

000 001 002 003 004 005 006 007 008 009 010 OVERLAP-ADAPTIVE REGULARIZATION FOR CONDI- TIONAL AVERAGE TREATMENT EFFECT ESTIMATION

005 **Anonymous authors**
006 Paper under double-blind review

009 ABSTRACT

011 The conditional average treatment effect (CATE) is widely used in personalized
012 medicine to inform therapeutic decisions. However, state-of-the-art methods for
013 CATE estimation (so-called meta-learners) often perform poorly in the presence
014 of low overlap. In this work, we introduce a new approach to tackle this issue
015 and improve the performance of existing meta-learners in the low-overlap regions.
016 Specifically, we introduce *Overlap-Adaptive Regularization* (OAR) that regularizes
017 target models proportionally to overlap weights so that, informally, the regulariza-
018 tion is higher in regions with low overlap. To the best of our knowledge, our OAR
019 is the first approach to leverage overlap weights in the regularization terms of the
020 meta-learners. Our OAR approach is flexible and works with any existing CATE
021 meta-learner: we demonstrate how OAR can be applied to both parametric and
022 non-parametric second-stage models. Furthermore, we propose debiased versions
023 of our OAR that preserve the Neyman-orthogonality of existing meta-learners and
024 thus ensure more robust inference. Through a series of (semi-)synthetic experi-
025 ments, we demonstrate that our OAR significantly improves CATE estimation in
026 low-overlap settings in comparison to constant regularization.

027 1 INTRODUCTION

028 Estimating the conditional average treatment effect (CATE) from observational data is a core challenge
029 in causal machine learning (ML). Especially in medical applications, the CATE estimates help to
030 guide personalized therapeutic decisions by predicting how different patients might respond to a
031 given treatment (Feuerriegel et al., 2024).

032 State-of-the-art methods for CATE estimation are based on *two-stage Neyman-orthogonal meta-*
033 *learners* (Curth & van der Schaar, 2021b; Morzywolek et al., 2023). As such, meta-learners have
034 several practical benefits. Specifically, they are *model-agnostic* (Künzel et al., 2019) (i.e., they can
035 be instantiated with arbitrary predictive models such as neural networks). Furthermore, by using
036 Neyman-orthogonal risks (Chernozhukov et al., 2017; Foster & Syrgkanis, 2023), meta-learners can
037 achieve favorable theoretical properties. In particular, the second-stage model becomes less sensitive
038 to errors in the nuisance function estimates, which improves robustness.

039 However, the performance of meta-learners is constrained by the degree of *overlap* in the data
040 (D’Amour et al., 2021; Matsouaka et al., 2024) – that is, the extent to which patients with similar
041 covariates receive different treatments. In our work, overlap is represented as the product of the
042 conditional probabilities of receiving each treatment, namely, *overlap weights*. Overlap is often
043 violated in medicine when patients with certain covariate profiles almost exclusively receive one
044 treatment (e.g., due to adherence to medical guidelines). Hence, the low-overlap regions of a covariate
045 space are sparse in counterfactual outcomes, and, thus, learning CATE gets increasingly challenging.

046 To address issues from low overlap, existing meta-learners suggested two main approaches: (1) **re-**
047 **targeting** and (2) **constant regularization**. (1) **Retargeting** incorporates the overlap weights into
048 *error terms of the target risks* (Morzywolek et al., 2023; Nie & Wager, 2021; Fisher, 2024), so that
049 the error term is truncated or down-weighted in the low overlap regions. In contrast, (2) **constant**
050 **regularization** aims to reduce CATE heterogeneity towards more averaged causal quantities (e.g.,
051 ATE). While effective to some extent, these strategies have key limitations (as we show later). In the
052 case of (1) retargeting, the fitted target models struggle in low-overlap regions: they either (i) *have*
053 *unpredictable behavior* or (ii) *target at a different causal quantity* (e.g., R-IVW-learners (Nie &
Wager, 2021; Fisher, 2024) with the constant regularization yield a weighted average treatment effect

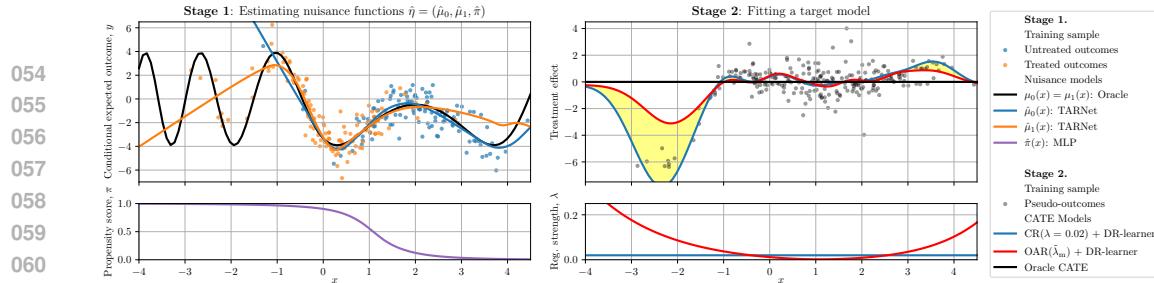


Figure 1: **Motivational example showing how our OAR (in red) performs better in low-overlap regions (in yellow).** Here, we used our OAR together with a DR-learner. We adapted the synthetic data generator from (Melnichuk et al., 2023) ($n_{\text{train}} = 250$; see Appendix F) and used kernel ridge regression (KRR) as a target model. We see that a target model fitted w/ our $\text{OAR}(\lambda_m)$ (shown in red) has a better performance in the low-overlap regions, compared to a target model w/ constant regularization (CR, shown in blue).

[WATE] in the low-overlap regions). Further, (2) constant regularization does not take into account the degree of overlap and “blindly” regularizes all the regions of the covariate space.

In our work, we introduce **Overlap-Adaptive Regularization** (OAR), a novel approach that builds on top of existing two-stage meta-learners and tackles the low-overlap issue through adaptive regularization. Our OAR helps to prevent over- and underfitting of the target models by varying the amount of regularization depending on the degree of overlap (see the illustrative example in Fig. 1). As a result, our OAR applies stronger regularization in the regions with low overlap and weaker regularization where overlap is high (i. e., when the propensity scores are close to 0.5).

Our OAR thus addresses the above limitations of existing meta-learners. First, (1) unlike targeting, our OAR makes the predictions of the OAR-fitted target models *smoother* in low-overlap regions (i. e., it enforces simpler models in those regions). Second, (2) unlike the constant regularization, it allows for more CATE modeling flexibility in the overlapping regions (e. g., for DR-learner). Also, unlike R-/IVW-learners, it can yield *the average treatment effect* (ATE) in the low-overlap regions (which is arguably a more meaningful causal quantity than the WATE). To the best of our knowledge, ours is the first approach to address the low-overlap problem by directly adapting the regularization term in the target risk.

Our OAR is flexible and can be applied together with any two-stage meta-learner. We provide several versions of our OAR approach: (a) for parametric target models (e.g., neural networks) and (b) for non-parametric target models (e.g., kernel ridge regression). For (a), we introduce two practical implementations via: (i) *OAR noise regularization* and (ii) *OAR dropout*. In addition, we propose a one-step bias-corrected (debiased) estimator of our OAR. This correction is important because it makes our OAR first-order insensitive to errors in the estimated overlap weights (which is especially relevant in observational studies where the ground-truth overlap weights are unknown). As a result, when combined with Neyman-orthogonal learners (e. g., DR-, R-, and IVW-learners), our debiased OAR preserves their Neyman-orthogonality. We further provide an extension of our OAR to (b) non-parametric target models (e.g., kernel ridge regression) in Appendix C.

In sum, our contributions are as follows:¹ (1) We introduce a novel approach, which we call *Overlap-Adaptive Regularization* (OAR), to address the performance of the existing CATE meta-learners in low-overlap regions. (2) We propose several versions of our OAR for both parametric and non-parametric target models, as well as a debiased version that preserves Neyman-orthogonality. (3) We show empirically that our OAR improves the performance in CATE estimation over other alternatives.

2 RELATED WORK

In the following, we briefly review the existing methods for CATE estimation and the ways they tackle the low-overlap issue. For a more extended overview of related work, we refer to Appendix A.

Two-stage meta-learners. State-of-the-art methods for CATE estimation can be broadly divided into two general categories: (a) plug-in learners (also known as model-based methods) and (b) (two-stage) meta-learners (Künzel et al., 2019; Curth & van der Schaar, 2021b; Morzywolek et al., 2023). Here, we refer to the overview of (a) plug-in learners to Appendix A and rather focus on (b) meta-

¹Code is available at <https://anonymous.4open.science/r/ada-reg>.

108 learners.² Meta-learners aim to find the best projection of CATE on a second-stage (target) model
 109 class and require the estimation of the nuisance functions at the first stage (Künzel et al., 2019).
 110 Importantly, they are *fully model-agnostic* meaning that any ML model can be employed at either of
 111 the stages. Also, they can possess many favorable theoretical properties if they are *Neyman-orthogonal*
 112 (Chernozhukov et al., 2017; Foster & Syrgkanis, 2023): notable examples of Neyman-orthogonal
 113 meta-learners include DR-learner (van der Laan, 2006; Curth et al., 2020; Kennedy, 2023), R-learner
 114 (Nie & Wager, 2021), and IVW-learner (Fisher, 2024). Neyman-orthogonality is a property of the
 115 target risks that makes it first-order insensitive to the errors of nuisance functions estimation, and,
 116 therefore, in this work, we only focus on those.

117 **How meta-learners deal with low overlap.** Low overlap poses a serious problem for any causal
 118 effect estimation (D’Amour et al., 2021; Matsouaka et al., 2024), including CATE. In the low-overlap
 119 regions, meta-learners mainly suffer from high variance of the pseudo-outcomes (Morzywolek et al.,
 120 2023): it stems either from a bad extrapolation of the first-stage models or from large inverse
 121 propensity scores. There are two general ways to tackle low overlap: (1) retargeting and (2) constant
 122 regularization.

123 **(1) Retargeting.** The retargeting approach estimates CATE only for a sub-population by modifying
 124 the target risk/loss (Morzywolek et al., 2023; Matsouaka et al., 2024). For example, trimming
 125 and truncation (Crump et al., 2009) discard too low propensity scores of the DR-learner loss; and
 126 overlap-weighting (Crump et al., 2006; Morzywolek et al., 2023) of the target risk yields either
 127 R-learner (Nie & Wager, 2021) or IVW-learner (Fisher, 2024). However, (1) retargeting on itself
 128 does not regulate how target models would generalize beyond the target sub-population. Therefore,
 129 the above-mentioned works suggested combining it with a (2) constant regularization.

130 **(2) Constant regularization.** Constant regularization improves low-overlap predictions by forcing
 131 lower CATE heterogeneity (Morzywolek et al., 2023) in *the whole covariate space*. Yet, this approach
 132 also has *drawbacks*. For example, when combined with the DR-learner, it does *not* distinguish the
 133 variability of pseudo-outcomes in high- and low-overlap regions. DR-learner, thus, can *overfit and*
 134 *underfit* at the same time due to the constant regularization. On the other hand, when combined
 135 with R-/IVW-learners, this approach *leads to a different causal quantity* (*i.e.*, WATE) when *too much*
 136 *regularization is applied*.

137 **Adaptive regularization in traditional ML.** As discovered by Wager et al. (2013), dropout (Hinton
 138 et al., 2012; Srivastava et al., 2014) and noise regularization (Matsuoka, 1992; Bishop, 1995) can be
 139 seen as instances of the adaptive regularization. The authors have shown that for generalized linear
 140 models, dropout and noise regularization are first-order equivalent to the l_2 regularization applied to
 141 the features scaled with an inverse diagonal Fisher information matrix. This result was later extended
 142 for dropout regularization in NN-based models (Mou et al., 2018; Mianjy et al., 2018; Mianjy &
 143 Arora, 2019; Wei et al., 2020; Arora et al., 2021); for noise regularization in NN-based models
 144 (Rothfuss et al., 2019; Camuto et al., 2020); and for other types of regularization (Dieng et al., 2018;
 145 Mou et al., 2018; LeJeune et al., 2020; Zhang et al., 2021; Nguyen et al., 2021). In our paper, we also
 146 draw connections to the seminal results of (Wager et al., 2013). However, *we provide – for the first*
 147 *time – the connection of adaptive regularization to CATE estimation*. To the best of our knowledge,
 148 overlap weights have *not* been used to explicitly define regularization for CATE estimation.

3 PRELIMINARIES

150 **Notation.** Random variables are denoted by uppercase letters such as Z , their realizations by
 151 lowercase letters such as z , and their sample spaces by calligraphic symbols such as \mathcal{Z} . We write
 152 $\mathbb{P}(Z)$, $\mathbb{P}(Z = z)$, and $\mathbb{E}(Z)$ to refer, respectively, to a distribution of Z , its probability mass or
 153 density at z , and its expectation. We denote an l_2 norm as $\|x\|_2 = \sqrt{x_1^2 + \dots + x_d^2}$ for $x \in \mathbb{R}^d$; a
 154 reproducing kernel Hilbert space (RKHS) norm as $\|f\|_{\mathcal{H}_K} = \sqrt{\langle f, f \rangle_{\mathcal{H}_K}}$ for $f \in \mathcal{H}_K$, where \mathcal{H}_K is
 155 an RKHS induced by a kernel $K(\cdot, \cdot)$. We employ two nuisance functions: the *propensity score* for
 156 treatment A is $\pi(x) = \mathbb{P}(A = 1 | X = x)$, and a *conditional expected outcome* for the response Y is
 157 $\mu_a(x) = \mathbb{E}(Y = y | X = x, A = a)$. We also consider a *marginalized conditional expected outcome*

158 ²By naïvely estimating $\hat{\tau}(x) = \hat{\mu}_1(x) - \hat{\mu}_0(x)$, plug-in learners suffer from so-called plug-in bias (Kennedy,
 159 2023) (*e.g.*, $\hat{\mu}_0(x)$ is badly estimated for treated population). This is addressed in (two-stage) meta-learners.
 160 Unlike the plug-in learners, meta-learners allow to solve the bias-variance trade-off for the nuisance functions
 161 and the target CATE separately (Morzywolek et al., 2023). Hence, we focus on (two-stage) meta-learners
 throughout our paper.

$\mu(x) = \mathbb{E}(Y = y \mid X = x)$ and *overlap weights* $\nu(x) = \text{Var}(A \mid X = x)$ as alternative nuisance function (yet, they can be expressed through the former two: $\mu(x) = (1 - \pi(x))\mu_0(x) + \pi(x)\mu_1(x)$ and $\nu(x) = \pi(x)(1 - \pi(x))$). Throughout, we work within the Neyman–Rubin potential outcomes framework (Rubin, 1974). Specifically, $Y[a]$ denotes the *potential outcome* under the intervention.

Problem setup. To estimate the CATE, we rely on an observational sample $\mathcal{D} = \{(x^{(i)}, a^{(i)}, y^{(i)})\}_{i=1}^n$, where $X \in \mathcal{X} \subseteq \mathbb{R}^{d_x}$ are high-dimensional covariates, $A \in \{0, 1\}$ is a binary treatment, and $Y \in \mathcal{Y} \subseteq \mathbb{R}$ is a continuous outcome. For example, in cancer care, Y measures tumor growth, A indicates whether chemotherapy is administered, and X records patient attributes such as age and sex. Furthermore, we assume the n triplets in \mathcal{D} are drawn i.i.d. from the joint distribution $\mathbb{P}(X, A, Y)$. We also denote a correlation matrix of the covariates X as $\Sigma = \mathbb{E}[XX^\top]$ and a $\lambda(\cdot)$ -weighted correlation matrix as $\Sigma_\lambda = \mathbb{E}[\lambda(A, X)XX^\top]$ for a function $\lambda : \{0, 1\} \times \mathcal{X} \rightarrow \mathbb{R}$.

Causal estimand and assumptions. We are interested in estimating the *conditional average treatment effect (CATE)*: $\tau(x) = \mathbb{E}[Y[1] - Y[0] \mid X = x]$. To consistently estimate it from the observational data \mathcal{D} , we make the standard causal assumptions of the Neyman–Rubin framework (Rubin, 1974): (i) *consistency*: $Y[A] = Y$; (ii) *strong overlap*: $\mathbb{P}(\varepsilon < \pi(X) < 1 - \varepsilon) = 1$ for some $\varepsilon \in (0, 1/2)$; and (iii) *unconfoundedness*: $(Y[0], Y[1]) \perp\!\!\!\perp A \mid X$. Then, under the assumptions (i)–(iii), the CATE is identified from $\mathbb{P}(X, A, Y)$ as $\tau(x) = \mu_1(x) - \mu_0(x)$. In this work, we estimate the CATE from observational data \mathcal{D} with meta-learners (Künzel et al., 2019; Morzywolek et al., 2023).

Meta-learners for CATE. Formally, two-stage meta-learners aim to find the best projection $g^*(x)$ of the ground-truth CATE $\tau(x)$ on a pre-specified model class $\mathcal{G} = \{g : \mathcal{X} \rightarrow \mathbb{R}\}$ by minimizing a target risk $\mathcal{L}(g, \eta)$ wrt. g . Here, $\eta = (\mu_0, \mu_1, \pi)$ are nuisance functions: they are fitted at the first stage and then used at the second stage to learn the optimal $g^* = \arg \min_{g \in \mathcal{G}} \mathcal{L}(g, \eta)$. The majority of existing CATE meta-learners can be described by the following target risks, which have the same minimizers given the ground-truth nuisance functions:

$$\text{Original risk: } \mathcal{L}(g, \eta) = \mathbb{E} \left[w(\pi(X)) (\mu_1(X) - \mu_0(X) - g(X))^2 \right] + \Lambda(g; \mathbb{P}(X)), \quad (1)$$

$$\text{Neyman-orthogonal risk: } \mathcal{L}(g, \eta) = \underbrace{\mathbb{E} \left[\rho(A, \pi(X)) (\phi(Z, \eta) - g(X))^2 \right]}_{\text{error term } (\mathcal{E})} + \underbrace{\Lambda(g; \mathbb{P}(X))}_{\text{regularization term } (\Lambda)}, \quad (2)$$

where $w(\pi(X)) \geq 0$ is a weighting function, $\rho(A, \pi(X)) = (A - \pi(X))w'(\pi(X)) + w(\pi(X)) \geq 0$ is a debiased weighting function, $\phi(Z, \eta)$ is a pseudo-outcome with a property $\mathbb{E}[\phi(Z, \eta) \mid X = x] = \tau(x)$. While the two risks (original and Neyman-orthogonal) have the same minimizers g^* given the ground-truth nuisance functions η , they yield significantly different results \hat{g} when the nuisance functions are estimated $\hat{\eta}$.

Neyman-orthogonal meta-learners. In the following, we will focus on three Neyman-orthogonal meta-learners (Eq. (2)): DR-learner (Kennedy, 2023), R-learner (Nie & Wager, 2021), and IVW-learner (Fisher, 2024). The DR-learner (Kennedy, 2023) is given by $w(\pi(X)) = p(A, \pi(X)) = 1$ and $\phi(Z, \eta) = (A - \pi(X))(Y - \mu_A(X))/\nu(X) + \mu_1(X) - \mu_0(X)$; the R-learner (Nie & Wager, 2021) by $w(\pi(X)) = \nu(X)$, $p(A, \pi(X)) = (A - \pi(X))^2$ and $\phi(Z, \eta) = (Y - \mu(X))/(A - \pi(X))$; and the IVW-learner (Fisher, 2024) by a combination of the former: the weighting functions of the R-learner and the pseudo-outcome of the DR-learner (see details on meta-learners in Appendix B).

Low overlap. We speak of low overlap, whenever either $\pi(x)$ or $(1 - \pi(x))$ (and thus $\nu(x)$) are close to 0. Conversely, perfect overlap regions have $\pi(x) = 0.5$ and $\nu(x) = 1/4$. Importantly, low overlap negatively affects the convergence of any meta-learner. For example, for the DR-learner, it inflates the inverse propensity scores and, for R-/IVW-learners, it retargets the target risk at a different quantity than CATE (Morzywolek et al., 2023).

Constant regularization.³ The regularization term in Eq. (2), $\Lambda = \Lambda(g; \mathbb{P}(X))$, should be specified depending on the target model class \mathcal{G} . For example, if the second-stage model is (a) parametric, namely $\mathcal{G} = \{g(\cdot; \beta, c) : \mathcal{X} \rightarrow \mathbb{R} \mid \beta \in \mathbb{R}^d, c \in \mathbb{R}\}$, l_2 -regularization is a popular choice: $\Lambda(g; \mathbb{P}(X)) = \lambda \|\beta\|_2^2$. Here, c is an intercept, and $\lambda > 0$ is a regularization constant. Similarly, for a (b) non-parametric second-stage model (e.g., kernel ridge regression), \mathcal{G} is the RKHS \mathcal{H}_{K+c} and $\Lambda(g; \mathbb{P}(X)) = \lambda \|g\|_{\mathcal{H}_K}^2$. Here (with a slight abuse of notation), c is an added

³Here, the regularization term Λ might also depend on $\mathbb{P}(X)$ (e.g., a standard dropout implicitly depends on the correlation matrix Σ). In our context, we call it constant regularization as it does not depend on the overlap.

constant kernel. It is easy to see that, in both cases (a) and (b), increasing $\lambda \rightarrow \infty$ leads to $g^* \rightarrow \mathbb{E}[p(A, \pi(X))\phi(Z, \eta)]/\mathbb{E}[p(A, \pi(X))] = c^*$ (see Remark 1 in Appendix B.2). This happens as the intercept/constant kernel is not regularized. Yet, the constant regularization λ (i) does not directly address the low-overlap issue for DR-learner or (ii) leads to WATE in low-overlap regions for R- and IVW-learners. This motivates our core idea of an adaptive regularization that depends on the distribution of the covariates and the treatment $\mathbb{P}(X, A)$, and the level of overlap $\nu(X)$.

4 OVERLAP-ADAPTIVE REGULARIZATION

In the following, we introduce our approach of *Overlap-Adaptive Regularization* (OAR) (Sec. 4.1) and several specific versions for (a) parametric target models (Sec. 5). Further, we provide an extension for non-parametric versions of our OAR in Appendix A. Proofs are provided in Appendix D.

4.1 GENERAL FRAMEWORK

Here, we define our *Overlap-Adaptive Regularization* (OAR), a novel general approach that (1) addresses the low-overlap issue of existing meta-learners, and (2) is model-agnostic.

Definition 1 (Overlap-adaptive regularization (explicit form)). *For a meta-learner with a second-stage model $g(\cdot) \in \mathcal{G}$ and a target risk $\mathcal{L}(g, \eta) = \mathcal{E} + \Lambda$ (Eq. (2)), overlap-adaptive regularization (OAR) in an explicit form is given by*

$$\Lambda_{OAR} = \Lambda(g; \mathbb{P}(X, A); \lambda(\nu(X))), \quad (3)$$

where $\lambda(\nu) > 0$ is a **regularization function** that defines the amount of the regularization and is proportional to the inverse overlap: $\lambda(\nu) \propto 1/\nu$. We further distinguish three general classes of regularization functions: multiplicative (m), logarithmic (log), and squared multiplicative (m²):

$$\lambda_m(\nu(x)) = 1/4\nu(x) - 1; \quad \lambda_{\log}(\nu(x)) = -\log(4\nu(x)); \quad \lambda_{m^2}(\nu(x)) = 1/16\nu(x)^2 - 1. \quad (4)$$

Our OAR explicitly depends on the overlap through the regularization function⁴, which is the main difference from the constant regularization.

Interpretation. Informally, our OAR increases regularization in the regions of the covariate space \mathcal{X} with low overlap (namely, $\lambda(\nu) \rightarrow \infty$ when $\nu(x) \rightarrow 0$). Analogously, the regularization becomes smaller when perfect overlap is achieved (i. e., $\lambda(\nu) \rightarrow 0$ when $\nu(x) \rightarrow 1/4$). This introduces a desired behavior in a practical application. For example, in a medical context, low-overlap regions imply higher certainty about the treatment decisions (as optimal treatment might already be known there). Our OAR then allows to focus the model flexibility on the overlapping sub-population (namely, the individuals for whom the CATE/optimal treatment is unknown).

Implicit form. Notably, our OAR can also be defined in the implicit form: it can enter through the error term of the target risk \mathcal{E}_{OAR} (e. g., noise regularization and dropout). Still, as we will demonstrate later, the two formulations are equivalent for **linear models**. That is, it is possible to find an equivalent form of the target risk with the original error term \mathcal{E} and the regularization term in the explicit form Λ_{OAR} . This equivalence can also be partially extended to some **deep neural networks**: noise regularization (Camuto et al., 2020) and dropout (Wei et al., 2020) were shown to have an explicit, first-order equivalent form.

Flexibility. Our OAR can be combined with any (Neyman-orthogonal) meta-learner. Also, we intentionally did not specify the dependency on g and the observational distribution of $\mathbb{P}(X, A)$. This was done as we want our OAR to be *model-agnostic* and fit into a wide range of the second-stage model classes \mathcal{G} . For example, many standard regularization techniques like dropout and noise regularization can have very different dependencies on g and $\mathbb{P}(X, A)$ in their explicit forms (Wager et al., 2013; Camuto et al., 2020; Mianjy & Arora, 2019; Wei et al., 2020).

4.2 DIFFERENCE FROM THE LITERATURE

Difference to retargeting. A natural question arises on whether our OAR is related to retargeting, a standard approach in meta-learners to handle low overlap (see Sec. 2). Specifically, retargeting is

⁴Our regularization function can be seen as an example of a selection (or tilting) function (Li et al., 2018; Assaad et al., 2021; Matsouaka et al., 2024). So far, these were only used in the error terms of the target risks (e. g., R-learner uses bias-corrected overlap weights).

270 **Table 1: Summary of OAR versions.** Here, \mathcal{E} is the error term defined in Eq. (2) and $\lambda(\nu)$ is the
 271 regularization function of OAR (see Definition 1).

272 Instantiation of OAR	273 Implicit form (\mathcal{E}_{OAR}) & explicit form (Λ_{OAR})	274 Equivalent explicit form for a linear model class \mathcal{G}
275 Noise regularization	$\mathcal{E}_{\text{OAR}} = \dots$ (Eq. (5)) Dropout	$\mathcal{E}_{\text{OAR}} = \mathcal{E}$ $\Lambda_{\text{OAR}} = \ \beta\ _2^2 \mathbb{E}[\rho(A, \pi(X)) \cdot \lambda(\nu(X))]$ $\mathcal{E}_{\text{OAR}} = \mathcal{E}$ $\Lambda_{\text{OAR}} = \beta^\top \text{diag}[\Sigma_{\rho(\cdot, \pi)} \cdot \lambda(\nu)] \beta$
276 RKHS norm	$\mathcal{E}_{\text{OAR}} = \mathcal{E}$ $\Lambda_{\text{OAR}} = \left\ \sqrt{\lambda(\nu)} g \right\ _{\mathcal{H}_K}^2$	277 Undefined

277 implemented in both R- and IVW-learners, as they down-weight their error term of the target risk
 278 proportionally to overlap: $\mathbb{E}[\rho(A, \pi(X)) \mid X = x] = \mathbb{E}[(A - \pi(X))^2 \mid X = x] = \nu(x)$. On the
 279 other hand, our OAR up-weights the regularization term wrt. overlap. However, both approaches, in
 280 general, lead to *different risk minimizers*: while the re-weighted error term incorporates overlap with
 281 all the aspects of the observed distribution $\mathbb{P}(X, A, Y)$, our regularization term in OAR combines
 282 overlap only with $\mathbb{P}(X, A)$. Interestingly, the two approaches match only in a very simple case (as
 283 we will show later) when the propensity score and, thus, the overlap are constant.

284 **Difference to balancing.** Another way to tackle low overlap was suggested by balancing repre-
 285 sentations with empirical probability metrics (Johansson et al., 2016; Shalit et al., 2017; Johansson
 286 et al., 2022; Assaad et al., 2021) in neural network (NN)-based plug-ins (see Appendix A). Here,
 287 the average amount of regularization is proportional to a distributional distance between untreated
 288 and treated covariates, $\text{dist}(\mathbb{P}(X \mid A = 0); \mathbb{P}(X \mid A = 1))$. In our case, the average amount of
 289 regularization can also be represented through distributional distances, yet *different from the one used*
 290 *in balancing regularization*.

291 **Proposition 1** (Average regularization function as a distributional distance). *The average amount of*
 292 *overlap-adaptive regularization $\mathbb{E}[\lambda(\nu(X))]$ is equal to or upper-bounded by f -divergences between*
 293 *$\mathbb{P}(X)$ and $\mathbb{P}(X \mid A = a)$ for $a \in \{0, 1\}$.*

294 We immediately see that our OAR is implicitly based on the distributional distances between $\mathbb{P}(X)$
 295 and $\mathbb{P}(X \mid A = a)$, which are different from those used in balancing. Furthermore, our OAR is thus
 296 *simpler in implementation than balancing* because we only need to estimate the propensity score but
 297 not the distributional distance for a high-dimensional X .

299 5 INSTANTIATIONS OF OUR OAR

301 In the following, we provide several versions of our OAR for **parametric target models**, and we
 302 carefully tailor existing regularization techniques so that they become “overlap-adaptive” (see the
 303 overview in Table 1). For each version, we also (1) show an equivalent explicit form Λ_{OAR} when the
 304 target model is linear and (2) derive a debiased (one-step bias-corrected) version of the regularization.
 305 The latter is beneficial to remove the first-order dependency on the estimated propensity score.
 306 We also provide a version for a **non-parametric target model** in Appendix C. All proofs are in
 307 Appendix D.1.

308 We consider target models in the following parametric form $\mathcal{G} = \{g(\cdot; \beta, c) : \mathcal{X} \rightarrow \mathbb{R} \mid \beta \in$
 309 $\mathbb{R}^d, c \in \mathbb{R}\}$, where β are parameters to be regularized and c is an intercept. For this very general
 310 parametric class, we tailor two general regularization techniques based on *noise injection*: (i) OAR
 311 noise regularization and (ii) OAR dropout. We also consider w.l.o.g. that noise is injected into the
 312 inputs of g (if g is an NN, then noise can be injected into any layer, see Fig. 3 in Appendix E).

313 5.1 OAR NOISE REGULARIZATION

315 Our **OAR with Gaussian noise regularization** is given by

$$317 \mathcal{L}_{\text{OAR}}^{+\xi}(g, \eta) = \mathcal{E}_{\text{OAR}} = \mathbb{E} \left[\mathbb{E}_{\xi \sim N(0, \sqrt{\lambda(\nu(X))}^2)} [\rho(A, \pi(X)) (\phi(Z, \eta) - g(X + \xi))^2] \right], \quad (5)$$

319 where $N(0, \sigma^2)$ is a normal distribution with variance σ^2 .

321 Thus, by construction of our OAR noise regularization, the variance of additive noise is proportional
 322 to the inverse overlap $\sigma^2 \propto 1/\nu(x)$, and the model $g(x)$ is regularized more in low-overlap regions.
 323 We further show an explicit form of OAR noise regularization Λ_{OAR} for linear models g .

324 **Proposition 2** (Explicit form of OAR noise regularization in linear g). *For a linear model $g(x) =$
 325 $\beta^\top x + c$, OAR noise regularization has the following explicit form Λ_{OAR} :*

$$\mathcal{L}_{OAR}^{+\xi}(g, \eta) = \mathcal{E} + \Lambda_{OAR} = \mathcal{E} + \|\beta\|_2^2 \mathbb{E}[\rho(A, \pi(X)) \cdot \lambda(\nu(X))], \quad (6)$$

328 where \mathcal{E} is given by the original error term from Eq. (2).

329 **Interpretation.** We observe that, for linear models, OAR noise regularization coincides with a ridge
 330 regression with the constant regularization $\lambda = \mathbb{E}[\rho(A, \pi(X)) \cdot \lambda(\nu(X))]$. However, for other, more
 331 complex parametric models, the explicit form is more complicated and is very different from l_2 (e.g.,
 332 for NNs, noise regularization in explicit form depends on the Jacobians wrt. parameters (Camuto
 333 et al., 2020)).

334 **5.2 OAR DROPOUT**

336 Our **OAR dropout** is given by:

$$\mathcal{L}_{OAR}^{\circ\xi}(g, \eta) = \mathcal{E}_{OAR} = \mathbb{E}[\mathbb{E}_{\xi \sim \text{Drop}(p(\nu(X)))} [\rho(A, \pi(X)) (\phi(Z, \eta) - g(X \circ \xi))^2]], \quad (7)$$

340 where \circ is an element-wise multiplication; $p(\nu) = \lambda(\nu)/(\lambda(\nu) + 1) \in (0, 1)$ is a dropout
 341 probability; $\xi \sim \text{Drop}(p)$ is sampled from a scaled Bernoulli distribution ($\xi = 0$ with probability
 342 p and $\xi = 1/(1-p)$ with probability $1-p$).

344 Given the definition of our OAR dropout, it is easy to see that $p \propto 1/\nu(x)$. This means, the dropout
 345 probability is $p = 0$ in high-overlap regions ($\nu(x) = 1/4$), and $p \rightarrow 1$ in low-overlap regions
 346 ($\nu(x) \rightarrow 0$).

347 Interestingly, both the regular (Wager et al., 2013; Bartlett et al., 2019) and OAR dropouts are
 348 significantly different from the l_2 -regularization, even for linear models g . We show it with the
 349 following proposition.

350 **Proposition 3** (Explicit form of OAR dropout in linear g). *For a linear model $g(x) = \beta^\top x + c$, OAR
 351 dropout regularization has the following explicit form Λ_{OAR} :*

$$\mathcal{L}_{OAR}^{\circ\xi}(g, \eta) = \mathcal{E} + \Lambda_{OAR} = \mathcal{E} + \beta^\top \text{diag}[\Sigma_{\rho(\cdot, \pi)} \cdot \lambda(\nu)] \beta, \quad (8)$$

354 where \mathcal{E} is given by the original error term from Eq. (2), $\lambda(\nu) = p(\nu)/(1-p(\nu))$, and $\text{diag}[\cdot]$ zeroes
 355 out all but the diagonal entries of a matrix.

356 **Interpretation.** Proposition 3 motivates our choice of $p(\nu)$ as $\lambda(\nu)/(\lambda(\nu) + 1)$ so that $\lambda(\nu) =$
 357 $p(\nu)/(1-p(\nu))$. Also, we immediately see that, for linear models g , our OAR is *not* an l_2 -
 358 regularization but an overlap-dependent quadratic form for β . That is, our OAR dropout scales
 359 each β_j prior to applying l_2 -regularization. Specifically, our OAR dropout in linear models is
 360 equivalent to a ridge regression where each feature is scaled down proportionately to the product of
 361 the inverse overlap and its own second moment: $\tilde{X}_j = X_j / \sqrt{\mathbb{E}[\rho(A, \pi(X)) \cdot \lambda(\nu(X)) \cdot X_j^2]}$. For
 362 other parametric models, the explicit form of OAR dropout becomes more complex (e.g., the explicit
 363 form of the standard dropout in NNs has l_2 -path regularizers and rescaling invariant sub-regularizers
 364 (Mianjy & Arora, 2019; Wei et al., 2020)).

366 **Implicit and explicit forms.** Importantly, Propositions 2 and 3 also show the effect of OAR applied
 367 on top of the retargeted learners if OAR is presented in the implicit form \mathcal{E}_{OAR} . For example, when
 368 multiplicative OAR noise regularization is used with R-/IVW-learners, they result in a constant amount
 369 of regularization in low-overlap regions (i.e., $\mathbb{E}[\rho(A, \pi(X)) \cdot \lambda_m(\nu(X))] = 1/4 - \nu(X) \rightarrow 1/4$
 370 given the ground-truth nuisance functions). This suggests that, if we want to adaptively regularize
 371 retargeted learners with OAR noise regularization, we need to employ the squared multiplicative
 372 regularization function λ_{m^2} (so that $\mathbb{E}[\rho(A, \pi(X)) \cdot \lambda_{m^2}(\nu(X))] \rightarrow \infty$ in low-overlap regions).

373 **5.3 DEBIASED OAR FOR PARAMETRIC MODELS**

374 Here, we provide two debiased (one-step bias-corrected) versions, which we call **dOAR noise**
 375 **regularization** and **dOAR dropout**. Debiasing (van der Vaart, 2000; Kennedy, 2022) is beneficial to
 376 remove the first-order errors from the estimated propensity score $\hat{\nu}(x) = \hat{\pi}(x)(1 - \hat{\pi}(x))$. Namely,
 377 our original OAR from Eq. (5) and (7) might be overly sensitive to the misspecification of the overlap
 378 weights (e.g., when the propensity score $\hat{\pi}$ is badly estimated).

378 **Proposition 4** (Debiased OAR). *Under the continuous differentiability of $g(x; \beta, c)$, (i) debiased
379 OAR noise regularization and (ii) debiased OAR dropout are given by*

$$381 \quad \mathcal{L}_{dOAR}^\diamond(g, \eta) = \mathcal{L}_{OAR}^\diamond(g, \eta) + \mathbb{E} \left[\int_{\mathcal{X}} \mathbb{E}_\xi [C^\diamond(X; A; \xi; \nabla_\xi[g]; \eta)] \mathbb{P}(X = x) dx \right], \text{ for } \diamond \in \{+\xi, \circ\xi\}, \quad (9)$$

$$383 \quad C^{+\xi}(X; A; \xi; \nabla_\xi[g]; \eta) = -2w(X)(\mu_1(X) - \mu_0(X) - g(X + \xi)) \cdot \nabla_\xi[g](X, \xi) \cdot \mathbb{IF}(\lambda(\nu(x)); X, A), \quad (10)$$

$$384 \quad C^{\circ\xi}(X; A; \xi; \nabla_\xi[g]; \eta) = w(X)(\mu_1(X) - \mu_0(X) - g(X \circ \xi))^2 \cdot \frac{1 - \xi}{p(\nu(X))} \cdot \mathbb{IF}(p(\nu(x)); X, A)$$

$$386 \quad - 2w(X)(\mu_1(X) - \mu_0(X) - g(X \circ \xi)) \cdot \nabla_\xi[g](X, \xi) \cdot \mathbb{IF}(p(\nu(x)); X, A), \quad (11)$$

387 where $\mathcal{L}_{OAR}^\diamond$ are from Eq. (5) and (7); $\nabla_\xi[g]$ is a gradient wrt. ξ ; and $\mathbb{IF}(\cdot; Z)$ is an efficient
388 influence function (see Appendix D.2 for further details). Furthermore, by construction, $\mathcal{L}_{dOAR}^\diamond$ is a
389 Neyman-orthogonal risk.

391 *Proof.* For debiasing, we derived the efficient influence functions using a chain rule together with
392 reparameterization and REINFORCE tricks. The full proof is in Appendix D. \square

394 Importantly, after debiasing, our OAR recovers the property of Neyman-orthogonality (Chernozhukov
395 et al., 2017; Foster & Syrgkanis, 2023) when combined with the standard Neyman-orthogonal learners.
396 Furthermore, we can show that, under some additional conditions, our OAR/dOAR are guaranteed to
397 outperform the constant regularization (CR).

398 **Proposition 5** (Excess prediction risk of our OAR/dOAR dropout with linear second-stage model).
399 *The excess prediction risk of the DR-learner with the linear second-stage model and dropout regularization
400 has the following form:*

$$401 \quad \|\hat{g} - g^*\|_{L_2}^2 = \mathbb{E}[(\hat{\beta}^T X - \beta^{*T} X)^2] \lesssim \underbrace{\frac{1}{n} \text{tr} [\Sigma(\Sigma + \Gamma)^{-1} \Sigma_{\tilde{\phi}(Z, \eta)^2} (\Sigma + \Gamma)^{-1}]}_{\text{variance term}} + \underbrace{\beta^{*T} \Gamma \beta^*}_{\text{bias term}} + R(\eta, \hat{\eta}), \quad (12)$$

404 where $\Gamma_{CR} = \lambda I$ for the CR, $\Gamma_{OAR} = \text{diag}[\Sigma_{\lambda(\nu)}]$ for the OAR/dOAR. Then, under (i) a conditional
405 variance assumption (=conditional variance of the outcome is constant), the variance term for
406 OAR/dOAR is less than or equal to the variance term of the CR. Also, under (ii) a low-overlap-low-
407 heterogeneity inductive bias (LOLH-IB), OAR/dOAR do not increase the bias term too much.

409 *Proof.* We used a bias-variance decomposition of the excess prediction risk for linear models. Then,
410 we showed how assumptions (i)-(ii) help to reduce each term for our OAR/dOAR in comparison to
411 the CR. The full proof is in Appendix D. \square

412 We provide the full statement and the full proof of Proposition 5 in Appendix D. Arguably, both
413 assumptions of Proposition 5 are reasonable: (i) The conditional variance of the outcome, $\text{Var}(Y |$
414 $X, A)$, becomes nearly constant comparing to the variance of the DR pseudo-outcome; while
415 (ii) LOLH-IB is often assumed to simplify causal ML (Curth & van der Schaar, 2021a; Melnychuk
416 et al., 2025) (see Appendix A). Importantly, Proposition 5 and Eq. (12) apply to any level of overlap.
417 However, specifically for the low-overlap setting (i. e., with larger values of $1/\nu(x)$), it is fair to
418 assume (i) the conditional variance assumption, as the variance of the DR pseudo-outcome can be
419 considered proportional to the inverse overlap.

420 5.4 NON-PARAMETRIC TARGET MODELS: OAR RKHS NORM

422 In the following, we introduce an instantiation of our OAR for a very general class of non-parametric
423 models that belong to a reproducing kernel Hilbert space $\mathcal{G} = \mathcal{H}_{K+c}$ induced by a sum of an arbitrary
424 kernel $K(\cdot, \cdot)$ and a constant kernel $K(\cdot, \cdot) = c$.

425 Our **OAR RKHS norm** for a target model $g \in \mathcal{H}_{K+c}$ can be instantiated as a weighted kernel
426 ridge regression (KRR) with a modified, OAR-based RKHS norm:

$$428 \quad \mathcal{L}_{OAR}^{\mathcal{H}}(g, \eta) = \mathcal{E} + \Lambda_{OAR} = \mathcal{E} + \left\| \sqrt{\lambda(\nu)} g \right\|_{\mathcal{H}_K}^2, \quad (13)$$

430 where \mathcal{E} is given by the original error term from Eq. (2), and we assume that $\sqrt{\lambda(\nu)} g \in \mathcal{H}_K$ for
431 every $g \in \mathcal{H}_{K+c}$ (this assumption is required so that the modified RKHS norm is well-defined).

432 Here, the regularization function $\sqrt{\lambda(\nu(x))}$ adaptively regularizes a function $g(x)$ and is known as a
 433 *multiplier of the RKHS \mathcal{H}_K* (Szafraniec, 2000; Paulsen & Raghupathi, 2016). Then, under special
 434 conditions, the weighted KRR with OAR-based RKHS norm has a well-defined solution.

435 **Proposition 6** (Kernel ridge regression with an OAR-based RKHS norm). *Let $\sqrt{\lambda(\nu)}g \in \mathcal{H}_K$ for
 436 every $g \in \mathcal{H}_{K+c}$. Then, the minimizer of the target risk $g^* = \arg \min_{g \in \mathcal{H}_{K+c}} [\mathcal{L}_{OAR}^{\mathcal{H}}(g, \eta)]$ is in
 437 \mathcal{H}_{K+c} and has an explicit solution.*

438 We defer the full formulation of Proposition 6 and further discussions to Appendix C. Furthermore,
 439 Proposition 7 in Appendix C shows a result similar to Proposition 5 for our OAR RKHS norm
 440 regularization. Specifically, we showed there that our OAR RKHS norm improves over the CR under
 441 the analogous conditions for the RKHS: (i) conditional variance assumption and (ii) low-overlap-low-
 442 heterogeneity inductive bias.

443 5.5 IMPLEMENTATION DETAILS

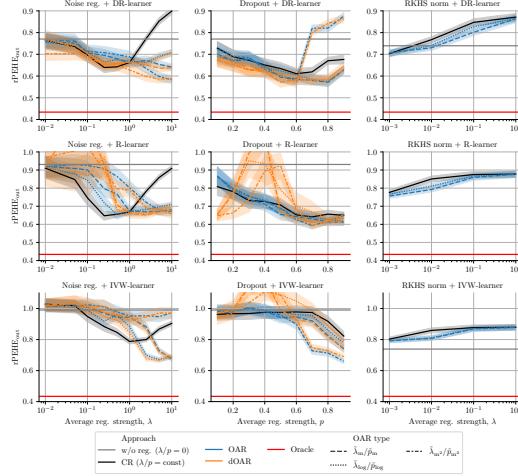
444 The implementation of our OAR proceeds in two
 445 stages (e.g., see Fig. 3 in Appendix E for the
 446 (a) parametric OAR instantiations with NNs). In
 447 stage 1, we estimate the nuisance functions $\hat{\eta}$.
 448 For this, we fit cross-validated fully-connected
 449 NNs. Then, in stage 2, we fit a target network
 450 using empirical versions of the target risks $\hat{\mathcal{L}}$ in
 451 (a) and KRR solution \hat{g} in (b) to yield a target
 452 model (= CATE estimator). Furthermore, in both
 453 settings (a) and (b), we rescaled the regularization
 454 function $\tilde{\lambda}(\nu)$ (or $\tilde{p}(\nu)$) so that OAR can be
 455 comparable with the constant amount of regular-
 456 ization. For our dOAR, we additionally trimmed
 457 too large absolute values of the debiasing term
 458 C^\diamond : this helped to achieve a better stability of
 459 training the target models. We provide further
 460 implementation details in Appendix E.

461 6 EXPERIMENTS

462 **Setup.** We follow prior literature (Curth & van der
 463 Schaar, 2021b; Melnychuk et al., 2023) and use several
 464 (semi-)synthetic datasets where both counterfactual outcomes
 465 $Y[0]$ and $Y[1]$ and ground-truth CATE are available. Specifi-
 466 cally, we used four datasets for benchmarking (see Appendix F
 467 for details). For all four, we report an out-sample root pre-
 468 cision in estimating heterogeneous effect ($rPEHE_{out}$) or an
 469 improvement of our OAR over the baseline as a difference of
 470 the former ($\Delta rPEHE_{out}$).

471 **Baselines.** We compare all versions of our **OAR** and our debi-
 472 ased **OAR (dOAR)**. As a baseline, we use only a comparable
 473 regularization strategy for meta-learners, namely, constant regularization (**CR**) (Morzywolka et al.,
 474 2023). In Appendix G, we also report the results of other, not directly comparable baselines (e.g.,
 475 trimming and balancing). Here, we compare how different amounts of regularization work with three
 476 Neyman-orthogonal learners: (i) **DR-learner** (Kennedy, 2023), (ii) **R-learner** (Nie & Wager, 2021),
 477 and (iii) **IVW-learner** (Fisher, 2024). For a fair comparison, we rescaled our OAR/ dOAR so that
 478 they, on average, coincide with the CR values (see Appendix E).

479 **IHDP dataset.** The IHDP dataset ($n = 672 + 75$; $d_x = 25$) (Hill, 2011; Shalit et al., 2017) is
 480 well-known to have severe overlap violations (Curth et al., 2021). **Results.** We show the results of the
 481 experiments with the IHDP dataset in Fig. 2. Therein, our OAR/dOAR are particularly effective for
 482 the DR-learner and large regularization values. Notably, the best performance for every meta-learner
 483 and regularization type is achieved by some version of our OAR/dOAR.



484 **Figure 2: Results for IHDP dataset experiments.**
 485 Reported: median $rPEHE_{out} \pm se$ over 100 runs.

486 **Table 2: Results for 77 semi-
 487 synthetic ACIC 2016 experiments
 488 for the DR-learner.** Reported: % of
 489 datasets, where our OAR/dOAR sig-
 490 nificantly outperforms CR ($\alpha = 0.1$
 491 with 15 runs per dataset).

Reg.	Noise reg.	Dropout
$\lambda/p =$		
Approach	0.05	0.3
OAR($\tilde{\lambda}_{\log}/\tilde{p}_{\log}$)	14.29%	29.87%
dOAR($\tilde{\lambda}_{\log}/\tilde{p}_{\log}$)	7.79%	64.94%
OAR($\tilde{\lambda}_m/\tilde{p}_m$)	31.17%	41.56%
dOAR($\tilde{\lambda}_m/\tilde{p}_m$)	57.14%	70.13%
OAR($\tilde{\lambda}_{m^2}/\tilde{p}_{m^2}$)	27.27%	16.88%
dOAR($\tilde{\lambda}_{m^2}/\tilde{p}_{m^2}$)	76.62%	64.94%

492 Higher = better (improvement over the
 493 baseline in <50% of runs in green)

Table 3: **Results for HC-MNIST experiments for OAR/dOAR($\tilde{\lambda}_m/\tilde{p}_m$).** Reported: rPEHE_{out} (Δ rPEHE_{out}); mean \pm std over 30 runs.

Reg.	$\lambda/p =$ Approach	Noise reg.			Dropout		
		0.05	0.1	0.25	0.1	0.3	0.5
DR	CR ($\lambda/p = \text{const}$)	0.752 \pm 0.038	0.741 \pm 0.037	0.711 \pm 0.030	0.746 \pm 0.036	0.727 \pm 0.032	0.711 \pm 0.025
	OAR($\tilde{\lambda}_m/\tilde{p}_m$)	0.743 \pm 0.039 (-0.009)	0.726 \pm 0.036 (-0.015)	0.696 \pm 0.033 (-0.015)	0.742 \pm 0.038 (-0.004)	0.713 \pm 0.032 (-0.014)	0.701 \pm 0.025 (-0.011)
	dOAR($\tilde{\lambda}_m/\tilde{p}_m$)	0.731 \pm 0.035 (-0.021)	0.712 \pm 0.033 (-0.029)	0.684 \pm 0.027 (-0.027)	0.713 \pm 0.038 (-0.033)	0.705 \pm 0.031 (-0.021)	0.702 \pm 0.026 (-0.009)
R	CR ($\lambda/p = \text{const}$)	0.715 \pm 0.015	0.703 \pm 0.010	0.674 \pm 0.007	0.720 \pm 0.027	0.711 \pm 0.027	0.696 \pm 0.018
	OAR($\tilde{\lambda}_m/\tilde{p}_m$)	0.711 \pm 0.012 (-0.004)	0.696 \pm 0.009 (-0.007)	0.673 \pm 0.007 (-0.000)	0.720 \pm 0.024 (-0.000)	0.696 \pm 0.013 (-0.015)	0.685 \pm 0.010 (-0.011)
	dOAR($\tilde{\lambda}_m/\tilde{p}_m$)	0.705 \pm 0.009 (-0.010)	0.695 \pm 0.010 (-0.007)	0.671 \pm 0.008 (-0.003)	0.689 \pm 0.015 (-0.031)	0.687 \pm 0.013 (-0.024)	0.682 \pm 0.011 (-0.013)
IVW	CR ($\lambda/p = \text{const}$)	1.121 \pm 0.246	1.102 \pm 0.235	1.028 \pm 0.201	1.136 \pm 0.251	1.117 \pm 0.259	1.113 \pm 0.281
	OAR($\tilde{\lambda}_m/\tilde{p}_m$)	1.099 \pm 0.237 (-0.021)	1.071 \pm 0.225 (-0.030)	0.984 \pm 0.215 (-0.044)	1.131 \pm 0.259 (-0.005)	1.061 \pm 0.231 (-0.056)	0.997 \pm 0.213 (-0.116)
	dOAR($\tilde{\lambda}_m/\tilde{p}_m$)	1.105 \pm 0.239 (-0.016)	1.058 \pm 0.217 (-0.044)	0.978 \pm 0.212 (-0.049)	1.130 \pm 0.221 (-0.006)	1.110 \pm 0.293 (-0.006)	1.027 \pm 0.235 (-0.086)
Oracle				0.513			

Lower = better (best in bold, second best underlined). Change over the baseline in brackets (significant improvement in green, significant worsening in red, $\alpha = 0.05$)

ACIC 2016 datasets. ACIC 2016 collection (Dorie et al., 2019) contains 77 semi-synthetic datasets ($n = 4802, d_x = 82$) with varying overlap and CATE heterogeneity. Due to the high-dimensionality of covariates, we exclude RKHS norm regularization from the experiments. Results. Results for the DR-learner are in Table 2, as our OAR/dOAR were most effective in the combination with the DR-learner. Here, different versions of our OAR/dOAR lead to a high percentage of significant improvements over the CR. Furthermore, our dOAR often leads to a significant improvement in more than half of the datasets.

HC-MNIST dataset. Finally, we adopted a high-dimensional HC-MNIST dataset ($d_x = 784 + 1$) (Jesson et al., 2021), which naturally suffers from low overlap (due to the dimensionality). Results. Table 3 provides the results for OAR/dOAR with the multiplicative regularization function (results for other regularization functions are in Appendix G). Here, we observe that our OAR/dOAR significantly improves the performance of the CR + DR-/R-/IVW-learners in the majority of cases. Notably, the *best performance for every regularization value is always achieved by some version of our OAR/dOAR*. This proves the effectiveness and scalability of our approach.

Additional results. In Appendix G, we additionally report the results for the synthetic data from Fig. 1. Also, we report the results of other, not directly comparable baselines (e. g., trimming and balancing). **There, we vary regularization hyperparameters responsible for addressing low overlap.**

On the choice of the regularization function. Our results support the *multiplicative regularization function* as the most effective choice for our OAR. First, the proof of our Proposition 5 in Appendix D.2 suggests that, under the conditional variance assumption, the variance-optimal shape for adaptive regularization scales as a fractional power of inverse overlap, namely $\lambda(\nu) \propto \nu^{-1/3}$. This lies between the logarithmic dependence (looser penalization) and the multiplicative dependence (stronger penalization), making the latter a practical, more robust variant of the regularization function. This choice of a stronger regularization function can also be particularly relevant for non-linear target models (e. g., neural networks), whose effective variance typically grows with model complexity. Second, Corollary C in Appendix 2 shows that our OAR based on the multiplicative regularization function combined with the DR-learner is equivalent to the CR combined with the R-learner in kernel ridge regression settings. Given the well-studied effectiveness of the R-learner, this offers theoretical support for multiplicative regularization. Finally, our extensive empirical evaluation in Sec. 6 and Appendix G consistently identifies the multiplicative regularization function as the strongest performer across diverse benchmarks. Collectively, these arguments justify our recommendation of the *multiplicative regularization function* as the default regularization strategy for our OAR.

On the best combination. We empirically found the combination of our OAR/dOAR noise regularization / dropout with DR-learner to be consistently good across *all the benchmarks*. The main reason for this is that our OAR/dOAR in combination with the DR-learner achieve just the right balance between the high-variability of the pseudo-outcome and the regularization strength (as suggested by the assumptions of Proposition 5). On the other hand, R- and IVW-learners in the combination with our OAR/dOAR might over-regularize the low-overlap areas, as the overlap already downscales the error term of the target loss.

Conclusion. In this paper, we introduced a novel approach for regularizing two-stage meta-learners: *Overlap-Adaptive Regularization*. Our OAR adaptively sets the regularization depending on the overlap so that low-overlap regions are regularized more. We showed that this approach is more effective than the existing constant regularization techniques. OAR performs best when low overlap coincides with low CATE heterogeneity (this can be seen as an underlying inductive bias). Such an inductive bias is often meaningful in practice: in the absence of ground-truth counterfactuals (i. e., in low-overlap versions), simpler models for the CATE may be preferred.

540
541

ETHICS STATEMENT

542

Overlap-Adaptive Regularization (OAR) is designed to make conditional average treatment effect (CATE) meta-learners more reliable when data exhibit poor treatment-control overlap. In high-stakes domains such as personalized medicine, where CATE estimates inform therapeutic choices, better behavior in low-overlap regions can translate into safer, more effective, and more equitable care decisions. Beyond healthcare, the technique may help policymakers or social-science researchers draw fairer conclusions from observational data by making CATE estimation more stable.

543

REPRODUCIBILITY STATEMENT

544

We have taken several measures to ensure the reproducibility of our work:

545

- *Algorithms.* We provide full algorithmic descriptions, including pseudocode for adaptive regularization methods. Hyperparameters, update rules, and initialization strategies are explicitly detailed.
- *Experimental validation.* We describe datasets, architectures, hyperparameters, and evaluation procedures in detail. We also released an anonymous version of the code and experiment scripts to facilitate verification.
- *Resources.* The results from our paper can be fully reproduced using publicly available tools and the released supplementary materials.

546

Thus, all results can be independently verified based on the text and accompanying resources.

547

LLMs USAGE STATEMENT

548

We used ChatGPT during the preparation of this paper in a limited way, primarily for language editing. All statements were verified independently by the authors. ChatGPT was not used to generate new research ideas, algorithms, or experiments.

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 REFERENCES
595

596 Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. *Learning from data*, volume 4.
597 AMLBook New York, 2012.

598 Ahmed M. Alaa and Mihaela van der Schaar. Bayesian inference of individualized treatment effects
599 using multi-task Gaussian processes. In *Advances in Neural Information Processing Systems*,
600 2017.

601 Ahmed M. Alaa and Mihaela van der Schaar. Bayesian nonparametric causal inference: Information
602 rates and learning algorithms. *IEEE Journal of Selected Topics in Signal Processing*, 12:1031–1046,
603 2018.

604 Raman Arora, Peter Bartlett, Poorya Mianjy, and Nathan Srebro. Dropout: Explicit forms and
605 capacity control. In *International Conference on Machine Learning*, 2021.

606 Serge Assaad, Shuxi Zeng, Chenyang Tao, Shounak Datta, Nikhil Mehta, Ricardo Henao, Fan Li, and
607 Lawrence Carin. Counterfactual representation learning with balancing weights. In *International
608 Conference on Artificial Intelligence and Statistics*, 2021.

609 Susan Athey and Stefan Wager. Estimating treatment effects with causal forests: An application.
610 *Observational Studies*, 5(2):37–51, 2019.

611 Susan Athey, Julie Tibshirani, and Stefan Wager. Generalized random forests. *The Annals of Statistics*,
612 47(2):1148–1178, 2019.

613 Peter L. Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-dimension
614 and pseudodimension bounds for piecewise linear neural networks. *Journal of Machine Learning
615 Research*, 20(63):1–17, 2019.

616 Chris M. Bishop. Training with noise is equivalent to Tikhonov regularization. *Neural Computation*,
617 7(1):108–116, 1995.

618 Alexander Camuto, Matthew Willetts, Umut Simsekli, Stephen J. Roberts, and Chris C. Holmes.
619 Explicit regularisation in Gaussian noise injections. *Advances in Neural Information Processing
620 Systems*, 2020.

621 Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, and Whitney
622 Newey. Double/debiased/Neyman machine learning of treatment effects. *American Economic
623 Review*, 107(5):261–265, 2017.

624 Richard K. Crump, V. Joseph Hotz, Guido Imbens, and Oscar Mitnik. Moving the goalposts:
625 Addressing limited overlap in the estimation of average treatment effects by changing the estimand,
626 2006.

627 Richard K. Crump, V. Joseph Hotz, Guido W. Imbens, and Oscar A. Mitnik. Dealing with limited
628 overlap in estimation of average treatment effects. *Biometrika*, 96(1):187–199, 2009.

629 Alicia Curth and Mihaela van der Schaar. On inductive biases for heterogeneous treatment effect
630 estimation. *Advances in Neural Information Processing Systems*, 2021a.

631 Alicia Curth and Mihaela van der Schaar. Nonparametric estimation of heterogeneous treatment
632 effects: From theory to learning algorithms. In *International Conference on Artificial Intelligence
633 and Statistics*, 2021b.

634 Alicia Curth and Mihaela van der Schaar. In search of insights, not magic bullets: Towards de-
635 mystification of the model selection dilemma in heterogeneous treatment effect estimation. In
636 *International Conference on Machine Learning*, 2023.

637 Alicia Curth, Ahmed M. Alaa, and Mihaela van der Schaar. Estimating structural target functions
638 using machine learning and influence functions. *arXiv preprint arXiv:2008.06461*, 2020.

639 Alicia Curth, David Svensson, Jim Weatherall, and Mihaela van der Schaar. Really doing great at
640 estimating CATE? A critical look at ML benchmarking practices in treatment effect estimation. In
641 *Advances in Neural Information Processing Systems*, 2021.

648 Adji Bousoo Dieng, Rajesh Ranganath, Jaan Altosaar, and David Blei. Noisin: Unbiased reg-
 649 ularization for recurrent neural networks. In *International Conference on Machine Learning*,
 650 2018.

651 Vincent Dorie, Jennifer Hill, Uri Shalit, Marc Scott, and Dan Cervone. Automated versus do-it-
 652 yourself methods for causal inference: Lessons learned from a data analysis competition. *Statistical*
 653 *Science*, 34(1):43–68, 2019.

654 Alexander D’Amour, Peng Ding, Avi Feller, Lihua Lei, and Jasjeet Sekhon. Overlap in observational
 655 studies with high-dimensional covariates. *Journal of Econometrics*, 221(2):644–654, 2021.

656 Stefan Feuerriegel, Dennis Frauen, Valentyn Melnychuk, Jonas Schweisthal, Konstantin Hess, Alicia
 657 Curth, Stefan Bauer, Niki Kilbertus, Isaac S. Kohane, and Mihaela van der Schaar. Causal machine
 658 learning for predicting treatment outcomes. *Nature Medicine*, 30(4):958–968, 2024.

659 Aaron Fisher. Inverse-variance weighting for estimation of heterogeneous treatment effects. In
 660 *International Conference on Machine Learning*, 2024.

661 Dylan J. Foster and Vasilis Syrgkanis. Orthogonal statistical learning. *The Annals of Statistics*, 51(3):
 662 879–908, 2023.

663 Negar Hassanpour and Russell Greiner. Learning disentangled representations for counterfactual
 664 regression. In *International Conference on Learning Representations*, 2019.

665 Jennifer L. Hill. Bayesian nonparametric modeling for causal inference. *Journal of Computational*
 666 *and Graphical Statistics*, 20(1):217–240, 2011.

667 Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov.
 668 Improving neural networks by preventing co-adaptation of feature detectors. *arXiv preprint*
 669 *arXiv:1207.0580*, 2012.

670 Andrew Jesson, Sören Mindermann, Yarin Gal, and Uri Shalit. Quantifying ignorance in individual-
 671 level causal-effect estimates under hidden confounding. In *International Conference on Machine*
 672 *Learning*, 2021.

673 Fredrik D. Johansson, Uri Shalit, and David Sontag. Learning representations for counterfactual
 674 inference. In *International Conference on Machine Learning*, 2016.

675 Fredrik D. Johansson, Uri Shalit, Nathan Kallus, and David Sontag. Generalization bounds and
 676 representation learning for estimation of potential outcomes and causal effects. *Journal of Machine*
 677 *Learning Research*, 23:7489–7538, 2022.

678 Edward H. Kennedy. Semiparametric doubly robust targeted double machine learning: A review.
 679 *arXiv preprint arXiv:2203.06469*, 2022.

680 Edward H. Kennedy. Towards optimal doubly robust estimation of heterogeneous causal effects.
 681 *Electronic Journal of Statistics*, 17(2):3008–3049, 2023.

682 Sören R. Künzel, Jasjeet S. Sekhon, Peter J. Bickel, and Bin Yu. Metalearners for estimating
 683 heterogeneous treatment effects using machine learning. *Proceedings of the National Academy of*
 684 *Sciences*, 116(10):4156–4165, 2019.

685 Yann LeCun. The MNIST database of handwritten digits. <http://yann.lecun.com/exdb/mnist/>, 1998.

686 Daniel LeJeune, Hamid Javadi, and Richard Baraniuk. The implicit regularization of ordinary least
 687 squares ensembles. In *International Conference on Artificial Intelligence and Statistics*, 2020.

688 Fan Li, Kari Lock Morgan, and Alan M. Zaslavsky. Balancing covariates via propensity score
 689 weighting. *Journal of the American Statistical Association*, 113(521):390–400, 2018.

690 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 691 ence on Learning Representations*, 2019.

692 Alexander R. Luedtke. Simplifying debiased inference via automatic differentiation and probabilistic
 693 programming. *arXiv preprint arXiv:2405.08675*, 2024.

702 Roland A. Matsouaka, Yi Liu, and Yunji Zhou. Overlap, matching, or entropy weights: What are we
 703 weighting for? *Communications in Statistics - Simulation and Computation*, 54(7):1–20, 2024.
 704

705 Kiyotoshi Matsuoka. Noise injection into inputs in back-propagation learning. *IEEE Transactions on
 706 Systems, Man, and Cybernetics*, 22(3):436–440, 1992.

707 Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Normalizing flows for interventional
 708 density estimation. In *International Conference on Machine Learning*, 2023.

709 Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Bounds on representation-induced
 710 confounding bias for treatment effect estimation. In *International Conference on Learning Repre-
 711 sentations*, 2024.

712 Valentyn Melnychuk, Dennis Frauen, Jonas Schweisthal, and Stefan Feuerriegel. Orthogonal repre-
 713 sentation learning for estimating causal quantities. *arXiv preprint arXiv:2502.04274*, 2025.

714 Poorya Mianjy and Raman Arora. On dropout and nuclear norm regularization. In *International
 715 Conference on Machine Learning*, 2019.

716 Poorya Mianjy, Raman Arora, and Rene Vidal. On the implicit bias of dropout. In *International
 717 Conference on Machine Learning*, 2018.

718 Paweł Morzywólek, Johan Decruyenaere, and Stijn Vansteelandt. On a general class of orthogonal
 719 learners for the estimation of heterogeneous treatment effects. *arXiv preprint arXiv:2303.12687*,
 720 2023.

721 Wenlong Mou, Yuchen Zhou, Jun Gao, and Liwei Wang. Dropout training, data-dependent regular-
 722 ization, and generalization bounds. In *International Conference on Machine Learning*, 2018.

723 Son Nguyen, Duong Nguyen, Khai Nguyen, Khoat Than, Hung Bui, and Nhat Ho. Structured dropout
 724 variational inference for Bayesian neural networks. In *Advances in Neural Information Processing
 725 Systems*, 2021.

726 Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects. *Biometrika*,
 727 108:299–319, 2021.

728 Kenneth R. Niswander. The collaborative perinatal study of the National Institute of Neurological
 729 Diseases and Stroke. *The Woman and Their Pregnancies*, 1972.

730 Vern I. Paulsen and Mrinal Raghupathi. *An introduction to the theory of reproducing kernel Hilbert
 731 spaces*, volume 152. Cambridge University Press, 2016.

732 Boris T. Polyak and Anatoli B. Juditsky. Acceleration of stochastic approximation by averaging.
 733 *SIAM Journal on Control and Optimization*, 30(4):838–855, 1992.

734 James M. Robins and Andrea Rotnitzky. Semiparametric efficiency in multivariate regression models
 735 with missing data. *Journal of the American Statistical Association*, 90(429):122–129, 1995.

736 Jonas Rothfuss, Fabio Ferreira, Simon Boehm, Simon Walther, Maxim Ulrich, Tamim Asfour,
 737 and Andreas Krause. Noise regularization for conditional density estimation. *arXiv preprint
 738 arXiv:1907.08982*, 2019.

739 Donald B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
 740 *Journal of Educational Psychology*, 66(5):688, 1974.

741 Uri Shalit, Fredrik D. Johansson, and David Sontag. Estimating individual treatment effect: General-
 742 ization bounds and algorithms. In *International Conference on Machine Learning*, 2017.

743 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 744 Dropout: A simple way to prevent neural networks from overfitting. *Journal of Machine Learning
 745 Research*, 15(1):1929–1958, 2014.

746 Ingo Steinwart and Andreas Christmann. *Support Vector Machines*. Springer New York, NY,
 747 Heidelberg, Germany, 2008.

756 Franciszek Hugon Szafraniec. The reproducing kernel Hilbert space and its multiplication operators.
 757 *Complex Analysis and Related Topics*, pp. 253–263, 2000.
 758

759 Julie Tibshirani, Susan Athey, Rina Friedberg, Vitor Hadad, David Hirshberg, Luke Miner, Erik
 760 Sverdrup, Stefan Wager, and Marvin Wright. grf: Generalized random forests, 2018. URL
 761 <https://CRAN.R-project.org/package=grf>. R package version 0.10.2.

762 Mark J. van der Laan. Statistical inference for variable importance. *The International Journal of*
 763 *Biostatistics*, 2(1), 2006.

764 Aad W. van der Vaart. *Asymptotic statistics*, volume 3. Cambridge University Press, Cambridge,
 765 United Kingdom, 2000.

766 Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using
 767 random forests. *Journal of the American Statistical Association*, 113(523):1228–1242, 2018.

768

769 Stefan Wager, Sida Wang, and Percy S. Liang. Dropout training as adaptive regularization. In
 770 *Advances in Neural Information Processing Systems*, 2013.

771

772 Colin Wei, Sham Kakade, and Tengyu Ma. The implicit and explicit regularization effects of dropout.
 773 In *International Conference on Machine Learning*, 2020.

774

775 Haobo Zhang, Yicheng Li, Weihao Lu, and Qian Lin. On the optimality of misspecified kernel ridge
 776 regression. In *International Conference on Machine Learning*, 2023.

777 Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghorbani, and James Zou. How does mixup
 778 help with robustness and generalization? In *International Conference on Learning Representations*,
 779 2021.

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811 A EXTENDED RELATED WORK

812 In the following, we briefly discuss plug-in learners and why they are limited in comparison to
 813 (two-stage) meta-learners (and, thus, *not* relevant baselines for our work). Later, we discuss existing
 814 works on inductive biases for CATE estimation and how they relate to the existing strategies to
 815 tackle low overlap. Finally, we summarize the strategies to address low overlap for both plug-in and
 816 meta-learners in Table 4.

817
818 Table 4: Existing approaches for addressing low overlap in CATE estimation through regularization.
 819 Most relevant methods are highlighted in yellow.

820 821 Approach	822 Underlying learner	823 Underlying IBs	824 Effect of over-regularization	825 MA	826 NO	827 OART
Balancing (Johansson et al., 2016; Shalit et al., 2017; Hassanpour & Greiner, 2019; Johansson et al., 2022)	NNs (plug-in)	—	LOLH-IB \times ($\hat{\tau} \rightarrow$ DiM)	\times	\times	\checkmark
”Soft approach” (Curth & van der Schaar, 2021a)	NNs (plug-in)	S-IB	— \times ($\hat{\tau} \rightarrow$ const)	\times	\times	\times
Const. reg. (Morzywolek et al., 2023)	X, U, RA, IPTW (Künzel et al., 2019; Curth & van der Schaar, 2021b)	S-IB	— \checkmark ($\hat{\tau} \rightarrow$ ATE)	\checkmark	\times	\times
Const. reg. (Morzywolek et al., 2023)	DR (Kennedy, 2023)	S-IB	— \checkmark ($\hat{\tau} \rightarrow$ ATE)	\checkmark	\checkmark	\times
Const. reg. + Retargeting (Morzywolek et al., 2023)	R (Nie & Wager, 2021), IVW (Fisher, 2024)	S-IB	LOLH-IB Δ ($\hat{\tau} \rightarrow$ WATE)	\checkmark	\checkmark	\times
OAR (Our paper)	DR (Kennedy, 2023)	S-IB	LOLH-IB \checkmark ($\hat{\tau} \rightarrow$ ATE)	\checkmark	(\checkmark)	\checkmark
OAR (Our paper) + Retargeting	R (Nie & Wager, 2021), IVW (Fisher, 2024)	S-IB	LOLH-IB Δ ($\hat{\tau} \rightarrow$ WATE)	\checkmark	(\checkmark)	\checkmark

830 Legend: model-agnostic (MA), Neyman-orthogonal (NO), overlap-adaptive regularization term (OART).

831 **Plug-in learners.** Plug-in learners *aim at the conditional expected outcomes* and yield the estimated
 832 CATE as the difference of the former. They can be either fully model-agnostic (e.g., S-/T-learner) or
 833 model-specific (e.g., causal forest). Specific instantiations of plug-in learners include random forest
 834 methods (Wager & Athey, 2018; Tibshirani et al., 2018; Athey et al., 2019; Athey & Wager, 2019),
 835 non-parametric kernel methods (Alaa & van der Schaar, 2017; 2018), and NN-based representation
 836 learning methods (Johansson et al., 2016; Shalit et al., 2017; Hassanpour & Greiner, 2019; Curth &
 837 van der Schaar, 2021b; Assaad et al., 2021; Johansson et al., 2022).

838 **How plug-in learners deal with low overlap.** In the low-overlap setting, plug-in estimators fail
 839 due to imprecise extrapolation wrt. counterfactual treatments (Jesson et al., 2021) (e.g., see Fig. 1,
 840 left). To tackle this, several regularization approaches have been proposed. For example, neural-
 841 based plug-in learners can employ (i) *balancing representations*⁵ with empirical probability metrics
 842 (Johansson et al., 2016; Shalit et al., 2017; Johansson et al., 2022; Assaad et al., 2021; Melnychuk
 843 et al., 2025). Alternatively, one can use a (ii) “*soft approach*” of Curth & van der Schaar (2021a)
 844 which effectively forces the estimated conditional expected outcomes to be similar in low-overlap
 845 regions. Yet, both (i) and (ii) might have a detrimental effect on the estimated CATE when too much
 846 regularization is applied. For example, too much balancing leads to the estimation of a difference
 847 in means (DiM), also known as representation-induced confounding bias (Melnychuk et al., 2024;
 848 2025); and the “soft approach” of Curth & van der Schaar (2021a) can force the estimated CATE to
 849 be constant. Therefore, we do *not* consider plug-in learners (and their regularization strategies) as
 850 relevant baselines.

851 **Addressing low overlap through model class choice.** An alternative to the regularization approach
 852 for addressing low overlap is a choice of a model class / NN architecture. This approach was
 853 primarily studied for plug-in learners as it is tailored to a specific model. For example, both estimated
 854 conditional expected outcomes can be forced to be similar, both (a) implicitly with an NN-based
 855 S-learner (= S-Net) (Curth & van der Schaar, 2021b) and (b) explicitly with neural architecture design

856
857 ⁵Melnychuk et al. (2025) suggested a hypothetical way to incorporate balancing representations into a target
 858 model of meta-learners. In Sec. 4.2, we show that our instantiations of OAR are related to balancing of target
 859 models but, unlike balancing, are simpler to implement, as they do not require the evaluation of empirical
 860 distributional distances in the representation space.

864 as suggested in the “hard approach” of Curth & van der Schaar (2021a). Furthermore, the low-overlap
 865 issue is implicitly addressed in random forests with overlap-dependent depth (Wager & Athey, 2018;
 866 Tibshirani et al., 2018). However, in our paper, we focus on fully model-agnostic approaches to
 867 address low overlap that are based on *regularizing target models* and not on a model class choice.⁶
 868

869 **Inductive biases for CATE estimation.** Regularization in ML is explicitly connected to inductive
 870 biases: increased regularization prioritizes simpler models. An inductive bias (IB) can be thus defined
 871 as any (non-causal) *assumption* a learning algorithm makes to generalize beyond the training data
 872 (Abu-Mostafa et al., 2012). In the context of CATE estimation, inductive biases are important due to
 873 the fundamental problem of causal inference (counterfactual outcomes are not observable, especially
 874 in low-overlap regions) and, thus, the impossibility of the exact data-driven model selection (Curth &
 875 van der Schaar, 2023). In the related work on CATE estimation, we outlined two main inductive biases:
 876 **smoothness inductive bias (S-IB)** and **low-overlap-low-heterogeneity inductive bias (LOLH-IB)**.
 877 S-IB assumes that the ground-truth CATE is strictly simpler than both of the conditional expected
 878 outcomes (Curth & van der Schaar, 2021a; Morzywolek et al., 2023). By enforcing this inductive
 879 bias, we can improve low-overlap predictions by forcing lower CATE heterogeneity in *the whole*
 880 *covariate space*. LOLH-IB then extends S-IB further by assuming simpler models *specifically in low-*
 881 *overlap regions* (Melnychuk et al., 2025). In practice, both S-IB and LOLH-IB can be implemented
 882 in a model-agnostic fashion via regularization. We summarize the connections between different
 883 regularization approaches and the underlying inductive biases in Table 4.
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916

917 ⁶We acknowledge that this categorization is somewhat arbitrary, as some types of regularization might
 918 implicitly change the model class.

918 **B BACKGROUND MATERIALS**
 919

920 In the following, we provide background information on Neyman-orthogonality and two-stage
 921 meta-learners.
 922

923 **B.1 NEYMAN-ORTHOGONALITY**
 924

925 We use the following additional notation: $a \lesssim b$ means there exists $C \geq 0$ such that $a \leq C \cdot b$, and
 926 $X_n = o_{\mathbb{P}}(r_n)$ means $X_n / r_n \xrightarrow{P} 0$.
 927

928 **Definition 2** (Neyman-orthogonality (Chernozhukov et al., 2017; Foster & Syrgkanis, 2023; Morzy-
 929 wolek et al., 2023)). *A target risk \mathcal{L} is called Neyman-orthogonal if its pathwise cross-derivative is
 930 zero:*

$$930 D_{\eta} D_g \mathcal{L}(g^*, \eta)[g - g^*, \hat{\eta} - \eta] = 0 \quad \text{for all } g \in \mathcal{G} \text{ and } \hat{\eta} \in \mathcal{H}, \quad (14)$$

931 where $D_f F(f)[h] = \frac{d}{dt} F(f + th)|_{t=0}$ and $D_f^k F(f)[h_1, \dots, h_k] = \frac{\partial^k}{\partial t_1 \dots \partial t_k} F(f + t_1 h_1 + \dots +$
 932 $t_k h_k)|_{t_1 = \dots = t_k = 0}$ are pathwise derivatives (Foster & Syrgkanis, 2023); $g^* = \arg \min_{g \in \mathcal{G}} \mathcal{L}(g, \eta)$;
 933 and η are the ground-truth nuisance functions.
 934

935 The definition of Neyman-orthogonality informally means that a target risk is first-order insensitive
 936 with respect to the misspecification of the nuisance functions.
 937

938 **B.2 TWO-STAGE META-LEARNERS**
 939

940 To address the shortcomings of plug-in learners, two-stage meta-learners were proposed. These
 941 proceed in three steps as follows.
 942

943 **(i)** First, one chooses a *target working model class* $\mathcal{G} = \{g(\cdot) : \mathcal{X} \rightarrow \mathbb{R}\}$ such as, for example, neural
 944 networks.
 945

946 Then, **(ii)** the two-stage meta-learners define a specific (*original*) *target risk* for g . Several possible
 947 target risks can be selected, and each option bears distinct interpretations and ramifications for
 948 population and finite-sample two-stage CATE estimation. For example, one can use a regular MSE
 949 risk:
 950

$$\mathcal{L}(g, \eta) = \mathbb{E} \left[(\mu_1(X) - \mu_0(X) - g(X))^2 \right] + \Lambda(g; \mathbb{P}(X)), \quad (15)$$

951 or an overlap-weighted MSE risk:
 952

$$\mathcal{L}(g, \eta) = \mathbb{E} \left[\nu(X) (\mu_1(X) - \mu_0(X) - g(X))^2 \right] + \Lambda(g; \mathbb{P}(X)), \quad (16)$$

953 where $\Lambda(g; \mathbb{P}(X))$ is a constant regularization term with a magnitude λ . The latter (the overlap-
 954 weighted MSE risk) implements retargeting, but it *only focuses on the overlapping regions of the*
 955 *population.*
 956

957 Finally, **(iii)** two-stage meta-learners minimize an empirical target risk (target loss) $\hat{\mathcal{L}}(g, \hat{\eta})$ estimated
 958 from the observational sample and using the first-stage nuisance estimates $\hat{\eta}$. When this empirical risk
 959 is built from semi-parametrically efficient estimators, the resulting method is known as a *Neyman-*
 960 *orthogonal learner* (Robins & Rotnitzky, 1995; Foster & Syrgkanis, 2023).
 961

962 Notably, the constant regularization term does not have a detrimental effect on the CATE estimator.
 963 Notably, when too much regularization is applied, a non-regularized intercept of the target model
 964 yields ATE/WATE.
 965

966 **Remark 1** (Over-regularized meta-learners (Morzywolek et al., 2023)). *Consider a target model*
 967 *class with a non-regularized intercept c . When $\lambda \rightarrow \infty$, the minimizer of Eq. (16) is given by WATE*
 968

$$968 g^* = \arg \min_{g \in \mathcal{G}} \mathcal{L}(g, \eta) \rightarrow c^* = \frac{\mathbb{E}[\nu(X)(\mu_1(X) - \mu_0(X))]}{\mathbb{E}[\nu(X)]}. \quad (17)$$

969
 970
 971

972 **C NON-PARAMETRIC TARGET MODELS: OAR RKHS NORM**
 973

974 **Proposition 6** (Kernel ridge regression with an OAR-based RKHS norm). *Let $\sqrt{\lambda(\nu)}g \in \mathcal{H}_K$ for
 975 every $g \in \mathcal{H}_{K+c}$. Then, the minimizer of the target risk $g^* = \arg \min_{g \in \mathcal{H}_{K+c}} [\mathcal{L}_{OAR}^{\mathcal{H}}(g, \eta)]$ is in
 976 \mathcal{H}_{K+c} and has the following form:*

977
$$g^*(x) = (T_{\rho, K} + M_{\lambda(\nu)})^{-1} S_{\rho, K}(x) + c^*, \quad c^* = \mathbb{E}[p(A, \pi(X))\phi(Z, \eta)]/\mathbb{E}[p(A, \pi(X))], \quad (18)$$

978 where $(T_{\rho, K}g)(x) = \mathbb{E}[\rho(A, \pi(X))K(x, X)g(X)]$ is a weighted covariance operator ($T_{\rho, K} : \mathcal{H}_K \rightarrow \mathcal{H}_K$), $(S_{\rho, K})(x) = \mathbb{E}[\rho(A, \pi(X))K(x, X)\tilde{\phi}(Z, \eta)]$ is a weighted cross-covariance functional, $\tilde{\phi}(Z, \eta) = \phi(Z, \eta) - c^*$ is a centered pseudo-outcome, and $(M_{\lambda(\nu)}g)(x) = \lambda(\nu(x))g(x)$ is a bounded multiplication operator on $(M_{\lambda(\nu)} : \mathcal{H}_K \rightarrow \mathcal{H}_K)$.

979 *Proof.* See Appendix D.3.

980 Proposition 6 suggests that under the special conditions, our OAR-based RKHS norm yields a KRR
 981 solution with a varying regularization term $\lambda(\nu)$. For a finite-sample version of g^* , we refer to the
 982 following corollary.

983 **Corollary 1.** *Consider that the assumptions (i)–(ii) of Proposition 6 hold and denote $\mathbf{K}_{XX} \in \mathbb{R}^{n \times n} = [K(x^{(i)}, x^{(j)})]_{i,j=1,\dots,n}$; $\mathbf{K}_{xX} \in \mathbb{R}^{1 \times n} = [K(x, x^{(j)})]_{j=1,\dots,n}$; $\mathbf{R}(\pi) \in \mathbb{R}^{n \times n} = [\rho(a^{(i)}, \pi(x^{(i)}))]_{i=1,\dots,n} \circ \mathbf{I}_n$; $\mathbf{\Lambda}(\nu) \in \mathbb{R}^{n \times n} = [\lambda(\nu(x^{(i)}))]_{i=1,\dots,n} \circ \mathbf{I}_n$; and $\mathbf{\Phi}(\eta) \in \mathbb{R}^{n \times 1} = [\phi(z^{(i)}, \eta)]_{i=1,\dots,n}$. Then, a finite-sample KRR solution from Proposition 6 has the following form:*

984
$$\hat{g}(x) = \mathbf{K}_{xX} (\mathbf{R}(\hat{\pi}) \mathbf{K}_{XX} + n\mathbf{\Lambda}(\hat{\nu}))^{-1} \mathbf{R}(\hat{\pi}) \mathbf{\Phi}(\hat{\eta}) + \hat{c}. \quad (19)$$

985 Also, Proposition 6 shows that, although our OAR-based RKHS-norm is generally undefined for a
 986 linear kernel, it works well for more flexible, infinite-dimensional kernels (e.g., RBF and Matérn).
 987 In practice, assumption (i) can be satisfied by either assuming a sufficiently smooth $\sqrt{\lambda(\nu)}$ (e.g.,
 988 when the propensity score is smooth itself and bounded away from zero), or by approximating
 989 $\sqrt{\lambda(\nu)}$ with some element \hat{g} from \mathcal{H}_K . This approximation can be done arbitrarily well with the
 990 infinite-dimensional kernels if they are dense in many smooth functional classes (e.g., RBF and
 991 Matérn are dense in a compact class of continuously differentiable functions).

992 Finally, in the following corollary, we show the connection between KRR with retargeted learners
 993 (R-/IVW-learners) and our OAR-based RKHS norm.

994 **Corollary 2.** *A solution of (i) the KRR with constant RKHS norm regularization with $\lambda = 1$ for the
 995 original risks of the retargeted learners (R-/IVW-learners) coincides with a solution of (ii) the KRR
 996 with our OAR-based RKHS norm regularization with $\lambda(\nu(x)) = 1/\nu(x)$ for the original risk of the
 997 DR-learner, given the ground-truth nuisance functions η :*

998
$$\hat{g}(x) = \underbrace{\mathbf{K}_{xX} (\mathbf{W}(\pi) \mathbf{K}_{XX} + n\mathbf{I}_n)^{-1} \mathbf{W}(\pi) \mathbf{T}(\eta) + \hat{c}}_{(i)} = \underbrace{\mathbf{K}_{xX} (\mathbf{K}_{XX} + n\mathbf{\Lambda}(\nu))^{-1} \mathbf{T}(\eta) + \hat{c}}_{(ii)} \quad (20)$$

999 where $\mathbf{W}(\pi) \in \mathbb{R}^{n \times n} = [\pi(x^{(i)}) (1 - \pi(x^{(i)}))]_{i=1,\dots,n} \circ \mathbf{I}_n$ and $\mathbf{T}(\eta) \in \mathbb{R}^{n \times 1} = [\mu_1(x^{(i)}) - \mu_0(x^{(i)})]_{i=1,\dots,n}$.

1000 Corollary 2 thus hints that our OAR-based RKHS norm is equivalent to retargeting with the constant
 1001 regularization only in a special (unnatural) case (i.e., when the ground-truth nuisance functions are
 1002 known). That is, when $\mathbf{R}(\pi)/\mathbf{\Phi}(\eta)$ are used instead of $\mathbf{W}(\pi)/\mathbf{T}(\eta)$, the equality (i) = (ii) does not
 1003 hold anymore.

1004 Based on Corollary 2, we make another important observation for linear kernels $K(x, x') = x^\top x'$,
 1005 namely that linear KRR can be formulated simultaneously as a parametric and a non-parametric
 1006 model. Interestingly, while Corollary 2 still holds, the expression (ii) is, in general, *not* a solution
 1007 to the OAR-based KRR. This happens, as the RKHS norm $\left\| \sqrt{\lambda(\nu)}g \right\|_{\mathcal{H}_K}^2$ is not defined for linear
 1008 kernels when $\sqrt{\lambda(\nu)}$ is a non-linear function. Consequently, for linear target models, the approach
 1009

of retargeting *cannot*, in general (e. g., when the propensity score is not constant), be represented as a version of our general OAR (Sec. 4.1).

Debiased OAR for RKHS norm. Unlike OAR for parametric models, debiasing OAR-based RKHS norm is less intuitive. For example, the expected efficient influence function of the OAR-based RKHS norm cannot be expressed as an RKHS norm itself. This can be seen after applying a Mercer representation theorem (Theorem 4.51 in Steinwart & Christmann (2008) implies that $\|\sqrt{\lambda(\nu)}g\|_{\mathcal{H}_K}^2 = \mathbb{E}[\lambda(\nu(X))g(X)(T_K^{-1}g)(X)]$):

$$\mathbb{E}\left[\mathbb{IF}\left(\left\|\sqrt{\lambda(\nu)}g\right\|_{\mathcal{H}_K}^2\right)\right] = \mathbb{E}\left[\mathbb{E}\left[\mathbb{IF}(\lambda(\nu); X, A)\right]g(X)(T_K^{-1}g)(X)\right] \neq \left\|\sqrt{\mathbb{E}\left[\mathbb{IF}(\lambda(\nu); X, A)\right]}g\right\|_{\mathcal{H}_K}^2, \quad (21)$$

where the last equality does not hold as $\mathbb{E}\left[\mathbb{IF}(\lambda(\nu); X, A)\right]$ is not a proper RKHS multiplier (it depends on A now). Therefore, we leave the debiasing of OAR-based RKHS norm for future work.

Note on the squared multiplicative regularization. Our main motivation for the introduction of the squared multiplicative regularization was to counteract the weights of the R- and IVW-learners when noise regularization and dropout are used. Specifically, noise regularization and dropout in their explicit form are down-scaled by ρ . In this way, the multiplicative regularization effectively results in a constant regularization, as $\mathbb{E}[\rho(A, \pi(X)), \lambda_m(\pi(X))] = 1$. Then, to preserve the overlap-adaptivity, we introduced the squared multiplicative regularization. The nonparametric models (namely, kernel ridge regressions), on the other hand, have their regularizations in explicit form and without a scalar ρ . Therefore, squared multiplicative regularization is not used with the RKHS norm.

Excess prediction risk. Finally, we show that, under some additional conditions, our OAR RKHS norm is guaranteed to outperform the constant regularization (CR) (similarly to linear target models as described in Proposition 5).

Proposition 7 (Excess prediction risk of our OAR RKHS norm). *Let $\sqrt{\lambda(\nu)}g \in \mathcal{H}_K$ for every $g \in \mathcal{H}_{K+c}$. Then, the excess prediction risk of the DR-learner with the RKHS second-stage model and RKHS norm regularization has the following form:*

$$\|\hat{g} - g^*\|_{L_2}^2 \lesssim \underbrace{\frac{1}{n} \text{tr} \left[(T_K + \Gamma)^{-1} T_K (T_K + \Gamma)^{-1} T_{\tilde{\phi}(Z, \eta)^2, K} \right]}_{\text{variance term}} + \underbrace{\langle g^*, \Gamma g^* \rangle_{\mathcal{H}_K}}_{\text{bias term}} + R(\eta, \hat{\eta}), \quad (22)$$

where $(T_K g)(x) = \mathbb{E}[K(x, X)g(X)]$ and $(T_{\tilde{\phi}(Z, \eta)^2, K}g)(x) = \mathbb{E}[\tilde{\phi}(Z, \eta)^2 K(x, X)g(X)]$ are (weighted) covariance operators ($T_K, T_{\tilde{\phi}(Z, \eta)^2, K} : \mathcal{H}_K \rightarrow \mathcal{H}_K$); $(\Gamma_{CR}g)(x) = \lambda g(x)$ is a constant scaling operator for the CR; and $(\Gamma_{OAR}g)(x) = (M_{\lambda(\nu)}g)(x) = \lambda(\nu(x))g(x)$ is a bounded multiplication operator on $(M_{\lambda(\nu)} : \mathcal{H}_K \rightarrow \mathcal{H}_K)$ for the OAR. Then, under (i) a conditional variance assumption (=conditional variance of the outcome is constant), the variance term for OAR is less than or equal to the variance term of the CR. Also, under (ii) a low-overlap-low-heterogeneity inductive bias (LOLH-IB), OAR does not increase the bias term too much.

Proof. See Appendix D.3.

We provide the full statement and the full proof of Proposition 7 in Appendix D.

1080 **D THEORETICAL RESULTS**
 1081

1082 **D.1 GENERAL FRAMEWORK OF OAR**
 1083

1084 **Proposition 1** (Average regularization function as a distributional distance). *The average amount of*
 1085 *overlap-adaptive regularization is upper-bounded by the following f -divergences:*

$$1087 \mathbb{E}[\lambda_m(\nu(X))] \leq C_m \sqrt{D_{f_m}(\mathbb{P}(X) \parallel \mathbb{P}(X \mid A = 0)) + 1} \sqrt{D_{f_m}(\mathbb{P}(X) \parallel \mathbb{P}(X \mid A = 1)) + 1}, \quad (23)$$

1088 with $C_m = 1/(4\pi_0\pi_1)$ and $f_m(t) = 1/t^2 - 1$,

$$1089 \mathbb{E}[\lambda_{\log}(\nu(X))] = C_{\log} + \text{KL}(\mathbb{P}(X) \parallel \mathbb{P}(X \mid A = 0)) + \text{KL}(\mathbb{P}(X) \parallel \mathbb{P}(X \mid A = 1)), \quad (24)$$

1090 with $C_{\log} = -\log(4\pi_0\pi_1)$,

$$1092 \mathbb{E}[\lambda_{m^2}(\nu(X))] \leq C_{m^2} \sqrt{D_{f_{m^2}}(\mathbb{P}(X) \parallel \mathbb{P}(X \mid A = 0)) + 1} \sqrt{D_{f_{m^2}}(\mathbb{P}(X) \parallel \mathbb{P}(X \mid A = 1)) + 1}, \quad (25)$$

1093 with $C_{m^2} = 1/(16\pi_0^2\pi_1^2)$ and $f_{m^2}(t) = 1/t^4 - 1$,

1095 where $\pi_a = \mathbb{P}(A = a)$, D_f is an f -divergence $D_f(\mathbb{P}_1 \parallel \mathbb{P}_2) = \int f(\mathbb{P}_1(X = x)/\mathbb{P}_2(X = x))\mathbb{P}_1(X = x) dx$; and KL is a KL -divergence.

1097 *Proof.* By the definitions of the regularization functions (Eq. (4)), the following holds:

$$1100 \mathbb{E}[\lambda_m(\nu(X))] \leq \mathbb{E}\left[\frac{1}{4\mathbb{P}(A = 0 \mid X)\mathbb{P}(A = 1 \mid X)}\right] = \frac{1}{4\pi_0\pi_1} \mathbb{E}\left[\frac{(\mathbb{P}(X))^2}{\mathbb{P}(X \mid A = 0)\mathbb{P}(X \mid A = 1)}\right] \quad (26)$$

$$1102 \stackrel{(*)}{\leq} C_m \sqrt{\mathbb{E}\left[\left(\frac{\mathbb{P}(X)}{\mathbb{P}(X \mid A = 0)}\right)^2\right]} \sqrt{\mathbb{E}\left[\left(\frac{\mathbb{P}(X)}{\mathbb{P}(X \mid A = 1)}\right)^2\right]} \quad (27)$$

$$1104 = C_m \sqrt{\int_{\mathcal{X}} \left[\left(\frac{\mathbb{P}(X = x)}{\mathbb{P}(X = x \mid A = 0)}\right)^2 - 1\right] \mathbb{P}(X = x) dx + 1} \quad (28)$$

1105 $\cdot \sqrt{\int_{\mathcal{X}} \left[\left(\frac{\mathbb{P}(X = x)}{\mathbb{P}(X = x \mid A = 1)}\right)^2 - 1\right] \mathbb{P}(X = x) dx + 1}$

$$1109 = C_m \sqrt{D_{f_m}(\mathbb{P}(X) \parallel \mathbb{P}(X \mid A = 0)) + 1} \sqrt{D_{f_m}(\mathbb{P}(X) \parallel \mathbb{P}(X \mid A = 1)) + 1}, \quad (29)$$

1111 where $(*)$ holds due to a Cauchy–Schwarz inequality, $C_m = 1/(4\pi_0\pi_1)$, and $f_m(t) = 1/t^2 - 1$.
 1112 Analogously, it is easy to see that

$$1114 \mathbb{E}[\lambda_{m^2}(\nu(X))] \leq C_{m^2} \sqrt{D_{f_{m^2}}(\mathbb{P}(X) \parallel \mathbb{P}(X \mid A = 0)) + 1} \sqrt{D_{f_{m^2}}(\mathbb{P}(X) \parallel \mathbb{P}(X \mid A = 1)) + 1}, \quad (30)$$

1116 where $C_{m^2} = 1/(16\pi_0^2\pi_1^2)$, and $f_{m^2}(t) = 1/t^4 - 1$.

1117 Similarly, we can show that the average logarithmic regularization function equals

$$1119 \mathbb{E}[\lambda_{\log}(\nu(X))] = -\log(4) - \mathbb{E}[\log \mathbb{P}(A = 0 \mid X)] - \mathbb{E}[\log \mathbb{P}(A = 1 \mid X)] \quad (31)$$

$$1120 = -\log(4\pi_0\pi_1) - \mathbb{E}\left[\log \frac{\mathbb{P}(A = 0 \mid X)}{\mathbb{P}(X)}\right] - \mathbb{E}\left[\log \frac{\mathbb{P}(A = 1 \mid X)}{\mathbb{P}(X)}\right] \quad (32)$$

$$1122 = C_{\log} + \text{KL}(\mathbb{P}(X) \parallel \mathbb{P}(X \mid A = 0)) + \text{KL}(\mathbb{P}(X) \parallel \mathbb{P}(X \mid A = 1)), \quad (33)$$

1124 where $C_{\log} = -\log(4\pi_0\pi_1)$. □

1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134 D.2 PARAMETRIC TARGET MODELS: OAR NOISE REGULARIZATION & OAR DROPOUT
11351136 **Proposition 2** (Explicit form of OAR noise regularization in linear g). *For a linear model $g(x) =$
1137 $\beta^\top x + c$, OAR noise regularization has the following explicit form Λ_{OAR} :*

1138
$$\mathcal{L}_{OAR}^{+\xi}(g, \eta) = \mathcal{E} + \Lambda_{OAR} = \mathcal{E} + \|\beta\|_2^2 \mathbb{E}[\rho(A, \pi(X)) \cdot \lambda(\nu(X))], \quad (34)$$

1139

1140 where \mathcal{E} is given by the original error term from Eq. (2).
11411142 *Proof.* The implicit OAR noise regularization of a linear target model has the following form:
1143

1144
$$\mathcal{L}_{OAR}^{+\xi}(g, \eta) = \mathbb{E} \left[\mathbb{E}_{\xi \sim N(0, \sqrt{\lambda(\nu(X))}^2)} [\rho(A, \pi(X)) (\phi(Z, \eta) - \beta^\top (X + \xi) - c)^2] \right] \quad (35)$$

1145

1146
$$= \underbrace{\mathbb{E} \left[\mathbb{E}_{\xi \sim N(0, \sqrt{\lambda(\nu(X))}^2)} [\rho(A, \pi(X)) (\phi(Z, \eta) - \beta^\top X - c)^2] \right]}_{\mathcal{E}} \quad (36)$$

1147
1148
$$- 2 \underbrace{\mathbb{E} \left[\mathbb{E}_{\xi \sim N(0, \sqrt{\lambda(\nu(X))}^2)} [\rho(A, \pi(X)) (\phi(Z, \eta) - \beta^\top X - c) \beta^\top \xi] \right]}_{=0} \quad (36)$$

1149
1150
$$+ \mathbb{E} \left[\mathbb{E}_{\xi \sim N(0, \sqrt{\lambda(\nu(X))}^2)} [\rho(A, \pi(X)) (\beta^\top \xi)^2] \right] \quad (37)$$

1151
1152
$$= \mathcal{E} + \beta^\top \mathbb{E} \left[\mathbb{E}_{\xi \sim N(0, \sqrt{\lambda(\nu(X))}^2)} [\rho(A, \pi(X)) \xi \xi^\top] \right] \beta \quad (37)$$

1153
1154
$$= \mathcal{E} + \|\beta\|_2^2 \mathbb{E}[\rho(A, \pi(X)) \text{Var}[\xi | X]], \quad (38)$$

1155

1156 where $\text{Var}[\xi | X = x] = \lambda(\nu(x))$. \square
11571158 **Proposition 3** (Explicit form of OAR dropout in linear g). *For a linear model $g(x) = \beta^\top x + c$, OAR
1159 noise regularization has the following explicit form Λ_{OAR} :*

1160
$$\mathcal{L}_{OAR}^{\circ\xi}(g, \eta) = \mathcal{E} + \Lambda_{OAR} = \mathcal{E} + \beta^\top \text{diag} [\Sigma_{\rho(\cdot, \pi) \cdot \lambda(\nu)}] \beta, \quad (39)$$

1161

1162 where \mathcal{E} is given by the original error term from Eq. (2), $\lambda(\nu) = p(\nu)/(1 - p(\nu))$, and $\text{diag}[\cdot]$ zeroes
1163 out all but the diagonal entries of a matrix.
11641165 *Proof.* The implicit OAR dropout of a linear target model has the following form:
1166

1167
$$\mathcal{L}_{OAR}^{\circ\xi}(g, \eta) = \mathbb{E} \left[\mathbb{E}_{\xi \sim \text{Drop}(p(\nu(X)))} [\rho(A, \pi(X)) (\phi(Z, \eta) - \beta^\top (X \circ \xi) - c)^2] \right] \quad (40)$$

1168

1169
$$= \underbrace{\mathbb{E} \left[\mathbb{E}_{\xi \sim \text{Drop}(p(\nu(X)))} [\rho(A, \pi(X)) (\phi(Z, \eta) - \beta^\top X - c)^2] \right]}_{\mathcal{E}} \quad (41)$$

1170
1171
$$- 2 \underbrace{\mathbb{E} \left[\mathbb{E}_{\xi \sim \text{Drop}(p(\nu(X)))} [\rho(A, \pi(X)) (\phi(Z, \eta) - \beta^\top X - c) (\beta^\top (X \circ \xi) - \beta^\top X)] \right]}_{=0} \quad (41)$$

1172
1173
$$+ \mathbb{E} \left[\mathbb{E}_{\xi \sim \text{Drop}(p(\nu(X)))} [\rho(A, \pi(X)) (\beta^\top (X \circ \xi) - \beta^\top X)^2] \right] \quad (42)$$

1174
1175
$$\stackrel{(*)}{=} \mathcal{E} + \mathbb{E} \left[\rho(A, \pi(X)) \text{Var} [\beta^\top (X \circ \xi) | X] \right] = \mathcal{E} + \mathbb{E} \left[\rho(A, \pi(X)) \text{Var} \left[\sum_{j=1}^{d_x} \beta_j X_j \xi_j | X \right] \right] \quad (42)$$

1176
1177

1178
$$= \mathcal{E} + \mathbb{E} \left[\rho(A, \pi(X)) \sum_{j=1}^{d_x} \frac{p(\nu(X))}{1 - p(\nu(X))} \beta_j^2 X_j^2 \right] = \mathcal{E} + \mathbb{E} \left[\rho(A, \pi(X)) \lambda(\nu(X)) \sum_{j=1}^{d_x} \beta_j^2 X_j^2 \right] \quad (43)$$

1179
1180
1181
1182
1183
$$= \mathcal{E} + \beta^\top \text{diag} [\Sigma_{\rho(\cdot, \pi) \cdot \lambda(\nu)}] \beta, \quad (44)$$

1184

1185 where the equality $(*)$ holds as $\mathbb{E}_{\xi \sim \text{Drop}(p(\nu(X)))} [\beta^\top (X \circ \xi)] = \beta^\top X$. \square
11861187 **Proposition 4** (Debiased OAR). *Assume that the parametric model $g(x; \beta, c)$ is continuously differ-
1188 entiable wrt. x . Then, (i) debiased OAR noise regularization and (ii) debiased OAR dropout are as*

1188 follows:
 1189

$$\mathcal{L}_{dOAR}^\diamond(g, \eta) = \mathcal{L}_{OAR}^\diamond(g, \eta) + \mathbb{E} \left[\int_{\mathcal{X}} \mathbb{E}_\xi [C^\diamond(X; A; \xi; \nabla_\xi[g]; \eta)] \mathbb{P}(X = x) dx \right], \text{ for } \diamond \in \{+\xi, \circ\xi\}, \quad (45)$$

$$C^{+\xi}(X; A; \xi; \nabla_\xi[g]; \eta) = -2w(X)(\mu_1(X) - \mu_0(X) - g(X + \xi)) \cdot \nabla_\xi[g](X, \xi) \cdot \mathbb{IF}(\lambda(\nu(x)); X, A), \quad (46)$$

$$\begin{aligned} C^{\circ\xi}(X; A; \xi; \nabla_\xi[g]; \eta) &= w(X)(\mu_1(X) - \mu_0(X) - g(X \circ \xi))^2 \cdot \frac{1 - \xi}{p(\nu(X))} \cdot \mathbb{IF}(p(\nu(x)); X, A) \\ &\quad - 2w(X)(\mu_1(X) - \mu_0(X) - g(X \circ \xi)) \cdot \nabla_\xi[g](X, \xi) \cdot \mathbb{IF}(p(\nu(x)); X, A), \end{aligned} \quad (47)$$

1197 where $\mathcal{L}_{OAR}^\diamond$ are from Eq. (5) and (7); $\nabla_\xi[g]$ is a gradient wrt. ξ ; and $\mathbb{IF}(\cdot; X, A)$ are efficient
 1198 influence functions of the regularization functions. The latter are given as follows:
 1199

$$\mathbb{IF}(\lambda_m(\nu(x)); X, A) = \frac{\delta\{X - x\}}{\mathbb{P}(X = x)} \frac{(A - \pi(x))(2\pi(x) - 1)}{4\nu(x)^2}, \quad (48)$$

$$\mathbb{IF}(p_m(\nu(x)); X, A) = \frac{\delta\{X - x\}}{\mathbb{P}(X = x)} 4(A - \pi(x))(2\pi(x) - 1), \quad (49)$$

$$\mathbb{IF}(\lambda_{\log}(\nu(x)); X, A) = \frac{\delta\{X - x\}}{\mathbb{P}(X = x)} \frac{(A - \pi(x))(2\pi(x) - 1)}{\nu(x)}, \quad (50)$$

$$\mathbb{IF}(p_{\log}(\nu(x)); X, A) = \frac{\delta\{X - x\}}{\mathbb{P}(X = x)} \frac{(A - \pi(x))(1 - 2\pi(x))}{(1 - \log(4\nu(x)))^2}, \quad (51)$$

$$\mathbb{IF}(\lambda_{m^2}(\nu(x)); X, A) = \frac{\delta\{X - x\}}{\mathbb{P}(X = x)} \frac{(A - \pi(x))(2\pi(x) - 1)}{8\nu(x)^3}, \quad (52)$$

$$\mathbb{IF}(p_{m^2}(\nu(x)); X, A) = \frac{\delta\{X - x\}}{\mathbb{P}(X = x)} 32\nu(x)(A - \pi(x))(2\pi(x) - 1), \quad (53)$$

1212 where $\delta\{\cdot\}$ is a Dirac delta function. Furthermore, by construction, $\mathcal{L}_{dOAR}^\diamond$ is a Neyman-orthogonal
 1213 risk.
 1214

1217 *Proof.* We follow a standard technique for constructing Neyman-orthogonal risks (Foster & Syrgkanis,
 1218 2023) by using a one-step bias-correction with efficient influence functions (Kennedy, 2022; Luedtke,
 1219 2024):

$$\mathcal{L}_d(g, \eta) = \mathcal{L}(g, \eta) + \mathbb{E} [\mathbb{IF}(\mathcal{L}(g, \eta); Z)], \quad (54)$$

1222 where $\mathcal{L}(g, \eta)$ is an original target risk, $\mathcal{L}_d(g, \eta)$ is a Neyman-orthogonal risk, and $\mathbb{IF}(\mathcal{L}(g, \eta); Z)$ is
 1223 an efficient influence function of the original target risk.
 1224

1225 To construct a debiased (one-step bias-corrected) version of our OAR, we consider the OAR applied
 1226 on top of the original target risk from Eq. (2):
 1227

$$\mathcal{L}_{OAR}^\diamond(g, \eta) = \mathbb{E} \left[\mathbb{E}_\xi [w(\pi(X))(\mu_1(X) - \mu_0(X) - g(\tilde{X}_\xi))^2] \right], \quad (55)$$

1230 where $\xi \sim N(0, \sqrt{\lambda(\nu(X))}^2)$ or $\xi \sim \text{Drop}(p(\nu(X)))$, and $\tilde{X}_\xi = X + \xi$ or $\tilde{X}_\xi = X \circ \xi$, corre-
 1231 spondingly, depending on the OAR version. Then, the efficient influence function of $\mathcal{L}_{OAR}(g, \eta)$ is as
 1232 follows
 1233

$$\begin{aligned} \mathbb{IF}(\mathcal{L}_{OAR}^\diamond(g, \eta); Z) &= \int_{\mathcal{X}} \mathbb{IF} \left(\mathbb{E}_\xi [w(\pi(X))(\mu_1(X) - \mu_0(X) - g(\tilde{X}_\xi))^2] \right) \mathbb{P}(X = x) dx \\ &\quad + \mathbb{E}_\xi [w(\pi(X))(\mu_1(X) - \mu_0(X) - g(\tilde{X}_\xi))^2] - \mathcal{L}_{OAR}^\diamond(g, \eta). \end{aligned} \quad (56)$$

1234 Therefore, per Eq. (54), the debiased version of our OAR has a following form:
 1235

$$\mathcal{L}_{dOAR}^\diamond(g, \eta) = \mathcal{L}_{OAR}^\diamond(g, \eta) + \mathbb{E} \left[\int_{\mathcal{X}} \mathbb{IF} \left(w(\pi(X)) \mathbb{E}_\xi [(\mu_1(X) - \mu_0(X) - g(\tilde{X}_\xi))^2] \right) \mathbb{P}(X = x) dx \right]. \quad (57)$$

1242 The second term can then be found with a product rule:
 1243

$$1244 \mathbb{E} \left[\int_{\mathcal{X}} \mathbb{IF} \left(w(\pi(X)) \mathbb{E}_{\xi} [(\mu_1(X) - \mu_0(X) - g(\tilde{X}_{\xi}))^2] \right) \mathbb{P}(X = x) dx \right] \quad (58)$$

$$1246 = \mathbb{E} \left[\int_{\mathcal{X}} \mathbb{IF}(w(\pi(X))) \mathbb{E}_{\xi} [(\mu_1(X) - \mu_0(X) - g(\tilde{X}_{\xi}))^2] \mathbb{P}(X = x) dx \right] \quad (59)$$

$$1248 + \mathbb{E} \left[\int_{\mathcal{X}} w(\pi(X)) \mathbb{IF} \left(\mathbb{E}_{\xi} [(\mu_1(X) - \mu_0(X) - g(\tilde{X}_{\xi}))^2] \right) \mathbb{P}(X = x) dx \right]$$

$$1250 = \mathbb{E} \left[(A - \pi(X)) w'(\pi(X)) \mathbb{E}_{\xi} [(\mu_1(X) - \mu_0(X) - g(\tilde{X}_{\xi}))^2] \right] \quad (60)$$

$$1253 + \mathbb{E} \left[\int_{\mathcal{X}} w(\pi(X)) \mathbb{IF} \left(\mathbb{E}_{\xi} [(\mu_1(X) - \mu_0(X) - g(\tilde{X}_{\xi}))^2] \right) \mathbb{P}(X = x) dx \right].$$

1254 Hence, the debiased version of our OAR is

$$1256 \mathcal{L}_{\text{dOAR}}^{\diamond}(g, \eta) = \mathbb{E} \left[\rho(A, \pi(X)) \mathbb{E}_{\xi} [(\mu_1(X) - \mu_0(X) - g(\tilde{X}_{\xi}))^2] \right] \quad (61)$$

$$1259 + \mathbb{E} \left[\int_{\mathcal{X}} w(\pi(X)) \mathbb{IF} \left(\mathbb{E}_{\xi} [(\mu_1(X) - \mu_0(X) - g(\tilde{X}_{\xi}))^2] \right) \mathbb{P}(X = x) dx \right],$$

1261 where $\rho(A, \pi(X)) = (A - \pi(X)) w'(\pi(X)) + w(\pi(X))$. Now we focus on the second term of
 1262 Eq. (61): it differs depending on the OAR version.

1263 First, we consider **OAR noise regularization**. Let $\varepsilon \sim N(0, 1)$ and consider a reparametrization
 1264 trick $\xi = \varepsilon \cdot \lambda(\nu(X))$, then

$$1266 \mathbb{IF} \left(\mathbb{E}_{\xi} [(\mu_1(X) - \mu_0(X) - g(\tilde{X}_{\xi}))^2] \right) = \mathbb{IF} \left(\mathbb{E}_{\varepsilon} [(\mu_1(X) - \mu_0(X) - g(X + \varepsilon \cdot \lambda(\nu(X))))^2] \right) \quad (62)$$

$$1268 = 2\mathbb{E}_{\varepsilon} \left[(\mu_1(X) - \mu_0(X) - g(X + \varepsilon \cdot \lambda(\nu(X)))) \mathbb{IF}(\mu_1(X) - \mu_0(X)) \right] \quad (63)$$

$$1270 - 2\mathbb{E}_{\varepsilon} \left[(\mu_1(X) - \mu_0(X) - g(X + \varepsilon \cdot \lambda(\nu(X)))) \mathbb{IF}(g(X + \varepsilon \cdot \lambda(\nu(X)))) \right].$$

1272 Given that $\mathbb{IF}(\mu_1(x) - \mu_0(x); Z) = \frac{\delta\{X=x\}}{\mathbb{P}(X=x)} \left(\frac{A-\pi(x)}{\nu(x)} (Y - \mu_A(x)) \right)$, the debiased version of our
 1273 OAR becomes

$$1275 \mathcal{L}_{\text{dOAR}}^{+\xi}(g, \eta) = \mathbb{E} \left[\rho(A, \pi(X)) \mathbb{E}_{\xi} [(\mu_1(X) - \mu_0(X) - g(\tilde{X}_{\xi}))^2] \right] \quad (64)$$

$$1278 + 2\mathbb{E} \left[\rho(A, \pi(X)) \mathbb{E}_{\xi} \left[\frac{w(\pi(X))}{\rho(A, \pi(X))} \left(\mu_1(X) - \mu_0(X) - g(\tilde{X}_{\xi}) \right) \left(\frac{A-\pi(X)}{\nu(X)} (Y - \mu_A(X)) \right) \right] \right]$$

$$1280 + \mathbb{E} \left[\int_{\mathcal{X}} \mathbb{E}_{\varepsilon} \left[\underbrace{-2w(\pi(X)) (\mu_1(X) - \mu_0(X) - g(X + \varepsilon \cdot \lambda(\nu(X)))) \mathbb{IF}(g(X + \varepsilon \cdot \lambda(\nu(X))))}_{C^{+\xi}(X; A; \xi; \nabla_{\xi}[g]; \eta)} \right] \mathbb{P}(X = x) dx \right].$$

1283 By completing a square, the latter target risk is equivalent in minimization to the following:
 1284

$$1285 \mathcal{L}_{\text{dOAR}}^{+\xi}(g, \eta) = \mathbb{E} \left[\mathbb{E}_{\xi} \left[\rho(A, \pi(X)) \underbrace{\left(\frac{w(\pi(X))}{\rho(A, \pi(X))} \left(\frac{A-\pi(X)}{\nu(X)} (Y - \mu_A(X)) \right) + \mu_1(X) - \mu_0(X) - g(\tilde{X}_{\xi}) \right)^2}_{\phi(Z, \eta)} \right] \right]$$

$$1289 + \mathbb{E} \left[\int_{\mathcal{X}} \mathbb{E}_{\varepsilon} \left[C^{+\xi}(X; A; \xi; \nabla_{\xi}[g]; \eta) \right] \mathbb{P}(X = x) dx \right], \quad (65)$$

1291 where $\phi(Z, \eta)$ is a pseudo-outcome (Morzywolek et al., 2023), and, thus, the first term recovers our
 1292 OAR applied to a Neyman-orthogonal target risk from Eq. (5). Note that, to recover IVW-learner
 1293 (Fisher, 2024), we need to set $\frac{w(\pi(X))}{\rho(A, \pi(X))} = 1$. This is a reasonable choice when $w(\pi) = \nu$ (as in the
 1294 case of the IVW-learner) as $\mathbb{E} \left[\frac{w(\pi(X))}{\rho(A, \pi(X))} \mid x \right] = \mathbb{E} \left[\frac{\nu(X)}{(A-\pi(X))^2} \mid x \right] = 1$. Also, it is easy to see that,
 1295 after this modification, the IVW-learner is still Neyman-orthogonal.

1296 To derive $C^{+\xi}(X; A; \xi; \nabla_\xi[g]; \eta)$, we use chain rule for $\mathbb{IF}(g(X + \varepsilon \cdot \lambda(\nu(X))))$:
1297
$$\mathbb{IF}(g(X + \varepsilon \cdot \lambda(\nu(X)))) = g'(X + \varepsilon \cdot \lambda(\nu(X))) \varepsilon \mathbb{IF}(\lambda(\nu(X))) = \nabla_\xi[g](X, \xi) \mathbb{IF}(\lambda(\nu(X))), \quad (66)$$

1298 where $\mathbb{IF}(\lambda(\nu(X))) = \mathbb{IF}(\lambda(\nu(x)); X, A)$ is the efficient influence function of the regularization
1299 function (will be derived later).
1300

1301 Similarly, we can derive a debiasing term for our **OAR dropout**. Let $\varepsilon \sim \text{Bern}(1 - p(\nu(X)))$ so that
1302 $\xi = \varepsilon/(1 - p(\nu(X)))$ and consider a log-derivative trick:
1303

1304
$$\mathbb{IF}\left(\mathbb{E}_\xi[(\mu_1(X) - \mu_0(X) - g(\tilde{X}_\xi))^2]\right) = \mathbb{IF}\left(\mathbb{E}_\varepsilon\left[\left(\mu_1(X) - \mu_0(X) - g\left(\frac{X \circ \varepsilon}{1 - p(\nu(X))}\right)\right)^2\right]\right) \quad (67)$$

1305

1306
$$= \int \mathbb{IF}\left(\left(\mu_1(X) - \mu_0(X) - g\left(\frac{X \circ \varepsilon}{1 - p(\nu(X))}\right)\right)^2\right) \mathbb{P}(\varepsilon) d\varepsilon \quad (68)$$

1307

1308
$$+ \int \left(\mu_1(X) - \mu_0(X) - g\left(\frac{X \circ \varepsilon}{1 - p(\nu(X))}\right)\right)^2 \mathbb{IF}\left(\varepsilon \log[1 - p(\nu(X))] + (1 - \varepsilon) \log[p(\nu(X))]\right) \mathbb{P}(\varepsilon) d\varepsilon$$

1309

1310
$$= 2\mathbb{E}_\xi\left[(\mu_1(X) - \mu_0(X) - g(X \circ \xi)) \mathbb{IF}(\mu_1(X) - \mu_0(X))\right]$$

1311

1312
$$- 2\mathbb{E}_\varepsilon\left[\left(\mu_1(X) - \mu_0(X) - g\left(\frac{X \circ \varepsilon}{1 - p(\nu(X))}\right)\right) \mathbb{IF}\left(g\left(\frac{X \circ \varepsilon}{1 - p(\nu(X))}\right)\right)\right] \quad (69)$$

1313

1314
$$+ \mathbb{E}_\varepsilon\left[\left(\mu_1(X) - \mu_0(X) - g\left(\frac{X \circ \varepsilon}{1 - p(\nu(X))}\right)\right)^2 \left(\frac{\varepsilon}{p(\nu(X)) - 1} + \frac{1 - \varepsilon}{p(\nu(X))}\right) \mathbb{IF}(p(\nu(X)))\right]$$

1315

1316
$$= 2\mathbb{E}_\xi\left[(\mu_1(X) - \mu_0(X) - g(X \circ \xi)) \mathbb{IF}(\mu_1(X) - \mu_0(X))\right]$$

1317

1318
$$- 2\mathbb{E}_\varepsilon\left[\left(\mu_1(X) - \mu_0(X) - g\left(\frac{X \circ \varepsilon}{1 - p(\nu(X))}\right)\right) g'\left(\frac{X \circ \varepsilon}{1 - p(\nu(X))}\right) \frac{\mathbb{IF}(p(\nu(X)))}{(1 - p(\nu(X)))^2}\right] \quad (70)$$

1319

1320
$$+ \mathbb{E}_\varepsilon\left[\left(\mu_1(X) - \mu_0(X) - g\left(\frac{X \circ \varepsilon}{1 - p(\nu(X))}\right)\right)^2 \left(\frac{\varepsilon}{p(\nu(X)) - 1} + \frac{1 - \varepsilon}{p(\nu(X))}\right) \mathbb{IF}(p(\nu(X)))\right]$$

1321

1322
$$= 2\mathbb{E}_\xi\left[(\mu_1(X) - \mu_0(X) - g(X \circ \xi)) \mathbb{IF}(\mu_1(X) - \mu_0(X))\right]$$

1323

1324
$$- 2\mathbb{E}_\xi\left[(\mu_1(X) - \mu_0(X) - g(X \circ \xi)) \nabla_\xi[g](X, \xi) \mathbb{IF}(p(\nu(X)))\right] \quad (71)$$

1325

1326
$$+ \mathbb{E}_\xi\left[(\mu_1(X) - \mu_0(X) - g(X \circ \xi))^2 \frac{1 - \xi}{p(\nu(X))} \mathbb{IF}(p(\nu(X)))\right],$$

1327

1328 where $\mathbb{IF}(p(\nu(X))) = \mathbb{IF}(p(\nu(x)); X, A)$ is the efficient influence function of the regularization
1329 function (will be derived later). Now, we can complete the square, similarly to Eq. (65), which yields
1330 the following debiased target risk:
1331

1332
$$\mathcal{L}_{\text{dOAR}}^{\circ\xi}(g, \eta) = \mathbb{E}\left[\mathbb{E}_\xi\left[\rho(A, \pi(X)) \underbrace{\left(\frac{w(\pi(X))}{\rho(A, \pi(X))} \left(\frac{A - \pi(X)}{\nu(X)} (Y - \mu_A(X))\right) + \mu_1(X) - \mu_0(X) - g(\tilde{X}_\xi)\right)^2\right]\right]_{\phi(Z, \eta)} \quad (72)$$

1333

1334
$$+ \mathbb{E}\left[\int_{\mathcal{X}} \mathbb{E}_\varepsilon\left[C^{\circ\xi}(X; A; \xi; \nabla_\xi[g]; \eta)\right] \mathbb{P}(X = x) dx\right],$$

1335

1336 where the second term is
1337

1338
$$C^{\circ\xi}(X; A; \xi; \nabla_\xi[g]; \eta) = w(\pi(X)) (\mu_1(X) - \mu_0(X) - g(X \circ \xi))^2 \frac{1 - \xi}{p(\nu(X))} \mathbb{IF}(p(\nu(X))) \quad (73)$$

1339

1340
$$- 2w(\pi(X)) (\mu_1(X) - \mu_0(X) - g(X \circ \xi)) \nabla_\xi[g](X, \xi) \mathbb{IF}(p(\nu(X))).$$

1341

1342 Finally, we aim to derive $\mathbb{IF}(\lambda(\nu(x)); X, A)$ and $\mathbb{IF}(p(\nu(x)); X, A)$. For the **multiplicative regularization function**, namely:
1343

1344
$$\lambda_m(\nu(x)) = 1/(4\nu(x)) - 1 \quad \text{and} \quad p_m(\nu(x)) = 1 - 4\nu(x), \quad (74)$$

1345

1350 the efficient influence functions are
 1351

$$\mathbb{IF}\left(1/(4\nu(x)) - 1; X, A\right) = -\frac{\mathbb{IF}(\nu(x))}{4\nu(x)^2} = \frac{\delta\{X - x\}}{\mathbb{P}(X = x)} \frac{(A - \pi(x))(2\pi(x) - 1)}{4\nu(x)^2}, \quad (75)$$

$$\mathbb{IF}\left(1 - 4\nu(x); X, A\right) = \frac{\delta\{X - x\}}{\mathbb{P}(X = x)} 4(A - \pi(x))(2\pi(x) - 1). \quad (76)$$

1356 For the **logarithmic regularization function**, namely:
 1357

$$\lambda_{\log}(\nu(x)) = -\log(4\nu(x)) \quad \text{and} \quad p_m(\nu(x)) = 1 - \frac{1}{1 - \log(4\nu(x))}, \quad (77)$$

1361 the efficient influence functions are
 1362

$$\mathbb{IF}\left(-\log(4\nu(x)); X, A\right) = -\frac{\mathbb{IF}(\nu(x))}{\nu(x)} = \frac{\delta\{X - x\}}{\mathbb{P}(X = x)} \frac{(A - \pi(x))(2\pi(x) - 1)}{\nu(x)}, \quad (78)$$

$$\mathbb{IF}\left(1 - \frac{1}{1 - \log(4\nu(x))}; X, A\right) = \frac{1}{(1 - \log(4\nu(x)))^2} \frac{\mathbb{IF}(\nu(x))}{\nu(x)} \quad (79)$$

$$= \frac{\delta\{X - x\}}{\mathbb{P}(X = x)} \frac{(A - \pi(x))(1 - 2\pi(x))}{(1 - \log(4\nu(x)))^2}. \quad (80)$$

1369 Then, for the **squared multiplicative regularization function**, namely:
 1370

$$\lambda_{m^2}(\nu(x)) = 1/16\nu(x)^2 - 1 \quad \text{and} \quad p_{m^2}(\nu(x)) = 1 - 16\nu(x)^2, \quad (81)$$

1373 the efficient influence functions are
 1374

$$\mathbb{IF}\left(1/16\nu(x)^2 - 1; X, A\right) = -\frac{\mathbb{IF}(\nu(x))}{8\nu(x)^3} = \frac{\delta\{X - x\}}{\mathbb{P}(X = x)} \frac{(A - \pi(x))(2\pi(x) - 1)}{8\nu(x)^3}, \quad (82)$$

$$\mathbb{IF}\left(1 - 16\nu(x)^2; X, A\right) = \frac{\delta\{X - x\}}{\mathbb{P}(X = x)} 32\nu(x)(A - \pi(x))(2\pi(x) - 1). \quad (83)$$

1379 Notably, Dirac delta functions are later smoothed out with the integration $\int_{\mathcal{X}} \cdot \mathbb{P}(X = x) dx$ in the
 1380 final formula of $\mathcal{L}_{\text{dOAR}}(g, \eta)$. Thus, they do not appear in the practical implementation. \square
 1381

1382 **Proposition 5** (Excess prediction risk of our OAR/dOAR dropout with linear second-stage model).
 1383 Let $g^*(x) = \beta^{*T}x$ denote the best linear predictor for the second-stage risk with oracle
 1384 nuisance functions ($\beta^* = \arg \min_{\beta} \mathbb{E}[(\phi(Z, \eta) - \beta^T X)^2]$); and let $\hat{g}(x) = \hat{\beta}^T x$ denote the
 1385 finite-sample linear predictor based on CR/OAR/dOAR with the estimated nuisance functions
 1386 ($\hat{\beta} = \arg \min_{\beta} \hat{\mathcal{L}}_{\diamond}^{\circ\xi}(g, \hat{\eta})$, $\diamond \in \{\text{CR, OAR, dOAR}\}$). Also, we consider the following reformula-
 1387 tion of the DR pseudo-outcome $\phi(Z, \eta) = \beta^{*T} X + \tilde{\phi}(Z, \eta)$, where $\tilde{\phi}(Z, \eta)$ is a non-linear term with
 1388 $\mathbb{E}[\tilde{\phi}(Z, \eta) | X] = 0$ (without the loss of generality).
 1389

1390 Then, the excess prediction risk of the DR-learner with the linear second-stage model and dropout
 1391 regularization has the following form:
 1392

$$\|\hat{g} - g^*\|_{L_2}^2 = \mathbb{E}[(\hat{\beta}^T X - \beta^{*T} X)^2] \lesssim \underbrace{\frac{1}{n} \text{tr} [\Sigma(\Sigma + \Gamma)^{-1} \Sigma \tilde{\phi}(Z, \eta)^2 (\Sigma + \Gamma)^{-1}]}_{\text{variance term}} + \underbrace{\beta^{*T} \Gamma \beta^*}_{\text{bias term}} + R(\eta, \hat{\eta}), \quad (84)$$

1395 where $\Gamma_{\text{CR}} = \lambda I$ for the CR, $\Gamma_{\text{OAR}} = \text{diag}[\Sigma_{\lambda(\nu)}]$ for the OAR/dOAR. Given this bias-variance
 1396 decomposition, the following holds:
 1397

- 1399 • For the CR and our dOAR, the remainder term $R(\eta, \hat{\eta})$ only contains higher-order errors
 1400 of the nuisance functions (thus, the CR and our dOAR are less sensitive to the nuisance
 1401 functions' misspecification). For example, the CR contains doubly-robust terms $\|\hat{\mu}_a -$
 1402 $\mu_a\|_{L_2}^2 \|\hat{\pi} - \pi\|_{L_2}^2$; our OAR contains doubly-robust terms $\|\hat{\mu}_a - \mu_a\|_{L_2}^2 \|\hat{\pi} - \pi\|_{L_2}^2$ and a
 1403 same-order propensity error $\|\hat{\pi} - \pi\|_{L_2}^2$; and our dOAR contains both doubly-robust terms
 $\|\hat{\mu}_a - \mu_a\|_{L_2}^2 \|\hat{\pi} - \pi\|_{L_2}^2$ and a higher-order propensity error $\|\hat{\pi} - \pi\|_{L_4}^4$.

1404
 1405 • *Under a **conditional variance assumption** ($\text{Var}[\tilde{\phi}(Z, \eta) \mid X] = \sigma^2/\nu(X)$, where $\sigma^2 =$
 1406 $\text{Var}[Y \mid X, A]$ is assumed to be constant), our OAR/dOAR reduces the **variance term** in
 1407 comparison to the CR (given that OAR/dOAR is properly rescaled, i.e., $\mathbb{E}(\tilde{\lambda}(\nu(X))) = \lambda$,
 1408 see Appendix E). That is,*

$$\text{tr} [\Sigma(\Sigma + \Gamma_{OAR})^{-1} \Sigma_{\tilde{\phi}(Z, \eta)^2} (\Sigma + \Gamma_{OAR})^{-1}] \leq \text{tr} [\Sigma(\Sigma + \Gamma_{CR})^{-1} \Sigma_{\tilde{\phi}(Z, \eta)^2} (\Sigma + \Gamma_{CR})^{-1}]. \quad (85)$$

1411
 1412 • *Under a **mild low-overlap-low-heterogeneity (LOLH-IB)** condition, OAR/dOAR does not
 1413 increase the **bias term** too much. This means that the terms $\beta^{*T} \Gamma_{OAR} \beta^*$ and $\beta^{*T} \Gamma_{CR} \beta^*$
 1414 only differ insignificantly. This is the case, as the LOLH-IB assumes small values for β_j^* if
 1415 some values of X_j lead to the low overlap.*

1416 *Proof.* Our proof follows in several steps.

1417 **1. Bias term.** We start by defining an oracle regularized estimator, $\beta^\circ = \arg \min_\beta \mathcal{L}_{\circ}^{\circ\xi}(g, \eta)$, that
 1418 relates to the oracle unregularized estimator β^* with a shrinkage error b :

$$b = \beta^\circ - \beta^* = -(\Sigma + \Gamma)^{-1} \Gamma \beta^*. \quad (86)$$

1419 Then, the excess risk between β° and β^* can be then upper-bounded by the bias term:

$$\|g^\circ - g^*\|_{L_2}^2 = \mathbb{E}[(\beta^{\circ T} X - \beta^{*T} X)^2] = b^T \Sigma b = \beta^{*T} \Gamma (\Sigma + \Gamma)^{-1} \Sigma (\Sigma + \Gamma)^{-1} \Gamma \beta^* \leq \beta^{*T} \Sigma \beta^*. \quad (87)$$

1420 **2. Variance term.** The finite-sample linear predictor with the estimated nuisance is given by the
 1421 following:

$$(\hat{\Sigma} + \hat{\Gamma}) \hat{\beta} = \hat{c}(\hat{\eta}), \quad (88)$$

1422 where $\hat{c}(\hat{\eta})$ is given by a finite-sample estimator of $c(\hat{\eta}) = \mathbb{E}[\phi(Z, \hat{\eta}) X]$ (the formula for β° is
 1423 analogous with $c(\eta)$). Then, the following holds asymptotically:

$$\hat{\beta} - \beta^\circ \approx (\Sigma + \Gamma)^{-1} (\hat{c}(\hat{\eta}) - c(\eta)). \quad (89)$$

1424 Here, if $\hat{\beta}$ is based on the dOAR, an additional second-order remainder has to be added $R(\eta, \hat{\eta})$.

1425 Also, the following holds due to the Neyman-orthogonality:

$$c(\hat{\eta}) - c(\eta) = \mathbb{E}[\tilde{\phi}(Z, \eta) X] + R(\eta, \hat{\eta}) \quad \text{and} \quad \text{Cov}[\hat{c}(\hat{\eta}) - c(\hat{\eta})] = \frac{1}{n} \mathbb{E}[\tilde{\phi}(Z, \eta)^2 X X^T] + R(\eta, \hat{\eta}). \quad (90)$$

1426 Finally, the excess risk between $\hat{\beta}$ and β° recovers our variance term:

$$\|\hat{g} - g^\circ\|_{L_2}^2 = \mathbb{E}[(\hat{\beta}^T X - \beta^{\circ T} X)^2] \approx \frac{1}{n} \text{tr} [\Sigma(\Sigma + \Gamma)^{-1} \text{Cov}[\hat{c}(\hat{\eta}) - c(\hat{\eta})] (\Sigma + \Gamma)^{-1}] + R(\eta, \hat{\eta}) \quad (91)$$

$$= \frac{1}{n} \text{tr} [\Sigma(\Sigma + \Gamma)^{-1} \Sigma_{\tilde{\phi}(Z, \eta)^2} (\Sigma + \Gamma)^{-1}] + R(\eta, \hat{\eta}). \quad (92)$$

1427 **3.** Now, we combine the bias and variance terms by decomposing $\hat{\beta} - \beta^* = \hat{\beta} - \beta^\circ + \beta^\circ - \beta^*$ and
 1428 formulate the final excess risk:

$$\|\hat{g} - g^*\|_{L_2}^2 = \mathbb{E}[(\hat{\beta}^T X - \beta^{*T} X)^2] \lesssim \frac{1}{n} \text{tr} [\Sigma(\Sigma + \Gamma)^{-1} \Sigma_{\tilde{\phi}(Z, \eta)^2} (\Sigma + \Gamma)^{-1}] + \beta^{*T} \Gamma \beta^* + R(\eta, \hat{\eta}). \quad (93)$$

1429 **4.** To see why our OAR/dOAR improves the CR, under the conditional variance assumption, we show
 1430 the following. Assuming the correlation matrix Σ is diagonal and has $\text{Var}(X_j) = 1$ (w.l.o.g.), the
 1431 variance term has the following form:

$$V(\Gamma) = \frac{1}{n} \sum_{j=1}^{d_x} \frac{m_j}{(1 + s_j)^2} \quad (94)$$

1458 where $m_j = \text{diag}[\Sigma_{\tilde{\phi}(Z,\eta)^2}]_j = \text{diag}[\Sigma_{\sigma^2/\nu}]_j = \mathbb{E}[\sigma^2/\nu(X) \cdot X_j^2]$ and $s_j = \text{diag}[\Sigma_{\lambda(\nu)}]_j =$
 1459 $\mathbb{E}[\lambda(\nu) \cdot X_j^2]$. If we then compare penalties with the same average strength ($\sum s_j = \text{const}$), the
 1460 minimal value of $V(\Gamma)$ is achieved when $s_j \propto m_j^{1/3} - 1$ (namely, a KKT solution). The latter
 1461 can be achieved by choosing the regularization function $\lambda(\nu)$ as described in Definition 1 (e.g.,
 1462 multiplicative, logarithmic, or squared multiplicative). \square
 1463

1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

1512 D.3 NON-PARAMETRIC TARGET MODELS: OAR RKHS NORM
1513

1514 **Proposition 6** (Kernel ridge regression with an OAR-based RKHS norm). *Let $\sqrt{\lambda(\nu)}g \in \mathcal{H}_K$ for
1515 every $g \in \mathcal{H}_{K+c}$. Then, the minimizer of the target risk $g^* = \arg \min_{g \in \mathcal{H}_{K+c}} [\mathcal{L}_{\text{OAR}}^{\mathcal{H}}(g, \eta)]$ is in
1516 \mathcal{H}_{K+c} and has the following form:*

1517 $g^*(x) = (T_{\rho, K} + M_{\lambda(\nu)})^{-1} S_{\rho, K}(x) + c^*, \quad c^* = \mathbb{E}[p(A, \pi(X))\phi(Z, \eta)]/\mathbb{E}[p(A, \pi(X))], \quad (95)$
1518

1519 where $(T_{\rho, K}g)(x) = \mathbb{E}[\rho(A, \pi(X))K(x, X)g(X)]$ is a weighted covariance operator ($T_{\rho, K} : \mathcal{H}_K \rightarrow \mathcal{H}_K$);
1520 $(S_{\rho, K})(x) = \mathbb{E}[\rho(A, \pi(X))K(x, X)\tilde{\phi}(Z, \eta)]$ is a weighted cross-covariance functional;
1521 $\tilde{\phi}(Z, \eta) = \phi(Z, \eta) - c^*$ is a centered pseudo-outcome, and $(M_{\lambda(\nu)}g) = \lambda(\nu(x))g(x)$ is a
1522 bounded multiplication operator on $(M_{\lambda(\nu)} : \mathcal{H}_K \rightarrow \mathcal{H}_K)$.
1523

1524 *Proof.* The OAR-based KRR aims to minimize the following objective:
1525

1526 $g^* = \arg \min_{g \in \mathcal{H}_{K+c}} \left[\mathbb{E}[\rho(A, \pi(X))(\phi(Z, \eta) - g(X))^2] + \left\| \sqrt{\lambda(\nu)}g \right\|_{\mathcal{H}_K}^2 \right], \quad (96)$
1527

1528 which is equivalent to the minimization of the following objective:
1529

1530 $g^* = c^* + \arg \min_{g \in \mathcal{H}_K} \underbrace{\left[\mathbb{E}[\rho(A, \pi(X))(\tilde{\phi}(Z, \eta) - g(X))^2] + \left\| \sqrt{\lambda(\nu)}g \right\|_{\mathcal{H}_K}^2 \right]}_{\tilde{\mathcal{L}}_{\text{OAR}}^{\mathcal{H}}(g, \eta)}, \quad (97)$
1531
1532

1533 $\tilde{\phi}(Z, \eta) = \phi(Z, \eta) - c^*$ is a centered pseudo-outcome.
1534

1535 Under the strong overlap assumption (ii), $\sqrt{\lambda(\nu)}$ is a bounded kernel multiplier and we can define
1536 two self-adjoint multiplication operators (Szafraniec, 2000; Paulsen & Raghupathi, 2016), $M_{\sqrt{\lambda(\nu)}}$
1537 and $M_{\lambda(\nu)}$, that act from \mathcal{H}_K onto \mathcal{H}_K :
1538

1539 $(M_{\sqrt{\lambda(\nu)}}g) = \sqrt{\lambda(\nu(x))}g(x) \quad \text{and} \quad (M_{\lambda(\nu)}g) = \lambda(\nu(x))g(x). \quad (98)$
1540

1541 These two operators have the following property:
1542

1543 $\left\| \sqrt{\lambda(\nu)}g \right\|_{\mathcal{H}_K}^2 = \langle M_{\sqrt{\lambda(\nu)}}g, M_{\sqrt{\lambda(\nu)}}g \rangle_{\mathcal{H}_K} = \langle g, M_{\sqrt{\lambda(\nu)}}^* M_{\sqrt{\lambda(\nu)}}g \rangle_{\mathcal{H}_K} = \langle g, M_{\lambda(\nu)}g \rangle_{\mathcal{H}_K}, \quad (99)$
1544

1545 where M^* is an adjoint operator.
1546

1547 Then, to find a minimizer of the centered OAR-based KRR objective in Eq. (97), we take a path-wise
1548 (Gâteaux) derivative in an arbitrary direction $h \in \mathcal{H}_K$ (Zhang et al., 2023):
1549

1550 $\mathcal{D}_g \tilde{\mathcal{L}}_{\text{OAR}}^{\mathcal{H}}(g, \eta)[h] = \frac{d}{dt} \left[\mathbb{E}[\rho(A, \pi(X))(\tilde{\phi}(Z, \eta) - g(X) - th(X))^2] + \langle g + th, M_{\lambda(\nu)}(g + th) \rangle_{\mathcal{H}_K} \right] \Big|_{t=0} \quad (100)$
1551

1552 $= -2\mathbb{E}[\rho(A, \pi(X))(\tilde{\phi}(Z, \eta) - g(X))h(X)] + \langle g, M_{\lambda(\nu)}h \rangle_{\mathcal{H}_K} + \langle h, M_{\lambda(\nu)}g \rangle_{\mathcal{H}_K} \quad (101)$
1553

1554 $= -2\mathbb{E}[\rho(A, \pi(X))\tilde{\phi}(Z, \eta)h(X)] + 2\mathbb{E}[\rho(A, \pi(X))g(X)h(X)] + 2\langle h, M_{\lambda(\nu)}g \rangle_{\mathcal{H}_K} \quad (102)$
1555

1556 $\stackrel{(*)}{=} -2\langle h, S_{\rho, K} \rangle_{\mathcal{H}_K} + 2\langle h, T_{\rho, K}g \rangle_{\mathcal{H}_K} + 2\langle h, M_{\lambda(\nu)}g \rangle_{\mathcal{H}_K} \quad (103)$
1557

1558 $= 2\langle h, (T_{\rho, K} + M_{\lambda(\nu)})g - S_{\rho, K} \rangle_{\mathcal{H}_K}, \quad (104)$
1559

1560 where $(T_{\rho, K}g)(x) = \mathbb{E}[\rho(A, \pi(X))K(x, X)g(X)]$ is a weighted covariance operator ($T_{\rho, K} : \mathcal{H}_K \rightarrow \mathcal{H}_K$);
1561 $(S_{\rho, K})(x) = \mathbb{E}[\rho(A, \pi(X))K(x, X)\tilde{\phi}(Z, \eta)]$ is a weighted cross-covariance functional; and
1562 the equality $(*)$ holds due to a Mercer representation theorem (Theorem 4.51 in Steinwart & Christmann
1563 (2008)). Namely, the Mercer representation theorem connects L_2 dot product and the RKHS
1564 dot product: $\mathbb{E}[g(X)h(X)] = \langle h, T_Kg \rangle_{\mathcal{H}_K}$.
1565

1566 Then, the centered OAR-based KRR objective in Eq. (97) is optimized when for every $h \in \mathcal{H}_K$:
1567

1568 $\mathcal{D}_g \tilde{\mathcal{L}}_{\text{OAR}}^{\mathcal{H}}(\tilde{g}^*, \eta)[h] = 0 \iff \tilde{g}^* = (T_{\rho, K} + M_{\lambda(\nu)})^{-1} S_{\rho, K}. \quad (105)$
1569

1570 The latter then recovers the desired optimizer $g^* = \tilde{g}^* + c^*$. \square
1571

1566 **Corollary 1.** Consider that the assumptions (i)-(ii) of Proposition 6 hold and denote $\mathbf{K}_{XX} \in \mathbb{R}^{n \times n} = [K(x^{(i)}, x^{(j)})]_{i,j=1,\dots,n}$; $\mathbf{K}_{xX} \in \mathbb{R}^{1 \times n} = [K(x, x^{(j)})]_{j=1,\dots,n}$; $\mathbf{R}(\pi) \in \mathbb{R}^{n \times n} = [\rho(a^{(i)}, \pi(x^{(i)}))]_{i=1,\dots,n} \circ \mathbf{I}_n$; $\Lambda(\nu) \in \mathbb{R}^{n \times n} = [\lambda(\nu(x^{(i)}))]_{i=1,\dots,n} \circ \mathbf{I}_n$; and $\Phi(\eta) \in \mathbb{R}^{n \times 1} = [\phi(z^{(i)}, \eta)]_{i=1,\dots,n}$. Then, a finite-sample KRR solution from Proposition 6 has the following form:

$$1571 \quad \hat{g}(x) = \mathbf{K}_{xX} (\mathbf{R}(\hat{\pi}) \mathbf{K}_{XX} + n\Lambda(\hat{\nu}))^{-1} \mathbf{R}(\hat{\pi}) \Phi(\hat{\eta}) + \hat{c}. \quad (106)$$

1573 *Proof.* The finite-sample KRR solution immediately follows from Proposition 6. Specifically, we use
1574 a plug-in estimator of the weighted-covariance operator $\hat{T}_{\rho, K} = \frac{1}{n} \mathbf{R}(\hat{\pi}) \mathbf{K}_{XX}$; a plug-in estimator
1575 of the weighted cross-covariance operator $\hat{S}_{\rho, K} = \frac{1}{n} \mathbf{R}(\hat{\pi}) \Phi(\hat{\eta}) \mathbf{K}_{xX}$; and a plug-in estimator of the
1576 multiplication operator $\hat{M}_{\lambda(\hat{\nu})} = \Lambda(\hat{\nu})$. Then, the finite-sample KRR solution is as follows:
1577

$$1579 \quad \hat{g}(x) = \mathbf{K}_{xX} \left(\frac{1}{n} \mathbf{R}(\hat{\pi}) \mathbf{K}_{XX} + \Lambda(\hat{\nu}) \right)^{-1} \frac{1}{n} \mathbf{R}(\hat{\pi}) \Phi(\hat{\eta}) + \hat{c} \quad (107)$$

$$1581 \quad = \mathbf{K}_{xX} (\mathbf{R}(\hat{\pi}) \mathbf{K}_{XX} + n\Lambda(\hat{\nu}))^{-1} \mathbf{R}(\hat{\pi}) \Phi(\hat{\eta}) + \hat{c}. \quad (108)$$

□

1584 **Corollary 2.** A solution of (i) the KRR with constant RKHS norm regularization with $\lambda = 1$ for the
1585 original risks of the retargeted learners (R-/IVW-learners) coincides with a solution of (ii) the KRR
1586 with our OAR-based RKHS norm regularization with $\lambda(\nu(x)) = 1/\nu(x)$ for the original risk of the
1587 DR-learner, given the ground-truth nuisance functions η :

$$1589 \quad \hat{g}(x) = \underbrace{\mathbf{K}_{xX} (\mathbf{W}(\pi) \mathbf{K}_{XX} + n\mathbf{I}_n)^{-1} \mathbf{W}(\pi) \mathbf{T}(\eta) + \hat{c}}_{(i)} = \underbrace{\mathbf{K}_{xX} (\mathbf{K}_{XX} + n\Lambda(\nu))^{-1} \mathbf{T}(\eta) + \hat{c}}_{(ii)} \quad (109)$$

1593 where $\mathbf{W}(\pi) \in \mathbb{R}^{n \times n} = [\pi(x^{(i)}) (1 - \pi(x^{(i)}))]_{i=1,\dots,n} \circ \mathbf{I}_n$ and $\mathbf{T}(\eta) \in \mathbb{R}^{n \times 1} = [\mu_1(x^{(i)}) -$
1594 $\mu_0(x^{(i)})]_{i=1,\dots,n}$.

1596 *Proof.* Corollary 2 follows from Corollary 1 and a push-through identity:

$$1598 \quad (\mathbf{P}\mathbf{Q} + \mathbf{I})^{-1}\mathbf{P} = \mathbf{P}(\mathbf{Q}\mathbf{P} + \mathbf{I})^{-1}, \quad (110)$$

1599 where \mathbf{P} and \mathbf{Q} are conformable matrices, and \mathbf{I} is an identity matrix. Hence, by setting $\mathbf{P} = \frac{1}{n} \mathbf{W}(\pi)$
1600 and $\mathbf{Q} = \mathbf{K}_{XX}$, the following holds:

$$1602 \quad \hat{g}(x) = \underbrace{\mathbf{K}_{xX} \left(\frac{1}{n} \mathbf{W}(\pi) \mathbf{K}_{XX} + \mathbf{I}_n \right)^{-1} \frac{1}{n} \mathbf{W}(\pi) \mathbf{T}(\eta) + \hat{c}}_{(i)} \quad (111)$$

$$1606 \quad = \mathbf{K}_{xX} \frac{1}{n} \mathbf{W}(\pi) \left(\mathbf{K}_{XX} \frac{1}{n} \mathbf{W}(\pi) + \mathbf{I}_n \right)^{-1} \mathbf{T}(\eta) + \hat{c} \quad (112)$$

$$1609 \quad = \mathbf{K}_{xX} \frac{1}{n} \mathbf{W}(\pi) \left(\left(\mathbf{K}_{XX} + n\mathbf{I}_n (\mathbf{W}(\pi))^{-1} \right) \frac{1}{n} \mathbf{W}(\pi) \right)^{-1} \mathbf{T}(\eta) + \hat{c} \quad (113)$$

$$1611 \quad = \underbrace{\mathbf{K}_{xX} (\mathbf{K}_{XX} + n\Lambda(\nu))^{-1} \mathbf{T}(\eta) + \hat{c}}_{(ii)}. \quad (114)$$

□

1617 **Proposition 7** (Excess prediction risk of our OAR RKHS norm). Let g^* denote the best RKHS predictor
1618 for the second-stage risk with oracle nuisance functions ($g^* = \arg \min_{g \in \mathcal{H}_{K+e}} \mathbb{E}[(\phi(Z, \eta) -$
1619 $g(X))^2]$); and let \hat{g} denote the finite-sample RKHS predictor based on CR/OAR with the estimated

1620 nuisance functions ($\hat{g} = \arg \min_{g \in \mathcal{H}_{K+c}} \hat{\mathcal{L}}_{\diamond}^{\mathcal{H}}(g, \hat{\eta})$, $\diamond \in \{CR, OAR\}$). Also, we consider the following reformulation of the DR pseudo-outcome $\phi(Z, \eta) = g^*(X) + \tilde{\phi}(Z, \eta)$, where $\tilde{\phi}(Z, \eta)$ is a RKHS approximation error term with $\mathbb{E}[\tilde{\phi}(Z, \eta) | X] = 0$. We assume $c^* = 0$ w.l.o.g.

1624 Then, the excess prediction risk of the DR-learner with the RKHS second-stage model and RKHS
1625 norm regularization has the following form:

$$1627 \|\hat{g} - g^*\|_{L_2}^2 \lesssim \underbrace{\frac{1}{n} \text{tr} [(T_K + \Gamma)^{-1} T_K (T_K + \Gamma)^{-1} T_{\tilde{\phi}(Z, \eta)^2, K}]}_{\text{variance term}} + \underbrace{\langle g^*, \Gamma g^* \rangle_{\mathcal{H}_K}}_{\text{bias term}} + R(\eta, \hat{\eta}), \quad (115)$$

1630 where $(T_K g)(x) = \mathbb{E}[K(x, X)g(X)]$ and $(T_{\tilde{\phi}(Z, \eta)^2, K} g)(x) = \mathbb{E}[\tilde{\phi}(Z, \eta)^2 K(x, X)g(X)]$ are
1631 (weighted) covariance operators ($T_K, T_{\tilde{\phi}(Z, \eta)^2, K} : \mathcal{H}_K \rightarrow \mathcal{H}_K$); $(\Gamma_{CR} g)(x) = \lambda g(x)$ is a
1632 constant scaling operator for the CR; and $(\Gamma_{OAR} g)(x) = (M_{\lambda(\nu)} g)(x) = \lambda(\nu(x))g(x)$ is a bounded
1633 multiplication operator on ($M_{\lambda(\nu)} : \mathcal{H}_K \rightarrow \mathcal{H}_K$) for the OAR.

1634 Given this bias-variance decomposition, the following holds:

1636 • For the CR, the remainder term $R(\eta, \hat{\eta})$ only contains higher-order errors of the nuisance
1637 functions (thus, the CR is less sensitive to the nuisance functions' misspecification). Specifically,
1638 the CR contains doubly-robust terms $\|\hat{\mu}_a - \mu_a\|_{L_2}^2 \|\hat{\pi} - \pi\|_{L_2}^2$. At the same time, our
1639 OAR contains doubly-robust terms $\|\hat{\mu}_a - \mu_a\|_{L_2}^2 \|\hat{\pi} - \pi\|_{L_2}^2$ and a same-order propensity
1640 error $\|\hat{\pi} - \pi\|_{L_2}^2$.

1642 • Under a **conditional variance assumption** ($\text{Var}[\tilde{\phi}(Z, \eta) | X] = \sigma^2/\nu(X)$, where $\sigma^2 =$
1643 $\text{Var}[Y | X, A]$ is assumed to be constant), our OAR/dOAR reduces the **variance term** in
1644 comparison to the CR (given that OAR/dOAR is properly rescaled, i.e., $\mathbb{E}(\tilde{\lambda}(\nu(X))) = \lambda$,
1645 see Appendix E). That is,

$$1646 \text{tr} [(T_K + \Gamma_{OAR})^{-1} T_K (T_K + \Gamma_{OAR})^{-1} T_{\tilde{\phi}(Z, \eta)^2, K}] \leq \text{tr} [(T_K + \Gamma_{CR})^{-1} T_K (T_K + \Gamma_{CR})^{-1} T_{\tilde{\phi}(Z, \eta)^2, K}]. \quad (116)$$

1649 • Under a **mild low-overlap-low-heterogeneity (LOLH-IB) condition**, OAR/dOAR does
1650 not increase the **bias term** too much. This means that the terms $\langle g^*, \Gamma_{OAR} g^* \rangle_{\mathcal{H}_K}$ and
1651 $\langle g^*, \Gamma_{CR} g^* \rangle_{\mathcal{H}_K}$ only differ insignificantly. This is the case, as the LOLH-IB assumes a small
1652 norm for g^* in the low-overlap regions.

1654 *Proof.* Our proof proceeds in 4 steps, similarly to Proposition 5.

1656 **1. Bias term.** We start by defining an oracle regularized estimator, $g^{\circ} = \arg \min_{g \in \mathcal{H}_{K+c}} \mathcal{L}_{\diamond}^{\mathcal{H}}(g, \eta)$.
1657 Then, the excess risk between g° and g^* can be upper-bounded by the bias term:

$$1658 \|g^{\circ} - g^*\|_{L_2}^2 = \mathbb{E}[(g^{\circ}(X) - g^*(X))^2] = \|g^{\circ} - \phi(\cdot, \eta)\|_{L_2}^2 - \|g^* - \phi(\cdot, \eta)\|_{L_2}^2 \quad (117)$$

$$1659 = \mathcal{L}_{\diamond}^{\mathcal{H}}(g^{\circ}, \eta) - \langle g^{\circ}, \Gamma g^{\circ} \rangle_{\mathcal{H}_K} - \mathcal{L}_{\diamond}^{\mathcal{H}}(g^*, \eta) + \langle g^*, \Gamma g^* \rangle_{\mathcal{H}_K} \quad (118)$$

$$1661 \stackrel{(*)}{\leq} -\langle g^{\circ}, \Gamma g^{\circ} \rangle_{\mathcal{H}_K} + \langle g^*, \Gamma g^* \rangle_{\mathcal{H}_K} \stackrel{(**)}{\leq} \langle g^*, \Gamma g^* \rangle_{\mathcal{H}_K}, \quad (119)$$

1663 where $(*)$ holds as g° is a minimizer of the corresponding loss, and $(**)$ holds as Γ is positive
1664 semi-definite operator.

1665 **2. Variance term.** Similarly to Proposition 5, it can be shown that for the finite-sample KRR solution,
1666 the variance term is approximately

$$1667 \|\hat{g} - g^{\circ}\|_{L_2}^2 = \mathbb{E}[(\hat{g}(X) - g^{\circ}(X))^2] \approx \frac{1}{n} \text{tr} [(T_K + \Gamma)^{-1} T_K (T_K + \Gamma)^{-1} T_{\tilde{\phi}(Z, \eta)^2, K}] + R(\eta, \hat{\eta}). \quad (120)$$

1671 **3.** Now, we combine the bias and variance terms by decomposing $\hat{g} - g^* = \hat{g} - g^{\circ} + g^{\circ} - g^*$ and
1672 formulate the final excess risk:

$$1673 \|\hat{g} - g^*\|_{L_2}^2 \lesssim \frac{1}{n} \text{tr} [(T_K + \Gamma)^{-1} T_K (T_K + \Gamma)^{-1} T_{\tilde{\phi}(Z, \eta)^2, K}] + \langle g^*, \Gamma g^* \rangle_{\mathcal{H}_K} + R(\eta, \hat{\eta}). \quad (121)$$

1674 **4.** Under (i) the conditional-variance assumption, the following holds approximately:
 1675

$$1676 \quad T_{\tilde{\phi}(Z,\eta)^2,K} \approx T_K^{1/2} M_{1/\nu} T_K^{1/2}. \quad (122)$$

1677
 1678 Thus, the operator $(T_K + \Gamma)^{-1} T_K (T_K + \Gamma)^{-1}$ would suppresses the high-variance low-overlap
 1679 eigenmodes more effectively when $\Gamma = \Gamma_{\text{OAR}}$ in comparison with $\Gamma = \Gamma_{\text{CR}}$ (given the same average
 1680 regularization, namely $\text{tr}[\Gamma_{\text{OAR}}] = \text{tr}[\Gamma_{\text{CR}}]$). Hence, we obtain the desired inequality:

$$1682 \quad \text{tr} [(T_K + \Gamma_{\text{OAR}})^{-1} T_K (T_K + \Gamma_{\text{OAR}})^{-1} T_{\tilde{\phi}(Z,\eta)^2,K}] \leq \text{tr} [(T_K + \Gamma_{\text{CR}})^{-1} T_K (T_K + \Gamma_{\text{CR}})^{-1} T_{\tilde{\phi}(Z,\eta)^2,K}]. \quad (123)$$

1684
 1685 □
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727

1728

E OAR IMPLEMENTATION DETAILS

1729

E.1 RESCALING

1730 In all the experiments, we performed the rescaling of our OAR so that it can be compared with the
 1731 constant amount of regularization $\lambda > 0$ (or $p \in (0, 1)$):

$$1735 \tilde{\lambda}(\nu(x)) = \lambda + \gamma \cdot \frac{\lambda}{\mathbb{E}[\lambda(\nu(X))]} (\lambda(\nu(x)) - \mathbb{E}[\lambda(\nu(X))]), \quad (124)$$

$$1737 \tilde{p}(\nu(x)) = p + \gamma \cdot \min \left\{ \frac{p}{\mathbb{E}[p(\nu(X))]}, \frac{1-p}{1-\mathbb{E}[p(\nu(X))]} \right\} (p(\nu(x)) - \mathbb{E}[p(\nu(X))]), \quad (125)$$

1740 where $\gamma \in [0, 1]$ is an adaptivity coefficient. Here, $\gamma = 1$ leads to a full OAR, and $\gamma = 0$ is a constant
 1741 regularization. In our experiments, we set $\gamma = 1$ for (a) parametric target models and $\gamma = 0.9$ for
 1742 (b) non-parametric target KRR (to bound away the RKHS norm regularization from zero). The
 1743 rescaling is crucial, as now we can ensure that $\tilde{\lambda}_\gamma(\nu)$ (1) is on average λ , (2) varies depending on
 1744 overlap, and (3) lies in the admissible bounds ($\tilde{\lambda}_\gamma(\nu) > 0$ and $\tilde{p}_\gamma(\nu) \in (0, 1)$).

1745 Notably, after rescaling our OAR, we also need to *adjust our debiased OAR (dOAR)*. Specifically, now
 1746 we need to use $\mathbb{IF}(\tilde{\lambda}(\nu(x)); X, A)$ instead of $\mathbb{IF}(\lambda(\nu(x)); X, A)$ (and $\mathbb{IF}(\tilde{p}(\nu(x)); X, A)$ instead of
 1747 $\mathbb{IF}(p(\nu(x)); X, A)$, respectively) in Eq. (10)–(11). The influence functions of the rescaled OAR can
 1748 be found by using the chain rule (Kennedy, 2022; Luedtke, 2024) and are thus given by the following
 1749 expressions:

$$1750 \mathbb{IF}(\tilde{\lambda}(\nu(x)); X, A) = \gamma \lambda \left(\frac{\mathbb{IF}(\lambda(\nu(x)); X, A)}{\mathbb{E}[\lambda(\nu(X))]} - \frac{\lambda(\nu(X)) \mathbb{IF}(\mathbb{E}[\lambda(\nu(X))]; X, A)}{(\mathbb{E}[\lambda(\nu(X))])^2} \right), \quad (126)$$

$$1753 \mathbb{IF}(\mathbb{E}[\lambda(\nu(X))]; X, A) = \int_X \mathbb{IF}(\lambda(\nu(x)); X, A) \mathbb{P}(X = x) dx + \lambda(\nu(X)) - \mathbb{E}[\lambda(\nu(X))], \quad (127)$$

$$1755 \mathbb{IF}(\tilde{p}(\nu(x)); X, A) = \begin{cases} \gamma p \left(\frac{\mathbb{IF}(p(\nu(x)); X, A)}{\mathbb{E}[p(\nu(X))]} - \frac{p(\nu(X)) \mathbb{IF}(\mathbb{E}[p(\nu(X))]; X, A)}{(\mathbb{E}[p(\nu(X))])^2} \right), & \text{if } \frac{p}{\mathbb{E}[p(\nu(X))]} < \frac{1-p}{1-\mathbb{E}[p(\nu(X))]}, \\ \gamma(1-p) \left(\frac{\mathbb{IF}(p(\nu(x)); X, A)}{1-\mathbb{E}[p(\nu(X))]} - \frac{(1-p(\nu(X))) \mathbb{IF}(\mathbb{E}[p(\nu(X))]; X, A)}{(1-\mathbb{E}[p(\nu(X))])^2} \right), & \text{else,} \end{cases} \quad (128)$$

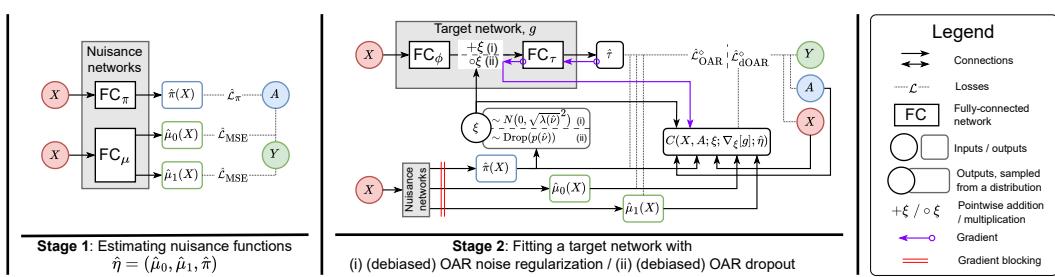
$$1760 \mathbb{IF}(\mathbb{E}[p(\nu(X))]; X, A) = \int_X \mathbb{IF}(p(\nu(x)); X, A) \mathbb{P}(X = x) dx + p(\nu(X)) - \mathbb{E}[p(\nu(X))], \quad (129)$$

1762 where $\mathbb{IF}(\lambda(\nu(x)); X, A)$ are $\mathbb{IF}(p(\nu(x)); X, A)$ provided in Proposition 4.

1764

E.2 OTHER IMPLEMENTATION DETAILS

1766 We implemented our OAR/dOAR in PyTorch and Pyro. It proceeds in two stages as follows (see all
 1767 the details in Algorithm 1).



1778 **Figure 3: An overview of our OAR for a neural network as a (a) parametric target model g .**
 1779 Our OAR/debiased OAR are used at the second stage of the meta-learner to regularize the target
 1780 network proportionally to the level of overlap (lower overlap leads to stronger regularization). Here,
 1781 we instantiate OAR with noise injection for the middle layer of g : (i) OAR noise regularization and
 1782 (ii) OAR dropout.

1782 **Stage 1.** At the first stage, we used neural networks (NNs) with fully-connected (FC) layers and
 1783 exponential linear units (ELUs) as activation functions. Specifically, to estimate the propensity score,
 1784 we employed a multi-layer perceptron (MLP) FC_π consisting of L FC layers (with a tunable number
 1785 of hidden units in each layer). For the conditional expected outcomes, we used a TARNet (Shalit
 1786 et al., 2017) FC_μ consisting of a representation sub-network $FC_{\mu, \phi}$ and outcomes sub-networks
 1787 $FC_{\mu, a}$ (again, each sub-network has a tunable number of layers). We trained the propensity network
 1788 FC_π and the outcomes network $FC_{\mu, a}$ with AdamW (Loshchilov & Hutter, 2019) and $n_{\text{epochs}} = 200$
 1789 ($n_{\text{epochs}} = 20$ for HC-MNIST dataset).

1790 **Stage 2 (parametric target models).** For a second stage model, we used a target MLP g with two
 1791 sub-networks FC_ϕ and FC_τ and ELU activations. Both FC_ϕ and FC_τ have a fixed number of hidden
 1792 units, matching the hidden units of the TARNet FC_μ from the first stage. Again, for training, we
 1793 employed AdamW (Loshchilov & Hutter, 2019) with $n_{\text{epochs}} = 200$ ($n_{\text{epochs}} = 20$ for HC-MNIST
 1794 dataset). For all the experiments with the parametric models, we set the adaptivity coefficient $\gamma = 1$.
 1795 To further stabilize training of the target network, we (i) used exponential moving average (EMA) of
 1796 model weights (Polyak & Juditsky, 1992) with a smoothing hyperparameter ($\kappa = 0.995$); (ii) trimmed
 1797 too low propensity scores for both the pseudo-outcomes and our OAR/dOAR ($0.05 \leq \hat{\pi}(X) \leq 0.95$);
 1798 and (iii) clipped too large values of the bias-correction term with a threshold $\alpha = 1.0$ ($|C^\diamond| \leq$
 1799 α & $|C^\diamond| \leq \hat{\mathcal{L}}_{\text{OAR}}(g, \hat{\eta})$).

1800 **Stage 2 (non-parametric target models).** We used KRR with a radial basis function (RBF) kernel.
 1801 An RBF bandwidth h is fixed individually for each dataset (see Table 5). For all the experiments with
 1802 the non-parametric models, we set the adaptivity coefficient $\gamma = 0.9$.

1803 We use the same training data \mathcal{D} for two stages of learning, as the (regularized) NNs belong to the
 1804 Donsker class of estimators (van der Vaart, 2000; Kennedy, 2022).

1805 **Computational complexity.** Importantly, the computation of the OAR/dOAR weights does not
 1806 introduce a lot of computational burden: Given that we have the estimated propensity scores, both
 1807 OAR/dOAR are functions of the latter. The dOAR additionally requires the evaluation of the gradient
 1808 wrt. the target model inputs. Yet, this operation also scales linearly wrt. the minibatch size. Therefore,
 1809 both OAR/dOAR can be evaluated in linear time depending on the minibatch size.

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836 **Algorithm 1** Pseudocode of our OAR/dOAR with meta-learners

1837 1: **Input:** Training dataset \mathcal{D} ; OAR/dOAR version $\diamond \in \{+\xi, \circ\xi, \mathcal{H}\}$; average regularization strength $\lambda >$
1838 $0/p \in (0, 1)$

1839 2: **Stage 1:** Estimate nuisance functions $\hat{\eta} = (\hat{\mu}_0, \hat{\mu}_1, \hat{\pi})$

1840 3: Fit a propensity network FC_π (MLP) by minimizing a BCE loss, $\hat{\mathcal{L}}_\pi = \mathbb{P}_n\{\text{BCE}(\text{FC}_\pi(X), A)\}$

1841 4: Fit an outcomes network FC_μ (TARNet) by minimizing an MSE loss, $\hat{\mathcal{L}}_{\text{MSE}} = \mathbb{P}_n\{(Y - \text{FC}_\mu(X, A))^2\}$

1842 5: **Output:** Nuisance functions estimators $\hat{\eta} = (\text{FC}_\mu(x, 0), \text{FC}_\mu(x, 1), \text{FC}_\pi(x))$

1843 6: **Stage 2:** Fit a target model $\hat{g} = \arg \min_{g \in \mathcal{G}} \hat{\mathcal{L}}_{\text{OAR}}^\diamond(g, \hat{\eta}) / \hat{g} = \arg \min_{g \in \mathcal{G}} \hat{\mathcal{L}}_{\text{dOAR}}^\diamond(g, \hat{\eta})$

1844 7: $\lambda(\hat{\nu}(X)) \leftarrow \dots$ (see Eq. (4)); $p(\hat{\nu}(X)) \leftarrow \lambda(\hat{\nu}(X)) / (\lambda(\hat{\nu}(X)) + 1)$

1845 8: $I(X) \leftarrow \mathbb{1}\{0.05 \leq \hat{\pi}(X) \leq 0.95\}$ ▷ Trimming indicator

1846 9: $\mathbb{E}[\widehat{\lambda(\nu(X))}] \leftarrow \mathbb{P}_n\{I(X) \cdot \lambda(\hat{\nu}(X))\} / \mathbb{P}_n\{I(X)\}$

1847 10: $\mathbb{E}[p(\nu(X))] \leftarrow \mathbb{P}_n\{I(X) \cdot p(\hat{\nu}(X))\} / \mathbb{P}_n\{I(X)\}$

1848 11: $\tilde{\lambda}(\hat{\nu}(X)) \leftarrow \lambda + \gamma \cdot I(X) \cdot \frac{\lambda}{\mathbb{E}[\widehat{\lambda(\nu(X))}]} (\lambda(\hat{\nu}(x)) - \mathbb{E}[\widehat{\lambda(\nu(X))}])$ (see Eq. (124)) ▷ Rescaling

1849 12: $\tilde{p}(\hat{\nu}(X)) \leftarrow p + \gamma \cdot I(X) \cdot \min\left(\frac{p}{\mathbb{E}[p(\nu(X))]}, \frac{1-p}{1-\mathbb{E}[p(\nu(X))]} \right) (p(\hat{\nu}(x)) - \mathbb{E}[\widehat{p(\nu(X))}])$ (see Eq. (125))

1850 13: **if** Target model == MLP **then** ▷ Parametric target models

1851 14: **for** $i = 0$ **to** $\lceil n_{\text{epochs}} \cdot n / b_T \rceil$ **do**

1852 15: Draw a minibatch $\mathcal{B} = \{X, A, Y, \tilde{\lambda}(\hat{\nu}(X)), \tilde{p}(\hat{\nu}(X)), I(X)\}$ of size b_T from \mathcal{D}

1853 16: $\Phi \leftarrow \text{FC}_\phi(X)$

1854 17: $\xi \sim N(0, \sqrt{\tilde{\lambda}(\hat{\nu}(X))}^2) / \xi \sim \text{Drop}(\tilde{p}(\hat{\nu}(X)))$ ▷ Noise regularization / dropout

1855 18: $g(X) \leftarrow \text{FC}_\tau(\Phi + \xi) / g(X) \leftarrow \text{FC}_\tau(\Phi \circ \xi)$

1856 19: $\hat{\mathcal{L}}_{\text{OAR}}^\diamond(g, \hat{\eta}) \leftarrow \mathbb{P}_{b_T} \left\{ \rho(A, \hat{\pi}(X)) (I(X) \cdot \phi(Z, \hat{\eta}) - g(X))^2 \right\}$

1857 20: **if** dOAR **then**

1858 21: $C^\diamond \leftarrow \mathbb{P}_{b_T} \{I(X) \cdot C^\diamond(X; A; \xi; \nabla_\xi[g]; \hat{\eta})\}$ (see Eq. (10)-(11) and Eq. (126),(128))

1859 22: $\hat{\mathcal{L}}_{\text{dOAR}}^\diamond(g, \hat{\eta}) \leftarrow \hat{\mathcal{L}}_{\text{OAR}}^\diamond(g, \hat{\eta}) + C^\diamond \cdot \mathbb{1}\{|C^\diamond| \leq \alpha \& |C^\diamond| \leq \hat{\mathcal{L}}_{\text{OAR}}^\diamond(g, \hat{\eta})\}$

1860 23: **end if**

1861 24: Gradient & EMA update of the target network g wrt. $\hat{\mathcal{L}}_{\text{OAR}}^\diamond(g, \hat{\eta}) / \hat{\mathcal{L}}_{\text{dOAR}}^\diamond(g, \hat{\eta})$

1862 25: **end for**

1863 26: $\hat{g}(x) \leftarrow \text{FC}_\tau(\text{FC}_\phi(x))$

1864 27: **else if** Target model == KRR **then** ▷ Non-parametric target models

1865 28: **if** OAR **then**

1866 29: $\hat{g}(x) \leftarrow \mathbf{K}_{XX} (\mathbf{R}(\hat{\pi}) \mathbf{K}_{XX} + n \boldsymbol{\Lambda}(\hat{\nu}))^{-1} \mathbf{R}(\hat{\pi}) \boldsymbol{\Phi}(\hat{\eta})$ (see Eq. (21))

1867 30: **else**

1868 31: Undefined (see discussion in Appendix C)

1869 32: **end if**

1870 33: **end if**

1871 34: **Output:** CATE estimator \hat{g}

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890
1891

E.3 HYPERPARAMETER TUNING

1892
1893
1894
1895
1896

We performed hyperparameter tuning of the first-stage models based on five-fold cross-validation using the training subset. For the second stage, we used fixed hyperparameters for all the experiments, as an exact hyperparameter search is not possible for target CATE models solely with the observational data (Curth & van der Schaar, 2023). Table 5 provides all the details on hyperparameter tuning. For reproducibility, we made tuned hyperparameters available in our GitHub.⁷

1897
1898

Table 5: Hyperparameter tuning for our OAR/dOAR with meta-learners.

Stage	Model	Hyperparameter	Range / Value
Stage 1	Propensity network (MLP)	Learning rate	0.001, 0.005, 0.01
		Minibatch size, b_N	32, 64, 128
		Weight decay	0.0, 0.001, 0.01, 0.1
		Hidden layers in FC_{π}	L
		Hidden units in FC_{π}	$R d_x, 1.5 R d_x, 2 R d_x$
		Tuning strategy	random grid search with 50 runs
		Tuning criterion	factual BCE loss
Stage 1	Outcomes network (TARNet)	Optimizer	AdamW
		Learning rate	0.001, 0.005, 0.01
		Minibatch size, b_N	32, 64, 128
		Hidden units in $FC_{\mu, \phi}$	$R d_x, 1.5 R d_x, 2 R d_x$
		Dimensionality of Φ , d_{ϕ}	$R d_x, 1.5 R d_x, 2 R d_x$
		Hidden units in $FC_{\mu, a}$	$R d_{\phi}, 1.5 R d_{\phi}, 2 R d_{\phi}$
		Weight decay	0.0, 0.001, 0.01, 0.1
Stage 2	Target network (MLP)	Tuning strategy	random grid search with 50 runs
		Tuning criterion	factual MSE loss
		Optimizer	AdamW
		Adaptivity coefficient, γ	1
	Target KRR	Learning rate	0.005
		Minibatch size, b_T	64
		EMA of model weights, κ	0.995
		Hidden units in g	Hidden units in FC_{μ}
		Tuning strategy	no tuning
		Optimizer	AdamW
		Adaptivity coefficient, γ	1
1921	Target KRR	RBF bandwidth, h	h
1922		Adaptivity coefficient, γ	0.9

$L = 1$ (synthetic data, IHDP dataset, ACIC 2016 datasets), $L = 2$ (HC-MNIST dataset)

$R = 2$ (synthetic data), $R = 1$ (IHDP dataset), $R = 0.25$ (ACIC 2016 datasets, HC-MNIST dataset)

$h = 0.1$ (synthetic data), $h = 2$ (ACIC 2016 datasets), $h = 5$ (IHDP dataset)

1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

⁷<https://anonymous.4open.science/r/ada-reg>.

1944 **F DATASET DETAILS**

1945

1946 **F.1 SYNTHETIC DATA**

1947

1948 We adapted the synthetic dataset from Melnychuk et al. (2023) where the amount of overlap can
 1949 be varied. Specifically, we took the original generative mechanisms for the covariate X and the
 1950 treatment A but modified the data-generating process of the outcome Y :

1951

$$1952 \begin{cases} X \sim \text{Mixture}(0.5N(0, 1) + 0.5N(b, 1)), \\ 1953 A := \begin{cases} 1, & -U_A < \log(\pi(X)/(1 - \pi(X))) \\ 1954 0, & \text{otherwise} \end{cases}, \quad \pi(x) = \frac{N(x; 0, 1^2)}{N(x; 0, 1^2) + N(x; b, 1^2)}, \quad U_A \sim \text{Logistic}(0, 1), \\ 1955 Y \sim N(3 \cos(3X^2 - 2X + 0.5) - 2.5 \sin(3X^2 - 2X + 0.5), 1^2), \end{cases} \\ 1956 \quad (130)$$

1957

1958 where $N(x; \mu, \sigma^2)$ is a density of a normal distribution $N(\mu, \sigma^2)$ with a mean μ and a standard
 1959 deviation σ ; and a parameter $b \in \mathbb{R}$ regulates the amount of overlap ($b = 0$ implies a perfect overlap).
 1960 In our synthetic experiments, we set $b = 2$.

1961

1962 **F.2 IHDP DATASET**

1963

1964 The Infant Health and Development Program (IHDP) dataset (Hill, 2011; Shalit et al., 2017) is a
 1965 standard semi-synthetic benchmark for assessing treatment effect estimators. It comes with 100
 1966 predefined train-test splits, each containing $n_{\text{train}} = 672$, $n_{\text{test}} = 75$, and $d_x = 25$. The ground-truth
 1967 CAPOs are then given by an exponential function ($\mu_0(x)$) and a linear function ($\mu_1(x)$). Notably, the
 1968 IHDP dataset has a well-known drawback of a severe lack of overlap, which causes instability for
 1969 approaches that depend on propensity-score re-weighting (Curth & van der Schaar, 2021b; Curth
 1970 et al., 2021).

1971

1972 **F.3 ACIC 2016 DATASETS**

1973

1974 The ACIC 2016 benchmark (Dorie et al., 2019) builds its covariates from the extensive Collaborative
 1975 Perinatal Project on developmental disorders (Niswander, 1972). Its datasets differ in (i) the number
 1976 of ground-truth confounders, (ii) the degree of covariate overlap, and (iii) the smoothness and the
 1977 functional form of the CAPOs. In total, ACIC 2016 supplies **77 different data-generating processes**,
 1978 each paired with 100 identically sized samples. After one-hot encoding categorical variables, every
 1979 sample contains $n = 4,802$ observations and $d_X = 82$ features.

1980

1981 **F.4 HC-MNIST DATASET**

1982

1983 The HC-MNIST benchmark was proposed as a high-dimensional, semi-synthetic dataset (Jesson et al.,
 1984 2021), derived from the original MNIST digit images (LeCun, 1998). It contains $n_{\text{train}} = 60,000$
 1985 training images and $n_{\text{test}} = 10,000$ test images. HC-MNIST compresses each high-resolution image
 1986 into a single latent coordinate, ϕ , so that the potential outcomes are complex functions of both
 1987 the image’s mean pixel intensity and its digit label. Treatment assignment is determined by this
 1988 one-dimensional summary ϕ together with an additional latent (synthetic) confounder U , which we
 1989 treat as an observed covariate. Hence, HC-MNIST is characterized by the following data-generating
 1990 process:

$$1991 \begin{cases} U \sim \text{Bern}(0.5), \\ 1992 X \sim \text{MNIST-image}(\cdot), \\ 1993 \phi := \left(\text{clip} \left(\frac{\mu_{N_x} - \mu_c}{\sigma_c}; -1.4, 1.4 \right) - \text{Min}_c \right) \frac{\text{Max}_c - \text{Min}_c}{1.4 - (-1.4)}, \\ 1994 \alpha(\phi; \Gamma^*) := \frac{1}{\text{sigmoid}(0.75\phi + 0.5)} + 1 - \frac{1}{\Gamma^*}, \quad \beta(\phi; \Gamma^*) := \frac{\Gamma^*}{\text{sigmoid}(0.75\phi + 0.5)} + 1 - \Gamma^*, \\ 1995 A \sim \text{Bern} \left(\frac{u}{\alpha(\phi; \Gamma^*)} + \frac{1-u}{\beta(\phi; \Gamma^*)} \right), \\ 1996 Y \sim N((2A - 1)\phi + (2A - 1) - 2 \sin(2(2A - 1)\phi) - 2(2U - 1)(1 + 0.5\phi), 1), \end{cases} \quad (131)$$

1997

1998 where c is a label of the digit from the sampled image X ; μ_{N_x} is the average intensity of the sampled
 1999 image; μ_c and σ_c are the mean and standard deviation of the average intensities of the images with

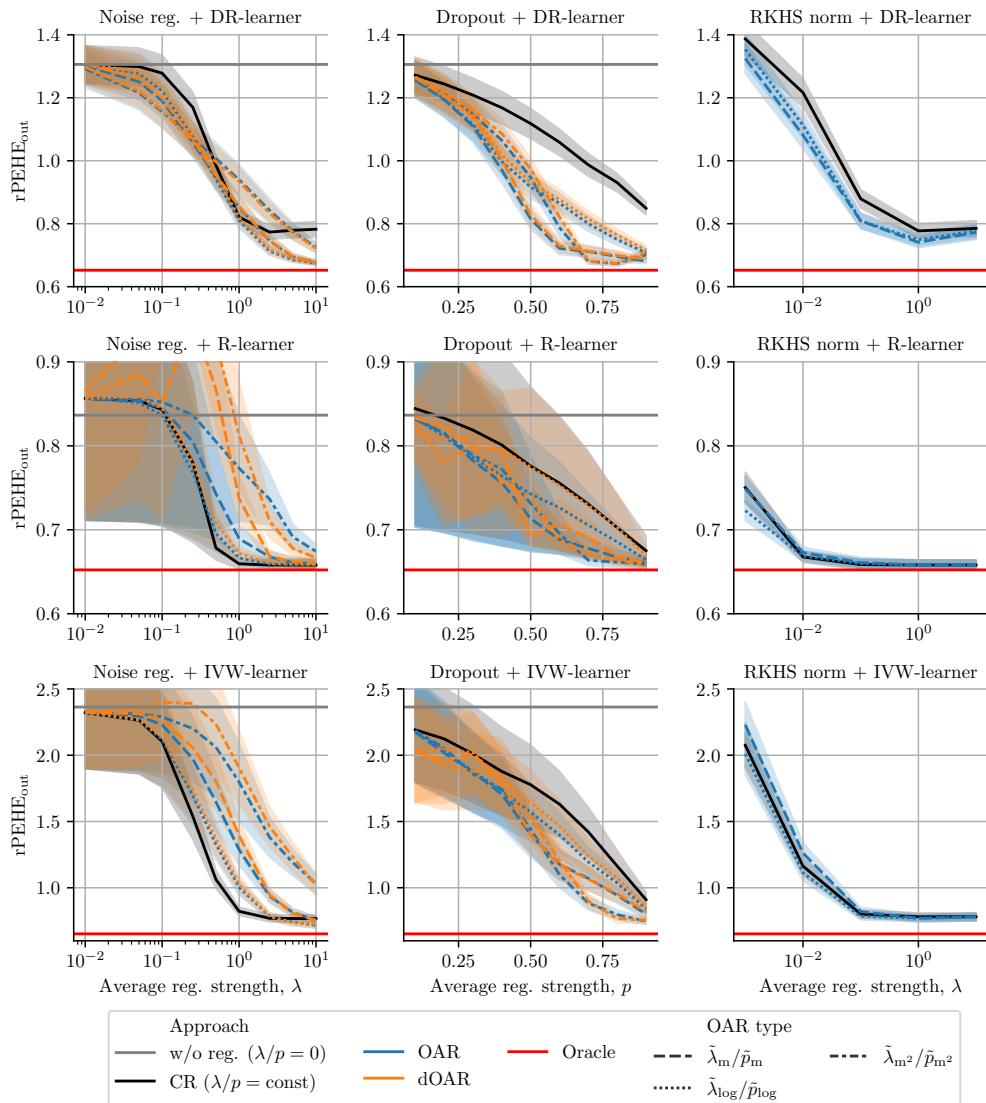
1998 the label c ; and $\text{Min}_c = -2 + \frac{4}{10}c$, $\text{Max}_c = -2 + \frac{4}{10}(c + 1)$. The parameter Γ^* defines what
1999 factor influences the treatment assignment to a larger extent, i.e., the additional confounder or the
2000 one-dimensional summary. We set $\Gamma^* = \exp(1)$. For further details, we refer to Jesson et al. (2021).
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

2052 G ADDITIONAL EXPERIMENTAL RESULTS

2053 G.1 SYNTHETIC DATA

2056 We adapted a fully-synthetic dataset ($d_x = 1$) from Melnychuk et al. (2023) where the amount of
2057 overlap can be varied. Here, the ground truth CATE is 0, yet both conditional expected outcomes are
2058 highly non-linear. We simulated a low-overlap setting with $n_{\text{train}} = 250$ (see Fig. 1).

2059 **Results.** Results are shown in Fig. 4. We see that *our OAR/dOAR noise regularization improves the*
2060 *performance of the CR + DR-Learner*. At the same time, both OAR/dOAR dropout and RKHS norm
2061 improve the performance of (almost) all the learners + CR. This hints at a more flexible nature of
2062 dropout and RKHS norm, as they depend on the covariates and, thus, are more adaptive.



2101 Figure 4: **Results for synthetic experiments.** Reported: rPEHE_{out}; mean \pm se over 40 runs. Lower
2102 is better.

2106 **G.2 HC-MNIST DATASET**
2107

2108 In Table 6, we demonstrate the remaining⁸ experiments for the HC-MNIST dataset. Therein, our
2109 OAR/dOAR improves over CR + DR-/R-/IVW-learners in the majority of combinations, **often**
2110 **significantly**. Furthermore, the best performance for almost every regularization value is achieved by
2111 our OAR/dOAR.

2112 **Table 6: Results for HC-MNIST experiments for OAR/dOAR($\tilde{\lambda}_{\log}/\tilde{p}_{\log}$) and**
2113 **OAR/dOAR($\tilde{\lambda}_{m^2}/\tilde{p}_{m^2}$)**. Reported: rPEHE_{out} ($\Delta rPEHE_{out}$); mean \pm std over 30 runs.

Learner	λ/p = Approach	Noise reg.			Dropout		
		0.05	0.1	0.25	0.1	0.3	0.5
DR	CR ($\lambda/p = \text{const}$)	0.741 \pm 0.038	0.729 \pm 0.037	0.702 \pm 0.030	0.735 \pm 0.036	0.716 \pm 0.032	0.704 \pm 0.025
	OAR($\tilde{\lambda}_{\log}/\tilde{p}_{\log}$)	0.736 \pm 0.039 (-0.006)	0.724 \pm 0.035 (-0.005)	0.686 \pm 0.031 (-0.016)	0.730 \pm 0.039 (-0.005)	0.713 \pm 0.031 (-0.004)	0.700 \pm 0.025 (-0.005)
	dOAR($\tilde{\lambda}_{\log}/\tilde{p}_{\log}$)	0.737 \pm 0.038 (-0.004)	0.725 \pm 0.036 (-0.004)	0.687 \pm 0.030 (-0.015)	0.703 \pm 0.038 (-0.032)	0.710 \pm 0.029 (-0.007)	0.702 \pm 0.025 (-0.002)
	OAR($\lambda_{m^2}/\tilde{p}_{m^2}$)	0.719 \pm 0.037 (-0.023)	0.713 \pm 0.063 (-0.017)	0.710 \pm 0.068 (+0.008)	0.731 \pm 0.038 (-0.004)	0.708 \pm 0.033 (-0.009)	0.701 \pm 0.026 (-0.003)
	dOAR($\lambda_{m^2}/\tilde{p}_{m^2}$)	0.703 \pm 0.026 (-0.039)	0.699 \pm 0.041 (-0.030)	0.709 \pm 0.214 (+0.007)	0.700 \pm 0.040 (-0.035)	0.692 \pm 0.036 (-0.025)	0.699 \pm 0.026 (-0.005)
R	CR ($\lambda/p = \text{const}$)	0.714 \pm 0.015	0.705 \pm 0.010	0.673 \pm 0.007	0.715 \pm 0.027	0.705 \pm 0.027	0.692 \pm 0.018
	OAR($\tilde{\lambda}_{\log}/\tilde{p}_{\log}$)	0.715 \pm 0.015 (+0.001)	0.702 \pm 0.011 (-0.003)	0.674 \pm 0.008 (+0.001)	0.713 \pm 0.022 (-0.002)	0.700 \pm 0.015 (-0.006)	0.687 \pm 0.014 (-0.006)
	dOAR($\tilde{\lambda}_{\log}/\tilde{p}_{\log}$)	0.711 \pm 0.013 (-0.003)	0.701 \pm 0.010 (-0.004)	0.676 \pm 0.008 (+0.003)	0.688 \pm 0.020 (-0.027)	0.699 \pm 0.024 (-0.006)	0.688 \pm 0.018 (-0.004)
	OAR($\tilde{\lambda}_{m^2}/\tilde{p}_{m^2}$)	0.699 \pm 0.070 (-0.015)	0.699 \pm 0.145 (-0.005)	0.695 \pm 0.448 (+0.022)	0.717 \pm 0.022 (+0.002)	0.696 \pm 0.020 (-0.010)	0.684 \pm 0.020 (-0.008)
	dOAR($\lambda_{m^2}/\tilde{p}_{m^2}$)	0.694 \pm 0.031 (-0.020)	0.696 \pm 0.072 (-0.008)	0.731 \pm 0.341 (+0.058)	0.680 \pm 0.011 (-0.035)	0.680 \pm 0.013 (-0.025)	0.680 \pm 0.011 (-0.012)
Oracle		0.513					

2120 Lower is better (best in bold, second best underlined). Change over the baseline in brackets (significant improvement in green, significant worsening in red, $\alpha = 0.05$)

2121 **G.3 ADDITIONAL BASELINES**

2122 **Baselines.** In the following, we provide an absolute comparison between our OAR/dOAR approach
2123 and other existing approaches that tackle low overlap (see Sec. 2). Here, we included **trimming** of
2124 the IPTW weights (with the threshold $t \in \{0.05, 0.1, 0.2\}$). Note that OAR/dOAR also uses a default
2125 amount of trimming $t = 0.05$ to stabilize the training. Also, we added **balancing representations**
2126 with different empirical probability metrics (Johansson et al., 2016; Shalit et al., 2017) with $\alpha \in$
2127 $\{0.5, 5.0\}$, namely Wasserstein metric (WM) and maximum mean discrepancy (MMD). For a fair
2128 comparison, we implemented balancing for the target models (as it was suggested by Melnychuk
2129 et al. (2025)).

2130 **Results.** Results for synthetic and the HC-MNIST datasets are shown in Tables 7 and 8, respectively.
2131 For the synthetic data, our OAR/dOAR with the multiplicative regularization function in combination
2132 with the DR-learner outperforms other approaches. For the HC-MNIST dataset, our OAR/dOAR
2133 with the multiplicative regularization function outperforms all the other baselines. The main reason
2134 that other baselines fall short of our approach in the HC-MNIST is that (i) trimming simply discards
2135 datapoints with low overlap; and (ii) balancing representations becomes highly unstable with the
2136 high-dimensional data (as it gets increasingly harder to estimate empirical probability metrics).

2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
34

2160
2161 **Table 7: Results for synthetic experiments for OAR/dOAR($\tilde{\lambda}_m/\tilde{p}_m$) and other baselines that**
2162 **tackle low overlap.** Reported: rPEHE_{out}; mean \pm std over 40 runs.

	DR-learner	R-learner
Trimming ($t = 0.05$)	1.306 ± 0.375	0.837 ± 0.861
Trimming ($t = 0.1$)	1.339 ± 0.374	0.837 ± 0.861
Trimming ($t = 0.2$)	1.353 ± 0.376	0.837 ± 0.861
Balancing ($\alpha = 0.5$; MMD)	1.032 ± 0.406	0.658 ± 0.037
Balancing ($\alpha = 0.5$; WM)	1.222 ± 0.370	0.658 ± 0.037
Balancing ($\alpha = 5.0$; MMD)	0.878 ± 0.289	0.658 ± 0.037
Balancing ($\alpha = 5.0$; WM)	1.156 ± 0.359	0.658 ± 0.037
OAR Dropout ($\tilde{p}_m; p = 0.5$)	0.815 ± 0.203	0.713 ± 0.249
dOAR Dropout ($\tilde{p}_m; p = 0.5$)	<u>0.828 ± 0.211</u>	0.691 ± 0.072
OAR Noise reg. ($\tilde{\lambda}_m; \lambda = 1.0$)	0.853 ± 0.211	<u>0.689 ± 0.099</u>
dOAR Noise reg. ($\tilde{\lambda}_m; \lambda = 1.0$)	0.856 ± 0.207	0.737 ± 0.172
Oracle		0.652

2173 Lower = better (best in bold, second best underlined)

2174
2175 **Table 8: Results for HC-MNIST experiments for OAR/dOAR($\tilde{\lambda}_m/\tilde{p}_m$) and other baselines that**
2176 **tackle low overlap.** Reported: rPEHE_{out}; mean \pm std over 30 runs.

	DR-learner	R-learner
Trimming ($t = 0.05$)	0.754 ± 0.040	0.731 ± 0.029
Trimming ($t = 0.1$)	0.736 ± 0.019	0.731 ± 0.029
Trimming ($t = 0.2$)	0.714 ± 0.010	0.731 ± 0.029
Balancing ($\alpha = 0.5$; MMD)	0.721 ± 0.027	0.780 ± 0.045
Balancing ($\alpha = 0.5$; WM)	0.908 ± 0.167	0.946 ± 0.033
Balancing ($\alpha = 5.0$; MMD)	0.842 ± 0.230	1.210 ± 0.007
Balancing ($\alpha = 5.0$; WM)	1.171 ± 0.177	1.124 ± 0.031
OAR Dropout ($\tilde{p}_m; p = 0.3$)	0.713 ± 0.032	0.696 ± 0.013
dOAR Dropout ($\tilde{p}_m; p = 0.3$)	0.705 ± 0.031	0.687 ± 0.013
OAR Noise reg. ($\tilde{\lambda}_m; \lambda = 0.1$)	0.726 ± 0.036	0.696 ± 0.009
dOAR Noise reg. ($\tilde{\lambda}_m; \lambda = 0.1$)	0.712 ± 0.033	0.695 ± 0.010
Oracle		0.513

2188 Lower = better (best in bold, second best underlined)

2190 G.4 RUNTIME

2192 Table 9 provides the duration of one run on the IHDP dataset. Each run includes two stages: in stage 1,
2193 we fit nuisance functions; and, in stage 2, we fit all three meta-learners, namely, DR-/R-/IVW-learners
2194 (see Algorithm 1). Here, we compared the constant regularization strategy (CR) with our OAR
2195 and dOAR w/ the multiplicative regularization function, $\tilde{\lambda}_m/\tilde{p}_m$ (runtimes for the logarithmic and
2196 squared multiplicative regularization functions are analogous). We observe that our OAR has almost
2197 the same runtime as the constant regularization. On the other hand, our dOAR has slightly longer
2198 training times that are attributed to the calculation of the gradient $\nabla_\xi[g]$ in the debiasing term, see
2199 Eq.(10)–(11).

2200
2201 **Table 9: Total runtime (in minutes) for different regularization strategies.** Reported: mean \pm
2202 std over 100 runs. Lower is better. Experiments were carried out on 2 GPUs (NVIDIA A100-PCIE-
2203 40GB) with Intel Xeon Silver 4316 CPUs @ 2.30GHz.

Reg. Approach	Noise reg.	Dropout	RKHS norm
CR ($\lambda/p = \text{const}$)	1.85 ± 0.03	1.88 ± 0.04	1.40 ± 0.21
OAR ($\tilde{\lambda}_m/\tilde{p}_m$)	1.87 ± 0.04	1.89 ± 0.03	1.35 ± 0.25
dOAR ($\tilde{\lambda}_m/\tilde{p}_m$)	2.96 ± 0.09	3.86 ± 0.08	—