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ABSTRACT

We study the problem of multi-agent control of a dynamical system with known
dynamics and adversarial disturbances. Our study focuses on optimal control
without centralized precomputed policies, but rather with adaptive control poli-
cies for the different agents that are only equipped with a stabilizing controller.
We give a reduction from any (standard) regret minimizing control method to
a distributed algorithm. The reduction guarantees that the resulting distributed
algorithm has low regret relative to the optimal precomputed joint policy. Our
methodology involves generalizing online convex optimization to a multi-agent
setting and applying recent tools from nonstochastic control derived for a single
agent. We empirically evaluate our method on a model of an overactuated air-
craft. We show that the distributed method is robust to failure and to adversarial
perturbations in the dynamics.

1 INTRODUCTION

In many real-world scenarios it is desirable to apply multi-agent control algorithms, as opposed to a
centralized designed policy, for a number of practical reasons. First is increased robustness: agents,
serving as control actuators, may be added or removed from an existing set, without change to the
distributed policies. This also allows for fault-tolerance; agents can adapt on the fly to faulty actu-
ators. Second, limited computational resources and/or system information may limit applicability
of a sophisticated centralized policy, whereas simple distributed policy agents are feasible and can
adapt to the underlying dynamics. Third, multi-agent control allows robustness to noisy state and
control observations by the individual agents. These advantages motivate the study of distributed
control, and indeed a vast literature exists on the design and analysis of such methods.

In this paper we propose a novel game-theoretic performance metric for multi-agent control (MAC),
which we call multi-agent regret. This metric measures the difference between the total loss of
the joint policy of individual agents vs. the loss of the best joint policy in hindsight from a certain
reference class of policies. Vanishing multi-agent regret thus implies competitive performance with
respect to that of the optimal policy in a certain policy class.

We study a mechanism for MAC that takes individual controllers and merge them into a MAC
method with vanishing regret. For this purpose, we make use of recent advances in online learning
for control and specifically the framework of nonstochastic control. This methodology was recently
proposed for the study of robust adaptive control algorithms through the lens of online convex opti-
mization. As opposed to optimal and robust control, nonstochastic control studies adaptive control
algorithms that minimize regret, or the difference in loss/reward of the controller vs. the best policy
in hindsight from a reference class. This is a game-theoretic performance metric, which is naturally
applicable to agents interacting in a multi-agent environment.

∗Correspondence at ughai@cs.princeton.edu
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1.1 OUR RESULT AND TECHNIQUES

Our main result is a reduction from single agent to multi-agent control with provable regret guaran-
tees. More precisely, we assume that we have access to single-agent controllers with the following
guarantees:

1. Each agent has sublinear regret vs. a class of policies under adversarial perturbations/costs.
2. Each agent should be able to evaluate their policy given the controls of the other agents.
3. The policy that each agent uses is independent of the controls that the other agents play.
4. The joint cost function over all agents needs to be jointly convex.

This set of assumptions is well motivated: we review several well-studied control settings in the
literature which provide agents with such guarantees. Under these assumptions we give a reduction
that takes regret minimizing control agents and guarantees low multi-agent regret of the joint control
policy, w.r.t. the optimal joint policy in hindsight.

Let A be a single agent control algorithm1 that, given a state xt, produces a control ut, and suffers
cost ct(xt, ut). The average (policy) regret of A w.r.t. policy class Π is defined to be the difference
between its total cost and that of the best policy in hindsight, namely

RT (A) =
1

T

∑
t

ct(xt, ut)−min
π∈Π

1

T

∑
t

ct(x
π
t , u

π
t ) .

Notice that the comparator are the states xπ
t and controls uπ

t that would have been played by policy
π. Then algorithm C, described in Algorithm 3, takes as an input k such controllers, and under the
aforementioned assumptions, controls a multi-agent system with the guarantee that

RT (C) ≤
k∑

i=1

RT (Ai) + Õ

(
1

T
+ ε

)
,

where A is the control algorithm for agent i, which is not necessarily the same for every agent, and
ε is an upper bound on the error of each agent’s policy evaluation. Here RT (C) is the multi-agent
regret of the joint policy, namely the difference between the cost of C, and that of the best joint-
policy in hindsight. The reference policy class we use for comparison is the Cartesian product of the
individual agent policy classes. This is defined precisely in Section 4.

In order to obtain this result we study a generalization of online convex optimization to the multi-
agent setting. Specifically, we propose a reduction from online convex optimization (OCO) to multi-
agent OCO, such that the overall multi-agent regret is guaranteed to be the sum of the individual
agents’ regret on an induced loss function.

1.2 RELATED WORK

Multi-agent RL. Multi-agent RL (Sutton & Barto, 2018) considers the problem of finding globally
optimal joint policies through optimizing local policies. Common approaches for finding optimal
policies in RL includes dynamic programming, Monte-Carlo methods (Williams, 1992), tempo-
ral difference learning (Watkins & Dayan, 1992), combining temporal difference and Monte-Carlo
learning, evaluation strategies (Salimans et al., 2017), and policy gradient methods (Williams, 1992;
Mnih et al., 2016). Policy gradient methods, which are closest to our algorithm, compute stochastic
gradients from trajectories (Sutton et al., 2000; Sutton & Barto, 2018). More recently, Jin et al.
(2021) provide a decentralized value-based method with game-theoretic equilibrium guarantees.
Performance in multi-agent coordination significantly improves with agents’ ability to predict the
behaviour of other agents. In opponent modeling methods, wherein agents learn to model the be-
haviours of their partners, (Foerster et al., 2018) agents use counterfactual policies of other agents
to update their policy parameters. In contrast, our approach decouples the agents’ policies, forgoing
the need to deal with counterfactuals of other agents.

Decentralized and Distributed control. Communication-free decentralized control is the earliest
multi-agent control model considered in the literature. In this model, each agent observes a different
partial observation of the state and each agent provides its own control input to the system. This
classic setting is well understood with exact characterizations of stabilizability (Wang & Davison,

1More formally, it is an online convex optimization with memory algorithm, which we precisely define in
coming sections.
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1973) and controllability (Lefebvre et al., 1980). More recently, decentralized control, also called
distributed control, has been generalized to include a network layer of communication among the
controllers, modeled by a network graph. Coordinated and cooperative control over a communica-
tion network has been studied using a wide range of approaches, such as distributed optimization
(Nedić et al., 2018), model predictive control (Christofides et al., 2013; Stürz et al., 2020), and for a
wide variety of problems, including stabilization of formations, coverage, and search (Olfati-Saber
et al., 2007; Bullo et al., 2009; Cao et al., 2013; Knorn et al., 2016).

One particular direction in this setting is on designing distributed observers, using information from
neighbors to provide local estimates of the global state (Olfati-Saber, 2005; Carli et al., 2008; Matei
& Baras, 2010; Das & Moura, 2017; Park & Martins, 2017). Such distributed observers can be
applied to produce end-to-end control laws. One such approach stabilizes systems when the neighbor
graph is strongly connected and the joint system is stabilizable (Wang et al., 2020). In contrast to
the present work, approaches to this problem are decentralized from an information perspective, but
not a game theoretic perspective as controllers are designed centrally.

Exploiting input redundancy in control. Input redundancy in overactuated systems enables ef-
ficient responses (Sobel & Shapiro, 1985) and robustness to failures (Oppenheimer et al., 2006;
Tohidi et al., 2017). A number of optimization methods have been developed for redistributing de-
sired control input under different faulty conditions. Our approach does not tackle this directly, but
the action-centric rather than policy-centric philosophy of the algorithm leads to some robustness in
such settings.

Online learning and online convex optimization. The framework of learning in games has been
extensively studied as a model for learning in adversarial and nonstochastic environments (Cesa-
Bianchi & Lugosi, 2006). Online learning was infused with algorithmic techniques from mathemat-
ical optimization into the setting of online convex optimization , see (Hazan, 2019) for a compre-
hensive introduction. We particularly make use of the property that no-regret algorithms converge
to equilibrium, a phenomenon originally proposed by (Hart & Mas-Colell, 2000).

Online and nonstochastic control. The starting point of our study are algorithms which enjoy
sublinear regret for online control of dynamical systems; that is, whose performance tracks a given
benchmark of policies up to a term which is vanishing relative to the problem horizon. (Abbasi-
Yadkori & Szepesvári, 2011) initiated the study of online control under the regret benchmark for
Linear Time-invariant (LTI) dynamical systems. Our work instead adopts the nonstochastic control
setting (Agarwal et al., 2019), that allows for adversarially chosen (i.e. non-Gaussian and potentially
adaptively chosen (Ghai et al., 2021)) noise and costs that may vary with time. The nonstochastic
control model was extended to consider nonlinear and time-varying dynamics in (Gradu et al., 2020;
Minasyan et al., 2021; Chen et al., 2021). See (Hazan & Singh, 2021) for a comprehensive survey
of results and advances in online and nonstochastic control.

2 PROBLEM SETTING

2.1 NOTATION

The norm ∥ · ∥ refers to the ℓ2 norm for vectors and spectral norm for matrices. For any natural
number n, the set [n] refers to the set {1, 2 . . . n}. We use the window notation za:b := [za, . . . , zb]
to represent a sequence of vectors. We use the convention where indices i, j refer to agents, with su-
perscripts (typically) denoting an agent-specific quantity, while lack of a superscript denotes some-
thing global. We use the index −i to represent information for all agents except i, for example
u−i
t = (u1

t . . . u
i−1
t , ui+1

t . . . uk
t ).

2.2 MULTI-AGENT NONSTOCHASTIC CONTROL PROBLEM

We consider the following multi-agent control problem. Let ft : Rdx ×Rdu → Rdx and gi : Rdx →
Rdyi define known time varying dynamics. Now, starting from state x0, the system follows

yit = gi(xt) + eit, xt+1 = ft(xt, ut) + wt, (1)

where xt is the state, ut is the joint control consisting of ui
t ∈ Rdui for each i ∈ [k], yit is a partial

observation, and eit, wt are adversarial chosen disturbance terms. After committing to a control ui
t,

agent i observes the controls of all other players u−i
t along with a convex cost ct : Rdx ×Rdu → R.
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Together, the k agents suffer cost ct(xt, ut). It should be noted that while each agent shares its action
with other agents, it does not directly share its policy or its observation.

A control policy for agent i, πi :
⋃

s∈N Rsdyi × R(s−1)du → Rdu is a mapping from all available
information to a control ui

t = πi(y1:t, u1:t−1). A joint policy for the multi-agent setting is a col-
lection of policies for each agent π = π1:k. Policy classes are defined analogously with Πi being a
set of agent i policies and Π being a set of joint policies. We often consider policies parameterized
by vectors θi ⊆ Θi, where Θi is some bounded convex domain and use the parameterizations and
policies interchangeably.

Performance of joint policy π is measured by the average cost along the trajectory (xπ
1 , u

π
1 . . . ),

J(π|w1:T , e1:T ) =
1

T

T∑
t=1

ct(x
π
t , u

π
t ) .

For a set of online control algorithms for each agent C = C1:k, we are interested in the average
(policy) regret relative to some joint policy class Π, defined as

RT (C) = J(C|w1:T , e1:T )− inf
π∈Π

J(π|w1:T , e1:T ) .

2.3 ASSUMPTIONS

Converging towards optimal play for an online control algorithm may not happen immediately, so
our system cannot explode too quickly. In order to bound the cost during this stage, xt must not
explode in the absence of control. The corresponding outputs in the absence of any controller is a
concept called Nature’s y’s in (Simchowitz et al., 2020), which are an integral part of DAC policies,
defined below. We analogously define Nature’s x’s here.

Definition 2.1 (Nature’s x’s and y’s). Given a sequence of disturbances (wt, et)t>1 we define Na-
ture’s x’s and Nature’s y’s respectively as the sequences xnat,i

t , ynat,i
t where

ynat,i
t = gi(xt) + eit, xnat

t+1 = ft(xt, 0) + wt .

Assumption 2.2 (Bounded Nature’s x’s). We assume that wt and et are chosen by an oblivious
adversary, and that ∥xnat

t ∥ ≤ Rnat for all t.

We also need well behaved cost functions for learning:

Assumption 2.3. The costs ct(x, u) are convex and if ∥x∥, ∥u∥ ≤ D then there exists constant C
such that 0 ≤ ct(x, u)) ≤ CD2 .

In control, the most ubiquitous cost functions are quadratics, which satisfy this assumption. Finally,
we must restrict our joint policy class Π in order to obtain global regret guarantees. We make the
following assumption about each agent’s policy class:

Assumption 2.4 (Decoupling). For any policy πi ∈ Πi, the policy can always be represented as
a function of the disturbances eit, wt. In particular, there exists a function π̄ :

⋃
s∈N R(s−1)dx ×

Rsdyi → Rdu for any set of controls u1:t−1 and the resultant set of observations y1:t, such that
π(y1:t, u1:t−1) = π̄(w1:t−1, e

i
1:t) .

Note, that if Assumption 2.4 holds for each agent’s policy class, then the joint policy class Π will
depend implicitly on only w1:t−1, e1:t. Policies that satisfy this assumption are special in that the
controls played by one agent’s policy are completely independent of another agent’s policy, given
the disturbances are chosen obliviously.

2.4 POLICY CLASSES

We now introduce a few important policy classes that satisfy Assumption 2.4.

Disturbance-action Control. For fully observed linear systems, disturbances wt can be derived
from states and joint controls. This allows us to use Disturbance Action Control, a policy parame-
terization that is linear in the disturbance history.

Definition 2.5. A Disturbance-action Controller (DAC) (Agarwal et al., 2019), π(M), is specified
by parameters M ∈ Rdui

×mdx where the control ui
t = Mwt−m:t−1.
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A comparator policy class Πi can be defined as a bounded convex set M ⊂ Rdu×mdx of policy ma-
trices. It has been shown that DACs can approximate stable Linear Dynamic Controllers (LDCs), a
powerful generalization of linear controllers that encompasses H2 and H∞ optimal controllers under
partial observation, and is a mainstay in control applications (see Definition A.1 in Appendix A.2).
Furthermore, when costs are quadratic, it can be shown that a DAC also approximates the offline
optimal policy (Goel & Hassibi, 2021).

Disturbance-response Control. Another policy class that suits our needs, especially if the system
is partial observed, is that of Disturbance-Response Control (DRC). Unlike in the fully observed
setting, with partial observations it is generally impossible for an agent to calculate wt for use in a
policy. Instead, DRC controllers are a linear function of a window of previous Nature’s y’s defined
as follows:

Definition 2.6. A Disturbance-response Controller (DRC) (Simchowitz et al., 2020), π(M), is spec-
ified by parameters M ∈ Rdu×mdy where the control ui

t = Mynat
t−m:t−1.

Like DAC, DRC is a powerful control law which also can approximate stable LDCs. Furthermore,
Nature’s y’s are just a function of w’s and e’s so DRC policy classes satisfy Assumption 2.4.

Neural Network Policies We also consider neural network policies. In particular, fully-connected
neural-networks with ReLU activations that act on normalized windows of w’s or Nature’s y’ were
explored in (Chen et al., 2021). While there are more restrictions for this class, neural-networks are
a richer policy class than the linear counterparts DAC and DRC.

3 MULTIAGENT ONLINE CONVEX OPTIMIZATION

Our derivation henceforth for the multi-agent control problem hinges upon a generalization of OCO
to the multi-agent setting. Now we describe this generalization, explain the challenge, and give a
reduction from vanilla OCO, as well as OCO with Memory (OCO-M), to the multi-agent settings.

In multiplayer OCO we have k players and the ith learner iteratively chooses a vector from a convex
set Ki ⊆ Rd. We denote the total number of rounds as T . In each round, the ith learner commits
to a decision xi

t ∈ Ki. We define the joint decision xt = x1:k
t ∈ K = K1:k. Afterwards, the

learner incurs a loss ℓt(xt) where ℓt is a convex loss function ℓt : K → R. The learner observers
ℓit : Ki → R defined by ℓit(x) = ℓt(x, x

−i
t ), where we use the notation (x, x−i

t ) to represent
(x1

t , . . . x
i−1
t , x, xi+1

t , . . . xk
t ).

Regret is defined to be the total loss incurred by the algorithm with respect to the loss of the best
fixed single prediction found in hindsight for each player. Formally, the average multi-agent regret
of a set of learning algorithms A1:k = A1, . . .Ak is defined as

RT (A1:k)
def
= sup

ℓ1...ℓt

{
1

T

T∑
t=1

ℓt(xt)− min
x∗∈K

1

T

T∑
t=1

ℓt(x
∗)

}
.

Our goal is to create a black-box mechanism that takes as input regret minimizing strategies, and
allows for joint-regret minimization with minimal or no central coordination.

3.1 CHALLENGES OF MULTI-AGENT OCO

A natural first attempt for joint regret minimization in multi-agent OCO is to allow each regret
minimizing agent to operate on its own on the given loss function.

In this subsection we show that this naive strategy fails. As an example, consider the simple scalar
two player game. Let ℓt(x1, x2) = (x1 − x2)2 + 0.1∥(x1, x2)∥22 for all t. Now we consider A1 and
A2 to be algorithms that each alternate between playing 1 on odd t and −1 on even t. In this setup,
the online learners see losses:

ℓ1t (z) = ℓ2t (z) =

{
(z − 1)2 + 0.1z2 + 0.1 t is odd
(z + 1)2 + 0.1z2 + 0.1 t is even

By design of A1 and A2, predictions alternate between (1, 1) and (−1,−1) and ℓ1t (x
1
t ) = ℓ2t (x

2
t ) =

0.2. In contrast, the best fixed decision in hindsight is 0 for both players, suffering loss ℓ1t (0) =
ℓ2t (0) = 1.1 for all t, so each player has negative regret. However, for the multiplayer game, the
best loss in hindsight is 0 by playing x1

t = x2
t = 0 for all t, so the multi-agent regret is 0.2T . We
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note that this phenomenon is well known in the game theory literature, where failure of no-regret
algorithms to converge to Nash equilibrium has been studied (Blum et al., 2008). Our study extends
this observation to the dynamic games setting.

3.2 REDUCTION FROM OCO TO MULTI-AGENT OCO

To overcome the lower bound of the previous section, we choose to apply the reduction from multi-
agent to single agent OCO via the instantaneous linearization. This simple change makes all the
difference, and allows for provable sublinear multi-agent regret (See Appendix. A.1 for proof).

Algorithm 1 Multiplayer OCO

Input: OCO algorithm Ai, convex domain
Ki ⊆ Rd

for t = 1 to T do
Learner Ai predicts xi

t
Calculate git = ∇ℓit(x

i
t)

Feed Ai linear loss function ⟨git, ·⟩
end for

Algorithm 2 Multiplayer OCO with Memory

Input: OCO-M algorithm Ai, convex domain
Ki ⊆ Rd and memory length h
for t = 1 to T do

Learner Ai predicts xi
t

Calculate git = ∇ℓit(x
i
t−h:t)

Feed Ai linear loss function ⟨git, ·⟩
end for

Theorem 3.1. Suppose for each i ∈ [k], OCO algorithm Ai has regret RT (Ai) over Ki ⊆ Rd with
linear loss functions provided by Alg. 1, then the multi-agent regret of Alg. 1 is upper bounded by
RT (A1:k) ≤

∑k
i=1 RT (Ai).

3.3 MULTIPLAYER OCO WITH MEMORY

The control setting which motivates our whole study is inherently state-based. Therefore we need to
extend the multi-agent OCO to allow for memory.

This is similar to the previous section but the loss functions now have memory of the h previous
controls. After each of the k online learners commits to the joint decision xt as defined in the
previous section. The learners incur a loss ℓt(xt−h:t) where ℓt is a convex loss function ℓt : Kh+1 →
R. The learner observers ℓit : Kh+1

i → R by ℓit(z) = ℓt(z, x
−i
t−h:t).

Regret is defined to be the total loss incurred by the algorithm with respect to the loss of the best
fixed single prediction found in hindsight for each player. Formally, the average regret of a set of
learning algorithms A1:k is

RT (A1:k)
def
= sup

ℓ1...ℓt

{
1

T

( T∑
t=1

ℓt(xt−h:t)− min
x∗∈K

T∑
t=1

ℓ̄t(x
∗)
)}

where ℓ̄t(x) = ℓt(x, . . . x).

The main result of this section is given by the following theorem, which is formally proved in the
appendix. The proof (See Appendix A.1) follows the memoryless setting.
Theorem 3.2. Suppose for each i ∈ [k] OCO-M algorithm with memory Ai has regret RT (Ai)
over Ki ⊆ Rd with linear loss functions provided by Alg. 2, then the regret of Alg. 2 has regret upper
bounded by RT (A1:k) ≤

∑k
i=1 RT (Ai).

4 THE META-ALGORITHM AND ITS ANALYSIS

This section contains our main result: a meta-algorithm for multi-agent nonstochastic control. We
start by defining the precise requirements from the single agent controllers that are given as input,
and assumptions on them. We then proceed to describe the meta-algorithm and its main performance
guarantee on the multi-agent regret. We describe a few special cases of interest in Appendix B.

4.1 ASSUMPTIONS AND DEFINITIONS

The single agent control algorithms that are the basis for the reduction need to satisfy following
requirements:

• Each agent should be able to evaluate their policy given the controls of the other agents.
• The joint cost function over all agents is jointly convex.
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• Agent policies need to be decoupled in the sense of Assumption 2.4.

We now specify these requirements more formally.

We introduce two related notions of a (ε, h)-policy evaluation oracle (PEO) for a multi-agent control
problem. A joint PEO allows us to counterfactually evaluate a complete multi-agent policy, while a
local PEO allows us to counterfactually evaluate the policy of a single agent, fixing the remainder of
the controls. ε is the accuracy required of this oracle, while h is something like a mixing time such
that the cost of the tth state can be well approximated regardless of the history before t− h.

Given the available control information u1:t−1, observations yi1:t, and cost function ct, a loss func-
tion ℓt is a joint (ε,H)-PEO, if ℓt(θ1:k1:H) provides an ε approximate estimate of ct(x̃t, ũt) where x̃t

is the counterfactual state had ũt−r+1 been played according to joint policy πθ1:k
r

. Likewise, ℓit is
the local PEO of the ith agent, if ℓit(θ1:h) provides an ε approximate estimate of ct(x̃t, ũt) where ũt

and x̃t are the counterfactual state and observation had ui
t−r+1 been played according to policy πθr

while all other controls u−i
1:t−1 remain the same. These oracles are defined formally in Appendix A.3.

Remark 4.1. In order for a local agent to be able to provide an accurate estimate of the cost using only
partial observations and controls, intuitively the cost may need to be restricted in in its dependence
on the fully observed state. For example, if all agents’ partial observations contain certain features
from the state (e.g. the x-y-z position of the center of gravity of drone but no other velocity or
angular features), the cost can depend on these and an agent PEO may exist.

A key observation is that for policies satisfying Assumption 2.4, if u−i
t−h+1:t are generated by policies

θ−i
t−h+1:t respectively, then a local PEO and a joint PEO can be related via ℓit = ℓt(·, θ−i

t:t−h+1).
Because all controls are determined directly from the disturbances, changes in agent i’s controls
have no impact on the controls of other agents.

We now assume that beyond an initial burn-in time Tb, we have the information to construct such an
(ε, h)-local PEO. We also must guarantee that the PEOs we use are convex in order to use OCO.

Assumption 4.2 (Information). For t ≥ Tb > h, for each agent i, there exists a functional Li such
that ℓit = Li(ct, u1:t, y

i
1:t) is a (ε, h)-local PEO for policy class Θi.

Assumption 4.3 (Convexity). There exists a (ε, h) joint PEO ℓt that is convex such that ℓit =
Li(ct, u1:t, y

i
1:t) satisfies ℓit = ℓt(·, θ−i

t−h+1:t).

4.2 MULTI-AGENT CONTROL META-ALGORITHM AND ANALYSIS

Our reduction is described in Algorithm 3. It accepts as input OCO-M algorithms Ai and applies
them sequentially using the linearization technique of the previous section.
Algorithm 3 Multi-Agent Nonstochastic Control

1: Input: Horizon length T , burn in time Tb, policy evaluation horizon h, and for each i ∈ [k],
OCO-M algorithms Ai over policy parameterization class Θi, policy evaluation functional Li .

2: Initialize θi0 = · · · = θiTb
as a policy that always plays control 0.

3: for t = 1 to T do
4: for i = 1 to k do
5: Observe yit and play control ui

t = πθi
t
(u1:t−1, y

i
1:t)

6: Observe controls from other agents to form joint control ut = u1:k
t and cost ct

7: if t > Tb then
8: Construct policy evaluation oracle ℓit = Li(ct, u1:t, y

i
1:t) and compute git = ∇ℓit(θ

i
t−h,t)

9: Feed Ai linear loss function ⟨git, ·⟩ and receive policy parameterization θit+1.
10: end if
11: end forPay ct(xt, ut)
12: end for
The inner loop of the algorithm starting at Line 5 is what is performed by a local agent. The
information available in this scope is the local observation and the controls of the other agents. We
note that Alg. 3 only uses ℓit instead of ℓt, which is only used for analysis. This is fundamental as
each agent is unaware of the policies of other agents.

The performance guarantee for this meta-algorithm is given by:
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Theorem 4.4. Suppose Assumptions 2.2, 2.3, 2.4 hold and Assumptions 4.2, 4.3 holds with burn-
in Tb, horizon h and error ε. If Ai are OCO-M algorithms with regret RT (Ai) on linear loss
functions provided by Algorithm 3 over policy parameterization class Θi, then the multi-agent regret
of Algorithm 3 is bounded by

RT (C) ≤
k∑

i=1

RT (Ai) +
TbCR2

nat

T
+ 2ε .

See Section A.4 for proof. Algorithm 3 leaves most of the technical challenge to a policy evaluation
oracle. It’s not immediately obvious that such a function exists and is efficient to compute. Fortu-
nately, recent work from nonstochastic control provides exactly what we need for Linear Dynamical
Systems with a variety of policy classes. Appendix B contains a thorough discussion of applications
for Linear Dynamical Systems.

5 EXPERIMENTS

5.1 ROBUSTNESS TO SYSTEM FAILURES

Our algorithm guarantee can also be extended to handle situations where certain agents no longer are
locally regret minimizing (e.g. an actuator breaks). Because Algorithm 3 is agnostic to the policy
played by other players, if we want to bound the regret for a subset I ⊂ [k] of controllers, we can
just view the policy class of the remaining agents as singleton open-loop policies that always play
the same controls and so Theorem 4.4 will be a regret guarantee with respect to just the agents I
with the remaining controls obliviously fixed.

Such robust guarantees are not achieved with existing approaches in nonstochastic control. Typi-
cally, as in the Gradient Perturbation Controller (GPC) (Agarwal et al., 2019), a PEO ℓt(θ1:h) is
passed to an online learning algorithm. If the system breaks down and certain controls are not
played according to the chosen policy, there will be a mismatch between the true cost and the PEO.
In contrast, because ℓit uses the actual controls played by the algorithm, for an agent i that is not ex-
periencing failure, the oracle accuracy remains unchanged and provides the correct gradient signal.

Algorithm 3 may be useful to provide robustness even for a single agent system with some failures.

5.2 ADMIRE EXPERIMENTS

In Fig. 1 we run GPC, LQR control, and a linear Hinf control policy, along with Multi-Agent GPC
(MAGPC), which is Algorithm 3 using gradient descent as the online learners Ai. These are used
to stabilize the ADMIRE overactuated aircraft model (Härkegård & Glad, 2005) in the presence
of 3 different disturbance profiles: Gaussian noise, a random walk, and a sinusoidal disturbance
pattern. We run the algorithms on the complete system, and with the 4th controller forced inactive
by zeroing out the control to demonstrate the robustness of our approach. Figure 1 demonstrates the
GPC failure described in Section 5.1. In the random walk experiment, GPC explodes, but MAGPC
stabilizes the system. See Appendix C for full details. We note that, when a control failure does not
occur and learning rates are sufficiently small, GPC and MAGPC are essentially the same algorithm.
This is because the policies change slowly so ℓit(θt−h:t) ≈ ℓit(θt . . . θt), which is GPC’s proxy loss.
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Figure 1: Cost of GPC, MultiAgentGPC, H2 and H∞ control before and after the 4th controller
becomes inactive in the presence of gaussian disturbances, disturbances generated by a random
walk, and sinusoidal disturbances.
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6 DISCUSSION AND CONCLUSIONS

Conclusions We have described a new approach for regret minimization in multi-agent control that
is based on a new proposed performance metric: multi-agent regret. This measures the difference in
cost between that of a distributed control system and that of the best joint policy from a reference
class. We give a reduction that takes any regret minimizing controller and converts it into a regret
minimizing multi-agent distributed controller.

Future directions The most interesting question is whether similar metrics of performance and
ideas can be applied to general multi-agent reinforcement learning (MARL), since here we exploit
full knowledge of the dynamics. It will be interesting to see if our information model can be relaxed
and still allow sublinear multi-agent regret. It also remains to explore the extent of robustness
obtained from a multi-agent regret minimizing algorithm.
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A DEFERRED TECHNICAL MATERIAL

A.1 PROOF OF THEOREMS 3.1 AND 3.2

We provide a proof of Theorem 3.1, for the multi-agent regret of an OCO algorithm.

Proof. Let x̄ ∈ argminx∈K
∑T

t=1 ℓt(x) with x̄i the component corresponding to player i. By the
convexity of ℓt,

RT (A1:k) =

T∑
t=1

(ℓt(xt)− ℓt(x̄)) ≤
T∑

t=1

∇ℓt(xt)
⊤(xt − x̄) .

Now we note that we can decompose ∇ℓt by player, so

∇ℓt(xt)
⊤ = [∇ℓ1t (x

1
t )

⊤ . . .∇ℓkt (x
k
t )

⊤] ⇒ ∇ℓt(xt)
⊤(xt − x̄) =

k∑
i=1

∇ℓit(x
i
t)

⊤(xi
t − x̄i) .

Now we note that, RT (Ai) =
∑T

t=1 ∇ℓit(x
i
t)

⊤(xi
t − x̄i) and the result follows.

Following the same ideas, we provide a proof of Theorem 3.2, for the multi-agent regret of an
OCO-M algorithm.

Proof. Let x̄ ∈ argminx∈K
∑T

t=1 ℓt(x) with x̄i the component corresponding to player i. Now by
the convexity of ℓt,

RT (A1, . . .Ak) =

T∑
t=1

ℓt(xt−h:t)−
T∑

t=1

ℓt(x̄, . . . x̄) ≤
T∑

t=1

∇ℓt(xt−h:t)
⊤(xt−h:t − (x̄, . . . , x̄)) .

Now we note that we can decompose ∇ℓt by player (after reorganizing coordinates), so
∇ℓt(xt−h:t) = [∇ℓ1t (x

1
t−h:t)

⊤,∇ℓ2t (x
2
t−h:t)

⊤, . . .∇ℓkt (x
k
t−h:t)

⊤]

⇒ ∇ℓt(xt−h:t)
⊤(xt−h:t − (x̄, . . . , x̄)) =

k∑
i=1

∇ℓt(x
i
t−h:t)

⊤(xi
t−h:t − (x̄i, . . . , x̄i)) .

Now we note that, RT (Ai) =
∑T

t=1 ∇ℓt(x
i
t−h:t)

⊤(xi
t−h:t − (x̄i, . . . , x̄i)) and the result follows.

A.2 LINEAR DYNAMICAL CONTROLLER

Definition A.1 (Linear Dynamic Controller). A linear dynamic controller π is a linear dynamical
system (Aπ, Bπ, Cπ, Dπ) with internal state st ∈ Rdπ , input xt ∈ Rdx , and output ut ∈ Rdu that
satisfies

st+1 = Aπst +Bπxt, ut = Cπst +Dπxt .

Linear dynamical controllers involve an internal linear dynamical system to produce a control. The
combination of a Kalman Filter with Optimal control on the state estimates is a classic example.

A.3 TECHNICAL DETAILS FROM SECTION 4

Below are the formal definition of joint and local policy evaluation oracles:
Definition A.2. ℓt : Θh → R is an (ε, h)-joint PEO if |ℓt(θ1:k1:h) − ct(x̃t, ũt)| ≤ ε where
(x̃1:t−h, ỹ1:t−h, ũ1:t−h−1) = (x1:t−h, y1:t−h, u1:t−h−1) and for s > t− h

ũs = πθ1:k
t−s+1

(ỹ1:s, ũ1:s−1), (2)

x̃s+1 = fs(x̃t, ũs) + ws, ∀i ∈ [k], ỹis+1 = gi(x̃s+1) + eis+1 .

ℓit : Θh
i → R is an (ε, h)-local PEO for agent i if |ℓit(θ1:h) − ct(x̃t, ũt)| ≤ ε where

(x̃1:t−h, ỹ
i
1:t−h, ũ1:t−h−1) = (x1:t−h, y

i
1:t−h, u1:t−h−1), ũ−i

t−h+1:t = u−i
t−h+1:t and for s > t− h

ũi
s = πθi

t−s+1
(ỹi1:s, ũ1:s−1), (3)

x̃s+1 = fs(x̃t, ũs) + ws, ỹis+1 = gi(x̃s+1) + eis+1 .
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A.4 PROOF OF MAIN THEOREM

We provide a complete proof of Theorem 4.4:

Proof. In order to analyze the regret we begin with the following regret decomposition. We first let
θ∗ = argminθ∈Θ

∑T
t=1 ct(y

πθ
t , uπθ

t ) and let π∗ = πθ∗ denote offline optimal joint policy from our
comparator policy class.

RT (C) =
1

T

T∑
t=1

ct(x
C
t , u

C
t )−

1

T

T∑
t=1

ct(x
π∗

t , uπ∗

t ) ≤
(
1

T

Tb∑
t=1

ct(x
nat
t , 0)−

Tb∑
t=1

ct(x
πθ∗
t , uπθ∗

t )

)
︸ ︷︷ ︸

burn-in cost

+

(
1

T

T∑
t=Tb+1

ct(x
C
t , u

C
t )−

1

T

T∑
t=Tb+1

ℓt(θt:t−h)

)
︸ ︷︷ ︸

algorithm truncation error

+

(
1

T

T∑
t=Tb+1

ℓt(θt:t−h)−
1

T

T∑
t=Tb+1

ℓt(θ
∗, . . . , θ∗)

)
︸ ︷︷ ︸

multi-agent ℓ policy regret

+

(
1

T

T∑
t=Tb+1

ℓt(θ
∗, . . . , θ∗)− 1

T

T∑
t=Tb+1

ct(x
πθ∗
t , uπθ∗

t

)
︸ ︷︷ ︸

comparator truncation error

The first term of the decomposition is exactly the cost of the first Tb iterations because the Alg. 3
starts with Tb zero controls so by definition xC

t are Nature’s x’s. By Assumption 2.3, losses are
nonnegative so we have −

∑Tb

t=1 ct(x
πθ∗
t , uπθ

t ) ≤ 0 so we drop these terms. By combining Assump-
tions 2.3 and 2.2 we bound the burn-in cost as

1

T

Tb∑
t=1

ct(x
nat
t , 0) ≤ C

T

Tb∑
t=1

∥xt∥2 ≤ CTbR
2
nat

T
.

The comparator truncation error is bounded by ε because for t > Tb, |ℓt(θ∗, . . . , θ∗) −
ct(x

πθ∗
t , uπθ∗

t )| ≤ ε by definition of an (ε, h) joint PEO. Similarly, since C produces xC
t with con-

trols us from joint policy θs for the preceding h controls, the algorithm truncation error is also
bounded by ε.

To bound the ℓt multi-agent policy regret term, we note that Algorithm 3 chooses θt exactly by the
mechanism in Algorithm 2 with loss functions ℓit. By Assumption 4.2, ℓit = ℓt(·, θ−i

t−h:t−1) and by
Assumption 4.3, ℓt is convex as desired. As such, we bound the ℓt multi-agent policy regret term
using Theorem 3.2 as

T∑
t=Tb

ℓt(θt:t−h)−
T∑

t=Tb+1

ℓt(θ
∗, . . . , θ∗) ≤ T

k∑
i=1

RT (Ai) .

The result follows after combining the above bounds.

B APPLICATIONS TO LINEAR DYNAMICAL SYSTEMS

For simplicity of presentation, we consider only stable systems. However, we note that in settings
with a single shared observation yt, these algorithms can be extended to work for unstable systems.
In order to do this, all agents must be aware of baseline stabilizing controllers employed by each
agent, and Algorithm 3 can then be applied on the stable closed-loop system including the stabiliz-
ing component. For a thorough treatment of this approach, we refer the reader to Appendix G of
(Simchowitz et al., 2020).

We assume strong stability, which guarantees spectral radius of A strictly less than 1. Strong stability
assures us that impact of disturbances and controls from the far history have a negligible impact
on the current state. This geometric decay enables the construction of PEO’s with horizon h just
logarithmic in T while providing ε = 1

T approximation error.
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Fully Observed LDS with Disturbance Action Control We consider the case of a fully observed
LDS defined as follows:

yt+1 = xt+1 = ft(xt, ut) + wt = Axt +But + wt ,

with bounded adverserial disturbances wt, known strongly stable dynamics, and well behaved con-
vex costs ct satisfying Assumption 2.32.

We now show that a linear system with a DAC policy class M can satisfy assumptions required
for Theorem 4.4. We already saw that Assumption 2.4 holds for DAC policies. Next we show
that Assumption 2.2 holds. By fully unrolling dynamics, Nature’s x’s can be written as a linear
combination of disturbances xnat

t =
∑t−1

s=0 A
swt−s.

Now because wt are bounded, and A is strongly stable, ∥xnat
t ∥ can be bounded by a convergent

geometric series. The last piece is constructing a PEO for a DAC policy. Unrolling dynamics, we
express states in terms of controls:

xt ≈ xnat
t + [B,AB, . . . Ah−1B]ut−1:t−h = Ĝut−1:t−h .

The truncation follows from strong stability of the dynamics. Decomposing Ĝ, our Markov op-
erator by agent, we can write xt ≈ xnat

t +
∑k

i=1 Ĝiu
i
t−1:t−h. Now to compute ℓit(M1:h) =

ct(x̃(M1:h),Mwt−m:t−1) we hold u−i
s fixed while changing the policies for agent i. Because the

counterfactual state x̃(M1:h) is affine in ui
t−1:t−h and by the DAC policy parameterization agent i’s

controls are linear, the counterfactual state can be approximated as linear in M1:h. Composing with
a convex cost ct gives a convex PEO ℓit. A complete analysis in the single agent setting can be found
in (Agarwal et al., 2019). In order to compute ℓit(M1:h), the disturbances wt are needed. Because
agent i has access to the joint control ut, disturbances can be computed as wt = xt+1−Axt−But.
Once Tb = m+ h disturbances are observed, ℓit can be computed.

Similar ideas can be applied using Nature’s y’s and DRC to handle partial observations. Further-
more, Theorem 4.4 can be applied with richer neural network policy classes as well. For a more
complete discussion, see Appendix B.

Partially Observed LDS with Disturbance Response Control Another setting that we can cap-
ture with out meta-algorithm is partially observed linear dynamical systems, where all agents share
the same partial observation. In this case, the dynamics are as follows,

yt = g(xt) + et = Cxt + et,

xt+1 = ft(xt, ut) + wt = Axt +But + wt ,

with bounded adversarial disturbances et, wt and known strongly stable dynamics. For a partially
observed system with adversarial disturbances, it is known that many states can be consistent with
the observations and so costs must be restricted to be well defined for the agents. This is solved by
using convex costs of the observation ct : Rdy × Rdu , so at time t the cost incurred is ct(yt, ut).
Because yt is an affine function of xt, this cost is still convex in x to fit the general setting.

A policy class, that suits our needs is that of Disturbance-Response Control (DRC). The satisfaction
of the assumptions of Algorithm 3 follows from similar arguments to DAC in the fully observable
case. In particular, to compute PEO ℓit, the following approximate Markov operator is used

yt ≈ ynat
t +

k∑
i=1

Ĝui
t−1:t−h (4)

Ĝ = [CB,CAB, . . . CAh−1B] .

In the above equation Ĝi is the block of the Markov operator Ĝ corresponding to the ith agents
controls. Beyond this, the core ideas are the same, just replacing disturbances with Nature’s y’s.
The last piece necessary is computing Nature’s y’s. This is not challenging given we have access to
all agent’s controls, so we can let ynat

t ≈ yt − Ĝiu
i
t−1:t−h. For a complete analysis of this approach

in the single agent setting, refer to (Simchowitz et al., 2020).

2In general, we may actually need more assumptions on the costs, and the size of our comparator policy
classes as ∥git∥ in Line 11 of Algorithm 3 depends on these pieces, and hence so does RT (Ai).
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Locally Partially Observed LDS with Disturbance Response Control An extension of the prior
setting of interest is for each agent to have it’s own local partial observation without needing to share
it in the protocol. In particular, consider the multi-agent system

xt+1 = ft(xt, ut, wt) = Axt +But + wt,

yit+1 = gi(xt+1, et) = Cixt+1 + eit+1 ,

with bounded adversarial disturbances eit, wt and known strongly stable dynamics. As noted in
Remark 4.1, in order for each agent to have a local PEO, the cost ct(xt, ut) needs to be computable
with only local information at each agent. Therefore, we assume there are local cost functions
cit : Rdyi × Rdu for each agent such that for all i ∈ [k], ct(x, u) = cit(C

ix+ eit, ut).

With access to the global loss in each agent, agent i can use DRC with ynat,i
t to satisfy all assumptions

required for our meta-algorithm. Each observation matrix Ci produces a different markov operator
Gi = [CiB, . . . , CiAh−1B], such that yit = ynat,i

t + Giut−1:t−h. Using Gi agent i can compute
ynat,i
t and build a PEO in the same way as the single partial observation setting.

Linear Dynamics with Neural Network Policies All the previous policy parameterizations were
linear in some feature representation. Recent work shows that nonstochastic control can extend
beyond linear policies using analysis from deep learning theory (Chen et al., 2021). The authors
consider the fully observed setting with fully-connected ReLU neural network policies that act on
normalized windows of disturbances. A regret bound for online episodic control is shown by proving
that under some technical conditions, a PEO is ε-nearly-convex, which means

p(x)− p(y) ≤ ⟨∇p(x), x− y⟩ − ε .

It can be readily shown that Theorem 3.2 can be extended to nearly convex functions using near-
convexity in place of convexity, so we can get a multi-agent control regret guarantee for two-layer
neural nets that act on normalized windows of disturbances. In addition, the proof that a PEO is
nearly convex can be extended to neural net policies that act on normalized windows of Nature’s
y’s, so neural net policies can also be used in the partial observation settings described above.

C ROBUSTNESS TO SYSTEM FAILURES: OVERACTUATED AIRCRAFT

In this section we provide the mathematical model of an overactuated aircraft based on ADMIRE
(Härkegård & Glad, 2005), and demonstrate the robustness of our controller to system failures.

Let α, β, p, q, r be angle of attack, slideslip angle, roll rate, pitch rate and yaw rate respectively.
State space can be given as x = [α β p q r]

T and input space consists of 4 one-dimensional
controllers,

[
u1 u2 u3 u4

]
. Discrete linear dynamics of the system can be given as x(t+1) =

Ax(t) +
∑4

i=1 Biu
i(t) +W (t) where,

A =


1.5109 0.0084 0.0009 0.8598 −0.0043

0 −0.0295 0.0903 0 −0.4500
0 −3.1070 −0.1427 0 2.7006

2.3057 0.0097 0.0006 1.5439 −0.0029
0 0.5000 0.0125 0 0.4878



B = [B1 B2 B3 B4] =


0.6981 −0.5388 −0.5367 0.0029

0 −0.2031 0.2031 0.3912
0 −2.0768 2.0768 −0.4667

1.8415 −1.4190 −1.4190 0.0035
0 −0.1854 0.1854 −0.7047


and W (t) is the disturbance.

C.1 EXPERIMENTAL SETUP

Controller details:

1. GPC has a decaying learning rate of 0.001
t , a rollout length h of 5 and uses DACs with

windows of size 5.
2. MAGPC is split into 4 1-d controllers, each using decaying learning rate of 0.001

t , a rollout
length 5 and a DAC with window length 5.
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3. We use a linear H∞ controller and standard infinite horizon LQR linear controller.

Disturbance details:

1. Random walk chooses wt = wt−1 +Xt where Xt is a standard Gaussian random variable.
2. Gaussian noise is iid. and has variance 1.
3. Sinusoidal noise is chosen via wi = sin(2t + ϕi) where ϕ = [12.0, 21.0, 3.0, 42.0, 1.0],

picked arbitrarily once.

Fourth control is set to 0 in one experiment and otherwise controls are left unchanged.

17


