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ABSTRACT

Pre-trained contextualized language models (PrLMs) broadly use fine-grained
tokens (words or sub-words) as minimal linguistic units in the pre-training phase.
Introducing span-level information in pre-training has shown capable of further
enhancing PrLMs. However, such methods require enormous resources and lack
adaptivity due to huge computational requirements from pre-training. Instead of
too early fixing the linguistic unit input as nearly all previous work did, we propose
a novel method that combines span-level information into the representations
generated by PrLMs during the fine-tuning phase for better flexibility. In this
way, the modeling procedure of span-level texts can be more adaptive to different
downstream tasks. In detail, we divide the sentence into various span components
according to the segmentation generated by a pre-sampled dictionary. Based on
the sub-token-level representation provided by PrLMs, we bridge the connection
between the tokens in each span and yield an accumulated representation with
enhanced span-level information. Experiments on the GLUE benchmark show
that our approach remarkably improves the performance of PrLMs in various
natural language understanding tasks.

1 INTRODUCTION

Pre-trained contextualized language models (PrLMs) such as BERT (Devlin et al., 2018), XLNet
(Yang et al., 2019), ELECTRA (Clark et al., 2020) have led to strong performance gains
in downstream natural language understanding (NLU) tasks. Such models’ impressive power
to generate effective contextualized representations is established by using well-designed self-
supervised training on a large text corpus. Taking BERT as an example, the model used Masked
Language Modeling (MLM) and Nest Sentence Prediction (NSP) as pre-training objects and was
trained on a corpus of 3.3 billion words.

PrLMs commonly generate fine-grained representations, i.e., subword-level embeddings, to adapt
to broad applications. Different downstream tasks sometimes require representations with different
granularity. For example, sentence-level tasks such as natural language inference (Bowman et al.,
2015; Nangia et al., 2017), demand an overall sentence-level analysis to predict the relationships
between each sentence. There are also token-level tasks, including question answering and named
entity recognition, which require models to generate fine-grained output at the token level (Rajpurkar
et al., 2016b; Sang & De Meulder, 2003). Therefore, the representations provided by PrLMs are fine-
grained (word or sub-word), which can be easily recombined to representations at any granularity,
and applied to various downstream tasks without substantial task-specific modifications.

Besides fine-grained tokens and sentences, coarse-grained span-level language units such as phrases,
name entities are also essential for NLU tasks. Previous works indicate that the capability to capture
span-level information can be enhanced by altering pre-training objectives. SpanBERT (Joshi et al.,
2019) extends BERT by masking and predicting text spans rather than a single token for pre-training.
ERNIE models (Sun et al., 2019; Zhang et al., 2019a) employ entity level masking as a strategy for
pre-training. StructBERT (Wang et al., 2019) encourages PrLMs to incorporate span-level structural
information by adding trigram de-shuffling as a new pre-training objective. The methods mentioned
above show that the incorporation of span-level information in the pre-training phase is effective for
various downstream NLU tasks.
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However, since different downstream tasks have different requirements for span-level information,
the strategy of incorporating span-level information in pre-training might not be suitable for all
downstream tasks. For example, by leveraging entity level masking strategy in pre-training, ERNIE
models (Sun et al., 2019; Zhang et al., 2019a) achieve remarkable gain in entity typing and Relation
Classification, but when it comes to language inference tasks like MNLI (Nangia et al., 2017),
its performance is even worse than BERT. Therefore, incorporating span-level information more
flexibly and more universally, is imperatively necessary. The representations generated by PrLMs
are supposed to be widely applicable for general cases; meanwhile, they are also expected to be
flexibly adapted to various specific downstream tasks. Thus introducing span-level clues in a good
timing matters a lot. In this paper, we propose a novel method, Later Span Adaptapan (LaSA),
that would enhance the use of span-level information in a task-specific fine-tuning manner, which is
lighter and more adaptive compared to existing methods.

In this work, based on the fine-grained representation generated by BERT, a computationally
motivated segmentation is applied to further enhance the utilization of span-level information.
Previous work has used semantic role labeling (SRL) (Zhang et al., 2019b) or dependency parsing
(Zhou et al., 2019) as auxiliary segmentation tools. Nevertheless, these methods require extra
parsing procedure, which reduces the simplicity of use. In our method, the segmentation is obtained
according to a pre-sampled n-gram dictionary. The fine-grained representation in the same span
within the segmentation is aggregated to a span-level representation. On this basis, the span-level
representations are further integrated to generate a sentence-level representation to make the most
of both fine-grained and span-level information.

We conduct the experiments and analysis on the GLUE benchmark (Wang et al., 2018), which
contain various NLU tasks, including natural language inference, semantic similarity, and text
classification. Empirical results show that our method can enhance the performance of PrLMs to the
same degree as altering the pre-training objectives, but more simply and adaptively. Ablation studies
and analysis verify that the introduced method is essential to the further performance improvement.

2 RELATED WORK

2.1 PRE-TRAINED LANGUAGE MODELS

Learning reliable and broadly applicable word representations has long been a prosperous topic for
the NLP community. Language modeling objectives are shown effective for generating satisfying
distributed representation (Mnih & Hinton, 2009). By leveraging neural network and large text
corpus, Mikolov et al. (2013) and Pennington et al. (2014) achieve to train widely applicable word
embeddings in an unsupervised manner. ELMo (Peters et al., 2018) further advances state of the
art for various downstream NLU tasks by generating deep contextualized word representations.
Equipped with Transformer (Vaswani et al., 2017), GPT (Radford et al., 2018) and BERT (Devlin
et al., 2018) further explore transfer learning, where models are firstly pre-trained on a large corpus
and then applied to downstream tasks in a fine-tuning manner. Recent PrLMs extends BERT in
multiple ways, including using permutation language model (Yang et al., 2019), training on a larger
corpus and using more efficient parameters (Liu et al., 2019b), leveraging parameter sharing strategy
(Lan et al., 2019), employing GAN-style architecture (Clark et al., 2020). T5 (Raffel et al., 2019)
further explores the limit of transfer learning by conducting exhaustive experiments.

2.2 COARSE-GRAINED PRE-TRAINING METHODS

Previous works indicate that the incorporation of coarse-grained information in pre-training can
enhance the performance of the PrLMs. Initially, BERT uses the prediction of single masked tokens
as one of the pre-training objectives. Since BERT uses WordPiece embeddings (Wu et al., 2016),
sentences are tokenized into the sub-word level so that the masked token can be a sub-word token
such as ”##ing”. Devlin et al. (2018) then points out that instead of masking a single token, using
“whole word masking” strategy can further improve BERT’s performance. After that, (Sun et al.,
2019; Zhang et al., 2019a) verify that PrLMs can benefit from entity-level masking strategy in pre-
training. In SpanBERT (Joshi et al., 2019), the model can better represent and predict spans of text
by masking random contiguous spans in pre-training. Recently, by making use of both fine-grained
and coarse-grained tokenization, AMBERT (Zhang & Li, 2020) outperforms its precursor in various
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PrLM

[CLS]   a     dog   is  jumping for     a       fr    ##is ##bee  in     the snow

Pre-sampled n-gram dictionary

Subword Tokenization Sentence Segmentation

a        dog    [pad]        is     jumping  [pad]        for        a      [pad]       fr      ##is    ##bee      in       the    snow 

a dog   is jumping    for a frisbee in the snow 

Sentence-level
representation

Span-level
representation

Fine-grained
representation

a dog   is jumping    for a frisbee in the snow t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13

a dog is jumping for a frisbee in the snow

Figure 1: Overview of the framework of our proposed method

NLU tasks. All these works focus on encouraging PrLMs to incorporate coarse-grained information.
To the best of our knowledge, incorporating coarse-grained information in fine-tuning is still a white
space, which makes our work a valuable attempt.

2.3 INTEGRATION OF FINE-GRAINED REPRESENTATION

Different formats of downstream tasks require sentence-level representations, such as natural
language inference (Bowman et al., 2015; Nangia et al., 2017), semantic textual similarity (Cer
et al., 2017) and sentiment classification (Socher et al., 2013). Besides directly pre-training the
representation of coarser granularity (Le & Mikolov, 2014; Logeswaran & Lee, 2018), a lot of
methods have been explored to obtain a task-specific sentence-level representation by integrating
fine-grained token-level representations(Conneau et al., 2017). Kim (2014) shows that by applying
a convolutional neural network (CNN) on top of pre-trained word vectors, we can get a sentence-
level representation that is well adapted to classification tasks. Lin et al. (2017) leverage a self-
attentive module over hidden states of a BiLSTM to generate sentence-level representations. Zhang
et al. (2019b) use a CNN layer to extract word-level representations form sub-word representations
and combine them with word-level semantic role representations. Inspired by these methods, after a
series of preliminary attempts, we choose a hierarchical CNN architecture to recombine fine-grained
representations to coarse-grained ones.

3 METHODOLOGY

Figure 1 shows the overview of the framework of our method, which is primarily based on BERT
and leverages segmentation as an auxiliary tool. We do not exhaustively illustrate the details of
BERT, given the ubiquitousness of the architecture. Further information on BERT is available in
Devlin et al. (2018). An input sentence is tokenized to the sub-word level and passed to BERT to
obtain the fine-grained representation. In the meantime, the segmentation components of the very
input sentence is generated according to a pre-sampled n-gram dictionary. Then, we incorporate the
segmentation into the fine-grained representation provided by BERT and divide the representation
into several spans. After passing the spans through a hierarchical CNN module, we can obtain a
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a dog      is jumping     for a        frisbee     in the snow

a dog     is jumping      for a   frisbee   in the snow an older man      is     drinking     orange juice      at a restaurant

an older man      is     drinking     orange juice      at a restaurant

(a) (b)

the model   is intended to   give   managers  an overview of   the acquisition   process and   to help them   decrease  acquisition  risk

the model   is intended to   give managers    an overview of   the acquisition   process and   to help them   decrease  acquisition  risk

(c)

Figure 2: Segmentation Examples

coarse-grained enhanced representation. Eventually, the fine-grained representation of [CLS] token
provided by BERT and the coarse-grained information enhanced representation are concatenated to
form the final representation that makes the most of multi-grained information for downstream tasks.

3.1 SENTENCE SEGMENTATION

Previous works use semantic role labeling (SRL) (Zhang et al., 2019b) and dependency parsing
(Zhou et al., 2019) as auxiliary segmentation tools. Nevertheless, these methods require extra
parsing procedure, which reduces the simplicity of use. To get a reasonable segmentation in a
simpler and more convenient manner, we sample meaningful n-grams that occurred in the wikitext-
103 dataset based on frequency1 and obtain a pre-sampled dictionary.

For a given input sentence, we use the pre-sampled dictionary to locate matching n-grams from the
start of the sentence. Longer n-grams are prioritized during the matching procedure. Unmatched
tokens would be kept as they are, by doing so, we can obtain a segmentation of the sentence. Figure
2 shows several segmentation examples of the sentences from the GLUE dataset.

3.2 SENTENCE ENCODER ARCHITECTURE

For a given input sentence X = {x1, . . . , xn} of length n, the sentence is first tokenized to sub-word
tokens (with a special token [CLS] at the beginning) and transformed to fine-grained representation
E = {e1, . . . , em} (m is usually larger than n) based on WordPiece embeddings (Wu et al.,
2016). Then the transformer encoder (BERT) captures the contextual information for each token via
self-attention and produces a sequence of fine-grained contextual embeddings T = {t1, . . . , tm},
where t1 is the contextual representation of special token [CLS]. According to the segmentation
generated by the pre-sampled dictionary, the fine-grained contextual representations are grouped
to several spans {C1, . . . , Cr}, with r being a hyperparameter defining the max span number for
all processed sentences. Each Ci contains several contextual fine-grained representations extracted
from T dedoted as {ti1, ti2, ..., til}, l is another hyperparameter defining the max token number for all
the spans. A CNN-Maxpooling module is applied to each Ci to get a span-level representation ci:

cij = ReLU(W1

[
tij , t

i
j+1, . . . , t

i
j+k−1

]
+ b1)

ci = MaxPooling(ci1, . . . , c
i
r)

(1)

where W1 and b1 are trainable parameters and k is the kernel size. Based on the span-level
representations {c1, . . . , cr}, another CNN-Maxpooling module is applied to obtain a sentence-level
representation s with enhanced coarse-grained information:

s′i = ReLU(W2 [ci, ci+1, . . . , ci+k−1] + b2)

s = MaxPooling(s′1, . . . , s
′
r)

(2)

Finally we concatenate s with the contextual fine-grained representation t1 of special token [CLS]
provided by BERT, and generate a sentence-level representation s∗ that make the most of both fine-
grained and coarse-grained information for downstream tasks: s∗ = s � t1.

1We have also tried the PMI approach to prune our dictionary, but the result is not competitive.
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4 EXPERIMENTS

4.1 TASKS AND DATASETS

The evaluation of our method is conducted on nine NLU benchmark datasets, including text
classification, natural language inference, and semantic similarity. Among them, eight datasets are
available from the GLUE benchmark Wang et al. (2018). We also use SNLI Bowman et al. (2015),
a widely acknowledged natural language inference dataset, as one of our datasets.

Classification Two categories of Classification datasets are involved in our method. The Corpus
of Linguistic Acceptability (CoLA) (Warstadt et al., 2018) gives judgment on whether an English
sentence is linguistically acceptable or not. The Stanford Sentiment Treebank (SST-2) (Socher
et al., 2013) provides sentiment labels, i.e., positive or negative, for sentences extracted from movie
reviews.

Natural Language Inference Natural Language Inference aims at determining the relationship
between a pair of sentences, such as entailment, neutral, and contradiction, based on semantic
meanings. Four datasets are involved in our study, including Multi-Genre Natural Language
Inference (MNLI) (Nangia et al., 2017), Question Natural Language Inference (QNLI) (Rajpurkar
et al., 2016a), Stanford Natural Language Inference (SNLI) (Bowman et al., 2015) and Recognizing
Textual Entailment (RTE) (Bentivogli et al., 2009).

Semantic Similarity Semantic similarity tasks target at giving a judgment on whether two
sentences are semantically equivalent or not. The current challenge for Semantic Similarity is to
increase the accuracy of rephrased concepts recognition, negation understanding, and syntactic
ambiguity discernment. Three datasets are employed, including Semantic Textual Similarity
benchmark (STS-B) (Cer et al., 2017), Quora Question Pairs (QQP) dataset (Chen et al., 2018)
and Microsoft Paraphrase corpus (MRPC) (Dolan & Brockett, 2005).

4.2 PRE-TRAINED LANGUAGE MODEL

We employ the PyTorch implementation of BERT based on HuggingFace’s codebase2 (Wolf et al.,
2019). We use two released BERT versions as our pre-trained encoder as well as our baselines :

BERT Base The pre-trained language model was released by Devlin et al. (2018) with 12 layers,
798 hidden layer size, and up to 108 million parameters.

BERT Large Whole Word Masking The pre-trained language model released by Devlin et al.
(2018) with 24 layers, 1048 hidden layer size, and up to 334 million parameters. The BERT Large
wwm employs whole word masking strategy in pre-training and achieves a better performance than
the initial version of BERT Large. So we employ BERT Large whole work masking as a stronger
baseline, and further show that our method can enhance the utilization of span-level information.

4.3 SET UP

We sample all the n-grams, with n ≤ 5, that occur in the wikitext-103 dataset more than ten times to
form a dictionary. The dictionary contains more than 400 thousand n-grams and is used to segment
input sentences. In the process of segmentation, two hyperparameters are introduced: r defining
the largest number of spans within an individual sentence, and l representing the largest number of
tokens contained within a single span. Padding and tail are applied to guarantee the dimensions of
features for each sentence to maintain the same. We set r equals to 16, and based on downstream
tasks, choose l in {64,128} .

We follow the same fine-tuning procedure as BERT. Sentence-level representation s∗ (with enhanced
span-level information) is directly passed to a dense layer to get the class logits or score. Training
objectives are CrossEntropy for classification tasks and Mean Square Error loss for regression tasks.

2https://github.com/huggingface/pytorch-pretrained-BERT
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Method Classification Natural Language Inference Semantic Similarity Avg.
CoLA SST-2 MNLI QNLI RTE MRPC QQP STS-B -
(mc) (acc) m/mm(acc) (acc) (acc) (F1) (F1) (pc) -

In literature
BiLSTM+ELMo+Attn 36.0 90.4 76.4/76.1 79.9 56.8 84.9 64.8 75.1 70.5
GPT 45.4 91.3 82.1/81.4 88.1 56.0 82.3 70.3 82.0 72.8
GPT on STILTs 47.2 93.1 80.8/80.6 87.2 69.1 87.7 70.1 85.3 76.9
MT-DNN 61.5 95.6 86.7/86.0 - 75.5 90.0 72.4 88.3 82.2
BERTBASE 52.1 93.5 84.6/83.4 - 66.4 88.9 71.2 87.1 78.3
BERTLARGE 60.5 94.9 86.7/85.9 92.7 70.1 89.3 72.1 87.6 80.5

Our implementation
BERTBASE 51.4 92.1 84.4/83.5 90.3 67.1 88.3 71.3 85.1 79.3
BERTBASE + LaSA 55.1 93.6 84.8/84.3 90.6 69.6 88.7 71.9 86.5 80.4
BERTWWM 61.1 93.6 87.1/86.5 93.9 77.3 90.0 71.9 88.1 83.3
BERTWWM + LaSA 62.9 94.1 87.6/87.0 94.3 81.4 91.1 72.4 89.1 84.4

Table 1: Test sets performance on GLUE benchmark. All the results are obtained from Liu et al.
(2019a), Radford et al. (2018). We exclude the problematic WNLI set and do not show the accuracy
of the datasets have F1 scores to save space. mc and pc denote the Matthews correlation and Pearson
correlation respectively.

We use Adam as our optimizer with an initial learning rate in {1e-5,2e-5, 3e-5}, a warm-up rate of
0.1, and an L2 weight decay of 0.01. The batch size is set in {16, 32, 48}. The maximum number
of epochs is selected in {2,3,4,5} depending on downstream tasks. Sentences are tokenized and
transformed to WordPiece embeddings, with maximum length chosen in {128, 256}. The CNN
layer’s output size is the same as the hidden size of PrLM, and the kernel size is set to 3.

4.4 RESULTS

Table 1 shows results on the GLUE benchmark datasets, demonstrating our LaSA approach can
remarkably improve the performance of PrLMs on downstream tasks. Since LaSA is primarily
established on BERT, and is evaluated under the same procedure, it is evident that the improvement
is entirely contributed by our newly introduced span adaptation.

Compared to previous works that demand large-scale pre-training in the incorporation of span-level
information, LaSA is able to achieve the same level of performance improvement, and moreover,
require remarkably less time and resources. Table 2 shows the comparison of LaSA and SpanBERT
on the GLUE benchmark. reaches one percent gain on average over its baseline (BERT-1seq),
which is a BERT pre-trained without next sentence prediction (NSP) object. Comparatively, LaSA
improves the performance of our baseline by one point one percent on average. Furthermore,
LaSA can improve the performance of PrLM on every downstream task, while underperforms its
baseline on dataset like MRPC and QQP. Such a comparison indicats that our method can be more
dynamically adapted to different downstream tasks.

Method Classification Natural Language Inference Semantic Similarity Avg. Gain
CoLA SST-2 MNLI QNLI RTE MRPC QQP STS-B - -
(mc) (acc) m/mm(acc) (acc) (acc) (F1) (F1) (pc) - -

BERT-1seq3 63.5 94.8 88.0/87.4 93.0 72.1 91.2 72.1 89.0 83.5 1.0SpanBERT 64.3 94.8 88.1/87.7 94.3 79.0 90.9 71.9 89.9 84.5
BERTWWM 61.1 93.6 87.1/86.5 93.9 77.3 90.0 71.9 88.1 83.3 1.1BERTWWM + LaSA 62.9 94.1 87.6/87.0 94.3 81.4 91.1 72.4 89.1 84.4

Table 2: Compairison with on test sets of GLUE benchmark

Table 3 shows our approach also improves PrMLs performance on the SNLI benchmark. The
result indicates that the performance of our method is comparable to published SOTA achieved
by SemBERT. Unlike SemBERT that incorporates explicit contextual semantics by leveraging a
pre-trained semantic role labeler, LaSA only uses a pre-sampled dictionary to provide the auxiliary
segmentation information. Thus, compared to SemBERT, LaSA is a more flexible method to achieve
performance improvement.

3The baseline of , a BERT pre-trained without next sentence prediction object.
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BERTBASE BERTBASE+LaSA BERTWWM BERTWWM+LaSA SemBERTWWM

dev 90.6 91.3 92.0 92.3 92.2
test 90.7 91.1 91.4 91.7 91.9

Table 3: Accuracy on dev and test sets of SNLI. SemBERTWWM (Zhang et al., 2019b) is the
published SOTA on SNLI.

5 ANALYSIS

5.1 ABLATION STUDY

As shown in Table 4, to evaluate the contributions of key factors in LaSA, we perform several
ablation studies on the dev sets of eight downstream tasks using BERTBASE as our PrLM. Three
sets of ablation studies are conducted. Firstly, in order to see if the hierarchical CNN structure
alone can improve the overall performance, we directly apply a hierarchical CNN structure without
the segmentation. Secondly, in order to test whether our specific segmentation really helps the
model to better incorporate the span-level information, we conduct the experiments with randomly
segmented sentences. Thirdly, in order to compare the segmentation generated by our method and
the segmentation generated by a pre-trained chunker, we leverage a pre-trained chunker provided by
NLTK (Natural Language Toolkit) to generate the spans and conduct the experiments with the same
procedure.

According to the result, both hierarchical CNN structure and random segmentation can improve
the performance on various downstream tasks to some extent. The result of the third experiments
indicate that the segmentation provided by pre-trained chunker is beneficial to our method. However
a pre-trained chunker requires extra POS parsing procedure, whereas our method only leverage a
pre-sampled dictionary which is more time-saving and achieves better results. Our LaSA method
improve the performance on all downstream tasks significantly, raising the average score from 82.6
of baseline to 84.2. This result demonstrates that the improvement is largely due to the specific
sentence segmentation of our method.

Method Classification Natural Language Inference Semantic Similarity Avg.
CoLA SST-2 MNLI QNLI RTE MRPC QQP STS-B -
(mc) (acc) m/mm(acc) (acc) (acc) (F1) (acc) (pc) -

-
BERTBASE 51.7 92.0 84.0/84.5 91.3 68.7 91.0 90.8 89.0 82.6
BERTBASE + CNN 53.4 91.8 84.2/84.4 91.2 65.0 91.6 91.2 89.7 82.5
BERTBASE + Random LaSA4 53.8 91.7 84.5/84.7 91.6 70.4 90.0 91.0 89.7 83.0
BERTBASE + NLTK LaSA5 58.2 92.1 84.4/84.8 91.8 70.0 91.3 91.0 89.8 83.7
BERTBASE + LaSA 59.1 93.5 84.7/85.1 91.7 71.1 91.2 91.2 90.0 84.2

Table 4: Ablation studied on dev sets of GLUE benchmark

5.2 ENCODER ARCHITECTURE

Conneau et al. (2017) manifest that different sentence encoder architectures have a significant
impact on the performance of models. Toshniwal et al. (2020) also indicate that the choice of
span representation has significant impact on many natural language processing (NLP) tasks involve
reasoning with textual spans, including question answering, entity recognition, and coreference
resolution.

In order to test the efficacy of LaSA’s encoder architecture, we respectively substitute the component
of the encoding layer and the overall structure. For the component of the encoding layer, we compare
CNN (Kim, 2014) with the Self-attentive module (Lin et al., 2017). For the overall structure, two
categories are considered: a single layer structure with the max-pooling operation and a hierarchical
structure.

4Random LaSA indicate the LaSA method with randomly segmented sentences.
5NLTK LaSA indicate the LaSA method with segmentations generated by NLTK pre-trained chunker.
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Mapping each component of the encoding layer with the overall structure, we obtain four different
encoder architectures: CNN-Maxpooling, CNN-CNN, Attention-Maxpooling, Attention-Attention.
Experiments are conducted on SNLI dev and test sets. As shown in table 5, the hierarchical CNN
(CNN-CNN) encoder architecture is most suitable for our situation.

CNN-Max CNN-CNN Attention6-Max Attention-Attention

dev 90.9 91.3 90.7 90.8
test 90.9 91.1 90.5 90.8

Table 5: The influences of different encoder architecture

5.3 SIZE OF n-GRAM DICTIONARY

Given the fact that we use a pre-sampled dictionary to segment the sentences, different sizes of
dictionaries will lead to different segmentation. Initially, for sentences without segmentation,
every single token is regarded as a span. Figure 3 shows how dictionary size and corresponding
segmentation influence the average number of spans in the sentences in the CoLA and MRPC
datasets. As the dictionary size enlarges, more n-grams are matched and regrouped together, which
significantly reduces the average number of spans.

To study the impact of dictionary size on model performance, we conduct experiments on the dev
sets of two downstream tasks: CoLA and MRPC. In order to focus on the influence of segmentation,
and eliminate the effects of fine-grained representations generated by PrLM, we do not apply the
concatenation operation in this experiment. Instead, representations with enhanced span-level
information are directly passed to a dense layer to obtain the prediction results. As shown in 4,
experiments incorporating the segmentation provided by pre-sampled n-gram dictionary achieve
better results than the one with random segmentation. Furthermore, the results indicate that middle-
sized dictionaries (20k to 500k) usually achieve better performance. This phenomenon is consistent
with intuition, since small-sized dictionaries tend to miss meaningful n-grams, while large-sized
ones are inclined to group meaningless n-grams together unnecessarily.
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6Attention indicate the Self-attentive module (Lin et al., 2017).
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5.4 APPLICATION TO STRONGER PRLM

Besides BERT, we want to see if our method can improve the performance of stronger PrLMs such
as RoBERTa (Liu et al., 2019b), which optimizes BERT with improved pretraining procedure, and
SpanBERT (Joshi et al., 2019), which extends BERT by masking and predicting text spans rather
than a single token for pre-training.

Table 6 shows that our approach can enhance the performance of both RoBERTa and SpanBERT.
For RoBERTa, despite RoBERTa is a very strong baseline, we remarkably improve the performance
of RoBERTa on RTE by four percent. For SpanBERT, since it already incorporated span-level
information during the pre-training, the results imply that, comparing to SpanBERT, our method
utilizes the span-level information and improves the performance of PrLMs in a different manner.

Method Classification Natural Language Inference Semantic Similarity Avg.
CoLA SST-2 MNLI QNLI RTE MRPC QQP STS-B -
(mc) (acc) m/mm(acc) (acc) (acc) (F1) (acc) (pc) -

-
SpanBERTBASE 55.5 92.4 85.2/85.1 92.1 75.1 91.2 90.9 89.4 84.0
SpanBERTBASE + LaSA 57.1 92.7 85.5/85.4 92.6 79.4 92.1 90.9 90.1 85.1
RoBERTaLARGE 68.0 96.4 90.2/90.2 94.7 86.6 90.9 92.2 92.4 89.0
RoBERTaLARGE + LaSA 68.9 96.1 90.3/90.2 94.3 90.6 92.8 92.2 92.4 89.8

Table 6: Results on dev sets of GLUE benchmark with stronger baseline

5.5 LASA FOR TOKEN-LEVEL TASK

Our experiments are conducted on the GLUE benchmark which only requires sentence-level
representations. However, for natural language understanding, there are other tasks such as named-
entity recognition (NER), where token-level representations are needed. Our method can be applied
to token-level tasks with simple modification of encoder architecture (e.g. removing the pooling
layer of CNN module). Table 7 shows the results of our approach on the CoNLL-2003 Named
Entity Recognition (NER) task (Tjong Kim Sang & De Meulder, 2003) with BERT as our PrLM.

The result indicate that our approach can also improve the performance of PrLM on token-level
tasks. As discussed by (Toshniwal et al., 2020), the encoder architecture has a remarkable impact
on the efficacy of incorporating span-level information. Since we have not explored the encoder
architecture for the token-level tasks, we believe that with a more adapted encoder architecture the
performances on the token-level tasks can be further promoted.

BERTBASE BERTBASE+LaSA BERTLARGE BERTLARGE+LaSA

dev 91.7 92.1 92.3 92.5
test 95.7 96.2 96.5 96.8

Table 7: F1 on dev and test sets of named entity recognition on the CoNLL-2003 dataset.

6 CONCLUSION

This paper proposes a novel method LaSA that takes advantage of flexible span-level information
in fine-tuning with fine-grained representations generated by PrLMs. Leveraging a reasonable
segmentation provided by a pre-sampled n-gram dictionary, LaSA can further enhance the
performance of PrLMs on various downstream tasks. Recent works focusing on the incorporation
of span-level information in pre-training by altering pre-training objectives or PrLM structures are
time-consuming and require enormous resources, therefore, we hope this work could shed light on
future studies on adaptation in fine-tuning.
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A APPENDIX

Since fine-tuning BERT on GLUE tasks might have high variance, table 7 report the average results
of the application of LaSA to BERTBASE on dev sets of GLUE benchmark. Furthermore, since
PrLMs are very strong baselines, the improvements can be marginal, thus a significance test would
be beneficial for measuring the difference in model performance.

Follow the procedure of (Zhang et al., 2020), we use the McNemars test to test the statistical
significance of our results. This test is designed for paired nominal observations, and it is appropriate
for binary classification tasks.

The p-value is defined as the probability, under the null hypothesis, of obtaining a result equal to
or more extreme than what was observed. The smaller the p-value, the higher the significance. A
commonly used level of reliability of the result is 95%, written as p = 0.05. As shown in table 9,
comparing to the baseline, for all the binary classification tasks of GLUE benchmark, our method
pass the significance test.

Method Classification Natural Language Inference Semantic Similarity Avg.
CoLA SST-2 MNLI QNLI RTE MRPC QQP STS-B -
(mc) (acc) m/mm(acc) (acc) (acc) (F1) (acc) (pc) -

-
BERTBASE 52.9 91.9 84.0/84.4 91.3 68.9 91.1 90.8 88.8 82.6
BERTBASE + LaSA 59.5 93.3 84.6/85.1 91.9 71.7 91.1 91.2 90.3 84.2

Table 8: Results on dev sets of GLUE benchmark, each result is a median over three runs.

CoLA SST-2 QNLI RTE MRPC QQP

p-value 0.005 0.012 0.023 0.009 0.008 0.031

Table 9: Results of McNemars tests for binary classification tasks of GLUE benchmark, tests are
conducted based on the results of best run.
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