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Abstract

This paper shows that dimensionality reduction methods such as UMAP and t-SNE, can be
approximately recast as MAP inference methods corresponding to a model introduced in
Ravuri et al. (2023), that describes the graph Laplacian (an estimate of the data precision
matrix) using a Wishart distribution, with a mean given by a non-linear covariance function
evaluated on the latents. This interpretation offers deeper theoretical and semantic insights
into such algorithms, and forging a connection to Gaussian process latent variable models
by showing that well-known kernels can be used to describe covariances implied by graph
Laplacians. We also introduce tools with which similar dimensionality reduction methods
can be studied.

1. Introduction

In domains with complex, high-dimensional data, such as single-cell biology, dimensionality
reduction (DR) algorithms are essential tools for uncovering the underlying structure of
data. These algorithms, which include very widely-used techniques like t-SNE (van der
Maaten and Hinton, 2008) and UMAP (McInnes et al., 2020), are especially valuable for
visualizing data manifolds, enabling downstream processing, and the discovery of insightful
clusters and trajectories. A deeper understanding of these algorithms and their theoretical
underpinnings is crucial for advancing their applicability (particularly when prior information
is available) and improving their interpretability. Our work builds on and aims to unify the
Probabilistic Dimensionality Reduction (ProbDR) framework Ravuri et al. (2023), which
interprets classical DR methods through a probabilistic lens to enable the communication of
assumptions, integration of prior knowledge, and model extension for new applications.

Ravuri et al. (2023) introduced ProbDR as a framework with two main interpretations:

1. UMAP and t-SNE having a variational interpretations, describing inference over a
nearest neighbour adjacency matrix, and,

2. other classical eigendecomposition-based DR algorithms as inference algorithms of
a Wishart model that describes a covariance/precision matrix with a linear kernel
evaluated on the latents.

Our contribution: In this work, we simplify the framework, moving away from the
variational interpretations and propose that all algorithms with ProbDR interpretations
(and hence most classical DR methods) in the large-n limit can be written as MAP inference
algorithms given the model 1,

S|X ∼ W(−1)(XXT + αHKt(X)H+ γI, ν), (1)

∗ aditya.ravuri@cl.cam.ac.uk
1. Note that we assume an improper prior on the latents, p(X) ∝ 1, throughout this work.
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where S ∈ S+
n is an estimate of a covariance matrix generated using the high-dimensional

data Y ∈ Rn,d, X ∈ Rn,q corresponds to the set of low (q-)dimensional latent variables, and
K is a covariance function used to construct a positive-definite matrix constructed using
latent variables. This enables a direct comparison between algorithms such as Laplacian
Eigenmaps, t-SNE and UMAP.2

The rest of the paper will take the following structure. In section 2 we outline relevant
background work that we build on in developing the unified framework which we derive in
section 3. In section 4, we discuss the significance of this framework in the ability it affords in
comparing UMAP and t-SNE based on differences in kernel type. We also present empirical
results and connections to Gaussian process latent variable models Lawrence (2005). Section
5 concludes the paper.

2. Background

We will now discuss related background work which we build on in developing the unified
framework in the next section. Our main objective is to simplify the ProbDR framework by
moving away from its variational interpretations3 and to instead consider algorithms such as
t-SNE and UMAP as MAP algorithms. If a Wishart model was found, inference wherein
approximated t-SNE and UMAP, assumptions within that model could be compared to
the model that leads to traditional eigendecomposition-based methods such as Laplacian
Eigenmaps (Belkin and Niyogi, 2001).

For this work, we need to recap only the eigendecomposition view of Ravuri et al. (2023),
and we do so with Laplacian Eigenmaps as an example: the algorithm involves the
calculation of a nearest neighbour graph using the high-dimensional datapoints Y, which
can be represented using a graph Laplacian L̂ = D − A (where A is the corresponding
adjacency matrix, and D is the diagonal degree matrix, Dii =

∑
k Aik) and then obtaining

the embedding X as the eigenvectors of L̂ corresponding to the lowest eigenvalues.
ProbDR showed that this corresponds to inference forX by maximising logW(νL̂|(XXT+

βI)−1, ν), i.e. maximising the likelihood of,

ν ∗ L̂|X ∼ W((XXT + βI)−1, ν), (2)

where L̂ is interpreted to be an estimate of a precision matrix (see Ravuri et al. (2023)
for more detail).4 The model is intuitive as the implied covariance (L̂+) is modelled by a
linear covariance function acting on the latents X, which is familiar in models such as (dual
probabilistic) PCA and GPLVMs (Lawrence, 2005).

UMAP and t-SNE, in Ravuri et al. (2023), were interpreted in a variational way, i.e.
as KL-minimising algorithms acting on the binary adjacency matrix A. Under certain

2. Moreover, certain constructions used in this paper, such as double centered distance matrices and
exponentiated kernel matrices may be useful for building covariances in practice.

3. Van Assel et al. (2022) also offer a similar variational view on UMAP and t-SNE.
4. Although the proof method there uses results used by Williams and Agakov (2002) (for probabilistic

minor components analysis), a similar result can be seen easily. Consider the matrix Ŝ = (L̂ + ϵI)−1.
Maximising the likelihood of d ∗ Ŝ|X ∼ W(XXT + βI, d) recovers the same solution as the one above.
This can be seen as the major eigenvectors of Ŝ are the minor eigenvectors of L̂. This model is simply
dual probabilistic PCA (Lawrence, 2005), but with a non-standard covariance estimator, instead of the
traditional YYT /d, written in terms of the covariance, as Y ∼ MN (0,C, I) ⇒ YYT ∼ W(C, d).
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circumstances5, the interpretation becomes equivalent to MAP estimation (due to Ravuri
et al. (2023), Appendix B.7, Lemma 13, also presented in Damrich et al. (2022)).

Critically, however, Damrich et al. (2022) note that the optimisation process is equally
as important. As part of an extensive study on the nature of the t-SNE and UMAP loss
functions, Damrich et al. (2022) then show how the stochastic optimisation of t-SNE and
UMAP can be interpreted to be contrastive estimation with the energy function (negative
loss),

E(X) ∝
∑
ij

Aij log

(
1

dij(X)2 + 1

)
+

4nnegnneigh

3n

∑
ij

(1−Aij) log

(
1− 1

dij(X)2 + 1

)
, (3)

where Aij represents whether data points Yi and Yj are neighbours, and d2ij(X) = ∥Xi: −
Xj:∥2. We will refer to this as the CNE objective. Note that we’ve made some substitutions
in the original formation that appears in Damrich et al. (2022), for example, we set their
parameter q̃ij = 1/d2ij , which corresponds to the UMAP setting (and a full derivation is
given in appendix B). The hyperparameter nneg sets the number of contrastive negatives
(set to be five) that affects the strength of repulsion, and nneigh corresponds to the number
of neighbours set for a point (fifteen in this work). In this work, we will work with this loss
function and aim to interpret it as a likelihood, but over the latents X.6

3. Towards a distribution on the graph Laplacian

In this section, we derive the Wishart distribution inference in which leads to UMAP and
t-SNE-like algorithms. Eq. 3 is not a likelihood due to the multiplicative constant weighting
the contribution of points that are not adjacent. The second term, Tb can be expressed as
follows,

Tb =
∑
ij

(1−Aij) log

([
1− 1

dij(X)2 + 1

]ϵ̃)
.

The implied probability of adjacency p̃ij , assuming that this is the second term of a
Bernoulli likelihood is,

p̃ij = 1−
[
1− 1

dij(X)2 + 1

]ϵ̃
= 1− exp

[
ϵ̃ log

(
1− 1

dij(X)2 + 1

)]
= 1− exp

[
−ϵ̃ log

(
1 +

1

dij(X)2

)]
≈ 1− 1 + ϵ̃ log

(
1 +

1

dij(X)2

)
large n.

5. if the variational probabilities are zero or one, signifying if two points are nearest neighbours; this
simplification is reasonable due to the findings of Damrich and Hamprecht (2021), where it was found that
the relatively complex calculation of the variational probabilities in t-SNE and UMAP can be replaced
with simply the adjacency matrices without loss of performance. Our initial experiments closely aligned
with these findings.

6. We were particularly inspired to look toward contrastive methods by Nakamura et al. (2023), who showed
that contrastive learning methods could be seen as variational algorithms (hence suggesting a link between
t-SNE/UMAP and contrastive learning) and by Gutmann and Hyvärinen (2010), which shows that
contrastive losses are estimators of negative log-likelihoods. Damrich et al. (2022) offer us a constrastive
objective for t-SNE and UMAP, greatly simplify the optimisation process and offer a clear objective to
work with, i.e. eq. (3).
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Now, we observe that log(1 + 1/x) >= 1/(1 + x), so,

Tb =
∑
ij

(1−Aij) log (1− p̃ij) ≤
∑
ij

(1−Aij) log

(
1− ϵ̃

1

1 + dij(X)2

)
.

Note that the multiplication of ϵ̃ within the log in the first term adds just a constant to
the first term of eq. (3)). Therefore,

E(X) ≤
∑
ij

Aij log

(
ϵ̃

1

1 + dij(X)2

)
+
∑
ij

(1−Aij) log

(
1− ϵ̃

1

1 + dij(X)2

)
+ c.

We conclude that the CNE objective lower bounds the Bernoulli likelihood implied by
the model,

Aij |X ∼ Bernoulli

(
ϵ̃

1

1 + dij(X)2

)
. (4)

Although this is a valid probabilistic interpretation, we will go slightly further and outline
an argument that makes this interpretation comparable to the Wishart interpretations in
ProbDR.7 As Wisharts have supports over positive definite matrices, we will try to reconsider
this model with the graph Laplacian L as the observed statistic. The likelihood for X implied
by eq. (4) is,

log p(X|A) =
∑
ij

Aij log

(
ϵ̃

1

1 + dij(X)2

)
+
∑
ij

(1−Aij) log

(
1− ϵ̃

1

1 + dij(X)2

)

≈
∑
ij

Aij log

(
ϵ̃

1

1 + dij(X)2

)
+
∑
ij

log

(
1− ϵ̃

1

1 + dij(X)2

)
large n

≈ tr(AP′)−
∑
ij

ϵ̃
1

1 + dij(X)2
small ϵ̃

⇒ log p(X|L) =− tr(LHP′H)−
∑
ij

ϵ̃
1

1 + dij(X)2
, centd. L and tr(DP′) = 0

where, Pu
ij = 1/(1 + d2ij), Pij = ϵ̃Pu

ij , P′
ij = logPij

8 and H = I − 11T /n is a centering

matrix. Note that tr(HMH) = n−
∑

ij Mij/n. Therefore
9,

log p(X|L) = −tr(LHP′H) + ntr(HPH) + k ≈ −tr(LHP′H) + nlog|I+HPH|+ k. small ϵ̃

7. This is reasonable as exponential families share similar likelihood forms, and a Wishart interpretation,
despite being over discrete matrices, may correspond to a similar statistical learning scenario as performing
classification using linear regression (i.e. using the L2 norm serparator).

8. P′ is conditionally positive definite (CPD) as Pij defines the student-t kernel, which enforces PDness
and an elementwise log of a PD matrix with all positive elements will at least be CPD (Bhatia (2007)).
Double centering such matrices makes them PSD.

9. Note that our derivation also produces a similar objective to the DK-LLE objective of Draganov and Dohn
(2023) (Lemma 4), which was found by gradient-based arguments, adding credibility to our arguments.
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We approximate logPij within the vicinity of ϵ̃10 by matching the gradient and function
value using an ansatz,

logPij ≈
Pij

2ϵ̃
− ϵ̃

2Pij
+ log ϵ̃.

⇒ log p(X|L) ≈ −tr(LH(0.5Pu − 0.5[1/Pu]ij)H) + nlog|I+HPH|+ c

= −tr(L(0.5ϵ̃−1I+ 0.5HPuH+XXT )) + nlog|0.5ϵ̃−1I+ 0.5HPuH|+ k

≤ logW(L|(0.5ϵ̃−1I+ 0.5HPuH+XXT )−1, n).

Therefore, the model below approximates the model in eq. (4).

L|X ∼ W
(
(0.5ϵ̃−1I+ 0.5HPuH+XXT )−1, n

)
(5)

4. Results and Discussion

In this paper, we’ve presented an interpretation for UMAP and t-SNE-like algorithms and
proposed a comparable distributional assumption to ProbDR’s. Our model for UMAP
and t-SNE-like algorithms uses a covariance based on a double-centred non-linear kernel11

however, as opposed to the linear kernel used as part of ProbDR’s Wishart-based algorithms.
Our work provides shows a direct connection to the model behind Laplacian Eigenmaps; the
model of eq. (5) is a non-linear extension (albeit with an interesting choice of kernel scales)
of ProbDR’s Laplacian Eigenmaps with a non-linear kernel in eq. (2).

fig. 1 shows a comparison between embeddings found with our interpretations compared
with those presented in Damrich et al. (2022) within different datasets (found within the
openTSNE repositories (Poličar et al., 2024)). We resample each dataset such that it has
exactly 10 groups, with up to 25k points in total. The optimisation was done using a
small-range GPU capable of inverting matrices of 25k rows/columns, using pytorch’s Adam
optimiser, with an initial learning rate set to 1.0, with each experiment being run for 50
epochs. We see that the embeddings recovered using our methods are qualitatively quite
similar to that of CNE and not PCA/GPLVM.

The Wishart model of eq. (5) is quite elegant, as it implies that the data covariance
is modelled by a covariance function, connecting Gaussian process latent variable models
Lawrence (2005) (that use kernels not unlike the Student-t/Cauchy kernel to model the
covariance) to ProbDR models that describe the graph Laplacian (which describes a precision
matrix). Moreover, it is interesting to note that the implied covariance of our model (the
inverse of the Wishart parameter) is non-stationary and can be justified by the fact that the
adjacency probabilities go to zero as a function of distance. The semantic, probabilistic, and
modelling implications behind other assumptions (such as the high noise-scale parameter
within the Wishart parameter) made within our simplified ProbDR remain an area that can

10. This neighbourhood was chosen as ϵ̃ is the maximal value of Pij .
11. Other empirical arguments can also be made to show that, assuming a model such as: X → Y → A,

where Y|X ∼ N , the adjacency probabilities of eq. (4) cannot be found using simply a linear kernel,
and can be found using a non-linear kernel such as a Student-t kernel, as we’ve used here. For this,
one can write out the approximate distribution on distances (assuming a Gaussian process prior on Y,
E(d2ij(Y)) = d ∗ (kii + kjj − 2kij) and Cov(d2ij , d

2
mn) = 2d ∗ (kim + kjn − kin − kjm)2) and study the

probability with which such distances attain extreme values, as a function of latent distance.
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Figure 1: Comparison between embeddings obtained using the CNE objective (top) and our
inference (bottom). From left to right: MNIST digits, transcriptomic data from Macosko
et al. (2015), and larger-scale transcriptomic data from Zheng et al. (2017). appendix C
shows that PCA and GPLVMs with a similar kernel do not produce similar embeddings,
presumably due to the Laplacian encoding different statistics of the data w.r.t. the empirical
covariance.

be studied. In addition to these insights, we show non-traditional ways in which covariances
can be constructed as part of Gaussian process models and/or dimensionality reduction
methods, which revolve around double-centering CPD matrices (which can be based on
distance matrices12 or element-wise exponentiated kernel matrices13).

5. Conclusion

In conclusion, this study presents a novel theoretical framework that reinterprets UMAP
and t-SNE-like algorithms as maximum a posteriori (MAP) inference algorithms within a
model for a graph Laplacian described by a Wishart distribution. This result bridges the gap
between popular dimensionality reduction methods with Gaussian process latent variable
models, enhancing our understanding of their mechanisms. The insights gained show the
importance of specific modelling assumptions in optimizing these algorithms’ effectiveness
and interpretability, setting a foundation for further research on model specifications and
their practical implications. Next steps include studying whether eigenfunctions of RBF-like

12. For example, take −D = log
1

1 + ∥Xi −Xj∥2
, where D represents a distance matrix. The inner term

is a kernel, hence is PSD. The log function (like the square root, in this context) preserves CPSD-ness
(Bhatia, 2007). Therefore, −HDH is PSD. It’s also interesting to observe, due to the results of Khare
(2019); Schoenberg (1935), that there exists an isometric Euclidean embedding for such a distance matrix
(and vice versa).

13. with fractional powers.
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kernels (which roughly behave as ϕk(x) ∼ γ cos (2xκ− kπ/2)) can aid the characterization
of solutions of ProbDR models.
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Appendix A. Approximate distribution of a distance matrix

Theorem 1 (Distribution of normal distances) Assume that Y is distributed as,[
Yi

Yj

]
∼ MN

(
µ,

[
kii kij
kji kjj

]
, Id

)
.

Then, the following hold. Firstly, denoting d2ij = ∥Yi −Yj∥2, the marginal distribution is
given by,

d2ij ∼ Γ

(
k =

d

2
, θ = 2(kii + kjj − 2kij)

)
.

As a consequence, E(d2ij) = d ∗ k̃ij and V(d2ij) = 2d ∗ k̃2ij, where k̃ij = kii + kjj − 2kij.

Additionally,

C(d2ij , d2mn) = 2d ∗ (kim + kjn − kin − kjm)2.

This is a useful fact as the upper triangle of the distance matrix is approximately normal
due to the central limit theorem with increasing d.

The first part of the theorem is given in ProbDR (Ravuri et al. 2023), reproduced below.

∀k : d′ij ≡ yki − ykj ∼ N (0, kii + kjj − 2kij)
d
=
√

kii + kjj − 2kijZ

⇒ d2ij ≡ ∥Yi −Yj∥2 =
d∑
k

(yki − ykj )
2 d
= (kii + kjj − 2kij)

d∑
k

Z2
k

d
= (kii + kjj − 2kij)χ

2
d

d
= Γ(k = d/2, θ = 2(kii + kjj − 2kij)).

The covariance between d2ij and d2mn can be computed as follows. Let,

d′ij = Yid −Yjd and d′mn = Ymd −Ynd.

We can then derive some important moments as follows,

E(d′ij) = 0,V(d′ij) = E(d
′2
ij) = kii + kjj − 2kij ,

C(d′ij , d′mn) = C(Yid − Yjd, Ymd − Ynd)

= C(Yid, Ymd)− C(Yid, Ynd)− C(Yjd, Ymd) + C(Yjd, Ynd)
= kim + kjn − kin − kjm,

9
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Then,

C(d2ij , d2mn) = C

∑
d1

(Yid1 −Yjd1)
2,
∑
d2

(Ymd2 −Ynd2)
2


=
∑
d1

∑
d2

C((Yid1 −Yjd1)
2, (Ymd2 −Ynd2)

2) linearity

=
∑
d

C(d
′2
ij , d

′2
mn) independence

= d ∗ C(d′2
ij , d

′2
mn)

= d ∗
[
E[d

′2
ijd

′2
mn]− E[d

′2
ij ]E[d

′2
mn]
]

= d ∗
[
E(d

′2
ij)E(d

′2
mn) + 2E2(d′ijd

′
mn)− E[d

′2
ij ]E[d

′2
mn]
]

Isserlis’ theorem

= 2d ∗ E2(d′ijd
′
mn)

= 2d ∗ (kim + kjn − kin − kjm)2.

10
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Appendix B. Derivation of eq. (3)

Eqn. 8 of Damrich et al. (2022) reads,

LNEG(θ) = −Ex∼p log

(
qθ(x)

qθ(x) + 1

)
−mEx∼ξ log

(
1− qθ(x)

qθ(x) + 1

)
.

We use the notation nneg = m, and we consider the objective (resulting in eq. (3)) in
terms of the negative loss E = −L. Next, Lemma 3 of Damrich et al. (2022) specifies the
choice of qθ corresponding to UMAP to be qθ(x) = 1/d2ij(X). The objective simplifies to,

E(X) =
1∑

i>j Aij

∑
i>j

Aij log

(
1

1 + d2ij(X)

)
+

nneg∑
i>j(1−Aij)

∑
i>j

(1−Aij) log

(
1− 1

1 + d2ij(X)

)

∝
∑
i>j

Aij log

(
1

1 + d2ij(X)

)
+

nneg
∑

i>j Aij∑
i>j(1−Aij)

∑
i>j

(1−Aij) log

(
1− 1

1 + d2ij(X)

)

The multiplicative constant is approximated as,

ñ ≡
nneg

∑
i>j Aij∑

i>j 1−Aij
≈

n ∗ nneg ∗ nneigh/1.5

(n2 − n)/2
≈

4nnegnneigh

3n
.

Therefore, the objective becomes,

E(X) ≈
∑
i>j

Aij log

(
1

1 + d2ij(X)

)
+

4nnegnneigh

3n

∑
i>j

(1−Aij) log

(
1− 1

1 + d2ij(X)

)

∝
∑
ij

Aij log

(
1

1 + d2ij(X)

)
+

4nnegnneigh

3n

∑
ij

(1−Aij) log

(
1− 1

1 + d2ij(X)

)
,

which is eq. (3).

Appendix C. Comparison with GPLVMs

11



Ravuri Lawrence

Figure 2: MNIST digits embedded using PCA (left), GPLVM using a linear + constant

+ t + noise kernels, with the inits scaled towards zero (center), and the same GPLVM
with unscaled PCA inits (right). In each case, the GPLVM hyperparameters were first
“pre-trained” using the PCA-initialized embeddings for 10 epochs, and the embeddings were
trained for a further 40. In every case, note the visual dissimilarity w.r.t. our versions of
UMAP/t-SNE.
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