
Bridging Natural Language and Emergent
Representation in Hierarchical Reinforcement

Learning

Zihe Ji1,2, Sao Mai Nguyen1,3, Mehdi Zadem4

1Flowers Team, U2IS, ENSTA Paris, IP Paris & Inria
2 Shanghai Jiaotong University

3IMT Atlantique, Lab-STICC, UMR CNRS 6285
4LIX, École Polytechnique,Institut Polytechnique de Paris, France

zihe.ji@ensta-paris.fr, nguyensmai@gmail.com, zadem@lix.polytechnique.fr

Abstract

Hierarchical Reinforcement Learning (HRL) breaks down complex tasks into
manageable subtasks, but faces challenges with efficiency and generalization in
high-dimensional, open-ended environments. Human In The Loop approaches offer
a potential solution to these limitations. In this work, we propose the integration of
large language models (LLMs) with HRL, leveraging LLMs’ natural language and
reasoning capabilities and study how to bridge the gap between human instructions
and HRL’s learned abstract representations. By translating human demonstrations
into actionable reinforcement learning signals, LLMs can improve task abstraction
and planning within HRL. Our approach builds upon the Spatial-Temporal Abstrac-
tion via Reachability (STAR) algorithm, using a LLM to optimize the hierarchical
planning process. Empirical results obtained on continuous control tasks illustrate
the potential of LLMs to enhance HRL particularly in environments requiring
spatial reasoning and hierarchical control.

1 Introduction

Open-ended learning [Doncieux et al., 2018] is characterised by multi-task learning, where the set of
tasks is not known in advance, including interrelated tasks where easy tasks can be composed into
more complex tasks. Recent advances in Hierarchical Reinforcement Learning (HRL) have allowed
agents to efficiently solve complex, long-horizon problems by decomposing them into easier, more
manageable sub-problems. In particular, the STAR [Zadem et al., 2024] algorithm learns, using
intrinsic motivation, an abstract goal space that preserves environment dynamics by focusing on
reachability relations between sets of states. Unlike other HRL algorithms that use only continuous
space or continuous abstract representations, STAR’s learned abstraction acts as a discretisation of
the state space, where every goal is a set of states that exhibit similar reachability properties in the
task. This goal representation is acquired online with the hierarchical policy, while driving sample
efficiency and interpretability.

Still, current RL algorithms fail to transpose to robots because they require a large number of real
actions to sample the continuous high-dimensional space of states and actions, hence requiring a
lot of time and are not scalable for open-ended learning. Therefore, complementary developmental
mechanisms need to constrain the complexity of the exploration areas and structure the environment
by guiding the learning curriculum toward learnable subspaces. Furthermore, the learned goals are not
directly interpretable since it is misaligned with human representations such as in natural language.
An important aspect of intelligent systems is to ensure that we can communicate with them intuitively

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



and efficiently. A learning agent should allow users to provide feedback and instructions to guide
the learning process just as we teach other humans. Following the principles of a human-centered
approach [Boy, 2017], the agent should ground its reasoning in a common language with humans.
The Human In The Loop (HITL) [Wu et al., 2021, Retzlaff et al., 2024] Reinforcement Learning
paradigm studies how to integrate humans in the different stages of an agent’s life cycle. This includes
how human demonstrations can be used to enhance the learning process of primitive [Nguyen and
Oudeyer, 2012] or sequential [Duminy et al., 2019] tasks, and how humans can instruct RL agents via
natural language [Colas et al., 2020]. In this vein, a subfield that has gained attention recently is the
integration of Large Language Models (LLMs) in synergy with RL agents. The advances achieved
in building LLMs (e.g. OpenAI’s GPT, Meta’s LLAMA, Anthropic’s Claude), have accelerated the
creation of language based HITL approaches [Pternea et al., 2024] in different flavors. First, RL can
be used in service of training and improving LLMs in natural language tasks such as conversation
and question answering. In the vein of approaches, Reinforcement Learning from Human Feedback
(RLHF) [Ouyang et al., 2022] has demonstrated how human feedback can be captured by a RL agent
and used to fine-tune large language models. Inversely, a LLM can benefit RL agents in improving
sample efficiency and injecting a reasoning layer [Du et al., 2023] that would alleviate the need for
extensive exploration, especially in the initial training phases. A popular example of such approaches
rely on the LLM as a high-level planner, providing instructions to the RL agent [Wong et al., 2023,
Ichter et al., 2022, Wu et al., 2023], which can then be used to guide the learning process. Under such
architectures, the LLM has to communicate with the RL agent in a common language that allows
to express goals. Establishing this common language often resorts to using predefined predicates,
reducing the generality for open-ended learning.

With the outlook of establishing a language to communicate with a dynamic, emerging symbolic
representation in open-ended learning, we propose in this paper some perspectives on how the
interpretability of the reachability-aware goal abstraction in STAR can allow for a LLM to reason
about abstract goals and boost the planning capabilities of the approach. We argue that this approach
is on the one hand allowing humans to instruct the algorithm in natural language, and on the other
hand, to allow the algorithm to clearly communicate its behavior. Our main contributions in this work
is to explore using LLMs as high-level instructor for the STAR algorithm, and whether it can provide
an interpretable and coherent explanation of the agent’s behaviour to humans.

2 Spatial-Temporal Abstraction via Reachability (STAR) Algorithm

We base our work on the STAR algorithm, which efficiently partitions the state space. The partitioning
data from STAR is used to test the integration of language instructions in the HRL framework.

2.1 Overview of the STAR Algorithm

We consider a goal-conditioned Markov Decision Process (S,A, P, rext), where S ⊆ Rn is a
continuous state space, A is an action space, P (st+1 | st, at) is the transition function, and rext : S ×
S → R is the reward, defined as the negative distance to the goal g∗ ∈ S: rext (s, g

∗) = −∥g∗ − s∥2.
The objective in multi-task reinforcement learning is to learn a goal-conditioned policy π that
maximizes the expected reward by sampling actions a ∼ π (st | g∗) at each timestep.

The goal abstraction is modeled by a function N : S → 2S that maps states to sets of states (i.e.
∀s ∈ S,N (s) ⊆ S). We refer to the abstract goal space as GN . The elements of G are denoted as G.

The function N depends on the abstraction method: Mannor et al. [2004] use stochastic partitioning
with linear subpolicies, while STAR [Zadem et al., 2024] uses k-step reachability: a state s can reach
s′ using policy π(., Gj) in k steps. Thus, the abstract goal space G consists of sets of reachable states.

The STAR architecture comprises three hierarchical agents:

• Navigator: The high-level agent selects an abstract goal G ∈ G to guide the agent towards
the task goal g∗: Gt+k ∼ πNav (st, g

∗).

• Manager: The mid-level agent picks subgoals in the state space, conditioned on the
Navigator’s goal: gt+l ∼ πMan (st, Gt+k).

• Controller: The low-level policy samples actions to reach the subgoal: a ∼ πCont (st, gt+l).

2



The Manager and Controller use TD3 [Fujimoto et al., 2018] for learning, while the Navigator
employs Q-learning. Each agent operates at different timescales: the Navigator selects a goal every k
steps, the Manager every l steps (with k a multiple of l), and the Controller at each step. Initially, the
abstraction G is coarse, making direct goal-reaching challenging. The Manager’s subgoals serve as
intermediate targets, facilitating easier learning for the Controller. This structure allows STAR to
guide the agent through large state abstractions while supporting low-level policy learning.

The Manager and Controller use TD3 [Fujimoto et al., 2018] for learning, while the Navigator
employs Q-learning. Each agent operates at different timescales: the Navigator selects a goal every k
steps, the Manager every l steps (with k a multiple of l), and the Controller at each step. Initially, the
abstraction G is coarse, making direct goal-reaching challenging. The Manager’s subgoals serve as
intermediate targets, facilitating easier learning for the Controller. This structure allows STAR to
guide the agent through large state abstractions while supporting low-level policy learning.

2.2 Integration of LLM

For tasks in real-world environments, humans intuitively understand and navigate them. For instance,
navigating a maze, moving from the living room to the kitchen, can be easily communicated using
language. To reason and compose symbols grounded in a continuous environment, we take advantage
of the discrete representation output by STAR as an intermediary capable of extracting the abstract
spatial states of the algorithm and human instructions, then converting them into a format the
algorithm can understand, ultimately accelerating the learning process. To achieve this, we propose
the conversion of abstract spatial states and goals into a textual representation using LLM.

As the top-level agent, the Navigator only selects the next abstract region Gt+k ∼ πNav (st, g
∗),

we propose a translation instruction experiment. In the first experiment, we test the ability of
LLMs to perform full route planning based on human-provided instructions, (Gt+k, . . . , Gt+nk) ∼
πLLM (X, st, g

∗). Simultaneously, from another perspective, to evaluate the interactivity and align-
ment of LLM with spatial reasoning, we propose a naming experiment. In the second experiment,
we translate abstract regions, G ∈ G, into natural language descriptions and test whether LLM can
support the mapping between continuous spatial regions and symbolic representations.

2.3 Representation of States and Goals

The Ant, adapted from Duan et al. [2016] and Nachum et al. [2018], is a simulated quadrupedal robot
with a 30-dimensional state space, including positions, orientations, velocities, and joint angles. The
action space is continuous and 8-dimensional, corresponding to forces applied on the joints.

We evaluate two tasks in a 2D environment of size 25 for each dimension: AntMaze, where the
Ant navigates a ⊃-shaped maze to the exit, and AntFall, which involves crossing a chasm using a
movable block as a bridge. These tasks are hierarchical, requiring both low-level movement and
high-level navigation. The environment uses Mujoco physics simulator [Todorov et al., 2012]. A
training episode lasts up to 500 timesteps. The reward is the negative Euclidean distance to the goal,
scaled by 0.1, with success if the distance is smaller than 5.

We use the partitioning from the STAR algorithm’s training to test integrating human demonstrations.
Human instructions guide the agent in the AntMaze or AntFall environments. To represent partitioning
data as prompts for the LLM, we use:

• Maze layout: Compressed textual form with marked obstacles and partition regions.
• Coordination information: Tracks the agent’s current location and the goal.
• Adjacency list: Details neighboring relations for each region.

3 Experimental Evaluation

Naming Experiment for Spatial Regions To evaluate the LLMs’ ability to generate human-
readable descriptions of abstract goals, we utilized four scenarios with Timestep 930000 as a one-shot
prompt (see Fig. 1 and Appendix. A). Llama3-8b-instruct and GPT-4o were tested; the former runs
on a GPU with more than 16GB of RAM. Completing the STAR program for 5 million timesteps
takes about 15 hours, with LLM inference taking 0.6 seconds each. Table. 1 shows the names given

3



Figure 1: Four situations in the AntMaze environment at Timestep 305000, 605000, 930000, and
4980000. The red point is the agent’s current location, and the yellow point is the goal.

Table 1: Unique Name given by LLM

Timestep - Region LLAMA3.1-8B-Instruct GPT4o

305000 - 2 Rightward Passage Eastern Pathway

605000 - 1 Western Entrance Southern Junction
605000 - 5 Leftward Passage Western Approach
605000 - 6 Rightward Passage Northern Link
605000 - 12 Southern Expansion Eastern Border

4980000 - 3 Northern Passage Northern Access
4980000 - 20 Southern Corridor Southern Corridor
4980000 - 21 Eastern Extension Northeastern Outlet

by the LLMs, when tasked with naming neighboring regions. The results indicate that the LLMs can
generate clear and concise names for each region.

In Table. 1, bold text denotes incorrect region descriptions. The LLMs struggled with directional
accuracy, particularly in densely packed situations (e.g., Timestep 605000, with 25% accuracy).
However, when focusing on regions adjacent to the agent’s location, directional accuracy exceeded
75%, suggesting that representing continuous regions as symbolic names using LLMs is feasible.

Table 2: IoU Comparison Between GPT-4o and
Claude 3.5 Sonnet

Environment GPT-4o Claude 3.5 Sonnet

AntMaze 82.1% 90.3%
AntFall 75.0% 100.0%

Total 81.25% 91.43%

Instruction Translation Experiment In
Fig. 1.b, a LLM might compose instructions
into a complex planning: "Go east, then north
past the wall, and finally west to the goal."
With region segmentation, this becomes moving
through regions (Gn = (1, 2, 3, 4). We tested
the LLM’s ability to infer this sequence from
such instructions (see Appendix. C for the
prompts). We report the accuracy, defined
as IoU = |GLLM∩Gn|

|GLLM∪Gn| , where GLLM is the
LLM-predicted sequence and Gn is the true
sequence. Table. 2 reports the IoU for his ChatGPT-4o and Claude 3.5 Sonnet, with detailed outputs
reported in Appendix. D. GPT-4o’s errors stemmed from omitting intermediate regions, while Claude
added extra ones. Both models achieved over 80% IoU, with 100% accuracy in predicting the next
region, indicating effective translation of instructions into abstract regions.

4 Discussion

The experiments show that LLMs can enhance HRL tasks, particularly in sequential planning, despite
its dynamic abstract representation. This is owing to STAR’s emergent symbolic representation.
LLMs effectively bridge human instructions and HRL, aiding task abstraction owing to its reasoning
capability. Challenges remain in densely packed environments where directional errors occur. Overall,
integrating LLMs into HRL can improve complex task performance in hierarchical control and spatial
reasoning contexts. Our work hints for interpretable language grounding in open-ended learning
through an emergent symbolic abstraction of a continuous multi-dimensional state space.

4



Acknowledgments and Disclosure of Funding

This work was partially supported by Hi! Paris.

Acknowledgements

The authors would like to thank Sergio Mover for his support.

5



References
G. A. Boy. The handbook of human-machine interaction: a human-centered design approach. CRC Press, 2017.

C. Colas, A. Akakzia, P. Oudeyer, M. Chetouani, and O. Sigaud. Language-conditioned goal generation: a new
approach to language grounding for RL. CoRR, abs/2006.07043, 2020.

S. Doncieux, D. Filliat, N. Díaz-Rodríguez, T. Hospedales, R. Duro, A. Coninx, D. M. Roijers, B. Girard, N. Per-
rin, and O. Sigaud. Open-ended learning: A conceptual framework based on representational redescription.
Frontiers in Neurorobotics, 12, sep 2018.

Y. Du, O. Watkins, Z. Wang, C. Colas, T. Darrell, P. Abbeel, A. Gupta, and J. Andreas. Guiding pretraining
in reinforcement learning with large language models. In ICML, volume 202 of Proceedings of Machine
Learning Research, pages 8657–8677. PMLR, 2023.

Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement learning for
continuous control. In International conference on machine learning, pages 1329–1338. PMLR, 2016.

N. Duminy, S. M. Nguyen, and D. Duhaut. Learning a set of interrelated tasks by using a succession of motor
policies for a socially guided intrinsically motivated learner. Frontiers in neurorobotics, 12:87, 2019.

S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic methods. In
International conference on machine learning, pages 1587–1596. PMLR, 2018.

B. Ichter, A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan, E. Jang,
R. Julian, D. Kalashnikov, S. Levine, Y. Lu, C. Parada, K. Rao, P. Sermanet, A. Toshev, V. Vanhoucke, F. Xia,
T. Xiao, P. Xu, M. Yan, N. Brown, M. Ahn, O. Cortes, N. Sievers, C. Tan, S. Xu, D. Reyes, J. Rettinghouse,
J. Quiambao, P. Pastor, L. Luu, K. Lee, Y. Kuang, S. Jesmonth, N. J. Joshi, K. Jeffrey, R. J. Ruano, J. Hsu,
K. Gopalakrishnan, B. David, A. Zeng, and C. K. Fu. Do as I can, not as I say: Grounding language in robotic
affordances. In CoRL, volume 205 of Proceedings of Machine Learning Research, pages 287–318. PMLR,
2022.

S. Mannor, I. Menache, A. Hoze, and U. Klein. Dynamic abstraction in reinforcement learning via clustering. In
Proceedings of the twenty-first international conference on Machine learning, page 71, 2004.

O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning. Advances in
neural information processing systems, 31, 2018.

S. M. Nguyen and P.-Y. Oudeyer. Active choice of teachers, learning strategies and goals for a socially guided
intrinsic motivation learner. Paladyn, 3(3):136–146, 2012.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray,
J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. F. Christiano, J. Leike, and
R. Lowe. Training language models to follow instructions with human feedback. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems,
volume 35, pages 27730–27744. Curran Associates, Inc., 2022.

M. Pternea, P. Singh, A. Chakraborty, Y. D. Oruganti, M. Milletarí, S. Bapat, and K. Jiang. The RL/LLM
taxonomy tree: Reviewing synergies between reinforcement learning and large language models. CoRR,
abs/2402.01874, 2024.

C. O. Retzlaff, S. Das, C. Wayllace, P. Mousavi, M. Afshari, T. Yang, A. Saranti, A. Angerschmid, M. E.
Taylor, and A. Holzinger. Human-in-the-loop reinforcement learning: A survey and position on requirements,
challenges, and opportunities. J. Artif. Intell. Res., 79:359–415, 2024.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ
international conference on intelligent robots and systems, pages 5026–5033. IEEE, 2012.

L. Wong, J. Mao, P. Sharma, Z. S. Siegel, J. Feng, N. Korneev, J. B. Tenenbaum, and J. Andreas. Learning
adaptive planning representations with natural language guidance. CoRR, abs/2312.08566, 2023.

J. Wu, Z. Huang, C. Huang, Z. Hu, P. Hang, Y. Xing, and C. Lv. Human-in-the-loop deep reinforcement learning
with application to autonomous driving. CoRR, abs/2104.07246, 2021.

Y. Wu, S. Y. Min, Y. Bisk, R. Salakhutdinov, A. Azaria, Y. Li, T. M. Mitchell, and S. Prabhumoye. Plan,
eliminate, and track - language models are good teachers for embodied agents. CoRR, abs/2305.02412, 2023.

M. Zadem, S. Mover, and S. M. Nguyen. Reconciling spatial and temporal abstractions for goal representation.
arXiv preprint arXiv:2401.09870, 2024.

6



A Prompt for Naming Experiment

The system prompt used in the experiment Naming Experiment for Spatial Regions:

In this task, You are a navigation assistant, helping agent to reach the goal. Based on the data,
name the adjacent regions with a unique name understandable by the user to help him follow your
instructions.

The following is the few-shot prompt used in the experiment:

Role: User
Content:
Data:
State: [10, 3], Region 14
Goal: [0, 15], Region 4
Adjacency list:
Region 1: [5, 11, 18]
Region 2: [13]
Region 3: [4]
Region 5: [1, 6, 11]
Region 6: [1, 11]
Region 11: [1, 6, 17]
Region 13: [3, 15]
Region 14: [1, 2, 15, 18]
Region 15: [2, 3, 14]
Region 17: [18]
Region 18: [1, 14]
The top-down view of the maze is shown below, W represents walls, A represents
the agent’s current position,G represents the goal. The number represents the
region number:
4 4 4 4 4 3 3 3 3 3 3
G 4 4 4 4 3 3 3 3 3 3
W W W W W W W W W 3 3
10 10 10 10 10 13 13 13 15 15 15
9 9 8 12 12 2 2 2 15 15 15
5 5 5 7 1 14 14 14 15 15 15
5 5 5 7 1 14 A 14 15 15 15
5 5 5 6 1 18 18 18 18 18 16
5 5 5 11 11 17 17 17 17 17 17

Thinking Process:
1.Determine which regions are directly adjacent to the agent’s current location.
2.Assign Names Based on Relative Position: Use directional names (north, south,
east, west) or (left, middle, right) based on the region’s position relative to the
agent or between the adjacent regions.
3.Special Features: If a region has unique features (like being entirely walled off or
a sole connection to another important area), this should be reflected in the name.

Role: Assistant
Content:
Based on the maze layout and the adjacency list provided, the agent is cur-
rently in Region 14. The regions adjacent to Region 14 are Regions 1, 2, 15, and 18.

1. Region 1

Location: West of Region 14.
Unique Name: Western Gateway
Rationale: It’s in the west direction relative to the agent’s current position and
acts as a connecting hub to other regions (5, 11, 18).

7



Table 3: Region status at different timesteps

Region Timestep 305000 Timestep 605000 Timestep 930000 Timestep 4980000
Region 1 Top Left Top-Left Top Left Corner One
Region 2 Top Middle Top-Middle Not Available Two
Region 3 Top Right Top-Right Not Available Three
Region 4 Bottom Goal Goal Region Goal
Region 5 - Bottom-Left Top Middle Five
Region 6 - Bottom-Middle Top Right Six
Region 7 - Bottom-Right Not Available Seven
Region 8 - Not Found Not Available Eight
Region 9 - Not Found Not Available Nine
Region 10 - Not Found State Region Ten
Region 11 - Bottom-Right Corner Upper Middle Eleven
Region 12 - Not Found Not Available Twelve
Region 13 - - Down Left Thirteen
Region 14 - - Current Region Fourteen
Region 15 - - Down Middle Fifteen
Region 16 - - Not Available Sixteen
Region 17 - - Down Right Seventeen
Region 18 - - Bottom Right Current
Region 19 - - - Nineteen
Region 20 - - - Twenty
Region 21 - - - Twenty-One
Region 22 - - - Twenty-Two
Region 23 - - - Twenty-Three

2. Region 2:

Location: Directly above Region 14 in the maze.
Unique Name: Northern Corridor
Rationale: It is located to the north of the agent’s current position and appears to
be a narrow passage leading to Region 13.

3. Region 15:

Location: Right next to Region 14 on the east side.
Unique Name: Eastern Gateway
Rationale: This region connects to multiple other regions (Regions 2, 3, and 14)
and serves as a gateway towards the eastern part of the maze.

4. Region 18:

Location: Directly below Region 14 in the maze.
Unique Name: Southern Expansion

Rationale: It extends to the south and also connects to Region 1 and 17,
offering a larger area or expansion from the agent’s current position.

B Zero-shot Naming Experiment

Table. 3 shows the result of the zero-shot naming experiment. In this experiment, no shots were given
to the LLM, and the LLM was asked to name all the regions, instead of concentrating on the regions
adjacent to the agent’s current location. The results show that the LLM give up when facing too
complex tasks, such as naming all the regions in the maze. Therefore, we asked the LLM to focus on
naming the regions adjacent to the agent’s current location in the few-shot naming experiment.

8



Table 4: Region Information Across Timesteps

Timestep - Region Location Description Unique Name

LLAMA3.1-8B-Instruct
305000 - 2 Directly right of Region 1 in the maze Rightward Passage

605000 - 1 West of Region 7 Western Entrance
605000 - 5 Directly left of Region 7 Leftward Passage
605000 - 6 Directly right of Region 7 Rightward Passage
605000 - 12 Below Region 7 in the maze Southern Expansion

4980000 - 3 Directly above Region 19 in the maze Northern Passage
4980000 - 20 Directly below Region 19 in the maze Southern Corridor
4980000 - 21 Right next to Region 19 on the east side Eastern Extension

GPT4o
305000 - 2 Directly east of Region 1 in the maze Eastern Pathway

605000 - 1 South of Region 7 Southern Junction
605000 - 5 West of Region 7 Western Approach
605000 - 6 North of Region 7 Northern Link
605000 - 12 East of Region 7 Eastern Border

4980000 - 3 North of Region 19 in the maze Northern Access
4980000 - 20 Below Region 19 in the maze Southern Corridor
4980000 - 21 Northeast of Region 19 Northeastern Outlet

C Prompts for Instruction Translation Experiment

The system prompt used in this experiment: In this task, You are a navigation assistant, helping
agent to reach the goal. Based on the data and the instruction given, tell the route to the agent to
reach the goal.

The following is the few-shot prompt used in the experiment:

User:
Data:
State: [10, 3], Region 14
Goal: [0, 15], Region 4
Adjacency list:
Region 1: [5, 11, 18]
Region 2: [13]
Region 3: [4]
Region 5: [1, 6, 11]
Region 6: [1, 11]
Region 11: [1, 6, 17]
Region 13: [3, 15]
Region 14: [1, 2, 15, 18]
Region 15: [2, 3, 14]
Region 17: [18]
Region 18: [1, 14]
The top-down view of the maze is shown below, W represents walls, A represents
the agent’s current position,G represents the goal. The number represents the
region number:
4 4 4 4 4 3 3 3 3 3 3
G 4 4 4 4 3 3 3 3 3 3
W W W W W W W W W 3 3
10 10 10 10 10 13 13 13 15 15 15
9 9 8 12 12 2 2 2 15 15 15
5 5 5 7 1 14 14 14 15 15 15
5 5 5 7 1 14 A 14 15 15 15

9



5 5 5 6 1 18 18 18 18 18 16
5 5 5 11 11 17 17 17 17 17 17

Instruction:
Go straight to east till the end, then go north till pass the wall. Finally go west and
reach the goal.

Thinking Process:
1. Identify the agent’s current region and the goal region.
2. Interpret the Instruction: Understand the directional commands provided in the
instruction and translate them into movements between regions.
3. Plan the Route: Based on the adjacency list and the maze layout, determine the
sequence of regions the agent should traverse to follow the given instructions and
reach the goal.

Assistant:

Current State: The agent is located in Region 14, at coordinates [10, 3].
Goal: The target is in Region 4, at coordinates [0, 15].

Interpretation of Instructions:
Go straight to the right till the end: Starting from Region 14, moving east would
involve transitioning through adjacent regions towards the eastern edge of the
maze.
Then go north till pass the wall: After reaching the furthest right point accessible,
the agent should then move northwards until they pass the wall.
Finally go west and reach the goal: The agent needs to move left from the
northernmost point they reached, continuing until they arrive at the goal in Region
4.

Route Plan Based on Regions and Their Adjacencies:
Starting at Region 14: Move eastward within the maze. Adjacent regions from 14
are [1, 2, 15, 18]. The furthest east the agent can go from here within the maze
layout while still adhering to the instruction to move to the right and then up
includes moving to Region 15.

Move to Region 15: After reaching Region 15, the next step is to go north.
From Region 15, the agent can continue to Region 3 via Region 13 (15 → 13 → 3).
Region 13 doesn’t pass the wall, so the agent should continue to Region 3.
Move to Region 3: On reaching Region 3, the agent would then move to the left, as
instructed.
Region 3 directly connects to Region 4, which is the goal region.

Final Route Summary:
Region 14 → Region 15 → Region 13 → Region 3 → Region 4 (Goal)

D Detailed Results of Instruction Translation Experiment

Table. 5 shows the detailed instructions given and the routes planned by ChatGPT-4o and Claude 3.5
Sonnet. The results show that both models succeed in choosing the first region in the sequence by
interpreting the instruction correctly.

10



Table 5: Route Planning Results Comparison between ChatGPT-4o and Claude 3.5

Case Instruction ChatGPT-4o Route Claude 3.5 Route

1 Go east until pass the wall, then go
north until passing the wall, turn
west and reach the goal.

7 → 1 → 2 → 3 → 4 (goal) 7 → 1 → 2 → 3 → 4 (goal)

2 Go north a little bit until pass the
wall, then go west till the end, and
the goal is on the left.

19 → 3 → 4 (goal) 19 → 21 → 3 → 4 (goal)

3 Go east until pass the wall, then go
north till the end, the goal is on the
left.

9 → 6 → 10 → 2 → 16 (goal) 9 → 8 → 11 → 2 → 3 → 15 →
14 → 16 (goal)

4 Go straight to the west, the goal is
at the north.

20 → 12 → 11 (goal) 20 → 12 → 5 → 1 → 11 (goal)

5 Go east til pass the wall, then go
south until the end, finally go west
and reach the goal.

4 → 3 → 19 → 15 → 14 → 1 →
5 (goal)

4 → 3 → 19 → 20 → 15 → 2 →
12 → 8 → 5 (goal)

6 Go straight to east till the end, then
go north to push the movable block.

10 → 2 → 15 (block) 10 → 5 → 2 → 15

11


	Introduction
	Spatial-Temporal Abstraction via Reachability (STAR) Algorithm
	Overview of the STAR Algorithm
	Integration of LLM
	Representation of States and Goals

	Experimental Evaluation
	Discussion
	Prompt for Naming Experiment
	Zero-shot Naming Experiment
	Prompts for Instruction Translation Experiment
	Detailed Results of Instruction Translation Experiment

