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Abstract
Quantum machine learning (QML) is a rapidly expanding field that merges the principles of quantum computing with the
techniques of machine learning. One of the powerful mathematical frameworks in this domain is tensor networks. These
networks are used to approximate high-order tensors by contracting tensors with lower ranks. Initially developed for simu-
lating quantum systems, tensor networks have become integral to quantum computing and, by extension, to QML. Drawing
inspiration from these quantum methods, specifically the Matrix Product States (MPS), we apply them in a classical machine
learning setting. Their ability to efficiently represent and manipulate complex, high-dimensional data makes them effective in
a supervised learning framework. Here, we present an MPS model, in which the MPS functions as both a classifier and a gen-
erator. The dual functionality of this novel MPS model permits a strategy that enhances the traditional training of supervised
MPS models. This framework is inspired by generative adversarial networks and is geared towards generating more realistic
samples by reducing outliers. In addition, our contributions offer insights into the mechanics of tensor network methods for
generation tasks. Specifically, we discuss alternative embedding functions and a new sampling method from non-normalized
MPSs.

Keywords Tensor networks · MPS · GAN · Noise robustness · Outlier reduction · Quantum embeddings

1 Introduction

In recent years, quantum technologies have undergone rapid
and substantial advancements, holding the promise of revolu-
tionizing various scientific and industrial domains (Ramakr-
ishnan et al. 2023). These advancements are closely inter-
twined with quantummachine learning (QML) (Suzuki et al.
2024; Hdaib et al. 2024) and tensor networks (TNs) emerg-
ing as a vital mathematical tool. Central to the concept of
TNs is their ability to approximate high-dimensional tensors
via memory-efficient multi-dimensional arrays (Biamonte
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and Bergholm 2017). Originally devised as tools for the
approximation and simulation of quantum systems within
the domains of many-body quantum physics (Dalzell and
Brandão 2019) and condensed matter physics (Orús 2019),
TNs now encompass a diverse array of fields, including data
compression (Bengua et al. 2017), privacy (Pozas-Kerstjens
et al. 2023), andhigh-dimensional PDEs (Weinan et al. 2021).
Of particular interest is their application in machine learning
for both supervised (Miles and Schwab 2016) and unsuper-
vised tasks (Han et al. 2018; Cheng et al. 2021; Vieijra et al.
2022).

Prominent tensor networks in contemporary research
include Projected Entangled Pair States (PEPS) (Vieijra et al.
2022),Matrix Product State (MPS) (Miles and Schwab 2016;
Han et al. 2018), Locally Purified State (LPS) (Glasser et al.
2019), Multiscale Entanglement Renormalization Ansatz
(MERA) (Vidal 2007), tree tensor networks (TTNs) (Cheng
et al. 2019), and isometric tensor networks (Zaletel and Poll-
mann 2020). Of note, MPS, characterized by rank-3 tensors
and sequential one-dimensional contractions, has garnered
considerable attention due to its relative simplicity and ver-
satility (Orús 2014).
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MPSs were originally used to describe and simulate the
quantum states of one-dimensional systems since they can
faithfully represent quantum states featuring limited entan-
glement (Perez-Garcia et al. 2006; Verstraete and Cirac
2006; Hastings 2007). Such systems are notoriously chal-
lenging owing to the curse of dimensionality, which arises
from the exponential growth of Hilbert spaces in such
contexts (Bridgeman and Chubb 2017). Since then, MPSs
have been adapted to address a wide spectrum of datasets,
including two-dimensional systems (Bruognolo et al. 2017),
rendering them suitable for image processing in machine
learning applications. This has led to their successful appli-
cation in tasks such as image classification using datasets like
MNIST (LeCun et al. 2010) and Fashion MNIST (Xiao et al.
2017). While early training methods for MPSs in machine
learning relied on density matrix renormalization group
(DMRG) techniques (Miles and Schwab 2016), contem-
porary machine learning libraries provide more accessible
approaches (Efthymiou et al. 2019) based on automatic dif-
ferentiation (Liao et al. 2019; Francuz et al. 2023).

MPS models are typically employed for conventional
classification (Miles and Schwab 2016) or as generators in
unsupervised contexts (Han et al. 2018). However, the dis-
tinctive structure of MPS, combined with the characteristics
of the embedding functions employed in this work, allows
the use of a single model for both classification and gen-
eration tasks (Bishop 2006; Flouris and Konukoglu 2023).
This enables the use of a GAN-style method to improve its
generative performance without affecting its classification
accuracy.

We propose a novel approach for training supervised
MPSs in a GAN-style setting. The MPS serves as both a
classifier and a generator, resulting in improved generative
performance and a reduction in the number of outliers gen-
erated, while maintaining robust classification accuracy. To
this end, we present several contributions that allow the real-
ization of such a model while providing insights into the
mechanics of tensor network methods for generation. Thus,
we are broadening the utility of tensor network methods for
machine learning tasks.

Thefirst part of thiswork establishes the theoretical frame-
work underlying MPS models, as described in Sects. 2.1 and
2.2. First, Matrix Product States are introduced, with a dis-
cussion of their canonical forms and why these forms are not
strictly required in machine learning applications. Second,
this section provides an overview of embedding functions,
which are essential tools for transforming input data into
representations compatiblewithMPS structures. Third, alter-
native embedding functions are explored, and techniques
that simplify the computation of marginalized probability
density functions (PDFs) over single variables, p(xi ), while

avoiding the evaluation of high-dimensional integrals, are
introduced. Fourth, an exact sampling procedure for non-
normalized MPS is discussed, which removes the need for
iterative sampling methods like Markov chain Monte Carlo
(MCMC).

The second part of this work focuses on practical appli-
cations of MPS models in machine learning, as outlined
in Sect. 2.3. The dual capability of MPS for simultaneous
classification and generation tasks is emphasized, with par-
ticular attention to the GAN-style framework that serves as
the foundation of this study. Key implementation challenges,
such asmanaging exploding and vanishing values during ten-
sor contractions, are addressed through specific techniques
designed to stabilize training. Additionally, the use of MPS
as a generator is examined, highlighting its ability to pro-
vide a latent space representation of the input data, which
enables meaningful insights into its structure. The impact
of perturbations within the embedded space on classification
performance is also analyzed, with comparisons made across
different embedding functions.

Finally, Sect. 3 presents a detailed evaluation of our
approach, including experimental results that validate the
performance of GAN-style training and analyze the proper-
ties of the embedding functions. Section4 then summarizes
the findings and discusses potential directions for future
research.

2 Methods

2.1 Matrix product state and embedding functions

A Matrix Product State can be formally defined as a col-
lection of n − 2 rank-3 tensors {Aαi−1,αi ,di

i }i∈{2,...n−1} and

two rank-2 tensors {Aα1,d1
1 , Aαn−1,dn

n }, called sites, that can
be contracted sequentially, resulting in the decomposition of
a rank-n tensor W , as described in the following equation:

Wd1,d2,...,dn =
∑

{αi }
Aα1,d1
1 Aα1α2,d2

2 · · · Aα j−1α j ,d j
j · · · AαN−1,dN

N . (1)

The physical dimension d corresponds to the dimension of
indices di , and its role will be discussed in Sect. 2.1.2. The
bond indices αi determine the expressivity of the MPS, with
the bond dimension D representing their maximum allowed
size. Larger D enables modeling of more complex correla-
tions but increases computational cost, see Appendix.

A visual representation of anMPS decomposition in Eq. 1
is presented in Fig. 1, using Penrose graphical notation for
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Fig. 1 Penrose diagram of the MPS decomposition in Eq. 1. Horizontal lines, bond indices αi , connect adjacent tensors Ai , while vertical lines,
physical indices d j , represent input features via φ(xi ). Boundary tensors A1, An are rank-2, two open indices, and internal tensors are rank-3 three
open indices

tensors (Penrose 1971). Each tensor Ai , represented by the
blue circles in Fig. 1, has horizontal indices αi , whose size
corresponds to the bond dimension D, and vertical indices
di , whose size corresponds to the physical dimension d. The
boundary tensors A1 and An are rank-2, while intermediate
tensors A2, . . . , An are rank-3.

Throughout this work, we use different Penrose tensor
network representations of the MPS depending on the con-
text. In some diagrams, such as Fig. 1, we explicitly show
the tensors Ai as separate entities, highlighting the individual
components of theMPS.However, in later TNdiagrams, such
as in Eq. 2, we omit the explicit labeling of the sites Ai for
clarity, as the focus shifts toward the overall network struc-
ture rather than the individual tensors. For completeness, a
detailed description of all equations involving Penrose tensor
notation is provided in Appendix, where each expression is
explicitly rewritten in standard indexed notation.

Additionally, the TN representation changes when the
MPS is contracted with an input. In the initial formulation,
vertical edges represent the physical indices d j , which corre-
spond to the input space.These are referred to as open indices,
as they are not initially contracted with other tensors. When
the MPS is contracted with the embedded input �(x), these
vertical edges become connected to the one-dimensional ten-
sor �(x), effectively integrating the input into the network.

An MPS can be used to approximate any rank-n tensor
W using a DMRG-based method (Schollwöck 2011; White
1992, 1993) to find its optimal decomposition. In quantum
physics, MPS approximates the wavefunction ψ(x) of a sys-
tem, allowing the calculation of the probability density as
the squared magnitude: P(x) = |ψ(x)|2. Similarly, in our
machine learning framework, the MPS is used to approxi-
mate the PDF of the data:

p(x1, . . . , xn) =
⎡

⎣
φ(x1) φ(x2)

. . .

φ(xn−1) φ(xn)

⎤

⎦
2

=

φ(x1)

φ(x1)

φ(x2)

φ(x2)

. . .

. . .

. . .
φ(xn−1)

φ(xn−1)

φ(xn)

φ(xn)
. (2)

The use of the squared value |W (x)|2 aligns with the
generative interpretation of MPS, inspired by its origins in
quantummechanics, where probabilities are derived from the
squared magnitudes of wavefunctions (Miles and Schwab
2016). This formulation ensures that the MPS framework
remains both expressive and interpretable for probabilistic
modeling.

We employ an embedding function, �(x), also referred
to as a feature map or feature embedding in the tensor
network literature (Žunkovič and Ilievski 2024). The embed-
ding function transforms input vectors of length N , with
support supp(�) = [0, 1]N , into a format suitable for
MPS theory. Since an MPS operates linearly on its input,
through a sequence of tensor contractions and matrix multi-
plications, the embedding function introduces the necessary
non-linearity into the system.

The embedding function is defined as a tensor contraction
of local feature maps φ(xi ) ∈ R

d , which can alternatively be
referred to as local embedding functions or local embedding
features. Specifically:

�(x) = φ(x1) ⊗ · · · ⊗ φ(xn), (3)

and the specific forms of the featuremaps are elaborated upon
in Sect. 2.1.2, where the necessary conditions are explained.

There are three crucial hyperparameters used to define the
structure of an MPS. The first one is the number of sites, cor-
responding to the number of bodies in the quantum physics
scenario, and is determined by the input size in our model
settings and will be denoted by N . The second is the bond
dimension, D, which governs the size of indices connect-
ing two different sites. The third parameter is the physical
dimension, d, and is equal to the dimension of the vector
φ(xi ), itself determined by our choice of embedding func-
tions. Our implementation of an MPS is stored in a single
tensor with dimensions (N , D, D, d). It should be noted that
the boundary sites are also included in the tensor, although
theypossess fewer indices compared to the intermediate sites.
This setup is called open boundary condition, used for non-
periodic quantum systems (Perez-Garcia et al. 2006). For
periodic quantum systems, where translational invariance is
present, a different approach is employed where the first and
last sites are rank-3 tensors connected to each other. How-
ever, this approach is usually not employed in the case of
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MPS applications in machine learning scenarios (Miles and
Schwab 2016; Han et al. 2018).

2.1.1 Canonical form of an MPS

It is evident that an MPS does not possess a unique form.
In fact, if we introduce any sequence of invertible matrices
{Xi }i∈{1,...N−1} of size d×d between any two sites alongwith
their inverses, and setting X0 = XN = Id , we can transform
the tensors that comprise the MPS as follows:

Bi = X−1
i−1Ai Xi . (4)

This implies, ignoring the nonrelevant indices,

W =
∑

{α}
Aα1
1 Aα1α2

2 · · · AαN−1
N = (5)

=
∑

{α}
Aα1
1 X1X

−1
1 Aα1α2

2 X2 · · · X−1
n−1A

αN−1
N = (6)

=
∑

{α}
Bα1
1 Bα1α2

2 · · · Bα jα j+1
j · · · BαN−1

N , (7)

proving the non-uniqueness of the representation of anMPS.
These degrees of freedom are termed gauge degrees of free-
dom. The non-unique representation of MPSs is exploitable
and can help devise better privacy-preserving machine learn-
ing algorithms (Pozas-Kerstjens 2023). Canonical forms are
also crucial for an efficient time-dependent variational prin-
ciple for MPS (Haegeman et al. 2016).

To establish a canonical form for the MPS, various meth-
ods can be employed. One method uses DMRG-based and
singular value decomposition techniques (Schollwöck 2011).
Another alternative (Mueller Group 2020) employs the QR
decomposition of the matrices that compose the MPS to
achieve an orthogonal decomposition of the matrices. Those
canonical forms of MPSs are needed to describe a so-called
sweeping algorithm used for optimization (Chan et al. 2016).
However, canonical forms can often be difficult to obtain for
arbitrary MPSs (Oseledets 2011), since some of the calcula-
tions needed (for example, calculating the optimal rank d) are
NP-hard (Håstad 1989) and/or an ill-posed problem (DeSilva
and Lim 2008). The sweeping algorithm and its necessary
calculation of a canonical formwill not be required as we can
effectively leverage a more accessible approach via PyTorch
automatic differentiation (Paszke et al. 2017), discussed in
Sect. 2.2.1. Specifically, we optimize the parameters of the
model by minimizing the cross-entropy loss function, an
approach commonly used for tensor networks applied in
machine learning scenarios (Efthymiou et al. 2019).

2.1.2 Embedding function

If the objective is data classification, the embedding func-
tion should primarily introduce non-linearity and transform
the data such that our MPS can effectively achieve linear
separation in the high-dimensional space where the data is
embedded. Conversely, if the model is being used for data
sampling, there is a greater emphasis on the selection of
the embedding function. To employ the methodology out-
lined in Sect. 2.2.2 and perform simultaneous classification
and generation tasks, an essential prerequisite for the local
embedding function φ(xi ) ∈ R

d is as follows:

∫

xi∈X
φ j (xi )φk(xi )dxi = δ j,k, (8)

where X = [0, 1], assumed to be the support of the input data,
with limited exceptions noted herein. Equation8 allows for
a greatly simplified computation of the marginal probability
over single variables, avoiding high-dimensional integrals as
shown in Sect. 2.1.3. In certain cases, the embedding func-
tions may also be defined with

∫

xi∈X
φ j (xi )φk(xi )dxi = c · δ j,k, c > 0. (9)

Such a condition yields a non-normalized PDF. Neverthe-
less, we demonstrate that our method can accommodate any
resulting inconsistencies (Sects. 2.2.2, 2.2.3).

The marginal probability over a single variable will have
the form of

P(xi ) = φ(xi ) · Vi · φ(xi ), (10)

with Vi being the symmetric and semi-positive definite
reduced density matrix (Sect. 2.1.3). This implies that the
PDF and its complexity will depend on our choice of φ(xi )
and the physical dimension of the model.

In the case of handling simple low-frequency data, such as
high-contrast or binary images, a common embedding func-
tion (Cheng et al. 2021; Miles and Schwab 2016) is given by
the following:

φ(xi ) = [sin(π
2
xi ), cos(

π

2
xi )]. (11)

This adheres to the constraint specified in Eq. 8 over the
interval [−1, 1]. However, this function exhibits a limitation
in that it possesses a low physical dimension of only 2. Con-
sequently, for certain datasets, it may struggle to introduce
the requisite complexity, thereby potentially impeding the
model’s performance.
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A generalized replacement, outlined inMiles and Schwab
(2016), involves the use of the embedding function:

φ j (xi ) =
√(

d − 1

j − 1

)
cos(xi )

d− j sin(xi )
j . (12)

This function belongs to the class of functions referred to
as spin coherent states (Miles and Schwab 2016). However,
Eq. 12 does not satisfy the condition specified in Eq. 8 and is
therefore not a candidate embedding function for generation.

An alternative proposal is the Fourier embedding
(Žunkovič 2023):

φ j (xi ) = cos( jπxi ), for j ∈ {0, ...d − 1}, (13)

for Supp(�) = [0, 1]n . This feature map satisfies Eq. 8
and can model more general PDFs, due to the fact that we
can use arbitrarily high values of d. In this case, the PDF over
a single variable will be modeled by the following equation:

d−1∑

j=0

d−1∑

k=0

a jkcos(
π

2
j xi )cos(

π

2
kxi ). (14)

Our alternative proposal for an embedding function for
high-dimensional physical spaces is to leverage polynomials,
and due to Eq. 8, a natural choice is the use of Legendre poly-
nomials. These are a set of polynomials {P1(xi ), P2(xi ), ...}
such that Pj (xi ) is a polynomial of degree j and any 2 poly-
nomials satisfy Eq. 8, obtained recursively by

P0(xi ) = 1, (15)

P1(xi ) = xi , (16)

Pj (xi ) = (2 j − 1)xi Pj−1 − ( j − 1)Pn−2(xi )

j
, ∀ j ≥ 2.

(17)

Unliked Fourier embeddings, Supp(P) = [−1, 1]N
instead of the previous interval [0, 1]N , so P will require
rescaling in a pre-processing step. This embedding leads to
a PDF over a single variable which is modelled by a non-
negative polynomial of degree d2 over [−1, 1].

Fourier and Legendre embeddings can be used with arbi-
trarily large physical dimensions, thus suitable for modelling
multi-modal probability distribution functions during the
generative phase ofSect. 2.2.2. Thegenerative results of these
embedding functions are discussed in Sect. 3.

2.1.3 Computing the reduced density matrix

Given any local embedding function φ(xi ), we define the
following matrix:

B :=
∫

φ(xi )

φ(xi )
dxi . (18)

This is in contrast to Ferris and Vidal (2012), where the
reduced density matrix is described by unitary tensor net-
works. Recalling that the PDF is approximated by an MPS
by Eq. 2, the marginalized PDF can be simplified over a
single variable p(xi ) without necessitating the evaluation of
multi-dimensional integrals:

p(xi ) =

∫
. . .

∫
φ(x1)

φ(x1)

. . .

. . .

. . .
φ(xn)

φ(xn)
dx1, . . . d̂xi , . . . , dxn =

B

. . .

. . .

. . .
φ(xi )

φ(xi )

. . .

. . .

. . . B .

(19)

We assume that the selection of φ(x) satisfies Eq. 8 such
that B = Id , leading to

p(xi ) =
. . .

. . .

. . .
φ(xi )

φ(xi )

. . .

. . .

. . . . (20)

The marginalized distribution over a single variable is
given by Eq. 10.

In the casewherewewant to calculate a conditional proba-
bility given some other variables’ value, we can substitute the
value of the conditioning variables. This conditional proba-
bility density over a single variable is given by the following:

p(xi |{x j } j∈I) = φ(xi ) · Vi,{x j } j∈I · φ(xi ). (21)

In order to compute the density matrix Vi,{x j } j∈I , for {x j | j ∈
I}, we perform a contraction operation involving two copies
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of the MPS. At each site, there are three possible scenarios
for the tensor contraction in the physical dimension:

1) For j = i , we leave these two indices open.
2) For j ∈ I, we compute the embedding φ(x j ) and con-

tract the physical indices at site j of the two copies of the
MPS with φ(x j ).

3) For j /∈ I, we directly contract the open indices of the
two copies of the MPS, as described visually in Eq. 20.

The outcome of this function is a semi-positive definite
symmetric matrix, a real matrix M is semi-positive definite
if and only if there exists a matrix B such that M = BᵀB.
Without loss of generality and supposing I = {1, · · · , i−1},
B is defined as

Bi :=
A1

φ(x1)

. . . Ai−1

φ(xi−1)

Ai Ai+1 . . . An

.

(22)

After reformatting Bdi ,di+1,...dn
i into matrix form B ′

i of
shape dn−i−1 × d, where we let the first index of the
matrix correspond to the physical index of Ai and we
regroup the remaining physical indices of {Ai+1, ..., An}
as the second index of the matrix, the tensor contrac-
tion

∑
ji+1,..., jn B j1,..., ji−1 , Bj1,..., ji−1 will correspond to the

matrix multiplication B ′ᵀ
i B ′

i . We can rewrite Vi = B ′
i B

′ᵀ
i ,

proving its semi-positive definiteness.
Throughout this section, we did not assume to have a

normalized MPS since that will not be the case during the
training procedure. This can cause the computed PDFs to be
unnormalized, but this will not affect our methods of classi-
fication and sampling, as we will see later in Sect. 2.2.2.

2.2 Classification and generation

2.2.1 Classification with MPS

In this section, we will discuss two methods that are com-
monly employed to performclassification usingMPSs (Miles
and Schwab 2016). The first approach involves creating an
ensemble ofMPSs,where eachMPScorresponds to a distinct
label class within the data. This ensemble model generates
an output vector of length C , where each component of the
vector arises from the contraction of a different MPS with
the input. In Fig. 2, we show these contraction steps for a
single component of the ensemble.

The second approach utilizes a single modified MPS,
where we introduce an additional tensor placed in the mid-
dle of the tensor network. This tensor, with dimensions
(C, D, D), plays a crucial role in producing the desired
vector of length C . The network structure of this approach is

Fig. 2 This illustrates an example of how a singleMPS of the ensemble,
corresponding to the class C , and input are contracted in the forward
pass, considering the case N = 4. The red lines indicate the indices that
are being contracted in each step.By squaring the value of thefinal scalar
yC , we get a non-normalized probability, i.e., p(c = i |x) = 1

Z · y2i , with
Z = ∑

c y
2
c being a normalization constant depending on the outputs

of the ensemble of MPSs

described by the following equation:

Wd1,d2,...,dn
c =

∑

α

Aα1d1
1 Aα1α2d2

2 · · ·Cαn/2αn/2+1
c · · · AαN−1dN

N , (23)

and is also illustrated graphically in Fig. 3. The contraction of
the model during the forward pass with this additional tensor
is similar to the ones of the single MPS and can be visualized
in Fig. 4.

An ensemble of MPSs is fundamentally equivalent to the
singleMPSwith the additional central tensors. Eachmatrix in
the singleMPSmust be block-diagonal with bond dimension
d ∗C and blocks of size d, where each of those blocks corre-
sponds to a different MPS from the ensemble. The primary
advantage of using a single model with an additional tensor
is the capability to store and compute everything with just
one MPS. This contrasts with the ensemble approach, which
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Fig. 3 This illustrates the MPS
architecture used for
classification in the case of an
additional central tensor. The
blue tensors constitute the MPS,
while the red component
represents the additional tensor
that enables multiple label
classes for classification

requires multiple MPSs. For instance, the MPS with a cen-
tral tensor can be effective for low-dimensional inputs with
a low bond dimension. However, in cases involving higher-
dimensional data with a higher bond dimension, using an
ensemble of MPSs can lead to an easier path to optimizing
the MPS model, which is desirable in our case instead of
the single model with a central tensor used in multiple other
studies (Cheng et al. 2021; Miles and Schwab 2016).

In both scenarios, the final result after contraction is a
vector of length C , where the squared entries of C are pro-
portional to the probability for the input to belong to each
given class, i.e., p(c = i |x) = 1

Z · y2i , with Z = ∑
c y

2
c

being a normalization constant and y being the output of the
MPSs.

Fig. 4 This illustrates an example of howMPSand inputs are contracted
in the forward pass of the classification, considering the case N = 4.
The red lines indicate the indices that are being contracted in each step

In contrast to the typical classification settings, our
model’s output does not conform to the equation

∑C
i=1 Yi =

1, where Yi is the probability of the class i . This is because
our model does not directly compute p(c = i |x). Instead,
our classification is determined (in the case of an ensemble
ofMPSs) by comparingwhich of theMPSs results in a higher
squared value after the contraction with the input. We avoid
the commonly used softmax activation function because we
aim to generate new samples, and the usual probabilistic con-
straint set using a softmax activation function would alter the
capabilities of the MPS for generating purposes, described
later in Sect. 2.2.2.

We adopt the following initialization scheme for our
Matrix Product State (MPS):

mps[i, :, :, j] = ID√
d

, ∀ j ∈ {0, . . . , d−1}, i ∈ {1, . . . , N }.
(24)

This ensures that each sequential operation on the pre-
ceding matrix, i.e., the multiplication of each matrix with
the vectors R and L outlined in Algorithm 1, behaves as an
identity matrix.

Algorithm 1MPS Classification
1: procedure classification(mps, C, input)
2: mpsnlr ← ∑

n,e mpsnlreinputne
3: L ← mps[0, 0]
4: R ← mps[−1, :, 0]
5: for i in range(1, N//2) do
6: L ← ∑

r Lrmps[i]rl
7: R ← ∑

l Rlmps[−i]rl
8: end for
9: y ← ∑

r ,l LrCcrl Rl

10: return y2

11: end procedure

In Algorithm 1, we use the following index conventions:

• n is the site index, referring to a specific site in the MPS
representation. It corresponds to the blue circles in the
tensor network diagram and has size N , which is equal
to the input dimension.

• l and r are bond indices that connect different sites. These
correspond to the horizontal lines in the TN diagram,
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representing the outgoing bonds between adjacent sites.
They have size D, which is the bond dimension.

• e is the embedding index, which connects each site to
the embedded input φ(x). This index encodes the data
fed into the MPS and has size d, which is the physical
dimension.

• c is the class index. A separate MPS is assigned to each
class c, as represented in the final summation.

These index definitions clarify how the tensor contractions
are performed during the forward pass in the MPS classifi-
cation procedure, using the Einstein summation notation.

Althoughpast research (Hrinchuket al. 2019) has explored
non-trivial initialization configurations, we opt for this sim-
pler and more intuitive approach which encourages stability
during training. The rank-3 tensors present at each network
site assume the form As = Id√

d
+ Âs , where only Âs is train-

able. Each entry of Âs is initialized fromanormal distribution
Âs ∼ N (0, σ 2), where σ requires manual adjustment. The
introduction of noise serves to disrupt symmetries and pre-
vent convergence to local minima during the initial stages.
Addingweight decay to themodel parameterswill only affect
the matrices { Âs}s and will have no effect on the initial set-
tings except to remove the noise, leading to a more stable
system during training while using weight decay.

During training, weminimize the cross-entropy loss in our
classification settings with the ensemble of MPSs, which is
equivalent to minimizing the Kullback–Leibler (KL) diver-
gence between a single labelmodel and the data coming from
that class, as described in Liu et al. (2023).

With this method, we avoid using the DMRG-based
method during the optimization of the MPS in Miles and
Schwab (2016). Our approach carries the drawback that
it could result in a non-normalized MPS; however, our
method addresses this and effectively samples fromsuchnon-
normalized distributions.

2.2.2 Generation with MPS

While previous works have employed Metropolis-Hastings
and similarMarkov chainMonteCarlo (MCMC)methods for
sampling from MPS models (Han et al. 2018; Bonnevie and
Schmidt 2021; Ferris 2015), we perform an exact sampling
approach. An iterative method is used to sample coordinate
after coordinate from a one-dimensional non-normalized
PDF. A noise vector ν is used as the input of our genera-
tive model, where each component νi of the noise vector will
correspond to the quantile of our sample x̂i , i.e.,

p(xi ≤ x̂i | x1, . . . , xi−1) = νi . (25)

This approach eliminates the need for MCMC methods,
which rely on constructing a Markov chain to sample from

complex distributions. Traditional MCMC algorithms, such
as Metropolis-Hastings, require long iterative stochastic
sampling processes to ensure convergence and representa-
tive sampling. In contrast, our method is deterministic and
directly samples from the desired distribution. Without rely-
ing on the random fluctuations of MCMC, this approach
avoids issues like autocorrelation, burn-in periods, and con-
vergence diagnostics.

Furthermore, the exact nature of our sampling approach
prevents biases that arise in MCMC due to its random walk
behavior, which can lead to inefficiencies and inaccuracies.
By generating samples directly, our method provides a more
efficient and reliable alternative for sampling from the MPS.

Once the ensemble of MPSs has been trained for classifi-
cation, its unique structure allows us to generate new samples
from it. This is facilitated by the fact that any probability dis-
tribution over multiple variables can be expressed as follows,
using the chain rule for probabilities:

p(x1, x2, ..., xn) =
n∏

i=1

p(xi |{x j } j<i ), (26)

and due to the structure of the tensor network and the
choice of embedding function, the conditional distributions
p(xi |{x j } j<i ) can be computed using the reduced density
matrix. The sampling procedure is outlined in the following
pseudocode for Algorithm 2:

Algorithm 2MPS Sampling
1: procedure sample(mps, ν)
2: samples ← zeros(N )

3: for i in range(N ) do
4: V = density_matrix(i,mps, samples)
5: pdf(x) = φ(x) · V · φ(x)
6: cdf(x) = ∫ x

−1 pdf(y) dy

7: samples[i] = cdf−1(ν[i])
8: end for
9: return samples
10: end procedure

Figure 5 shows the reduced density matrix produced at
step i by Algorithm 2.

The challenge of the non-normalized MPSs is addressed
by normalizing the cumulative distribution functions before
sampling from them. An alternative approach could be to
calculate the norm of the MPS before each sampling step
and divide each site by the n-th root of the norm, which could
be computed using the contractions visualized in Fig. 6, but
would require more contraction calculations during training
and therefore be less efficient.

The computation of the cumulative probability density and
sampling phase must be differentiable in order to apply the
methods described in Sect. 2.3 to facilitate gradient descent
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Fig. 5 Visual description of the
tensor contractions that produce
the matrix Vi,{x j } j<i , used to
calculate the conditional
probability p(xi |x1, ..., xi−1) =
φ(xi ) · Vi,{x j } j<i · φ(xi ) during
the i-th iteration of our sampling
algorithm

during training. If we denote the cumulative distribution
function as,

fVi,{x j } j<i
(x) :=

∫ x

−1
φ(y) · Vi,{x j } j<i · φ(y) dy, (27)

we need to compute:

sample(ν, Vi,{x j } j<i ) = f −1
Vi,{x j } j<i

(ν) (28)

to obtain a sample given the quantile ν and the reduced den-
sity matrix Vi,{x j } j<i .

Depending on the choice of φ(x), there may not exist an
explicit solution for f −1(x). Hence, the integral is approx-
imated as a finite sum by dividing the input’s support into
1000 bins:

I (xk) =
∫ xk

−1
φ(x) · V · φ(x) dx =

k∑

i=0

φ(xi ) · V · φ(xi )
x, (29)

Fig. 6 How to compute the norm of an MPS, using Penrose graphical
notation

where the bin width is denoted as
x = 1
1000 .We define a set

of points as xk = k
x for k = 0, 1, 2, . . . , 1000 in the case
of an embedding function with Supp(�) = [0, 1]. Then, for
a given ν within the cumulative density function range, we
can approximate the inverse function as follows, opting for
linear interpolation between the two closest points:

f −1(ν) ≈ xk + ν − I (xk)

I (xk+1) − I (xk)
· 
x, (30)

where xk ≤ f −1(ν) ≤ xk+1. Using this approximation, we
can effectively compute the inverse function of the CDF and
use it for sampling in Algorithm 2. We generate the vec-
tor entries iteratively by sampling points and calculating the
conditional reduced density matrix for the next coordinate.
For further details on the impact of binning resolution on
accuracy and computational efficiency, refer to Appendix.

2.2.3 Avoiding vanishing/exploding values
in the contractions

If we want to initialize our MPS as a stable system, because
of the sequential nature of the MPS contraction phase, each
of the contractions must be identity operators on the previous
tensor; if we initialize each site of theMPS as stated in Eq. 24,
the embedding function must then follow the property:

∀x :
∑

k

emb(x)k = √
d. (31)

However, this condition, in addition to Eq. 8, would limit
the choice for the embedding functions excluding those
described in Sect. 2.1.2, so we decided to opt for an alter-
native approach.

Given that our model can be represented as a linear model,
with the exception of the embedding phase of our data, any
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subsequent scalar multiplication will not have any influence
on the classification and final sampling outcomes. This holds
true both during the forward pass of the MPS, as well as
in instances involving contraction for the derivation of the
density matrix Vi,{x j } j<i .

To solve the problemof exploding and vanishing values, at
each site of theMPS,we divide the vectors of the contraction,
i.e., the variables denoted by L and R in Algorithm 1, by
the value of their largest component after each step. In this
way, we will always obtain vectors with a norm contained in
the interval [1,√d], avoiding both vanishing and exploding
values.

A similar technique is implemented during the computa-
tion of the reduced density matrix. Specifically, the matrix is
divided by the absolute value of its maximum entry, since the
non-normalized PDF defined by Eq. 10 will not be affected
by any positive scalar multiplication, allowing us to use the
sampling technique in Sect. 2.2.2 even after rescaling the
matrices.

2.3 MPS for simultaneous classification and
generation

As discussed in Sect. 2.2.2, an MPS trained for classification
can be used as a generator to emulate the data that was fed
during training. However, this procedure would produce a
lot of outliers that does not accurately reproduce the origi-
nal data (Žunkovič 2023). A solution proposed in Žunkovič
(2023) is to accept generated samples only if the MPS itself
outputs a high enough probability that the sample is in the
correct class; otherwise, if the output is lower than a pre-
determined threshold, the sample is rejected. This removes
most outliers in a post-processing step but relies on a manu-
ally tuned threshold.

We opt to address this challenge directly from the network
architecture to diminish the generation of outliers by using
the MPS as a generator in a GAN-style setting and letting it
compete with a discriminator. There are few regularization
techniques forMPSmodels, for example, weight decay tech-
niques are often used Miles and Schwab (2016), but dropout
can not be used easily as in fully connected networks. This
GAN-style setting can also be seen as a regularizationmethod
of the MPS training. As seen in Sect. 3, our GAN-style train-
ing produces more realistic samples, without changing the
classification accuracy of the model. Here is an overview of
our, MPS-GAN, training process:

1) Pre-training theMPS: Before the adversarial training, the
MPS can be pre-trained using a classification-oriented
approach to obtain realistic samples. We empirically
observe that this step helps the MPS learn the under-
lying patterns. Note that it is an intensive training, up to
acceptable classification accuracy for the model, since

we will use the score of this pre-trained model as a base-
line for the adversarial-trained model. This is necessary
for the classification accuracy of the final generator to be
superior to the pretrained MPS.

2) Pre-training the discriminator: The discriminator, which
can be a fully connected neural network or a specialized
network (such as convolutional neural networks in the
case of images), is pre-trained on samples generated by
the previously trained MPS and the original dataset.

3) Adversarial training: The adversarial training iteratively
optimizes both the MPS generator and the discriminator.

• Generator optimization: Generate samples using the
MPS, and then optimize it to minimize the dis-
criminator’s ability to distinguish between real and
generated samples.

• Discriminator optimization: The discriminator is
optimized using the standard GAN objective, where
it maximizes the probability of assigning the correct
label to real samples and the incorrect label to gener-
ated samples.

4) Classification accuracy check: the classification accuracy
is checked every epoch to ensure it remains above the ini-
tial classification accuracy threshold. If ever it falls below
this threshold, the model is retrained in the classical clas-
sification setting. This step ensures that the generator
maintains its classification capabilities.

An ensemble of discriminators for the different labels is
used to reduce the number of outliers among the sample
points, while also helping to distinguish between classes. It
also prevents samples from being wrongly identified as real
samples if they are unlabeled and assigned to the false class.

3 Results and discussion

The results section will primarily concentrate on the gener-
ative performance of our method, as our primary objective
is to enhance the network’s generative capabilities. During
the following experiments, we will search for the best MPS
model, according to its classification accuracy,

We demonstrate the generation capabilities of the GAN-
style MPS and present an analysis of the latent space. The
parameters are set as D ∈ {4, 10, 30}, d ∈ {4, 10, 30}, with
an initial standard deviation ofσ = 0.1 and an initial learning
rate of lr = 0.01. Additionally, learning rate decay and early
stopping procedures are applied.

The bond dimension D plays a crucial role in determining
the expressive power of MPS models, as it controls both the
number of parameters and the ability to model correlations
between variables (Navascues and Vertesi 2018). To assess
the impact of D on classification performance, an experiment
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Table 1 Comparison of FID-like score (lower is better) on generated
samples for Fourier and Legendre embedding functions, pre- and post-
GAN-style training

Datasets
Methods 2D Spiral 2 Moon Iris

Legendre, pre-GAN 4.63e−3 1.20e−2 6.36e−2

Fourier, pre-GAN 3.25e−3 8.79e−4 1.02e−1

Legendre, post-GAN 4.57e−3 5.93e−3 4.04e−2

Fourier, post-GAN 1.52e−3 3.02e−4 1.96e−2

was conducted in which the model was trained across a
range of bond dimensions. The results, detailed in Appendix,
indicate that beyond a threshold of D ≈ 4, classification
accuracy does not significantly improve. This suggests that,
for low-dimensional datasets, large bond dimensions are not
necessary for capturing meaningful correlations. Higher val-
ues of D help model long-range dependencies, especially in
images (Han et al. 2018), but these are absent in our low-
dimensional data.

3.1 GAN-style training

In this section, the generative performances of the MPS
models are analyzed pre- and post-GAN-style training,
with comparisons between Fourier and Legendre embedding
functions. The results are based on simulated datasets, the
dual 2D Spiral, the 2 Moon, and the Iris datasets, and more
details of the simulated data can be found in the Appendix.

An FID-like score is used to compare the generated sam-
ples before and after training theMPS in aGAN-style setting.
For a training dataset x1, . . . , xn and a set of generated sam-
ples x (g)

1 , . . . , x (g)
m , we denote the respective means as μ̂ and

μ̂(g), and the covariance matrices as �̂ and �̂(g). The FID-
like metric is defined as

‖μ̂ − μ̂(g)‖2 + Tr(�̂ + �̂(g) − 2(�̂�̂(g))1/2). (32)

This metric quantifies the dissimilarity between the real and
generated data based on theirmeans and covariancematrices,
where a lower value indicates greater similarity between the
two datasets.

The results for both Legendre and Fourier embeddings
pre- and post-GAN-style training are shown in Table 1. The
Fourier embedding after the GAN-style training generated
the lowest FID-like score across all datasets.

Figures 7, 8, and 9 also visually show how GAN-style
training affects the result of the samples generated by the
ensemble of MPSs.

The number of outliers generated by the model decreases
after theGAN-style training, as shown in Table 2which com-
pares the number of outliers before and after the GAN-style
training and for different choices for the embedding func-
tions. We evaluate the percentage of outlier samples, where
a sample point is considered an outlier if the average of its
k-nearest neighbors in the training data is higher than the
maximum k-distance of the original dataset.

The values reported in Table 2 confirm the hypothesis
suggested visually by Figs. 7, 8, and 9, where the number of
outliers decreases thanks to the GAN-style training. Addi-
tionally, the performances of the models that use Fourier
embedding functions have lower FID-like scores across the
board compared to those resulting from the Legendre embed-
dings.

3.2 Latent space analysis

Within our experimental framework, the latent space dimen-
sionality of our generative model, which follows GAN
principles, corresponds to the dataset’s dimensionality. The
latent space is equal to [0, 1]n , and as described in Sect. 2.2.2,
the noise vector ν ∈ [0, 1]n part of our latent space satisfies
the condition:

p(xi ≤ x̂i | x1, . . . , xi−1) = νi .

Fig. 7 Visualization of the 2D Spiral dataset andMPS-generated samples. Left: original dataset. Middle: Samples generated by a classically trained
MPS, optimized using cross-entropy loss. Right: Samples generated by an adversarially trained MPS. Fourier embedding was used
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Fig. 8 Comparison of generated samples on the Two Moons dataset. Left: The original dataset. Middle: Samples generated by a classically trained
MPS, optimized using cross-entropy loss. Right: Samples generated by an adversarially trained MPS. Fourier embedding was used

For an ideally trained model, every point within this latent
space corresponds to a realistic sample. Additionally, the set
of points in the latent space that do not correspond to real-
istic samples should have a measure of 0, ensuring that the
vast majority of the latent space is occupied by realistic data
points. Consequently, conventional latent space analyses,
such as clustering, become inapplicable, as the latent space
does not exhibit well-defined clusters but instead reflects the
smooth, continuous distribution of realistic data points.

In scenarios where the probability density function (PDF)
is strictly positive and is modeled using the Matrix Product
State (MPS) framework, the latent space can be mathemati-
cally represented as the hypercube [0, 1]n . While the latent
space’s dimensionality is fixed at Rn , independent of the
model’s parameters, its structure may be influenced by fac-
tors such as the bond dimension. However, as shown in the
experiments in Appendix, the bond dimension has minimal
impact in our setting due to the low dimensionality of our
datasets. To better understand its influence in more complex
scenarios, further experiments with larger datasets would be

necessary. Moreover, there exists a one-to-one mapping, i.e.,
a bijection, between this latent space and the physical data
space. As a result, any topological analysis within the latent
space yields trivial findings, since the latent space directly
corresponds to the physical space of the data.

However, latent space analysis can be performed thanks
to the utilization of theMPS architecture in our experimental
setup which is itself an ensemble of models, with each model
dedicated to a distinct class. This architecture enables us to
perform interpolation and comparison exclusively between
intra-class samples. A visual representation of this process
is presented in Fig. 10, where two instances of linear inter-
polation within the latent space are depicted, one for each
class, employing different Fourier and Legendre embedding
functions.

The sampled trajectories for Legendre-embedded data
form a more regular shape, while those for Fourier embed-
dings appear more chaotic. This structural distinction aligns
with their contrasting classification behaviors under input
perturbations (see Sect. 3.3).

Fig. 9 2DPCAvisualization of generated samples from the Iris dataset.
Left: PCA projection of the original dataset. Middle: PCA projection
of samples generated by a classically trained MPS model, optimized

using cross-entropy loss. Right: PCA projection of samples generated
by an adversarially trainedMPSmodel. Fourier embedding was applied
to the data
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Table 2 Comparison of outlier percentages of generated samples for
Fourier and Legendre embedding functions, before and after GAN-style
training

Datasets
Methods 2D Spiral 2 Moon Iris

Legendre, pre-GAN 9.03e−2 1.00e−1 3.60e−1

Fourier, pre-GAN 8.90e−2 1.13e−1 4.62e−1

Legendre, post-GAN 7.63e−2 1.00e−1 2.20e−1

Fourier, post-GAN 6.32e−2 3.40e−2 2.36e−1

• Legendre embeddings produce smooth sample trajecto-
ries in latent space, reflecting their stable polynomial
basis. This regularity leads to well-defined decision
boundaries in noiseless conditions, enabling higher ini-
tial classification accuracy.

• Fourier embeddings, with their oscillatory basis, gener-
ate irregular trajectories.While this introduces instability
in noise-free settings, the frequency-rich representation
improves adaptability to input variations, as shown in
Fig. 11.

In both cases, most samples remain within their original
class (Fig. 10), demonstrating the MPS’s ability to preserve
semantic consistency. However, exceptions occur in low-
probability regions where trajectories intersect the “false”
class. These intersections result from the MPS’s non-zero
probability of sampling across classes—a consequence of its
quantum-inspired structure, which avoids strict orthogonal-
ity. While undesirable for purity, this property ensures full
support over the data manifold, crucial for robust generation
under perturbations (see Sect. 3.3).

3.3 Robustness to perturbations

We assumed that our model has an input space on [0, 1]N and
that the embedding function used in this work transforms the
data onto an n-dimensional manifold in a d · n dimensional

Fig. 11 Validation accuracy as a function of σ , where σ represents
the standard deviation of the centered normal distribution from which
the noise added to the embedded inputs is sampled. In this experiment,
the model is trained on clean data and evaluated on noisy inputs, with
hyperparameters set to d = 20 and D = 50. A comparison between
Fourier and Legendre embeddings is provided

space. In this section, we consider how adding noise to this
manifold can change the performance of the MPS model,
depending on the choice of the embedding function. After
obtaining a trained MPS, the classification accuracy of the
model is observed for increasing values of σ , which deter-
mines the amount of noise ε that is added to the inputs of
the MPS after having embedded the data using �(x), with
ε ∼ N (0, σ 2).

Figure 11 shows the accuracy performance of twomodels,
one with Fourier and the other with Legendre embedding
function, as noise is added to the embedded inputs.

As seen in Fig. 11, at σ = 0, the Fourier embedding
achieves lower initial classification accuracy compared to
the Legendre embedding. A precise theoretical justification
remains an open question; however, a potential explanation
may be related to the regression properties of these embed-
dings.

Legendre embeddings, being based on orthogonal poly-
nomials, appear to be empirically better suited to the dataset,

Fig. 10 In the background, the
original dataset, and in green
and blue, the trajectories of
samples for, (left) Fourier and
(right) Legendre embedding
functions, corresponding to the
yellow and violet class
respectively. The trajectories are
obtained by linearly
interpolating two points of the
latent space of the MPS,
highlighted in red

123



   48 Page 14 of 18 Quantum Machine Intelligence             (2025) 7:48 

leading to higher validation accuracy. This suggests that the
dataset’s underlying patterns can be more naturally captured
by polynomial basis functions.

Fourier embeddings introduce oscillatory basis functions,
which can lead to high-frequency artifacts in the learned
function when trained on limited data, a phenomenon some-
times associated with interpolation instability or Runge’s
phenomenon in polynomial interpolation (Trefethen 2013).
This effect can cause poor generalization in classification
tasks when noise is absent (σ = 0). In contrast, Legen-
dre embeddings, based on orthogonal polynomials, tend to
produce smoother approximations with reduced oscillations,
potentially leading to more stable classification boundaries.

However, as noise increases (σ > 0), Fourier embeddings
demonstrate higher robustness, likely due to their ability
to capture frequency-based features efficiently. This aligns
with prior findings in function approximation theory, where
Fourier-based methods excel in encoding structured data but
may struggle with instability in noiseless conditions (Tancik
et al. 2020).

An additional experiment, comparing the classification
accuracy of the MPS as σ increases, is shown in Fig. 12.
In this experiment, noise is introduced during the training
phase, whereas in the previous experiment, noise was only
added during inference with a fixed trained model.

The results of this experiment align with the current inter-
pretation. While the Legendre embedding achieves better
classification performance at σ = 0, we observe that as
noise is introduced during training the Legendre embedding
also gains robustness by learning to fit the noise. Conversely,
the Fourier embedding retains its previous robustness and
performance remains consistent even at σ = 1, as it is inher-

Fig. 12 Validation accuracy as a function of σ , where σ represents
the standard deviation of the centered normal distribution from which
the noise added to the embedded inputs is sampled. In this experiment,
models are trained on noisy data and evaluated on clean inputs, with
hyperparameters set to d = 20 and D = 50. A comparison between
Fourier and Legendre embeddings is provided

ently adapted to handle noise without requiring specialized
learning.

4 Conclusion and future work

In this study, we explore the MPS and its applications in the
field of machine learning. We demonstrate the fundamental
structure of MPS and its utility in machine learning for tasks
related to classification and generative modeling. We expand
upon the various canonical forms of MPS and justify a more
accessible training approach for its applications in machine
learning, specifically avoiding the necessity for the sweeping
algorithm.

To facilitate the discussion, we identified and exam-
ined the essential criteria for an embedding function that
enables accurate sampling from a non-normalized model
trained for classification. We demonstrate the computation
of the reduced density matrix and establish its positive semi-
definiteness. Furthermore, we introduce and contrast the
widely adopted Fourier embedding with our novel proposi-
tion of using Legendre polynomials. Our empirical findings
indicate that the former yields superior generative results.

Building upon principles from GANs, we leverage dual
roles of the MPS, allowing it to serve both as a generator
and a classifier simultaneously. This enhances training and
generative performance without compromising the model’s
classification accuracy. Notably, this approach results in a
reduction of the number of outliers generated during the sam-
pling process, yielding sampleswithmore favorable FID-like
scores when compared to classical training techniques for
MPSs.

Within the framework of this procedure, we introduce a
latent space representation for the MPS model when using
it as a generator and subject it to analysis. We investigate
the impact of introducing perturbations after data embedding
on the classification accuracy for both Fourier and Leg-
endre embeddings, where the former demonstrated greater
resilience in the presence of increasing noise.

In further research, alternative embedding functions can
be explored. For instance, the use of the Welsh basis, a
non-continuous set of orthonormal functions,warrants explo-
ration. Additionally, investigating non-orthogonal bases is
promising, leveraging the research developed in this work
on the role of the embedding function in calculating the
reduced density matrix. Furthermore, it is interesting to
investigate how perturbations may impact the classification
accuracy, particularly when various embedding functions are
employed.

While our experiments focus on low-dimensional datasets,
future work should explore the impact of bond dimension D
on higher-dimensional datasets. In such settings, larger bond
dimensions may be necessary to capture long-range corre-
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lations and complex dependencies, which are not prominent
in our current datasets. Investigating the interplay between
bond dimension, dataset dimensionality, and model expres-
sivity would provide valuable insights into the scalability
and applicability of MPS-based models to more complex
machine learning tasks.

Furthermore, the MPS holds promise for integration with
other neural network paradigms, potentially as a latent space
representation within a variational autoencoder or a normal-
izing flow in manifold learning frameworks (Flouris and
Konukoglu 2023), where the density can be directly esti-
mated mitigating the need of approximate inference.

Appendix. Penrose tensor notation in detail

In this section, we provide additional details on the equations
used throughout the work.We explicitly present the formulas
that were previously expressed only using Penrose tensor
notation.

• Probability distribution representation, Eq. 2:

p(x1, . . . , xn) =
⎡

⎣
∑

{di }
Wd1,d2,...,dn−1,dn�(x)d1,d2,...,dn−1,dn

⎤

⎦
2

=
⎡

⎣
φ(x1) φ(x2)

. . .

φ(xn−1) φ(xn)

⎤

⎦
2

=

φ(x1)

φ(x1)

φ(x2)

φ(x2)

. . .

. . .

. . .
φ(xn−1)

φ(xn−1)

φ(xn)

φ(xn)
.

• Definition of B, Eq. 18:

B :=
∫

φ(xi ) ⊗ φ(xi )dxi =
∫

φ(xi )

φ(xi )
dxi .

• Marginal probability computation, Eq. 19:

p(xi ) =
∫

. . .

∫
p(x1, . . . , xn) dx1 . . . d̂xi . . . dxn

=
∫

. . .

∫
φ(x1)

φ(x1)

. . .

. . .

φ(xn)

φ(xn)
dx1 . . . d̂xi . . . dxn

B

. . .

. . .

φ(xi )

φ(xi )

. . .

. . .

B .

• Marginal probability computation in case of B = Id ,
Eq. 20

p(xi ) =
∑

d1,...,di ,d ′
i ,...,dn

Wd1,...,di ,...,dnφ(xi )
di

Wd1,...,d ′
i ,...,dnφ(xi )

d ′
i =

. . .

. . .

. . .
φ(xi )

φ(xi )

. . .

. . .

. . . .

• Definition of Bi , Eq. 22:

Bi :=
∑

d1,...,di−1

Wd1,...,di−1,di ,...,dn

φ(x1)
d
1 ⊗ · · · ⊗ φ(xi−1)

di−1 =
∑

d1,...,di−1

Aα1,d1
1 φ(x1)

d1

· · ·
Aαi−2αi−1,di−1
i−i φ(xi−1)

di−1

Aαi−1αi ,di
i

Aαiαi+1,di+1
i+1

· · ·
AαN−1,dN
N =

A1

φ(x1)

. . . Ai−1

φ(xi−1)

Ai Ai+1 . . . An

.

Effect of bond dimension on classification
performance

To analyze the effect of the bond dimension D on classifi-
cation accuracy, we conducted an experiment in which we
varied D while keeping all other hyperparameters fixed.

The results presented in Fig. 13 indicate that classification
accuracy initially improveswith D but saturates beyond D ≈
4. This suggests that for this dataset, the expressive power
provided by higher bond dimensions does not yield further
improvements.

A possible explanation is that this dataset has low intrin-
sic dimensionality and lacks long-range correlations, which
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Fig. 13 Classification accuracy as a function of bond dimension D, for
Fourier embedding on the 2D spiral dataset

are typically modeled by increasing D. In problems with
strong correlations between distant variables, a larger bond
dimension would be necessary to capture these dependen-
cies. However, in this case, the dataset structure does not
demand high expressivity, making smaller bond dimensions
sufficient.

Impact of binning on accuracy
and computational cost

The number of bins used to discretize the input space directly
impacts both approximation accuracy and computational
efficiency. A finer discretization, i.e., increasing the number
of bins, leads to a more precise numerical approximation,
reducing the squared error. However, it also increases com-
putational cost due to the higher resolution required for
numerical integration and sampling.

Fig. 14 Squared error as a function of the number of bins

Fig. 15 Computation time for a sample as a function of the number of
bins

To analyze the impact of binning on both approxima-
tion accuracy and computational efficiency, we conducted
an experiment where we sampled from the identity matrix
Id with a fixed physical dimension d = 10 using the Fourier
embedding. The quantile value was set to ν = 0.5, which
allowed us to know the theoretical expected result for the
sample x1 = 0.5 and compute the squared loss against the
true value.

Figure 14 illustrates how the squared error decreases
exponentially with the number of bins, demonstrating that
beyond 103 bins, further improvements become negligible.
Conversely, Fig. 15 shows that computational time ini-
tially remains low but begins increasing significantly beyond
105 bins. This reflects the increased computational burden
required to process finer binning resolutions.

Thus, after analyzing the complete data, presented in
Table 3, we selected 1000 bins as the optimal balance, where
the squared error is sufficiently low and computational time
remains efficient. This choice ensures numerical stability
while avoiding unnecessary overhead.

Table 3 Effect of the number of bins on squared error and computation
time

Number of bins Squared error Computation time (s)

101 3.09 × 10−3 4.68 × 10−4

102 2.55 × 10−5 2.26 × 10−4

103 2.51 × 10−7 2.29 × 10−4

104 2.50 × 10−9 1.17 × 10−3

105 2.51 × 10−11 4.86 × 10−3

106 2.57 × 10−13 5.87 × 10−2

107 3.55 × 10−15 6.75 × 10−1
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Dataset generation

In this appendix, we provide details on the datasets used in
our experiments.

A. 2D Spiral dataset

The spiral dataset was generated by sampling N = 8000
points along two spirals, with angles drawn from a uniform
distribution and perturbed with Gaussian noise. The data was
then normalized to fit within [0, 1]2.

The dataset was generated using the following Python
script:

B. Twomoons dataset

The TwoMoons dataset was generated using the sklearn.
datasets.make_moons function with added noise.

C. Iris dataset

The Iris datasetwas obtained usingsklearn.datasets.
load_iris. Features were normalized before training.
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Žunkovič B (2023) Positive unlabeled learning with tensor networks.
Neurocomputing 126556

Verstraete F, Cirac JI (2006) Matrix product states represent ground
states faithfully. Phys Rev B 73(9):094423

Vidal G (2007) Entanglement renormalization. Phys Rev Lett
99(22):220405

Vieijra T, Vanderstraeten L, Verstraete F (2022) Generative modeling
with projected entangled-pair states. arXiv:2202.08177

White SR (1992) Density matrix formulation for quantum renormaliza-
tion groups. Phys Rev Lett 69(19):2863

White SR (1993) Density-matrix algorithms for quantum renormaliza-
tion groups. Phys Rev B 48(14):10345

Xiao H, Rasul K, Vollgraf R (2017) Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms.
arXiv:1708.07747

Zaletel MP, Pollmann F (2020) Isometric tensor network states in two
dimensions. Phys Rev Lett 124:037201. https://doi.org/10.1103/
PhysRevLett.124.037201
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