework represents a significant advancement by enabling the design of high-affinity ligand-
binding proteins without reliance on detailed structural information, relying solely on initial protein
sequences and ligand SMILES strings.

• We comprehensively evaluate our model’s outcomes across multiple dimensions, including sequence
diversity, structure preservation, and ligand binding affinity, ensuring a holistic assessment of its
effectiveness and applicability in various contexts.

2 Background

2.1 Protein language models (PLMs)

Protein Language Models (PLMs) leverage the principles of natural language processing (NLP) to decode
the complex language inherent in protein sequences. By treating amino acid sequences as analogous to
sentences in human language, PLMs can uncover profound insights into protein functions, interactions,
and evolutionary histories. The foundational premise of PLMs is that sequences of amino acids can be
conceptualized similarly to sentences composed of words, enabling the application of advanced text processing
techniques to predict the structural, functional, and interactional properties of proteins based solely on their
amino acid sequences. The field has seen the development of several influential PLMs (Brandes et al., 2022;
Elnaggar et al., 2022; Rives et al., 2021; Lin et al., 2023a; Nguyen & Hy, 2023; Ngo & Hy, 2024), each
contributing unique perspectives and capabilities to the understanding of protein sequences. The adoption
of PLMs in protein design has spurred significant advancements, with numerous studies (Madani et al., 2023;
Ruffolo & Madani, 2024; Min et al., 2024; Zheng et al., 2023; Tran & Hy, 2023; Ngo & Hy, 2024) leveraging
these models to transform sequence data into detailed insights, thereby guiding the engineering of proteins
with targeted functional properties.

Mathematically, a PLM can be represented as a function F that maps a sequence of amino acids S =
[s1, s2, . . . , sn], where si denotes the i-th amino acid in the sequence, to a high-dimensional feature space
that encapsulates the protein’s predicted structural and functional properties:

X = F (S), X ∈ Rd,

where X represents the continuous representation or embedding derived from the sequence S and d represents
the dimensionality of the embedding space, determined by the PLM’s architecture. This embedding captures
the complex dependencies and patterns essential for determining the protein’s three-dimensional structure
and biological functionality. PLMs, through rigorous training on extensive databases of known protein
sequences and structures, acquire the ability to discern the "grammar" that governs protein folding and
function, facilitating accurate predictions about unseen proteins.

In our research, we employ the ESM-2 model (Lin et al., 2023a), a state-of-the-art protein language model
with 650 million parameters, pre-trained on nearly 65 million unique protein sequences from the UniRef
(Suzek et al., 2014) database. Distinguished by its comprehensive training regimen encompassing a wide
variety of protein sequences, ESM-2 adeptly identifies structural and phylogenetic patterns across a broad
spectrum of proteins. Its capacity to infer accurate protein structures from their amino acid sequences
marks a pivotal advancement in protein science, providing a robust tool for exploring protein function-
ality and evolutionary dynamics without resorting to traditional, labor-intensive structural determination
methods. Employing ESM-2 enabled us to derive structural and phylogenetic information from the input se-
quences, significantly augmenting our understanding of the underlying protein mechanisms. This enhanced
understanding is instrumental in the design and optimization of proteins for specific functions, including
ligand-binding activities.
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2.2 Equivariant diffusion-based generative models

In our research, we utilize a generative model driven by equivariant diffusion principles, drawing from the
foundations laid by Variational Diffusion Models (Kingma et al., 2023) and E(3) Equivariant Diffusion Models
(Hoogeboom et al., 2022).

2.2.1 The diffusion procedure

First, we employ a diffusion procedure that is equivariant with respect to the coordinates of atoms x,
alongside a series of progressively more perturbed versions of x, known as latent variables zt, with t varying
from 0 to 1. To maintain translational invariance within the distributions, we opt for distributions on a
linear subspace that anchors the centroid of the molecular structure at the origin, and designate Nx as a
Gaussian distribution within this specific subspace. The conditional distribution of the latent variable zt

given x, for any given t in the interval [0, 1], is defined as

q(zt|x) = Nx(αtx, σ2
t I),

where αt and σ2
t represent strictly positive scalar functions of t, dictating the extent of signal preservation

versus noise introduction, respectively. We implement a variance-conserving mechanism where αt = 1− σ2
t

and posit that αt smoothly and monotonically decreases with t, ensuring α0 ≈ 1 and α1 ≈ 0. Given the
Markov property of this diffusion process, it can be described via transition distributions as

q(zt|zs) = Nx(αt|szs, σ2
t|sI)

for any t > s, where αt|s = αt/αs and σ2
t|s = σ2

t − α2
t σ2

s . The Gaussian posterior of these transitions,
conditional on x, can be derived using Bayes’ theorem:

q(zs|zt, x) = Nx(µt→s(zt, x), σ2
t→sI),

with

µt→s =
αsσ2

t|s

αt|sσ2
s

zt + σ2
sσ2

t

σ2
t|s

x, σ2
t→s = σ2

t σ2
s

σ2
t|s

.

2.2.2 The generative denoising process

The construction of the generative model inversely mirrors the diffusion process, generating a reverse tem-
poral sequence of latent variables zt from t = 1 back to t = 0. By dividing time into T equal intervals, the
generative framework can be described as:

pθ(x) =
∫

z

p(z1)p(x|z0)
T∏

i=1
pθ(zti

|zti−1),

with s(i) = (i − 1)/T and t(i) = i/T . Leveraging the variance-conserving nature and the premise that
α1 ≈ 0, we posit q(z1) = Nx(0, I), hence treating the initial distribution of z1 as a standard Gaussian:

p(z1) = Nx(0, I).

Furthermore, under the variance-conserving framework and considering α0 ≈ 1, the distribution q(z0|x)
is modeled as narrowly concentrated, allowing for the approximation of pdata(x) as uniform across this
concentration. This yields:

q(z0|x) = q(z0|x)pdata(x)∫
x̃

q(z0|x̃)pdata(x̃)
≈ q(z0|x)∫

x̃
q(z0|x̃)

= N (z0|µ0, σ2
0/α2).

Accordingly, we approximate q(x|z0) through:

p(x|z0) = Nx(x|z0/α0, σ2
0/α2

0I).
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The generative model’s conditional distributions are then formulated as:

pθ(zs|zt) = q(zs|zt, x = x̂θ(zt; t)),

which mirrors q(zs|zt, x) but substitutes the actual coordinates x with the estimates from a temporal denois-
ing model x̂θ(zt; t), which employs a neural network parameterized by θ to predict x from its noisier version
zt. This denoising model’s framework, predicated on noise prediction ϵ̂θ(zt; t), is articulated as:

x̂θ(zt; t) = (zt − σtϵ̂θ(zt; t))
αt

.

Consequently, the transition mean µt→s(zt, x̂θ(zt; t)) is determined by:

µt→s(zt, x̂θ(zt; t)) =
αsσ2

t|s

αt|sσ2
s

zt + αsσ2
t

σ2
t|s

x = 1
αt|s

zt −
σ2

t|s

αt|sσt
ϵ̂θ(zt; t).

3 Method

In this section, we detail the methodology employed in our noise prediction model, which is depicted in
Figure 1 and consists of three main procedure: (1) input featurization, (2) residual feature update, and
(3) equivariant denoising. Through these steps, we transform raw protein and ligand data into structured
representations, iteratively refine their features, and leverage denoising techniques inherent in the diffusion
model to improve sampling quality.

3.1 Input featurization

We develop both single and pair representations from protein sequences and ligand SMILES string (Figure 2).
For proteins, we initially applied stochastic masking to segments of the amino acid sequences. The protein
representation is attained through the normalization and linear mapping of the output from the final layer of
the ESM-2 model, which is subsequently combined with the amino acid and masked token embeddings. Ad-
ditionally, for pair representations of proteins, we leveraged pairwise relative positional encoding techniques,
drawing from established methodologies (Jumper et al., 2021). For ligand representations, we employed a
comprehensive feature embedding approach, capturing atomic and bond properties such as atomic num-
ber, chirality, connectivity, formal charge, hydrogen attachment count, radical electron count, hybridization
status, aromaticity, and ring presence for atoms; and bond type, stereochemistry, and conjugation status
for bonds. These representations are subsequently merged, incorporating radial basis function embeddings
of atomic distances and sinusoidal embeddings of diffusion times. Together, these steps culminate in the
formation of preliminary complex representations, laying the foundation for our computational analyses.

3.2 Residual feature update procedure

Our methodology marks a notable departure from the residual feature update procedure utilized in the
original DPL model (Nakata et al., 2023). While the DPL model relied on Folding blocks from ESMFold (Lin
et al., 2023b) for updating single and pair representations, wherein the two representations mutually influence
each other, our aim is to enhance the efficiency of this procedure. Specifically, we integrate enhancements
such as the Outer Product Mean, Single Representation Attention, and Triangle Multiplicative updates,
drawing inspiration from the AlphaFold2 (Jumper et al., 2021) model. Notably, we adapt and customize
these modules to align with our model architecture, ensuring their optimal performance in representing the
complex interplay between proteins and ligands.
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Figure 2: Overview of the input featurization procedure of the model.

Single representation Pair representation

Single
Representation
Attention (SPA)

bias

Outer Product Mean +

Triangle
Multiplicative

Updates

Denoised StructureDenoised Sequence

Figure 3: Overview of the residual feature update procedure of the model.

3.2.1 Single representation attention module

Our Single Representation Attention (SPA) module, derived from the Alphafold2 model’s MSA row attention
with pair bias, brings a significant enhancement to our framework. In the original Alphafold2, the Multiple
Sequence Alignment (MSA) row attention mechanism is designed to process input from a single sequence,
while the SPA module is tailored to incorporate representations from multiple protein-ligand complexes
concurrently. Specifically, the pair bias component of the SPA attention module is strategically employed to
capture the nuanced interactions between proteins and ligands. Through simultaneous consideration of both
the single representation vector (which encodes the protein/ligand sequential representation) and the pair
representation vector (which encodes protein-ligand interactions), this cross-attention mechanism adeptly
preserves internal motifs, as evidenced by contact overlap metrics (Rao et al., 2021). Moreover, its efficacy
extends to binding affinity prediction, as demonstrated in section 4.2.6. For a detailed description of the
computational steps implemented in this module, refer to Algorithm 1.
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Algorithm 1 Single Representation Attention pseudocode
Input: Single representation vector msi, pair representation vector zsijofssequences, C = 65, Nhead = 4
Output: Updated single representation vector m̃si

1: msi ← LayerNorm(msi)
2: qh

si, kh
si, vh

si ← LinearNoBias(msi) qh
si, kh

si, vh
si ∈ RC , h ∈ {1, . . . , Nhead}

3: bh
sij ← LinearNoBias(LayerNorm(zsij))

4: gh
si ← sigmoid(Linear(msi)) gh

si ∈ RC

5: ah
sij ← softmaxj

(
1√
C

qh
sik

h
sj

T + bh
sij

)
6: oh

si ← gh
si ⊙

∑
j ah

sijvh
sj

7: m̃si ← Linear(concath(oh
si)) m̃si ∈ RCm

8: return{m̃si}

3.2.2 Outer product mean

The outer product layer merges insights from SPA and channels them into pair representations, enabling
further refinement. Within this layer, evolutionary cues generate plausible structural hypotheses, which are
then transferred to pair representations using Algorithm 2. Analogous to Tensor Product Representations
(TPR) in NLP, the role of the outer product is akin to consolidating congruent information from residue pairs
(Huang et al., 2018; Smolensky, 1990; Huang et al., 2019). Although not directly translatable from NLP,
this process integrates correlated information from sequence s for residues i and j, resulting in intermediate
tensors. These tensors amalgamate all available data, culminating in coherent representations. Subsequently,
mean computation aggregates these representations, followed by an affine transformation to derive hypotheses
concerning the relative positions of residues i and j. This information is then conveyed to pair representations
for a comprehensive assessment of plausibility, considering other data and physical constraints. For a detailed
description of the computational steps implemented in this module, refer to Algorithm 2. Note that in this
implementation, we have adapted outer product without the mean to maintain the pair representations of
mutiple protein-ligand pairs.

Algorithm 2 Outer product mean pseudocode
Input: Single representation vector msiofssequences, C = 32
Output: Pair representation vector zsij

1: msi ← LayerNorm(msi)
2: asi, bsi ← Linear(msi) asi, bsi ∈ RC

3: osij ← flatten(asi ⊗ bsi) oij ∈ RC×C

4: zsij ← Linear(osij) zsij ∈ Rs×Cz

5: return{zsij}

3.2.3 Triangle multiplicative updates

After refining the pair representations, our model interprets the primary protein-ligand structure using
principles from graph theory, treating each residue as a distinct entity interconnected through the pair rep-
resentation. These connections are then refined through triangular multiplicative updates, which account
for physical and geometric constraints, such as the triangular inequality on distance. While attention mech-
anisms help identify residues with significant influence, the utilization of triangular multiplicative updates
becomes crucial in preventing excessive focus on specific residue subsequences while equivariantly transform-
ing the denoised coordinates, evidenced in implementation of (Lin & AlQuraishi, 2023). By aggregating
information from neighboring residues and considering the third edge of each triangle, these mechanisms en-
able the model to generate more accurate representations of protein-ligand complexes, leading to improved
predictive performance in predicting binding affinities and structural characteristics.
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3.3 Equivariant denoising

During the equivariant denoising process, the final pair representation undergoes symmetrization and is
then transformed using a multi-layer perceptron (MLP) into a weight matrix W . This matrix is utilized to
compute the weighted sum of all relative differences in 3D space for each atom, as shown in the equation
(Nakata et al., 2023):

ϵ̂i(z) =
∑

j

Wij(z) · (zi − zj)
∥zi − zj∥

.

Afterwards, the centroid is subtracted from this computation, resulting in the output of our noise prediction
model ϵ̂. Additionally, it’s important to note that the described model maintains SE(3)-equivariance, meaning
that:

êi(Rz + t) =
∑

j

Wij(Rz + t)
∥(Rzi + t)− (Rzj + t)∥ · ((Rzi + t)− (Rzj + t))

= R
∑

j

Wij(Rz + t)
∥zi − zj∥

· (zi − zj)

= R
∑

j

Wij(z)
∥zi − zj∥

· (zi − zj)

= Rêi(z)

for any rotation R and translation t. This property is derived from the fact that the final representation, and
hence the weight matrix W , depends solely on atom distances that are invariant to rotation and translation.

4 Experiments

4.1 Training process

4.1.1 Materials

Our training strategy harnesses a meticulously curated dataset encompassing a broad range of protein
structures, including both ligand-bound (holo) and ligand-free (apo) forms, sourced from two key repositories:
PDBBind v2020 (Wang et al., 2004) and CATH 4.2 (Sillitoe et al., 2018). PDBBind v2020 offers a diverse
collection of protein-ligand complexes, while CATH 4.2 provides a substantial repository of protein structures.
Each dataset was selected for its unique contributions to our understanding of protein-ligand interactions and
structural diversity. This strategic selection of datasets ensures our model is exposed to a wide and varied
spectrum of protein-ligand interactions and structural configurations, enabling a comprehensive evaluation
against diverse inverse folding benchmarks. By training on both holo and apo structures, our approach not
only aims to imbue the model with a robust understanding of protein-ligand dynamics but also equips it
to adeptly navigate the complexities of unseen protein-ligand interaction scenarios. To ensure robust model
training and evaluation, we employ careful data partitioning techniques. The dataset is divided into distinct
subsets, including training, validation, and test sets. Table 1 provides an overview of the partitioning details,
facilitating a clear understanding of the distribution of samples across different subsets of the dataset.

• PDBBind v2020: For consistency and comparability with previous studies, we adhered closely to
the test/training/validation split settings outlined in established literature, specifically following the
configurations defined in the respective sources for the PDBBind v2020 datasets (Koh et al., 2023).

• CATH 4.2: In our approach, we deliberately focused on proteins with fewer than 400 amino acids
from the CATH 4.2 database. This selective criterion was chosen to prioritize smaller proteins,
which often represent more druggable targets of interest in drug discovery and development en-
deavors. During both training and validation phases, SMILES strings of CATH 4.2 proteins were
represented as asterisks (masked tokens) to denote missing ligands. Notably, CATH 4.2 was excluded
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from the test set due to the absence of corresponding ligands required for evaluating protein-ligand
interactions.

Table 1: Data Partitioning Overview (Unit: number of samples)
Dataset Training Validation Test
PDBBind v2020 9430 552 207
CATH 4.2 15261 939 -

4.1.2 Loss functions

The optimization of our model for ligand-binding protein predesign is governed by a composite loss function L,
structured to facilitate the intricate balance required for predicting and enhancing protein-ligand interactions.
The loss function is formulated as follows:

L = LWS + LKL + LCE,

The optimization of our model for ligand-binding protein pre-design is governed by a composite loss func-
tion L, structured to facilitate the intricate balance required for predicting and enhancing protein-ligand
interactions. The loss function is formulated as follows:

L = LWS + LKL + LCE.

Weighted sum of relative differences (LWS) This component ensures the model’s sensitivity to the
directional influence between atoms, supporting the accurate prediction of the denoised structure while
maintaining physical symmetries. It is crucial for the equivariant denoising step, enabling accurate noise
prediction for atoms in the protein-ligand complex. Defined as:

LWS =
∑

j

Wij(z)(zi − zj)
∥zi − zj∥

,

where Wij(z) are the weights for the differences between atom i and atom j, and (zi − zj) is the vector
difference, normalized by its magnitude.

Kullback-Leibler divergence (LKL) (Joyce, 2011) This component quantifies the divergence between
the model’s predictions and actual sequence data at timestep t − 1, playing a pivotal role in the denoising
process. Defined as KL(xpred_t-1, seqt-1), it contrasts the predicted distribution, xpred_t-1, against the true
sequence distribution, seqt-1, leveraging the diffusion process’s γ parameter for temporal adjustment. This
approach ensures the model’s predictions progressively align with actual data distributions, significantly
enhancing the accuracy of sequence and structure generation by minimizing the expected divergence.

Cross-entropy loss (LCE) This loss function is crucial for the accurate prediction of protein sequences,
aligning them with the ground truth through effective classification. It assigns each amino acid to a specific
class, leveraging categorical cross-entropy to rigorously penalize discrepancies between the model’s predicted
probability distributions and the actual distributions for each amino acid type. The result is a marked
improvement in the precision of sequence predictions.

4.1.3 Training performance

Throughout the training phase, we meticulously observed the model’s performance, paying close attention
to the dynamics between training and validation losses, as demonstrated in Figure 4. While the training
loss consistently diminished, indicating effective learning, the validation loss presented a more erratic be-
havior—fluctuating around the training loss yet trending downwards overall. Such fluctuations in validation
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loss, despite its general decline, suggest the model’s adaptive optimization in the face of complex data pat-
terns. The overall downward trend in both metrics, with validation loss closely mirroring the training loss
albeit with fluctuations, highlights the model’s capacity for generalization to unseen data without significant
overfitting.
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Figure 4: Training history chart of ProteinReDiff, showcasing the evolution of training and validation losses
over epochs.

4.2 Evaluation process

4.2.1 Ligand binding affinity (LBA)

Ligand binding affinity is a fundamental measure that quantifies the strength of the interaction between
a protein and a ligand. This metric is crucial as it directly influences the effectiveness and specificity of
potential therapeutic agents; higher affinity often translates to increased drug efficacy and lower chances of
side effects. Within this context, our model, ProteinReDiff, is evaluated based on its ability to tailor protein
sequences for significantly improved binding affinity with specific ligands. We utilize a docking score-based
approach for this assessment, where the docking score serves as a quantitative indicator of affinity. Expressed
in kcal/mol, these scores inversely relate to binding strength — lower scores denote stronger, more desirable
binding interactions.

4.2.2 Sequence diversity

In computational protein design, sequence diversity is crucial for fostering innovation. It reflects the capacity
of our model, ProteinReDiff, to traverse the vast landscape of protein sequences and generate a wide array of
variations. To quantitatively assess this diversity, we utilize the average edit distance (Levenshtein distance)
(Miller et al., 2009) between all pairs of sequences generated by the model. This metric offers a nuanced
measure of variability, surpassing traditional metrics that may overlook subtle yet significant differences.
The diversity score is calculated using the formula:

Diversity Score = 1(
n
2
) n−1∑

i=1

n∑
j=i+1

d(Si, Sj),

where d(Si, Sj) represents the edit distance between any two sequences Si and Sj . This calculation provides
an empirical gauge of ProteinReDiff’s ability to enrich the protein sequence space with novel and diverse
sequences, underlining the practical variance introduced by our model.

4.2.3 Structure preservation

Structural preservation is paramount in the redesign of proteins, ensuring that essential functional and
structural characteristics are maintained post-modification. To effectively measure structural preservation
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between the original and redesigned proteins, three key metrics: the Template Modeling Score (TM Score)
(Zhang & Skolnick, 2004), the Root Mean Square Deviation (RMSD) (Laskowski & de Beer, 2014), and
the Contact Overlap (CO) (Bastolla et al., 2023). These two metrics collectively provide a comprehensive
assessment of structural integrity and similarity, essential for evaluating the success of our protein redesign
efforts.

The Root Mean Square Deviation (RMSD) is a measure used to quantify the distance between two
sets of points. In the context of protein structures, these points are the positions of the atoms in the protein.
The RMSD is given by the formula:

RMSD(p, p′) = min
(R,t)∈SO(3)×R3

[
1
N

N∑
i=1
∥pi − (Rp′

i + t)∥2
2

]1/2

,

where p = (xi, yi, zi)N
i=1 and p′ = (x′

i, y′
i, z′i)N

i=1 denote two sequences of N 3D coordinates representing the
atomic positions in the original and redesigned proteins, respectively. This formula calculates the minimum
root mean square of distances between corresponding atoms, after optimal superposition, which involves
finding the best-fit rotation R and translation t that aligns the two sets of points. A lower RMSD value
indicates a higher degree of structural similarity, making it a direct measure of the extent to which structural
deviation has been minimized. Achieving a low RMSD is desirable, as it signifies that the redesign process
has successfully preserved the core structural features of the original protein.

TM Score provides a normalized measure of structural similarity between protein configurations, which
is less sensitive to local variations and more reflective of the overall topology. The TM Score is defined as
follows:

TM Score(p, p′) = max
(R,t)∈SO(3)×R3

 1
1 + 1

N

∑N
i=1

∥pi−(Rp′
i
+t)∥2

2
d2

0

 ,

where d0 is a scale parameter typically chosen based on the size of the proteins. The closer the TM Score is
to 1, the more similar the structures are, indicating successful structural preservation.

Contact Overlap (CO) provides a complementary perspective to RMSD and TM Score by focusing on
the preservation of specific structural interactions rather than overall geometric similarity. This focus makes
CO an essential metric in evaluating the efficacy of protein redesign strategies aimed at maintaining or
enhancing protein function while modifying other properties. CO quantitatively measures the conservation
of inter-atomic contacts between the original and redesigned protein structures, which are crucial for the
protein’s structural integrity and functional capabilities. The metric is defined as:

CO(p, p′) = |C ∩ C ′|
|C ∪ C ′|

,

where C = {(i, j) : ∥pi − pj∥ < rc, i ̸= j} and C ′ = {(i, j) : ∥p′
i − p′

j∥ < rc, i ̸= j} represent the sets of
contacts in the original and redesigned proteins, respectively. Here, pi and p′

i are the positions of atoms in
the original and redesigned proteins, and rc is a predefined cutoff distance that determines when two atoms
are considered to be in contact. A high CO score indicates that many of the original contacts are preserved
in the redesigned structure, suggesting that the redesign maintains much of the original protein’s structural
network, crucial for its stability and function.

4.2.4 Ablation study

Efficiency of our innovations To further validate the effectiveness of the enhancements introduced in
ProteinReDiff, we conducted experiments comparing two variants of our model: one incorporating our pro-
posed enhancements and the original DPL model, which was initially designed to generate ensembles of
complex structures rather than for targeted protein redesign. To adapt DPL for our purposes, significant
adjustments were made to align it with the specific requirements of ligand-binding protein redesign. These
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modifications allowed us to evaluate how well our enhancements improve upon the base model in terms of
ligand binding affinity. This comparative assessment not only highlighted the added value of our improve-
ments but also showcased the adaptability and potential of the original DPL framework when reconfigured
for protein redesign tasks.

Impact of masking ratios We examined the impact of varying the percentage of masked amino acids on
ProteinReDiff’s efficacy. This investigation is key to understanding the optimal level of sequence modification
needed to enhance ligand binding affinity and ensure sequence diversity as well as structural preservation. We
adjusted the percentage of masked amino acids in the original sequences, observing the effects on performance
metrics such as ligand binding affinity and structural integrity. This approach allowed us to determine how
changes in the sequence masking strategy influence the model’s redesign capabilities. The initial setup
involved a minimal percentage of sequence masking, essential for the redesign process, gradually increasing
to explore the model’s flexibility and its ability to generate sequences with improved characteristics. The
study aims to identify a balance that maximizes protein function enhancement while maintaining crucial
structural and functional motifs. Findings will inform strategies for sequence modification, highlighting its
significance in computational protein design.

4.2.5 Experimental setup

In our experimental setup, we began by employing Omegafold (Wu et al., 2022) to predict the three-
dimensional structures of all designed protein sequences. This step was essential since AutoDock Vina
(Trott & Olson, 2010), the molecular docking software utilized in our study, necessitates 3D structures to
conduct docking simulations and evaluate the binding affinity between the proteins and their respective
ligands. To ensure fair comparisons and mitigate potential biases introduced by pre-docked structures, we
aligned our redesigned proteins with reference structures. This approach is crucial, particularly because the
use of pre-docked structures may favor certain conformations, leading to inaccurate evaluations. Addition-
ally, to provide context for our results, particularly in light of the limited studies addressing similar problems,
we compared the docking scores of our redesigned proteins not only with those of the original proteins but
also with proteins generated by advanced inverse folding models. Contrasting the docking scores of proteins
from both approaches allows us to elucidate the impact of sequence context on ligand binding. Proteins
generated by inverse folding models may exhibit different sequence characteristics compared to those explic-
itly designed for ligand binding affinity. Understanding how these differences influence docking outcomes
provides valuable insights into the interplay between protein sequence and structure in determining ligand
interactions, enriching the interpretation of our findings and advancing the understanding of protein-ligand
interactions. For a detailed comparison of the inputs and outputs of each model, refer to Table 2.

Table 2: Comparison of protein design models based on input and output characteristics
Model Input Output

Protein Protein Ligand Protein Protein Ligand
Sequence Structure Structure Sequence Structure Structure

CARP (Yang et al., 2023) ✓ × × ✓ × ×
ESMIF (Hsu et al., 2022) × ✓ × ✓ × ×
MIF (Yang et al., 2022) ✓ ✓ × ✓ × ×
MIF-ST (Yang et al., 2022) ✓ ✓ × ✓ × ×
ProteinMPNN (Dauparas et al., 2022) × ✓ × ✓ × ×
DPL (Nakata et al., 2023) ✓ × ✓ × ✓ ✓
ProteinReDiff (Ours) ✓ × ✓ ✓ ✓ ✓

4.2.6 Results and discussion

Our comprehensive evaluation of ProteinReDiff, as detailed in Table 3 and visually represented in Figure
6, across the metrics of ligand binding affinity, sequence diversity, and structure preservation, has yielded
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insightful findings. These evaluations provide a clear depiction of the model’s performance relative to estab-
lished baselines and within its variations.

For ProteinReDiff, we aimed to capture the diverse conformations of ligand-binding proteins, recognizing
that they can adopt multiple structural states. To assess these conformations, we employed alignment metrics
such as TM score, RMSD, and contact overlap (CO). In Figure 5, we presented several instances where the
contact overlap appeared to be maintained, yet the RMSD remained low. This discrepancy suggests that
while global alignment metrics like TM score and RMSD may not adequately capture the domain shift within
these complex ensembles, the preservation of local motifs, as indicated by contact overlap, remains crucial
in our framework. This underscores the importance of capturing both global and local structural features
for a comprehensive understanding of protein-ligand interactions.

6A73 6FTF 6E5S

CO RMSD
0.931 6.017

C0 RMSD
0.928 7.720

CO RMSD
0.910 15.381

Figure 5: Comparative visualizations of protein structures, each annotated with its corresponding PDB
ID. The figure includes a succinct table detailing Contact Overlap (CO) and Root Mean Square Devia-
tion (RMSD) metrics. Original protein structures are highlighted in green, and the redesigned versions by
ProteinReDiff are depicted in pink, illustrating the precise structural changes and enhancements achieved
through the redesign.

A pivotal observation from our study is ProteinReDiff’s unparalleled ability to enhance ligand binding affin-
ity, particularly pronounced at a 15% masking ratio. This configuration not only eclipses the performance of
Inverse Folding (IF) models and the original DPL framework, but also crucially exceeds the binding efficien-
cies of the original protein designs. By incorporating advanced computational modules from AlphaFold2,
ProteinReDiff has successfully represented the complex interplay between proteins and ligands, demonstrat-
ing its effectiveness in enhancing ligand-binding affinity beyond the capabilities of the original DPL model.
While other masking ratios within ProteinReDiff exhibit a range of effectiveness, lower ratios, though better
than baseline models, fall short of the peak performance observed at 15%. Conversely, higher ratios miss
the mark on achieving the necessary balance between introducing beneficial modifications and maintaining
functional precision, highlighting the critical nature of optimizing the masking ratio.

In analyzing sequence diversity and structure preservation metrics, we found an intricate balance that un-
derscores the complexity of protein redesign. The 15% masking ratio, our model’s sweet spot for enhancing
ligand binding affinity, also achieves outcomes equivalent to baseline methods in both sequence diversity
and structure preservation. This equilibrium suggests that while ProteinReDiff excels in optimizing ligand
interactions, a paramount objective in protein redesign, it does so without compromising on the diversity
of sequences explored or the structural integrity of the original proteins. Notably, extreme values in either
sequence diversity or structure preservation, which could be seen in other masking ratios, do not lead to
optimal ligand binding affinities. This finding highlights an inverse relationship between pushing the lim-
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its of diversity and preservation and achieving the primary goal of binding enhancement. Thus, the 15%
masking ratio not only stands out for its ability to significantly improve ligand binding affinity but also
for maintaining a balanced approach, ensuring that enhancements in functionality do not detract from the
protein’s structural and functional viability. This nuanced understanding of the interplay between these
critical metrics emphasizes the sophistication of ProteinReDiff’s approach to protein redesign, promising a
method that respects the delicate balance necessary for successful therapeutic development.

Moreover, the capability of ProteinReDiff to operate efficiently using merely protein sequences and ligand
SMILES as inputs, without the requirement for detailed 3D structural data, marks a significant leap in
computational protein design. This feature gains particular importance considering that the model not only
achieves structure preservation at levels competitive with Inverse Folding (IF) models, which rely heavily on
structural information for sequence optimization but also excels in enhancing ligand binding affinity. This
approach insightfully captures and applies the core principles of protein-ligand interactions and structural
fidelity directly from sequence data.

Table 3: Comparison of method performance across multiple metrics: Ligand binding affinity, sequence
diversity, and structure preservation. Ligand binding affinity (LBA) and structure preservation metrics are
reported as mean values derived from the dataset’s samples.

Category Method LBA
(kcal/mol) ↓

Sequence
diversity ↑

Structure preservation
TM Score ↑ RMSD (Å) ↓ CO ↑

Baseline

CARP -5.657 185.532 0.849 3.767 0.922
MIF -5.488 185.600 0.876 2.986 0.938
MIF-ST -5.596 185.584 0.871 3.026 0.936
ESMIF -5.555 187.512 0.837 4.000 0.915
ProteinMPNN -5.422 188.792 0.714 6.805 0.859
DPL -5.300 183.231 0.780 5.200 0.870
Reference cases -5.847 - - - -

ProteinReDiff
(Ours)

5% Masking -5.804 185.935 0.863 3.196 0.942
15% Masking -6.803 186.627 0.844 3.689 0.934
30% Masking -5.769 187.877 0.803 4.467 0.916
40% Masking -5.617 188.600 0.756 5.639 0.896
60% Masking -5.467 190.425 0.305 18.056 0.734
70% Masking -5.469 187.291 0.147 23.196 0.688

In the visualizations provided in Figure 7, the nuanced distinctions between the original and redesigned
proteins underscore the targeted precision of ProteinReDiff. This precision manifests in strategic adjustments
at the molecular level, specifically engineered to amplify ligand binding efficiency. Despite the profound
impact on binding affinity, these adjustments are executed with such finesse that structural deviations from
the original framework are minimal. This approach not only enhances the protein’s interaction with ligands
but also preserves its structural and functional integrity. The modifications, though seemingly minor, are the
result of a complex optimization process, balancing the need for improved functionality with the imperative
to maintain the protein’s overall architecture.

5 Conclusions

In conclusion, this study presents ProteinReDiff, a groundbreaking computational framework designed for the
advanced redesign of ligand-binding proteins. Leveraging state-of-the-art techniques inspired by Equivariant
Diffusion-Based Generative Models and the transformative insights of AlphaFold2, ProteinReDiff showcases
a profound ability to decipher and enhance complex protein-ligand interactions. Uniquely, our model excels
in optimizing ligand binding affinity based solely on the initial protein sequences and ligand SMILES strings,
circumventing the traditional reliance on comprehensive structural data. The experimental validations of
ProteinReDiff illuminate its remarkable capacity not only to elevate ligand binding affinity but also to
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Figure 6: Boxplot illustrating the distribution of ligand binding affinities, and structure preservation metrics
(TM Score and RMSD) across all methods evaluated, including baseline models and variations of Pro-
teinReDiff. Each boxplot showcases the median, quartiles, and outliers within the data, providing insight
into the variability and central tendency of each metric across the dataset’s samples.

maintain essential sequence diversity and structural integrity. These findings herald a significant leap forward
in protein-ligand complex modeling, suggesting a bright future for ProteinReDiff in various biotechnological
and pharmaceutical domains. The success of ProteinReDiff paves the way for its further development and
broad application, promising to revolutionize approaches to drug design and protein engineering.
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A Evaluating Protein-Ligand Complex Representation

Evaluation Methodology In the continuation of our study’s exploration of protein-ligand complex repre-
sentations, we extended the use of the PDBBind v2020 dataset, previously detailed in our training process,
to evaluate the effectiveness of embeddings generated by ProteinReDiff. Employing these embeddings as
input features, we trained a Gaussian Process (GP) model aimed at predicting ligand binding affinity. The
choice of a GP model, recognized for its probabilistic nature and adaptability to the nuanced, uncertain
dynamics of biological interactions, was pivotal in assessing how well our embeddings encapsulate predictive
information about protein-ligand interactions. The GP model used a Gaussian likelihood, which is appropri-
ate for regression tasks, along with a Radial Basis Function (RBF) kernel. We chose the RBF kernel due to
its effectiveness in modeling smooth, continuous variations, which is characteristic of protein-ligand binding
affinities. The training of the GP model focused on optimizing the parameters to ensure a robust fit to the
training data.

Table 4: Experimental results of ligand binding affinity prediction task on PDBBind v2020 dataset.

Approach RMSE ↓ MAE ↓ Pearson ↑ Spearman ↑
(− log Kd/Ki) (− log Kd/Ki)

Pafnucy (Stepniewska-Dziubinska et al., 2018) 1.435 1.144 0.635 0.587
OnionNet (Zheng et al., 2019) 1.403 1.103 0.648 0.602
IGN (Jiang et al., 2021) 1.404 1.116 0.662 0.638
SIGN (Li et al., 2021) 1.373 1.086 0.685 0.656
SMINA (Koes et al., 2013) 1.466 1.161 0.665 0.663
GNINA (McNutt et al., 2021) 1.740 1.413 0.495 0.494
dMaSIF (Sverrisson et al., 2021) 1.450 1.136 0.629 0.588
TankBind (Lu et al., 2022) 1.345 1.060 0.718 0.689
GraphDTA (Nguyen et al., 2020) 1.564 1.223 0.612 0.570
TransCPI (Chen et al., 2020) 1.493 1.201 0.604 0.551
MolTrans (Huang et al., 2020) 1.599 1.271 0.539 0.474
DrugBAN (Bai et al., 2023a) 1.480 1.159 0.657 0.612
DGraphDTA (Jiang et al., 2020) 1.493 1.201 0.604 0.551
WGNN-DTA (Bai et al., 2023b) 1.501 1.196 0.605 0.562
STAMP-DPI (Wang et al., 2022) 1.503 1.176 0.653 0.601
PSICHIC (Koh et al., 2023) 1.314 1.015 0.710 0.686

ProteinReDiff (Our) 1.443 1.168 0.721 0.639

Results and discussion The evaluation of our ProteinReDiff model on the PDBBind v2020 dataset
demonstrates competitive results in predicting ligand binding affinity using protein-ligand complex represen-
tations, as evidenced in Table 4. It’s important to note that this experiment aimed to verify the effectiveness
of our protein-ligand complex representation rather than to fine-tune the model for this specific task. Con-
sequently, while our results are promising and competitive with specialized studies focused solely on ligand
binding affinity prediction, the primary goal was to validate the representation’s capability within the protein
redesign framework of ProteinReDiff. This underscores the model’s utility in guiding the redesign process
effectively, affirming the robustness and applicability of our protein-ligand complex representation strategy.
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