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ABSTRACT

The conditional average treatment effect (CATE) is widely used in personalized
medicine to inform therapeutic decisions. However, state-of-the-art methods for
CATE estimation (so-called meta-learners) often perform poorly in the presence
of low overlap. In this work, we introduce a new approach to tackle this issue
and improve the performance of existing meta-learners in the low-overlap regions.
Specifically, we introduce Overlap-Adaptive Regularization (OAR) that regularizes
target models proportionally to overlap weights so that, informally, the regulariza-
tion is higher in regions with low overlap. To the best of our knowledge, our OAR
is the first approach to leverage overlap weights in the regularization terms of the
meta-learners. Our OAR approach is flexible and works with any existing CATE
meta-learner: we demonstrate how OAR can be applied to both parametric and
non-parametric second-stage models. Furthermore, we propose debiased versions
of our OAR that preserve the Neyman-orthogonality of existing meta-learners and
thus ensure more robust inference. Through a series of (semi-)synthetic experi-
ments, we demonstrate that our OAR significantly improves CATE estimation in
low-overlap settings in comparison to constant regularization.

1 INTRODUCTION

Estimating the conditional average treatment effect (CATE) from observational data is a core challenge
in causal machine learning (ML). Especially in medical applications, the CATE estimates help to
guide personalized therapeutic decisions by predicting how different patients might respond to a
given treatment (Feuerriegel et al., 2024).

State-of-the-art methods for CATE estimation are based on two-stage Neyman-orthogonal meta-
learners (Curth & van der Schaar, 2021b; Morzywolek et al., 2023). As such, meta-learners have
several practical benefits. Specifically, they are model-agnostic (Künzel et al., 2019) (i.e., they can
be instantiated with arbitrary predictive models such as neural networks). Furthermore, by using
Neyman-orthogonal risks (Chernozhukov et al., 2017; Foster & Syrgkanis, 2023), meta-learners can
achieve favorable theoretical properties. In particular, the second-stage model becomes less sensitive
to errors in the nuisance function estimates, which improves robustness.

However, the performance of meta-learners is constrained by the degree of overlap in the data
(D’Amour et al., 2021; Matsouaka et al., 2024) – that is, the extent to which patients with similar
covariates receive different treatments. In our work, overlap is represented as the product of the
conditional probabilities of receiving each treatment, namely, overlap weights. Overlap is often
violated in medicine when patients with certain covariate profiles almost exclusively receive one
treatment (e.g., due to adherence to medical guidelines). Hence, the low-overlap regions of a covariate
space are sparse in counterfactual outcomes, and, thus, learning CATE gets increasingly challenging.

To address issues from low overlap, existing meta-learners suggested two main approaches: (1) re-
targeting and (2) constant regularization. (1) Retargeting incorporates the overlap weights into
error terms of the target risks (Morzywolek et al., 2023; Nie & Wager, 2021; Fisher, 2024), so that
the error term is truncated or down-weighted in the low overlap regions. In contrast, (2) constant
regularization aims to reduce CATE heterogeneity towards more averaged causal quantities (e. g.,
ATE). While effective to some extent, these strategies have key limitations (as we show later). In the
case of (1) retargeting, the fitted target models struggle in low-overlap regions: they either (i) have
unpredictable behavior or (ii) target at a different causal quantity (e. g., R-/IVW-learners (Nie &
Wager, 2021; Fisher, 2024) with the constant regularization yield a weighted average treatment effect
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Stage 1: Estimating nuisance functions η̂ = (µ̂0, µ̂1, π̂)
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Figure 1: Motivational example showing how our OAR (in red) performs better in low-overlap
regions (in yellow). Here, we used our OAR together with a DR-learner. We adapted the synthetic
data generator from (Melnychuk et al., 2023) (ntrain = 250; see Appendix F) and used kernel ridge
regression (KRR) as a target model. We see that a target model fitted w/ our OAR(λ̃m) (shown in
red) has a better performance in the low-overlap regions, compared to a target model w/ constant
regularization (CR, shown in blue).

[WATE] in the low-overlap regions). Further, (2) constant regularization does not take into account
the degree of overlap and “blindly” regularizes all the regions of the covariate space.

In our work, we introduce Overlap-Adaptive Regularization (OAR), a novel approach that builds
on top of existing two-stage meta-learners and tackles the low-overlap issue through adaptive
regularization. Our OAR helps to prevent over- and underfitting of the target models by varying the
amount of regularization depending on the degree of overlap (see the illustrative example in Fig. 1).
As a result, our OAR applies stronger regularization in the regions with low overlap and weaker
regularization where overlap is high (i. e., when the propensity scores are close to 0.5).

Our OAR thus addresses the above limitations of existing meta-learners. First, (1) unlike targeting,
our OAR makes the predictions of the OAR-fitted target models smoother in low-overlap regions
(i. e., it enforces simpler models in those regions). Second, (2) unlike the constant regularization, it
allows for more CATE modeling flexibility in the overlapping regions (e. g., for DR-learner). Also,
unlike R-/IVW-learners, it can yield the average treatment effect (ATE) in the low-overlap regions
(which is arguably a more meaningful causal quantity than the WATE). To the best of our knowledge,
ours is the first approach to address the low-overlap problem by directly adapting the regularization
term in the target risk.

Our OAR is flexible and can be applied together with any two-stage meta-learner. We provide
several versions of our OAR approach: (a) for parametric target models (e.g., neural networks)
and (b) for non-parametric target models (e.g., kernel ridge regression). For (a), we introduce two
practical implementations via: (i) OAR noise regularization and (ii) OAR dropout. In addition, we
propose a one-step bias-corrected (debiased) estimator of our OAR. This correction is important
because it makes our OAR first-order insensitive to errors in the estimated overlap weights (which is
especially relevant in observational studies where the ground-truth overlap weights are unknown). As
a result, when combined with Neyman-orthogonal learners (e. g., DR-, R-, and IVW-learners), our
debiased OAR preserves their Neyman-orthogonality. We further provide an extension of our OAR to
(b) non-parametric target models (e.g., kernel ridge regression) in Appendix C.

In sum, our contributions are as follows:1 (1) We introduce a novel approach, which we call Overlap-
Adaptive Regularization (OAR), to address the performance of the existing CATE meta-learners
in low-overlap regions. (2) We propose several versions of our OAR for both parametric and non-
parametric target models, as well as a debiased version that preserves Neyman-orthogonality. (3) We
show empirically that our OAR improves the performance in CATE estimation over other alternatives.

2 RELATED WORK

In the following, we briefly review the existing methods for CATE estimation and the ways they
tackle the low-overlap issue. For a more extended overview of related work, we refer to Appendix A.

Two-stage meta-learners. State-of-the-art methods for CATE estimation can be broadly divided
into two general categories: (a) plug-in learners (also known as model-based methods) and (b) (two-
stage) meta-learners (Künzel et al., 2019; Curth & van der Schaar, 2021b; Morzywolek et al., 2023).
Here, we refer to the overview of (a) plug-in learners to Appendix A and rather focus on (b) meta-

1Code is available at https://anonymous.4open.science/r/ada-reg.
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learners.2 Meta-learners aim to find the best projection of CATE on a second-stage (target) model
class and require the estimation of the nuisance functions at the first stage (Künzel et al., 2019).
Importantly, they are fully model-agnostic meaning that any ML model can be employed at either of
the stages. Also, they can possess many favorable theoretical properties if they are Neyman-orthogonal
(Chernozhukov et al., 2017; Foster & Syrgkanis, 2023): notable examples of Neyman-orthogonal
meta-learners include DR-learner (van der Laan, 2006; Curth et al., 2020; Kennedy, 2023), R-learner
(Nie & Wager, 2021), and IVW-learner (Fisher, 2024). Neyman-orthogonality is a property of the
target risks that makes it first-order insensitive to the errors of nuisance functions estimation, and,
therefore, in this work, we only focus on those.

How meta-learners deal with low overlap. Low overlap poses a serious problem for any causal
effect estimation (D’Amour et al., 2021; Matsouaka et al., 2024), including CATE. In the low-overlap
regions, meta-learners mainly suffer from high variance of the pseudo-outcomes (Morzywolek et al.,
2023): it stems either from a bad extrapolation of the first-stage models or from large inverse
propensity scores. There are two general ways to tackle low overlap: (1) retargeting and (2) constant
regularization.

(1) Retargeting. The retargeting approach estimates CATE only for a sub-population by modifying
the target risk/loss (Morzywolek et al., 2023; Matsouaka et al., 2024). For example, trimming
and truncation (Crump et al., 2009) discard too low propensity scores of the DR-learner loss; and
overlap-weighting (Crump et al., 2006; Morzywolek et al., 2023) of the target risk yields either
R-learner (Nie & Wager, 2021) or IVW-learner (Fisher, 2024). However, (1) retargeting on itself
does not regulate how target models would generalize beyond the target sub-population. Therefore,
the above-mentioned works suggested combining it with a (2) constant regularization.

(2) Constant regularization. Constant regularization improves low-overlap predictions by forcing
lower CATE heterogeneity (Morzywolek et al., 2023) in the whole covariate space. Yet, this approach
also has drawbacks. For example, when combined with the DR-learner, it does not distinguish the
variability of pseudo-outcomes in high- and low-overlap regions. DR-learner, thus, can overfit and
underfit at the same time due to the constant regularization. On the other hand, when combined
with R-/IVW-learners, this approach leads to a different causal quantity (i. e., WATE) when too much
regularization is applied.

Adaptive regularization in traditional ML. As discovered by Wager et al. (2013), dropout (Hinton
et al., 2012; Srivastava et al., 2014) and noise regularization (Matsuoka, 1992; Bishop, 1995) can be
seen as instances of the adaptive regularization. The authors have shown that for generalized linear
models, dropout and noise regularization are first-order equivalent to the l2 regularization applied to
the features scaled with an inverse diagonal Fisher information matrix. This result was later extended
for dropout regularization in NN-based models (Mou et al., 2018; Mianjy et al., 2018; Mianjy &
Arora, 2019; Wei et al., 2020; Arora et al., 2021); for noise regularization in NN-based models
(Rothfuss et al., 2019; Camuto et al., 2020); and for other types of regularization (Dieng et al., 2018;
Mou et al., 2018; LeJeune et al., 2020; Zhang et al., 2021; Nguyen et al., 2021). In our paper, we also
draw connections to the seminal results of (Wager et al., 2013). However, we provide – for the first
time – the connection of adaptive regularization to CATE estimation. To the best of our knowledge,
overlap weights have not been used to explicitly define regularization for CATE estimation.

3 PRELIMINARIES

Notation. Random variables are denoted by uppercase letters such as Z, their realizations by
lowercase letters such as z, and their sample spaces by calligraphic symbols such as Z . We write
P(Z), P(Z = z), and E(Z) to refer, respectively, to a distribution of Z, its probability mass or
density at z, and its expectation. We denote an l2 norm as ∥x∥2 =

√
x2
1 + · · ·+ x2

d for x ∈ Rd; a
reproducing kernel Hilbert space (RKHS) norm as ∥f∥HK

=
√

⟨f, f⟩HK
for f ∈ HK , where HK is

an RKHS induced by a kernel K(·, ·). We employ two nuisance functions: the propensity score for
treatment A is π(x) = P(A = 1 | X = x), and a conditional expected outcome for the response Y is
µa(x) = E(Y = y | X = x,A = a). We also consider a marginalized conditional expected outcome

2By naı̈vely estimating τ̂(x) = µ̂1(x)− µ̂0(x), plug-in learners suffer from so-called plug-in bias (Kennedy,
2023) (e. g., µ̂0(x) is badly estimated for treated population). This is addressed in (two-stage) meta-learners.
Unlike the plug-in learners, meta-learners allow to solve the bias-variance trade-off for the nuisance functions
and the target CATE separately (Morzywolek et al., 2023). Hence, we focus on (two-stage) meta-learners
throughout our paper.
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µ(x) = E(Y = y | X = x) and overlap weights ν(x) = Var(A | X = x) as alternative nuisance
function (yet, they can be expressed through the former two: µ(x) = (1− π(x))µ0(x) + π(x)µ1(x)
and ν(x) = π(x)(1− π(x))). Throughout, we work within the Neyman–Rubin potential outcomes
framework (Rubin, 1974). Specifically, Y [a] denotes the potential outcome under the intervention.

Problem setup. To estimate the CATE, we rely on an observational sample D =
{(x(i), a(i), y(i))}ni=1, where X ∈ X ⊆ Rdx are high-dimensional covariates, A ∈ {0, 1} is a
binary treatment, and Y ∈ Y ⊆ R is a continuous outcome. For example, in cancer care, Y measures
tumor growth, A indicates whether chemotherapy is administered, and X records patient attributes
such as age and sex. Furthermore, we assume the n triplets in D are drawn i.i.d. from the joint distri-
bution P(X,A, Y ). We also denote a correlation matrix of the covariates X as Σ = E[XX⊤] and a
λ(·)-weighted correlation matrix as Σλ = E[λ(A,X)XX⊤] for a function λ : {0, 1} × X → R.

Causal estimand and assumptions. We are interested in estimating the conditional average treatment
effect (CATE): τ(x) = E[Y [1]− Y [0] | X = x]. To consistently estimate it from the observational
data D, we make the standard causal assumptions of the Neyman–Rubin framework (Rubin, 1974):
(i) consistency: Y [A] = Y ; (ii) strong overlap: P(ε < π(X) < 1− ε) = 1 for some ε ∈ (0, 1/2);
and (iii) unconfoundedness: (Y [0], Y [1]) ⊥⊥ A | X . Then, under the assumptions (i)–(iii), the CATE
is identified from P(X,A, Y ) as τ(x) = µ1(x)− µ0(x). In this work, we estimate the CATE from
observational data D with meta-learners (Künzel et al., 2019; Morzywolek et al., 2023).

Meta-learners for CATE.Formally, two-stage meta-learners aim to find the best projection g∗(x)
of the ground-truth CATE τ(x) on a pre-specified model class G = {g : X → R} by minimizing
a target risk L(g, η) wrt. g. Here, η = (µ0, µ1, π) are nuisance functions: they are fitted at the first
stage and then used at the second stage to learn the optimal g∗ = argming∈G L(g, η). The majority
of existing CATE meta-learners can be described by the following target risks, which have the same
minimizers given the ground-truth nuisance functions:

Original risk: L(g, η) =E
[
w
(
π(X)

)(
µ1(X)− µ0(X)− g(X)

)2]
+ Λ(g;P(X)), (1)

Neyman-orthogonal risk: L(g, η) =E
[
ρ
(
A, π(X)

)(
ϕ(Z, η)− g(X)

)2]︸ ︷︷ ︸
error term (E)

+ Λ(g;P(X))︸ ︷︷ ︸
regularization term (Λ)

, (2)

where w(π(X)) ≥ 0 is a weighting function, ρ(A, π(X)) = (A−π(X))w′(π(X))+w(π(X)) ≥ 0
is a debiased weighting function, ϕ(Z, η) is a pseudo-outcome with a property E[ϕ(Z, η) | X = x] =
τ(x). While the two risks (original and Neyman-orthogonal) have the same minimizers g∗ given
the ground-truth nuisance functions η, they yield significantly different results ĝ when the nuisance
functions are estimated η̂.

Neyman-orthogonal meta-learners. In the following, we will focus on three Neyman-orthogonal
meta-learners (Eq. (2)): DR-learner (Kennedy, 2023), R-learner (Nie & Wager, 2021), and IVW-
learner (Fisher, 2024). The DR-learner (Kennedy, 2023) is given by w(π(X)) = p(A, π(X)) = 1
and ϕ(Z, η) = (A− π(X))(Y − µA(X))/ν(X) + µ1(X)− µ0(X); the R-learner (Nie & Wager,
2021) by w(π(X)) = ν(X), p(A, π(X)) = (A−π(X))2 and ϕ(Z, η) = (Y − µ(X))/(A−π(X));
and the IVW-learner (Fisher, 2024) by a combination of the former: the weighting functions of the
R-learner and the pseudo-outcome of the DR-learner (see details on meta-learners in Appendix B).

Low overlap. We speak of low overlap, whenever either π(x) or (1 − π(x)) (and thus ν(x)) are
close to 0. Conversely, perfect overlap regions have π(x) = 0.5 and ν(x) = 1/4. Importantly, low
overlap negatively affects the convergence of any meta-learner. For example, for the DR-learner, it
inflates the inverse propensity scores and, for R-/IVW-learners, it retargets the target risk at a different
quantity than CATE (Morzywolek et al., 2023).

Constant regularization.3 The regularization term in Eq. (2), Λ = Λ(g;P(X)), should be spec-
ified depending on the target model class G. For example, if the second-stage model is (a) para-
metric, namely G = {g(·;β, c) : X → R | β ∈ Rd, c ∈ R}, l2-regularization is a popular
choice: Λ(g;P(X)) = λ ∥β∥22. Here, c is an intercept, and λ > 0 is a regularization constant.
Similarly, for a (b) non-parametric second-stage model (e. g., kernel ridge regression), G is the
RKHS HK+c and Λ(g;P(X)) = λ ∥g∥2HK

. Here (with a slight abuse of notation), c is an added

3Here, the regularization term Λ might also depend on P(X) (e. g., a standard dropout implicitly depends on
the correlation matrix Σ). In our context, we call it constant regularization as it does not depend on the overlap.
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constant kernel. It is easy to see that, in both cases (a) and (b), increasing λ → ∞ leads to
g∗ → E[p(A, π(X))ϕ(Z, η)]/E[p(A, π(X))] = c∗ (see Remark 1 in Appendix B.2). This happens
as the intercept/constant kernel is not regularized. Yet, the constant regularization λ (i) does not
directly address the low-overlap issue for DR-learner or (ii) leads to WATE in low-overlap regions
for R- and IVW-learners. This motivates our core idea of an adaptive regularization that depends on
the distribution of the covariates and the treatment P(X,A), and the level of overlap ν(X).

4 OVERLAP-ADAPTIVE REGULARIZATION

In the following, we introduce our approach of Overlap-Adaptive Regularization (OAR) (Sec. 4.1) and
several specific versions for (a) parametric target models (Sec. 5). Further, we provide an extension
for non-parametric versions of our OAR in Appendix A. Proofs are provided in Appendix D.

4.1 GENERAL FRAMEWORK

Here, we define our Overlap-Adaptive Regularization (OAR), a novel general approach that (1) ad-
dresses the low-overlap issue of existing meta-learners, and (2) is model-agnostic.

Definition 1 (Overlap-adaptive regularization (explicit form)). For a meta-learner with a second-
stage model g(·) ∈ G and a target risk L(g, η) = E+Λ (Eq. (2)), overlap-adaptive regularization
(OAR) in an explicit form is given by

ΛOAR = Λ(g;P(X,A);λ(ν(X))), (3)

where λ(ν) > 0 is a regularization function that defines the amount of the regularization and is
proportional to the inverse overlap: λ(ν) ∝ 1/ν. We further distinguish three general classes of
regularization functions: multiplicative (m), logarithmic (log), and squared multiplicative (m2):

λm(ν(x)) = 1/4ν(x)−1; λlog(ν(x)) = − log(4ν(x)); λm2(ν(x)) = 1/16ν(x)2−1. (4)

Our OAR explicitly depends on the overlap through the regularization function4, which is the main
difference from the constant regularization.

Interpretation. Informally, our OAR increases regularization in the regions of the covariate space X
with low overlap (namely, λ(ν) → ∞ when ν(x) → 0). Analogously, the regularization becomes
smaller when perfect overlap is achieved (i. e., λ(ν) → 0 when ν(x) → 1/4). This introduces a
desired behavior in a practical application. For example, in a medical context, low-overlap regions
imply higher certainty about the treatment decisions (as optimal treatment might already be known
there). Our OAR then allows to focus the model flexibility on the overlapping sub-population (namely,
the individuals for whom the CATE/optimal treatment is unknown).

Implicit form. Notably, our OAR can also be defined in the implicit form: it can enter through
the error term of the target risk EOAR (e. g., noise regularization and dropout). Still, as we will
demonstrate later, the two formulations are equivalent for linear models. That is, it is possible to find
an equivalent form of the target risk with the original error term E and the regularization term in the
explicit form ΛOAR. This equivalence can also be partially extended to some deep neural networks:
noise regularization (Camuto et al., 2020) and dropout (Wei et al., 2020) were shown to have an
explicit, first-order equivalent form.

Flexibility. Our OAR can be combined with any (Neyman-orthogonal) meta-learner. Also, we
intentionally did not specify the dependency on g and the observational distribution of P(X,A). This
was done as we want our OAR to be model-agnostic and fit into a wide range of the second-stage
model classes G. For example, many standard regularization techniques like dropout and noise
regularization can have very different dependencies on g and P(X,A) in their explicit forms (Wager
et al., 2013; Camuto et al., 2020; Mianjy & Arora, 2019; Wei et al., 2020).

4.2 DIFFERENCE FROM THE LITERATURE

Difference to retargeting. A natural question arises on whether our OAR is related to retargeting, a
standard approach in meta-learners to handle low overlap (see Sec. 2). Specifically, retargeting is

4Our regularization function can be seen as an example of a selection (or tilting) function (Li et al., 2018;
Assaad et al., 2021; Matsouaka et al., 2024). So far, these were only used in the error terms of the target risks
(e. g., R-learner uses bias-corrected overlap weights).
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Table 1: Summary of OAR versions. Here, E is the error term defined in Eq. (2) and λ(ν) is the
regularization function of OAR (see Definition 1).

Instantiation of OAR Implicit form (EOAR) & explicit form (ΛOAR) Equivalent explicit form for a linear model class G
Noise regularization EOAR = . . . (Eq. (5)) ΛOAR = 0 EOAR = E ΛOAR = ∥β∥22 E

[
ρ(A, π(X)) · λ(ν(X))

]
Dropout EOAR = . . . (Eq. (7)) ΛOAR = 0 EOAR = E ΛOAR = β⊤ diag

[
Σρ(·,π) ·λ(ν)

]
β

RKHS norm EOAR = E ΛOAR =
∥∥∥√λ(ν) g

∥∥∥2
HK

Undefined

implemented in both R- and IVW-learners, as they down-weight their error term of the target risk
proportionally to overlap: E[ρ(A, π(X)) | X = x] = E[(A − π(X))2 | X = x] = ν(x). On the
other hand, our OAR up-weights the regularization term wrt. overlap. However, both approaches, in
general, lead to different risk minimizers: while the re-weighted error term incorporates overlap with
all the aspects of the observed distribution P(X,A, Y ), our regularization term in OAR combines
overlap only with P(X,A). Interestingly, the two approaches match only in a very simple case (as
we will show later) when the propensity score and, thus, the overlap are constant.

Difference to balancing. Another way to tackle low overlap was suggested by balancing repre-
sentations with empirical probability metrics (Johansson et al., 2016; Shalit et al., 2017; Johansson
et al., 2022; Assaad et al., 2021) in neural network (NN)-based plug-ins (see Appendix A). Here,
the average amount of regularization is proportional to a distributional distance between untreated
and treated covariates, dist(P(X | A = 0);P(X | A = 1)). In our case, the average amount of
regularization can also be represented through distributional distances, yet different from the one used
in balancing regularization.

Proposition 1 (Average regularization function as a distributional distance). The average amount of
overlap-adaptive regularization E[λ(ν(X))] is equal to or upper-bounded by f -divergences between
P(X) and P(X | A = a) for a ∈ {0, 1}.

We immediately see that our OAR is implicitly based on the distributional distances between P(X)
and P(X | A = a), which are different from those used in balancing. Furthermore, our OAR is thus
simpler in implementation than balancing because we only need to estimate the propensity score but
not the distributional distance for a high-dimensional X .

5 INSTANTIATIONS OF OUR OAR

In the following, we provide several versions of our OAR for parametric target models, and we
carefully tailor existing regularization techniques so that they become “overlap-adaptive” (see the
overview in Table 1). For each version, we also (1) show an equivalent explicit form ΛOAR when the
target model is linear and (2) derive a debiased (one-step bias-corrected) version of the regularization.
The latter is beneficial to remove the first-order dependency on the estimated propensity score.
We also provide a version for a non-parametric target model in Appendix C. All proofs are in
Appendix D.1.

We consider target models in the following parametric form G = {g(·;β, c) : X → R | β ∈
Rd, c ∈ R}, where β are parameters to be regularized and c is an intercept. For this very general
parametric class, we tailor two general regularization techniques based on noise injection: (i) OAR
noise regularization and (ii) OAR dropout. We also consider w.l.o.g. that noise is injected into the
inputs of g (if g is an NN, then noise can be injected into any layer, see Fig. 3 in Appendix E).

5.1 OAR NOISE REGULARIZATION

Our OAR with Gaussian noise regularization is given by

L+ξ
OAR(g, η) = EOAR = E

[
E
ξ∼N(0,

√
λ(ν(X))

2
)

[
ρ
(
A, π(X)

)(
ϕ(Z, η)− g(X + ξ)

)2]]
, (5)

where N(0, σ2) is a normal distribution with variance σ2.

Thus, by construction of our OAR noise regularization, the variance of additive noise is proportional
to the inverse overlap σ2 ∝ 1/ν(x), and the model g(x) is regularized more in low-overlap regions.
We further show an explicit form of OAR noise regularization ΛOAR for linear models g.
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Proposition 2 (Explicit form of OAR noise regularization in linear g). For a linear model g(x) =
β⊤x+ c, OAR noise regularization has the following explicit form ΛOAR:

L+ξ
OAR(g, η) = E + ΛOAR = E + ∥β∥22 E

[
ρ(A, π(X)) · λ(ν(X))

]
, (6)

where E is given by the original error term from Eq. (2).

Interpretation. We observe that, for linear models, OAR noise regularization coincides with a ridge
regression with the constant regularization λ = E[ρ(A, π(X)) · λ(ν(X))]. However, for other, more
complex parametric models, the explicit form is more complicated and is very different from l2 (e. g.,
for NNs, noise regularization in explicit form depends on the Jacobians wrt. parameters (Camuto
et al., 2020)).

5.2 OAR DROPOUT

Our OAR dropout is given by:

L◦ξ
OAR(g, η) = EOAR = E

[
Eξ∼Drop(p(ν(X)))

[
ρ
(
A, π(X)

)(
ϕ(Z, η)− g(X ◦ ξ)

)2]]
, (7)

where ◦ is an element-wise multiplication; p(ν) = λ(ν)/(λ(ν) + 1) ∈ (0, 1) is a dropout
probability; ξ ∼ Drop(p) is sampled from a scaled Bernoulli distribution (ξ = 0 with probability
p and ξ = 1/(1− p) with probability 1− p).

Given the definition of our OAR dropout, it is easy to see that p ∝ 1/ν(x). This means, the dropout
probability is p = 0 in high-overlap regions (ν(x) = 1/4), and p → 1 in low-overlap regions
(ν(x) → 0).

Interestingly, both the regular (Wager et al., 2013; Bartlett et al., 2019) and OAR dropouts are
significantly different from the l2-regularization, even for linear models g. We show it with the
following proposition.
Proposition 3 (Explicit form of OAR dropout in linear g). For a linear model g(x) = β⊤x+ c, OAR
dropout regularization has the following explicit form ΛOAR:

L◦ξ
OAR(g, η) = E + ΛOAR = E + β⊤ diag

[
Σρ(·,π) ·λ(ν)

]
β, (8)

where E is given by the original error term from Eq. (2), λ(ν) = p(ν)/(1− p(ν)), and diag[·] zeroes
out all but the diagonal entries of a matrix.

Interpretation. Proposition 3 motivates our choice of p(ν) as λ(ν)/(λ(ν) + 1) so that λ(ν) =
p(ν)/(1 − p(ν)). Also, we immediately see that, for linear models g, our OAR is not an l2-
regularization but an overlap-dependent quadratic form for β. That is, our OAR dropout scales
each βj prior to applying l2-regularization. Specifically, our OAR dropout in linear models is
equivalent to a ridge regression where each feature is scaled down proportionately to the product of
the inverse overlap and its own second moment: X̃j = Xj/

√
E[ρ(A, π(X)) · λ(ν(X)) ·X2

j ]. For
other parametric models, the explicit form of OAR dropout becomes more complex (e. g., the explicit
form of the standard dropout in NNs has l2-path regularizers and rescaling invariant sub-regularizers
(Mianjy & Arora, 2019; Wei et al., 2020)).

Implicit and explicit forms. Importantly, Propositions 2 and 3 also show the effect of OAR applied
on top of the retargeted learners if OAR is presented in the implicit form EOAR. For example, when
multiplicative OAR noise regularization is used with R-/IVW-learners, they result in a constant amount
of regularization in low-overlap regions (i. e., E[ρ(A, π(X)) · λm(ν(X))] = 1/4 − ν(X) → 1/4
given the ground-truth nuisance functions). This suggests that, if we want to adaptively regularize
retargeted learners with OAR noise regularization, we need to employ the squared multiplicative
regularization function λm2 (so that E[ρ(A, π(X)) · λm2(ν(X))] → ∞ in low-overlap regions).

5.3 DEBIASED OAR FOR PARAMETRIC MODELS

Here, we provide two debiased (one-step bias-corrected) versions, which we call dOAR noise
regularization and dOAR dropout. Debiasing (van der Vaart, 2000; Kennedy, 2022) is beneficial to
remove the first-order errors from the estimated propensity score ν̂(x) = π̂(x)(1− π̂(x)). Namely,
our original OAR from Eq. (5) and (7) might be overly sensitive to the misspecification of the overlap
weights (e. g., when the propensity score π̂ is badly estimated).

7
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Proposition 4 (Debiased OAR). Under the continuous differentiability of g(x;β, c), (i) debiased
OAR noise regularization and (ii) debiased OAR dropout are given by

L⋄
dOAR(g, η) = L⋄

OAR(g, η) + E
[ ∫

X
Eξ[C

⋄(X;A; ξ;∇ξ[g]; η)]P(X = x) dx

]
, for ⋄ ∈ {+ξ, ◦ξ}, (9)

C+ξ(X;A; ξ;∇ξ[g]; η) = −2w(X)(µ1(X)− µ0(X)− g(X + ξ)) · ∇ξ[g](X, ξ) · IF(λ(ν(x));X,A), (10)

C◦ξ(X;A; ξ;∇ξ[g]; η) = w(X)(µ1(X)− µ0(X)− g(X ◦ ξ))2 ·
1− ξ

p(ν(X))
· IF(p(ν(x));X,A)

− 2w(X)(µ1(X)− µ0(X)− g(X ◦ ξ)) · ∇ξ[g](X, ξ) · IF(p(ν(x));X,A), (11)

where L⋄
OAR are from Eq. (5) and (7); ∇ξ[g] is a gradient wrt. ξ; and IF(·;Z) is an efficient

influence function (see Appendix D.2 for further details). Furthermore, by construction, L⋄
dOAR is a

Neyman-orthogonal risk.

Proof. For debiasing, we derived the efficient influence functions using a chain rule together with
reparameterization and REINFORCE tricks. The full proof is in Appendix D.

Importantly, after debiasing, our OAR recovers the property of Neyman-orthogonality (Chernozhukov
et al., 2017; Foster & Syrgkanis, 2023) when combined with the standard Neyman-orthogonal learners.
Furthermore, we can show that, under some additional conditions, our OAR/dOAR are guaranteed to
outperform the constant regularization (CR).

Proposition 5 (Excess prediction risk of our OAR/dOAR dropout with linear second-stage model).
The excess prediction risk of the DR-learner with the linear second-stage model and dropout regular-
ization has the following form:

||ĝ − g∗||2L2
= E

[
(β̂TX − β∗TX)2

]
≲

1

n
tr

[
Σ(Σ + Γ)−1Σϕ̃(Z,η)2 (Σ + Γ)−1

]
︸ ︷︷ ︸

variance term

+β∗TΓβ∗︸ ︷︷ ︸
bias term

+R(η, η̂), (12)

where ΓCR = λI for the CR, ΓOAR = diag
[
Σλ(ν)

]
for the OAR/dOAR. Then, under (i) a conditional

variance assumption (=conditional variance of the outcome is constant), the variance term for
OAR/dOAR is less than or equal to the variance term of the CR. Also, under (ii) a low-overlap-low-
heterogeneity inductive bias (LOLH-IB), OAR/dOAR do not increase the bias term too much.

Proof. We used a bias-variance decomposition of the excess prediction risk for linear models. Then,
we showed how assumptions (i)-(ii) help to reduce each term for our OAR/dOAR in comparison to
the CR. The full proof is in Appendix D.

We provide the full statement and the full proof of Proposition 5 in Appendix D. Arguably, both
assumptions of Proposition 5 are reasonable: (i) The conditional variance of the outcome, Var(Y |
X,A), becomes nearly constant comparing to the variance of the DR pseudo-outcome; while
(ii) LOLH-IB is often assumed to simplify causal ML (Curth & van der Schaar, 2021a; Melnychuk
et al., 2025) (see Appendix A). Importantly, Proposition 5 and Eq. (12) apply to any level of overlap.
However, specifically for the low-overlap setting (i. e., with larger values of 1/ν(x)), it is fair to
assume (i) the conditional variance assumption, as the variance of the DR pseudo-outcome can be
considered proportional to the inverse overlap.

5.4 NON-PARAMETRIC TARGET MODELS: OAR RKHS NORM

In the following, we introduce an instantiation of our OAR for a very general class of non-parametric
models that belong to a reproducing kernel Hilbert space G = HK+c induced by a sum of an arbitrary
kernel K(·, ·) and a constant kernel K(·, ·) = c.

Our OAR RKHS norm for a target model g ∈ HK+c can be instantiated as a weighted kernel
ridge regression (KRR) with a modified, OAR-based RKHS norm:

LH
OAR(g, η) = E + ΛOAR = E +

∥∥∥√λ(ν)g
∥∥∥2
HK

, (13)

where E is given by the original error term from Eq. (2), and we assume that
√
λ(ν)g ∈ HK for

every g ∈ HK+c (this assumption is required so that the modified RKHS norm is well-defined).

8
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Here, the regularization function
√
λ(ν(x)) adaptively regularizes a function g(x) and is known as a

multiplier of the RKHS HK (Szafraniec, 2000; Paulsen & Raghupathi, 2016). Then, under special
conditions, the weighted KRR with OAR-based RKHS norm has a well-defined solution.

Proposition 6 (Kernel ridge regression with an OAR-based RKHS norm). Let
√
λ(ν)g ∈ HK for

every g ∈ HK+c. Then, the minimizer of the target risk g∗ = argming∈HK+c
[LH

OAR(g, η)] is in
HK+c and has an explicit solution.

We defer the full formulation of Proposition 6 and further discussions to Appendix C. Furthermore,
Proposition 7 in Appendix C shows a result similar to Proposition 5 for our OAR RKHS norm
regularization. Specifically, we showed there that our OAR RKHS norm improves over the CR under
the analogous conditions for the RKHS: (i) conditional variance assumption and (ii) low-overlap-low-
heterogeneity inductive bias.

5.5 IMPLEMENTATION DETAILS
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Figure 2: Results for IHDP dataset experiments.
Reported: median rPEHEout ± se over 100 runs.

The implementation of our OAR proceeds in two
stages (e. g., see Fig. 3 in Appendix E for the
(a) parametric OAR instantiations with NNs). In
stage 1, we estimate the nuisance functions η̂.
For this, we fit cross-validated fully-connected
NNs. Then, in stage 2, we fit a target network
using empirical versions of the target risks L̂ in
(a) and KRR solution ĝ in (b) to yield a target
model (= CATE estimator). Furthermore, in both
settings (a) and (b), we rescaled the regulariza-
tion function λ̃(ν) (or p̃(ν)) so that OAR can be
comparable with the constant amount of regular-
ization. For our dOAR, we additionally trimmed
too large absolute values of the debiasing term
C⋄: this helped to achieve a better stability of
training the target models. We provide further
implementation details in Appendix E.

6 EXPERIMENTS

Table 2: Results for 77 semi-
synthetic ACIC 2016 experiments
for the DR-learner. Reported: % of
datasets, where our OAR/dOAR sig-
nificantly outperforms CR (α = 0.1
with 15 runs per dataset).

Reg. Noise reg. Dropout

λ/p = 0.05 0.3
Approach

OAR(λ̃log/p̃log) 14.29% 29.87%
dOAR(λ̃log/p̃log) 7.79% 64.94%
OAR(λ̃m/p̃m) 31.17% 41.56%
dOAR(λ̃m/p̃m) 57.14% 70.13%
OAR(λ̃m2/p̃m2 ) 27.27% 16.88%
dOAR(λ̃m2/p̃m2 ) 76.62% 64.94%
Higher = better (improvement over the
baseline in <50% of runs in green)

Setup. We follow prior literature (Curth & van der
Schaar, 2021b; Melnychuk et al., 2023) and use several
(semi-)synthetic datasets where both counterfactual outcomes
Y [0] and Y [1] and ground-truth CATE are available. Specifi-
cally, we used four datasets for benchmarking (see Appendix F
for details). For all four, we report an out-sample root pre-
cision in estimating heterogeneous effect (rPEHEout) or an
improvement of our OAR over the baseline as a difference of
the former (∆rPEHEout).

Baselines. We compare all versions of our OAR and our debi-
ased OAR (dOAR). As a baseline, we use only a comparable
regularization strategy for meta-learners, namely, constant regularization (CR) (Morzywolek et al.,
2023). In Appendix G, we also report the results of other, not directly comparable baselines (e. g.,
trimming and balancing). Here, we compare how different amounts of regularization work with three
Neyman-orthogonal learners: (i) DR-learner (Kennedy, 2023), (ii) R-learner (Nie & Wager, 2021),
and (iii) IVW-learner (Fisher, 2024). For a fair comparison, we rescaled our OAR/ dOAR so that
they, on average, coincide with the CR values (see Appendix E).

IHDP dataset. The IHDP dataset (n = 672 + 75; dx = 25) (Hill, 2011; Shalit et al., 2017) is
well-known to have severe overlap violations (Curth et al., 2021). Results. We show the results of the
experiments with the IHDP dataset in Fig. 2. Therein, our OAR/dOAR are particularly effective for
the DR-learner and large regularization values. Notably, the best performance for every meta-learner
and regularization type is achieved by some version of our OAR/dOAR.
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Table 3: Results for HC-MNIST experiments for OAR/dOAR(λ̃m/p̃m). Reported: rPEHEout
(∆rPEHEout); mean ± std over 30 runs.

Reg. Noise reg. Dropout

λ/p = 0.05 0.1 0.25 0.1 0.3 0.5
Learner Approach

DR
CR (λ/p = const) 0.752 ± 0.038 0.741 ± 0.037 0.711 ± 0.030 0.746 ± 0.036 0.727 ± 0.032 0.711 ± 0.025
OAR(λ̃m/p̃m) 0.743 ± 0.039 (−0.009) 0.726 ± 0.036 (−0.015) 0.696 ± 0.033 (−0.015) 0.742 ± 0.038 (−0.004) 0.713 ± 0.032 (−0.014) 0.701 ± 0.025 (−0.011)
dOAR(λ̃m/p̃m) 0.731 ± 0.035 (−0.021) 0.712 ± 0.033 (−0.029) 0.684 ± 0.027 (−0.027) 0.713 ± 0.038 (−0.033) 0.705 ± 0.031 (−0.021) 0.702 ± 0.026 (−0.009)

R
CR (λ/p = const) 0.715 ± 0.015 0.703 ± 0.010 0.674 ± 0.007 0.720 ± 0.027 0.711 ± 0.027 0.696 ± 0.018
OAR(λ̃m/p̃m) 0.711 ± 0.012 (−0.004) 0.696 ± 0.009 (−0.007) 0.673 ± 0.007 (-0.000) 0.720 ± 0.024 (-0.000) 0.696 ± 0.013 (−0.015) 0.685 ± 0.010 (−0.011)
dOAR(λ̃m/p̃m) 0.705 ± 0.009 (−0.010) 0.695 ± 0.010 (−0.007) 0.671 ± 0.008 (−0.003) 0.689 ± 0.015 (−0.031) 0.687 ± 0.013 (−0.024) 0.682 ± 0.011 (−0.013)

IVW
CR (λ/p = const) 1.121 ± 0.246 1.102 ± 0.235 1.028 ± 0.201 1.136 ± 0.251 1.117 ± 0.259 1.113 ± 0.281
OAR(λ̃m/p̃m) 1.099 ± 0.237 (−0.021) 1.071 ± 0.225 (−0.030) 0.984 ± 0.215 (−0.044) 1.131 ± 0.259 (−0.005) 1.061 ± 0.231 (−0.056) 0.997 ± 0.213 (−0.116)
dOAR(λ̃m/p̃m) 1.105 ± 0.239 (−0.016) 1.058 ± 0.217 (−0.044) 0.978 ± 0.212 (−0.049) 1.130 ± 0.221 (−0.006) 1.110 ± 0.293 (−0.006) 1.027 ± 0.235 (−0.086)

Oracle 0.513
Lower = better (best in bold, second best underlined). Change over the baseline in brackets (significant improvement in green, significant worsening in red, α = 0.05)

ACIC 2016 datasets. ACIC 2016 collection (Dorie et al., 2019) contains 77 semi-synthetic datasets
(n = 4802, dx = 82) with varying overlap and CATE heterogeneity. Due to the high-dimensionality
of covariates, we exclude RKHS norm regularization from the experiments. Results. Results for
the DR-learner are in Table 2, as our OAR/dOAR were most effective in the combination with the
DR-learner. Here, different versions of our OAR/dOAR lead to a high percentage of significant
improvements over the CR. Furthermore, our dOAR often leads to a significant improvement in more
than half of the datasets.

HC-MNIST dataset. Finally, we adopted a high-dimensional HC-MNIST dataset (dx = 784 + 1)
(Jesson et al., 2021), which naturally suffers from low overlap (due to the dimensionality). Results.
Table 3 provides the results for OAR/dOAR with the multiplicative regularization function (results for
other regularization functions are in Appendix G). Here, we observe that our OAR/dOAR significantly
improves the performance of the CR + DR-/R-/IVW-learners in the majority of cases. Notably, the
best performance for every regularization value is always achieved by some version of our OAR/dOAR.
This proves the effectiveness and scalability of our approach.

Additional results. In Appendix G, we additionally report the results for the synthetic data from
Fig. 1. Also, we report the results of other, not directly comparable baselines (e. g., trimming and
balancing). There, we vary regularization hyperparameters responsible for addressing low overlap.

On the choice of the regularization function. Our results support the multiplicative regularization
function as the most effective choice for our OAR. First, the proof of our Proposition 5 in Appedix D.2
suggests that, under the conditional variance assumption, the variance-optimal shape for adaptive
regularization scales as a fractional power of inverse overlap, namely λ(ν) ∝ ν−1/3. This lies
between the logarithmic dependence (looser penalization) and the multiplicative dependence (stronger
penalization), making the latter a practical, more robust variant of the regularization function. This
choice of a stronger regularization function can also be particularly relevant for non-linear target
models (e. g., neural networks), whose effective variance typically grows with model complexity.
Second, Corollary C in Appendix 2 shows that our OAR based on the multiplicative regularization
function combined with the DR-learner is equivalent to the CR combined with the R-learner in kernel
ridge regression settings. Given the well-studied effectiveness of the R-learner, this offers theoretical
support for multiplicative regularization. Finally, our extensive empirical evaluation in Sec. 6
and Appendix G consistently identifies the multiplicative regularization function as the strongest
performer across diverse benchmarks. Collectively, these arguments justify our recommendation of
the multiplicative regularization function as the default regularization strategy for our OAR.

On the best combination. We empirically found the combination of our OAR/dOAR noise regular-
ization / dropout with DR-learner to be consistently good across all the benchmarks. The main reason
for this is that our OAR/dOAR in combination with the DR-learner achieve just the right balance
between the high-variability of the pseudo-outcome and the regularization strength (as suggested by
the assumptions of Proposition 5). On the other hand, R- and IVW-learners in the combination with
our OAR/dOAR might over-regularize the low-overlap areas, as the overlap already downscales the
error term of the target loss.

Conclusion. In this paper, we introduced a novel approach for regularizing two-stage meta-learners:
Overlap-Adaptive Regularization. Our OAR adaptively sets the regularization depending on the
overlap so that low-overlap regions are regularized more. We showed that this approach is more
effective than the existing constant regularization techniques. OAR performs best when low overlap
coincides with low CATE heterogeneity (this can be seen as an underlying inductive bias). Such an
inductive bias is often meaningful in practice: in the absence of ground-truth counterfactuals (i. e., in
low-overlap versions), simpler models for the CATE may be preferred.
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Overlap-Adaptive Regularization (OAR) is designed to make conditional average treatment effect
(CATE) meta-learners more reliable when data exhibit poor treatment-control overlap. In high-stakes
domains such as personalized medicine, where CATE estimates inform therapeutic choices, better
behavior in low-overlap regions can translate into safer, more effective, and more equitable care
decisions. Beyond healthcare, the technique may help policymakers or social-science researchers
draw fairer conclusions from observational data by making CATE estimation more stable.

REPRODUCIBILITY STATEMENT
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• Algorithms. We provide full algorithmic descriptions, including pseudocode for adaptive
regularization methods. Hyperparameters, update rules, and initialization strategies are
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• Experimental validation. We describe datasets, architectures, hyperparameters, and evalua-
tion procedures in detail. We also released an anonymous version of the code and experiment
scripts to facilitate verification.

• Resources. The results from our paper can be fully reproduced using publicly available tools
and the released supplementary materials.

Thus, all results can be independently verified based on the text and accompanying resources.
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Sören R. Künzel, Jasjeet S. Sekhon, Peter J. Bickel, and Bin Yu. Metalearners for estimating
heterogeneous treatment effects using machine learning. Proceedings of the National Academy of
Sciences, 116(10):4156–4165, 2019.

Yann LeCun. The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/, 1998.

Daniel LeJeune, Hamid Javadi, and Richard Baraniuk. The implicit regularization of ordinary least
squares ensembles. In International Conference on Artificial Intelligence and Statistics, 2020.

Fan Li, Kari Lock Morgan, and Alan M. Zaslavsky. Balancing covariates via propensity score
weighting. Journal of the American Statistical Association, 113(521):390–400, 2018.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Alexander R. Luedtke. Simplifying debiased inference via automatic differentiation and probabilistic
programming. arXiv preprint arXiv:2405.08675, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Roland A. Matsouaka, Yi Liu, and Yunji Zhou. Overlap, matching, or entropy weights: What are we
weighting for? Communications in Statistics - Simulation and Computation, 54(7):1–20, 2024.

Kiyotoshi Matsuoka. Noise injection into inputs in back-propagation learning. IEEE Transactions on
Systems, Man, and Cybernetics, 22(3):436–440, 1992.

Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Normalizing flows for interventional
density estimation. In International Conference on Machine Learning, 2023.

Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Bounds on representation-induced
confounding bias for treatment effect estimation. In International Conference on Learning Repre-
sentations, 2024.

Valentyn Melnychuk, Dennis Frauen, Jonas Schweisthal, and Stefan Feuerriegel. Orthogonal repre-
sentation learning for estimating causal quantities. arXiv preprint arXiv:2502.04274, 2025.

Poorya Mianjy and Raman Arora. On dropout and nuclear norm regularization. In International
Conference on Machine Learning, 2019.

Poorya Mianjy, Raman Arora, and Rene Vidal. On the implicit bias of dropout. In International
Conference on Machine Learning, 2018.

Pawel Morzywolek, Johan Decruyenaere, and Stijn Vansteelandt. On a general class of orthogonal
learners for the estimation of heterogeneous treatment effects. arXiv preprint arXiv:2303.12687,
2023.

Wenlong Mou, Yuchen Zhou, Jun Gao, and Liwei Wang. Dropout training, data-dependent regular-
ization, and generalization bounds. In International Conference on Machine Learning, 2018.

Son Nguyen, Duong Nguyen, Khai Nguyen, Khoat Than, Hung Bui, and Nhat Ho. Structured dropout
variational inference for Bayesian neural networks. In Advances in Neural Information Processing
Systems, 2021.

Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects. Biometrika,
108:299–319, 2021.

Kenneth R. Niswander. The collaborative perinatal study of the National Institute of Neurological
Diseases and Stroke. The Woman and Their Pregnancies, 1972.

Vern I. Paulsen and Mrinal Raghupathi. An introduction to the theory of reproducing kernel Hilbert
spaces, volume 152. Cambridge University Press, 2016.

Boris T. Polyak and Anatoli B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

James M. Robins and Andrea Rotnitzky. Semiparametric efficiency in multivariate regression models
with missing data. Journal of the American Statistical Association, 90(429):122–129, 1995.

Jonas Rothfuss, Fabio Ferreira, Simon Boehm, Simon Walther, Maxim Ulrich, Tamim Asfour,
and Andreas Krause. Noise regularization for conditional density estimation. arXiv preprint
arXiv:1907.08982, 2019.

Donald B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
Journal of Educational Psychology, 66(5):688, 1974.

Uri Shalit, Fredrik D. Johansson, and David Sontag. Estimating individual treatment effect: General-
ization bounds and algorithms. In International Conference on Machine Learning, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer New York, NY,
Heidelberg, Germany, 2008.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Franciszek Hugon Szafraniec. The reproducing kernel Hilbert space and its multiplication operators.
Complex Analysis and Related Topics, pp. 253–263, 2000.

Julie Tibshirani, Susan Athey, Rina Friedberg, Vitor Hadad, David Hirshberg, Luke Miner, Erik
Sverdrup, Stefan Wager, and Marvin Wright. grf: Generalized random forests, 2018. URL
https://CRAN.R-project.org/package=grf. R package version 0.10.2.

Mark J. van der Laan. Statistical inference for variable importance. The International Journal of
Biostatistics, 2(1), 2006.

Aad W. van der Vaart. Asymptotic statistics, volume 3. Cambridge University Press, Cambridge,
United Kingdom, 2000.

Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using
random forests. Journal of the American Statistical Association, 113(523):1228–1242, 2018.

Stefan Wager, Sida Wang, and Percy S. Liang. Dropout training as adaptive regularization. In
Advances in Neural Information Processing Systems, 2013.

Colin Wei, Sham Kakade, and Tengyu Ma. The implicit and explicit regularization effects of dropout.
In International Conference on Machine Learning, 2020.

Haobo Zhang, Yicheng Li, Weihao Lu, and Qian Lin. On the optimality of misspecified kernel ridge
regression. In International Conference on Machine Learning, 2023.

Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghorbani, and James Zou. How does mixup
help with robustness and generalization? In International Conference on Learning Representations,
2021.

15

https://CRAN.R-project.org/package=grf


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A EXTENDED RELATED WORK

In the following, we briefly discuss plug-in learners and why they are limited in comparison to
(two-stage) meta-learners (and, thus, not relevant baselines for our work). Later, we discuss existing
works on inductive biases for CATE estimation and how they relate to the existing strategies to
tackle low overlap. Finally, we summarize the strategies to address low overlap for both plug-in and
meta-learners in Table 4.

Table 4: Existing approaches for addressing low overlap in CATE estimation through regularization.
Most relevant methods are highlighted in yellow.

Approach Underlying learner Underlying IBs Effect of over- MA NO OARTregularization

Balancing (Johansson et al.,
2016; Shalit et al., 2017; Hassan-
pour & Greiner, 2019; Johans-
son et al., 2022)

NNs (plug-in) — LOLH-IB ✗ (τ̂ → DiM) ✗ ✗ ✓

”Soft approach” (Curth &
van der Schaar, 2021a)

NNs (plug-in) S-IB — ✗ (τ̂ → const) ✗ ✗ ✗

Const. reg. (Morzywolek et al.,
2023)

X,U,RA,IPTW (Künzel
et al., 2019; Curth & van der
Schaar, 2021b)

S-IB — ✓ (τ̂ → ATE) ✓ ✗ ✗

Const. reg. (Morzywolek et al.,
2023)

DR (Kennedy, 2023) S-IB — ✓ (τ̂ → ATE) ✓ ✓ ✗

Const. reg. + Retargeting
(Morzywolek et al., 2023)

R (Nie & Wager, 2021),
IVW(Fisher, 2024)

S-IB LOLH-IB � (τ̂ → WATE) ✓ ✓ ✗

OAR (Our paper) DR (Kennedy, 2023) S-IB LOLH-IB ✓ (τ̂ → ATE) ✓ (✓) ✓

OAR (Our paper) + Retargeting R (Nie & Wager, 2021),
IVW(Fisher, 2024)

S-IB LOLH-IB � (τ̂ → WATE) ✓ (✓) ✓

Legend: model-agnostic (MA), Neyman-orthogonal (NO), overlap-adaptive regularization term (OART).

Plug-in learners. Plug-in learners aim at the conditional expected outcomes and yield the estimated
CATE as the difference of the former. They can be either fully model-agnostic (e. g., S-/T-learner) or
model-specific (e. g., causal forest). Specific instantiations of plug-in learners include random forest
methods (Wager & Athey, 2018; Tibshirani et al., 2018; Athey et al., 2019; Athey & Wager, 2019),
non-parametric kernel methods (Alaa & van der Schaar, 2017; 2018), and NN-based representation
learning methods (Johansson et al., 2016; Shalit et al., 2017; Hassanpour & Greiner, 2019; Curth &
van der Schaar, 2021b; Assaad et al., 2021; Johansson et al., 2022).

How plug-in learners deal with low overlap. In the low-overlap setting, plug-in estimators fail
due to imprecise extrapolation wrt. counterfactual treatments (Jesson et al., 2021) (e. g., see Fig. 1,
left). To tackle this, several regularization approaches have been proposed. For example, neural-
based plug-in learners can employ (i) balancing representations5 with empirical probability metrics
(Johansson et al., 2016; Shalit et al., 2017; Johansson et al., 2022; Assaad et al., 2021; Melnychuk
et al., 2025). Alternatively, one can use a (ii) “soft approach” of Curth & van der Schaar (2021a)
which effectively forces the estimated conditional expected outcomes to be similar in low-overlap
regions. Yet, both (i) and (ii) might have a detrimental effect on the estimated CATE when too much
regularization is applied. For example, too much balancing leads to the estimation of a difference
in means (DiM), also known as representation-induced confounding bias (Melnychuk et al., 2024;
2025); and the “soft approach” of Curth & van der Schaar (2021a) can force the estimated CATE to
be constant. Therefore, we do not consider plug-in learners (and their regularization strategies) as
relevant baselines.

Addressing low overlap through model class choice. An alternative to the regularization approach
for addressing low overlap is a choice of a model class / NN architecture. This approach was
primarily studied for plug-in learners as it is tailored to a specific model. For example, both estimated
conditional expected outcomes can be forced to be similar, both (a) implicitly with an NN-based
S-learner (= S-Net) (Curth & van der Schaar, 2021b) and (b) explicitly with neural architecture design

5Melnychuk et al. (2025) suggested a hypothetical way to incorporate balancing representations into a target
model of meta-learners. In Sec. 4.2, we show that our instantiations of OAR are related to balancing of target
models but, unlike balancing, are simpler to implement, as they do not require the evaluation of empirical
distributional distances in the representation space.
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as suggested in the “hard approach” of Curth & van der Schaar (2021a). Furthermore, the low-overlap
issue is implicitly addressed in random forests with overlap-dependent depth (Wager & Athey, 2018;
Tibshirani et al., 2018). However, in our paper, we focus on fully model-agnostic approaches to
address low overlap that are based on regularizing target models and not on a model class choice.6

Inductive biases for CATE estimation. Regularization in ML is explicitly connected to inductive
biases: increased regularization prioritizes simpler models. An inductive bias (IB) can be thus defined
as any (non-causal) assumption a learning algorithm makes to generalize beyond the training data
(Abu-Mostafa et al., 2012). In the context of CATE estimation, inductive biases are important due to
the fundamental problem of causal inference (counterfactual outcomes are not observable, especially
in low-overlap regions) and, thus, the impossibility of the exact data-driven model selection (Curth &
van der Schaar, 2023). In the related work on CATE estimation, we outlined two main inductive biases:
smoothness inductive bias (S-IB) and low-overlap-low-heterogeneity inductive bias (LOLH-IB).
S-IB assumes that the ground-truth CATE is strictly simpler than both of the conditional expected
outcomes (Curth & van der Schaar, 2021a; Morzywolek et al., 2023). By enforcing this inductive
bias, we can improve low-overlap predictions by forcing lower CATE heterogeneity in the whole
covariate space. LOLH-IB then extends S-IB further by assuming simpler models specifically in low-
overlap regions (Melnychuk et al., 2025). In practice, both S-IB and LOLH-IB can be implemented
in a model-agnostic fashion via regularization. We summarize the connections between different
regularization approaches and the underlying inductive biases in Table 4.

6We acknowledge that this categorization is somewhat arbitrary, as some types of regularization might
implicitly change the model class.
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B BACKGROUND MATERIALS

In the following, we provide background information on Neyman-orthogonality and two-stage
meta-learners.

B.1 NEYMAN-ORTHOGONALITY

We use the following additional notation: a ≲ b means there exists C ≥ 0 such that a ≤ C · b, and
Xn = oP(rn) means Xn/rn

p→ 0.
Definition 2 (Neyman-orthogonality (Chernozhukov et al., 2017; Foster & Syrgkanis, 2023; Morzy-
wolek et al., 2023)). A target risk L is called Neyman-orthogonal if its pathwise cross-derivative is
zero:

DηDgL(g∗, η)[g − g∗, η̂ − η] = 0 for all g ∈ G and η̂ ∈ H, (14)

where DfF (f)[h] = d
dtF (f + th)|t=0 and Dk

fF (f)[h1, . . . , hk] =
∂k

∂t1...∂tk
F (f + t1h1 + · · · +

tkhk)|t1=···=tk=0 are pathwise derivatives (Foster & Syrgkanis, 2023); g∗ = argming∈G L(g, η);
and η are the ground-truth nuisance functions.

The definition of Neyman-orthogonality informally means that a target risk is first-order insensitive
with respect to the misspecification of the nuisance functions.

B.2 TWO-STAGE META-LEARNERS

To address the shortcomings of plug-in learners, two-stage meta-learners were proposed. These
proceed in three steps as follows.

(i) First, one chooses a target working model class G = {g(·) : X → R} such as, for example, neural
networks.

Then, (ii) the two-stage meta-learners define a specific (original) target risk for g. Several possible
target risks can be selected, and each option bears distinct interpretations and ramifications for
population and finite-sample two-stage CATE estimation. For example, one can use a regular MSE
risk:

L(g, η) = E
[(
µ1(X)− µ0(X)− g(X)

)2]
+ Λ(g;P(X)), (15)

or an overlap-weighted MSE risk:

L(g, η) = E
[
ν(X)

(
µ1(X)− µ0(X)− g(X)

)2]
+ Λ(g;P(X)), (16)

where Λ(g;P(X)) is a constant regularization term with a magnitude λ. The latter (the overlap-
weighted MSE risk) implements retargeting, but it only focuses on the overlapping regions of the
population.

Finally, (iii) two-stage meta-learners minimize an empirical target risk (target loss) L̂(g, η̂) estimated
from the observational sample and using the first-stage nuisance estimates η̂. When this empirical risk
is built from semi-parametrically efficient estimators, the resulting method is known as a Neyman-
orthogonal learner (Robins & Rotnitzky, 1995; Foster & Syrgkanis, 2023).

Notably, the constant regularization term does not have a detrimental effect on the CATE estimator.
Notably, when too much regularization is applied, a non-regularized intercept of the target model
yields ATE/WATE.
Remark 1 (Over-regularized meta-learners (Morzywolek et al., 2023)). Consider a target model
class with a non-regularized intercept c. When λ → ∞, the minimizer of Eq. (16) is given by WATE

g∗ = argmin
g∈G

L(g, η) → c∗ =
E[ν(X)(µ1(X)− µ0(X))]

E[ν(X)]
. (17)
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C NON-PARAMETRIC TARGET MODELS: OAR RKHS NORM

Proposition 6 (Kernel ridge regression with an OAR-based RKHS norm). Let
√
λ(ν)g ∈ HK for

every g ∈ HK+c. Then, the minimizer of the target risk g∗ = argming∈HK+c
[LH

OAR(g, η)] is in
HK+c and has the following form:

g∗(x) = (Tρ,K +Mλ(ν))
−1Sρ,K(x) + c∗, c∗ = E[p(A, π(X))ϕ(Z, η)]/E[p(A, π(X))], (18)

where (Tρ,Kg)(x) = E[ρ(A, π(X))K(x,X)g(X)] is a weighted covariance operator (Tρ,K :

HK → HK), (Sρ,K)(x) = E[ρ(A, π(X))K(x,X)ϕ̃(Z, η)] is a weighted cross-covariance func-
tional, ϕ̃(Z, η) = ϕ(Z, η)− c∗ is a centered pseudo-outcome, and (Mλ(ν)g)(x) = λ(ν(x))g(x) is a
bounded multiplication operator on (Mλ(ν) : HK → HK).

Proof. See Appendix D.3.

Proposition 6 suggests that under the special conditions, our OAR-based RKHS norm yields a KRR
solution with a varying regularization term λ(ν). For a finite-sample version of g∗, we refer to the
following corollary.

Corollary 1. Consider that the assumptions (i)–(ii) of Proposition 6 hold and denote KXX ∈
Rn×n = [K(x(i), x(j))]i,j=1,...,n; KxX ∈ R1×n = [K(x, x(j))]j=1,...,n; R(π) ∈ Rn×n =

[ρ(a(i), π(x(i)))]i=1,...,n ◦ In; Λ(ν) ∈ Rn×n = [λ(ν(x(i)))]i=1,...,n ◦ In; and Φ(η) ∈ Rn×1 =

[ϕ(z(i), η)]i=1,...,n. Then, a finite-sample KRR solution from Proposition 6 has the following form:

ĝ(x) = KxX

(
R(π̂)KXX + nΛ(ν̂)

)−1
R(π̂)Φ(η̂) + ĉ. (19)

Also, Proposition 6 shows that, although our OAR-based RKHS-norm is generally undefined for a
linear kernel, it works well for more flexible, infinite-dimensional kernels (e. g., RBF and Matérn).
In practice, assumption (i) can be satisfied by either assuming a sufficiently smooth

√
λ(ν) (e. g.,

when the propensity score is smooth itself and bounded away from zero), or by approximating√
λ(ν) with some element ĝ from HK . This approximation can be done arbitrarily well with the

infinite-dimensional kernels if they are dense in many smooth functional classes (e. g., RBF and
Matérn are dense in a compact class of continuously differentiable functions).

Finally, in the following corollary, we show the connection between KRR with retargeted learners
(R-/IVW-learners) and our OAR-based RKHS norm.

Corollary 2. A solution of (i) the KRR with constant RKHS norm regularization with λ = 1 for the
original risks of the retargeted learners (R-/IVW-learners) coincides with a solution of (ii) the KRR
with our OAR-based RKHS norm regularization with λ(ν(x)) = 1/ν(x) for the original risk of the
DR-learner, given the ground-truth nuisance functions η:

ĝ(x) = KxX

(
W(π)KXX + nIn

)−1
W(π)T(η)︸ ︷︷ ︸

(i)

+ĉ = KxX

(
KXX + nΛ(ν)

)−1
T(η)︸ ︷︷ ︸

(ii)

+ĉ,

(20)

where W(π) ∈ Rn×n = [π(x(i)) (1 − π(x(i)))]i=1,...,n ◦ In and T(η) ∈ Rn×1 = [µ1(x
(i)) −

µ0(x
(i))]i=1,...,n.

Corollary 2 thus hints that our OAR-based RKHS norm is equivalent to retargeting with the constant
regularization only in a special (unnatural) case (i. e., when the ground-truth nuisance functions are
known). That is, when R(π)/Φ(η) are used instead of W(π)/T(η), the equality (i) = (ii) does not
hold anymore.

Based on Corollary 2, we make another important observation for linear kernels K(x, x′) = x⊤x′,
namely that linear KRR can be formulated simultaneously as a parametric and a non-parametric
model. Interestingly, while Corollary 2 still holds, the expression (ii) is, in general, not a solution

to the OAR-based KRR. This happens, as the RKHS norm
∥∥∥√λ(ν)g

∥∥∥2
HK

is not defined for linear

kernels when
√

λ(ν) is a non-linear function. Consequently, for linear target models, the approach
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of retargeting cannot, in general (e. g., when the propensity score is not constant), be represented as a
version of our general OAR (Sec. 4.1).

Debiased OAR for RKHS norm. Unlike OAR for parametric models, debiasing OAR-based
RKHS norm is less intuitive. For example, the expected efficient influence function of the OAR-
based RKHS norm cannot be expressed as an RKHS norm itself. This can be seen after applying
a Mercer representation theorem (Theorem 4.51 in Steinwart & Christmann (2008) implies that∥∥∥√λ(ν)g

∥∥∥2
HK

= E[λ(ν(X))g(X)(T−1
K g)(X)]):

E
[
IF
( ∥∥∥√λ(ν)g

∥∥∥2
HK

)]
= E

[
E
[
IF(λ(ν);X,A)

]
g(X)(T−1

K g)(X)
]
̸=
∥∥∥∥√E

[
IF(λ(ν);x,A)

]
g

∥∥∥∥2
HK

,

(21)

where the last equality does not hold as E
[
IF(λ(ν);x,A)

]
is not a proper RKHS multiplier (it

depends on A now). Therefore, we leave the debiasing of OAR-based RKHS norm for future work.

Note on the squared multiplicative regularization. Our main motivation for the introduction of
the squared multiplicative regularization was to counteract the weights of the R- and IVW-learners
when noise regularization and dropout are used. Specifically, noise regularization and dropout in their
explicit form are down-scaled by ρ. In this way, the multiplicative regularization effectively results in
a constant regularization, as E[ρ(A, π(X)), λm(π(X))] = 1. Then, to preserve the overlap-adaptivity,
we introduced the squared multiplicative regularization. The nonparametric models (namely, kernel
ridge regressions), on the other hand, have their regularizations in explicit form and without a scaler
ρ. Therefore, squared multiplicative regularization is not used with the RKHS norm.

Excess prediction risk. Finally, we show that, under some additional conditions, our OAR RKHS
norm is guaranteed to outperform the constant regularization (CR) (similarly to linear target models
as described in Proposition 5).

Proposition 7 (Excess prediction risk of our OAR RKHS norm). Let
√
λ(ν)g ∈ HK for every

g ∈ HK+c. Then, the excess prediction risk of the DR-learner with the RKHS second-stage model
and RKHS norm regularization has the following form:

||ĝ − g∗||2L2
≲

1

n
tr
[
(TK + Γ)−1TK(TK + Γ)−1Tϕ̃(Z,η)2,K

]
︸ ︷︷ ︸

variance term

+ ⟨g∗,Γg∗⟩HK︸ ︷︷ ︸
bias term

+R(η, η̂), (22)

where (TKg)(x) = E[K(x,X)g(X)] and (Tϕ̃(Z,η)2,Kg)(x) = E[ϕ̃(Z, η)2K(x,X)g(X)] are
(weighted) covariance operators (TK , Tϕ̃(Z,η)2,K : HK → HK); (ΓCRg)(x) = λg(x) is a con-
stant scaling operator for the CR; and (ΓOARg)(x) = (Mλ(ν)g)(x) = λ(ν(x))g(x) is a bounded
multiplication operator on (Mλ(ν) : HK → HK ) for the OAR. Then, under (i) a conditional variance
assumption (=conditional variance of the outcome is constant), the variance term for OAR is less than
or equal to the variance term of the CR. Also, under (ii) a low-overlap-low-heterogeneity inductive
bias (LOLH-IB), OAR does not increase the bias term too much.

Proof. See Appendix D.3.

We provide the full statement and the full proof of Proposition 7 in Appendix D.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D THEORETICAL RESULTS

D.1 GENERAL FRAMEWORK OF OAR

Proposition 1 (Average regularization function as a distributional distance). The average amount of
overlap-adaptive regularization is upper-bounded by the following f -divergences:

E[λm(ν(X))] ≤ Cm

√
Dfm

(
P(X) ∥ P(X | A = 0)

)
+ 1

√
Dfm

(
P(X) ∥ P(X | A = 1)

)
+ 1, (23)

with Cm = 1/(4π0π1) and fm(t) = 1/t2 − 1,

E[λlog(ν(X))] = Clog +KL
(
P(X) ∥ P(X | A = 0)

)
+KL

(
P(X) ∥ P(X | A = 1)

)
, (24)

with Clog = − log(4π0π1),

E[λm2(ν(X))] ≤ Cm2

√
Df

m2

(
P(X) ∥ P(X | A = 0)

)
+ 1

√
Df

m2

(
P(X) ∥ P(X | A = 1)

)
+ 1, (25)

with Cm2 = 1/(16π2
0π

2
1) and fm2(t) = 1/t4 − 1,

where πa = P(A = a), Df is an f -divergence Df (P1 ∥ P2) =
∫
f(P1(X = x)/P2(X =

x))P1(X = x) dx; and KL is a KL-divergence.

Proof. By the definitions of the regularization functions (Eq. (4)), the following holds:

E[λm(ν(X))] ≤ E
[

1

4P(A = 0 | X)P(A = 1 | X)

]
=

1

4π0π1
E
[

(P(X))2

P(X | A = 0)P(X | A = 1)

]
(26)

(∗)
≤ Cm

√
E
[(

P(X)

P(X | A = 0)

)2]√
E
[(

P(X)

P(X | A = 1)

)2]
(27)

= Cm

√∫
X

[(
P(X = x)

P(X = x | A = 0)

)2

− 1

]
P(X = x) dx+ 1 (28)

·

√∫
X

[(
P(X = x)

P(X = x | A = 1)

)2

− 1

]
P(X = x) dx+ 1

= Cm

√
Dfm

(
P(X) ∥ P(X | A = 0)

)
+ 1

√
Dfm

(
P(X) ∥ P(X | A = 1)

)
+ 1, (29)

where (∗) holds due to a Cauchy–Schwarz inequality, Cm = 1/(4π0π1), and fm(t) = 1/t2 − 1.
Analogously, it is easy to see that

E[λm2(ν(X))] ≤ Cm2

√
Df

m2

(
P(X) ∥ P(X | A = 0)

)
+ 1

√
Df

m2

(
P(X) ∥ P(X | A = 1)

)
+ 1, (30)

where Cm = 1/(16π2
0π

2
1), and fm(t) = 1/t4 − 1.

Similarly, we can show that the average logarithmic regularization function equals

E[λlog(ν(X))] = − log(4)− E
[
log P(A = 0 | X)

]
− E

[
log P(A = 1 | X)

]
(31)

= − log(4π0π1)− E
[
log

P(A = 0 | X)

P(X)

]
− E

[
log

P(A = 1 | X)

P(X)

]
(32)

= Clog +KL
(
P(X) ∥ P(X | A = 0)

)
+KL

(
P(X) ∥ P(X | A = 1)

)
, (33)

where Clog = − log(4π0π1).
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D.2 PARAMETRIC TARGET MODELS: OAR NOISE REGULARIZATION & OAR DROPOUT

Proposition 2 (Explicit form of OAR noise regularization in linear g). For a linear model g(x) =
β⊤x+ c, OAR noise regularization has the following explicit form ΛOAR:

L+ξ
OAR(g, η) = E + ΛOAR = E + ∥β∥22 E

[
ρ(A, π(X)) · λ(ν(X))

]
, (34)

where E is given by the original error term from Eq. (2).

Proof. The implicit OAR noise regularization of a linear target model has the following form:

L+ξ
OAR(g, η) = E

[
E
ξ∼N(0,

√
λ(ν(X))

2
)

[
ρ
(
A, π(X)

)(
ϕ(Z, η)− β⊤(X + ξ)− c

)2
)
]]

(35)

= E
[
E
ξ∼N(0,

√
λ(ν(X))

2
)

[
ρ
(
A, π(X)

)(
ϕ(Z, η)− β⊤X − c

)2
)
]]

︸ ︷︷ ︸
E

− 2E
[
E
ξ∼N(0,

√
λ(ν(X))

2
)

[
ρ
(
A, π(X)

)(
ϕ(Z, η)− β⊤X − c

)
β⊤ξ

]]
︸ ︷︷ ︸

=0

(36)

+ E
[
E
ξ∼N(0,

√
λ(ν(X))

2
)

[
ρ
(
A, π(X)

)
(β⊤ξ)2)

]]
= E + β⊤E

[
E
ξ∼N(0,

√
λ(ν(X))

2
)
[ρ
(
A, π(X)

)
ξξ⊤]

]
β (37)

= E + ∥β∥22 E[ρ(A, π(X)) Var[ξ | X]], (38)

where Var[ξ | X = x] = λ(ν(x)).

Proposition 3 (Explicit form of OAR dropout in linear g). For a linear model g(x) = β⊤x+ c, OAR
noise regularization has the following explicit form ΛOAR:

L◦ξ
OAR(g, η) = E + ΛOAR = E + β⊤ diag

[
Σρ(·,π) ·λ(ν)

]
β, (39)

where E is given by the original error term from Eq. (2), λ(ν) = p(ν)/(1− p(ν)), and diag[·] zeroes
out all but the diagonal entries of a matrix.

Proof. The implicit OAR dropout of a linear target model has the following form:

L◦ξ
OAR(g, η) = E

[
Eξ∼Drop(p(ν(X)))

[
ρ
(
A, π(X)

)(
ϕ(Z, η)− β⊤(X ◦ ξ)− c

)2]] (40)

= E
[
Eξ∼Drop(p(ν(X)))

[
ρ
(
A, π(X)

)(
ϕ(Z, η)− β⊤X − c

)2]]︸ ︷︷ ︸
E

− 2E
[
Eξ∼Drop(p(ν(X)))

[
ρ
(
A, π(X)

)(
ϕ(Z, η)− β⊤X − c

) (
β⊤(X ◦ ξ)− β⊤X

)]]
︸ ︷︷ ︸

=0

(41)

+ E
[
Eξ∼Drop(p(ν(X)))

[
ρ
(
A, π(X)

)(
β⊤(X ◦ ξ)− β⊤X

)2]]
(∗)
= E + E

[
ρ
(
A, π(X)

)
Var

[
β⊤(X ◦ ξ) | X

]]
= E + E

[
ρ
(
A, π(X)

)
Var

[ dx∑
j=1

βjXjξj | X
]]

(42)

= E + E
[
ρ
(
A, π(X)

) dx∑
j=1

p(ν(X))

1− p(ν(X))
β2
jX

2
j

]
= E + E

[
ρ
(
A, π(X)

)
λ(ν(X))

dx∑
j=1

β2
jX

2
j

]
(43)

= E + β⊤ diag
[
Σρ(·,π) ·λ(ν)

]
β, (44)

where the equality (∗) holds as Eξ∼Drop(p(ν(X)))[β
⊤(X ◦ ξ)] = β⊤X .

Proposition 4 (Debiased OAR). Assume that the parametric model g(x;β, c) is continuously differ-
entiable wrt. x. Then, (i) debiased OAR noise regularization and (ii) debiased OAR dropout are as
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follows:

L⋄
dOAR(g, η) = L⋄

OAR(g, η) + E
[ ∫

X
Eξ[C

⋄(X;A; ξ;∇ξ[g]; η)]P(X = x) dx

]
, for ⋄ ∈ {+ξ, ◦ξ}, (45)

C+ξ(X;A; ξ;∇ξ[g]; η) = −2w(X)(µ1(X)− µ0(X)− g(X + ξ)) · ∇ξ[g](X, ξ) · IF(λ(ν(x));X,A), (46)

C◦ξ(X;A; ξ;∇ξ[g]; η) = w(X)(µ1(X)− µ0(X)− g(X ◦ ξ))2 ·
1− ξ

p(ν(X))
· IF(p(ν(x));X,A)

− 2w(X)(µ1(X)− µ0(X)− g(X ◦ ξ)) · ∇ξ[g](X, ξ) · IF(p(ν(x));X,A), (47)

where L⋄
OAR are from Eq. (5) and (7); ∇ξ[g] is a gradient wrt. ξ; and IF(·;X,A) are efficient

influence functions of the regularization functions. The latter are given as follows:

IF
(
λm(ν(x));X,A

)
=

δ{X − x}
P(X = x)

(A− π(x)) (2π(x)− 1)

4ν(x)2
, (48)

IF
(
pm(ν(x));X,A

)
=

δ{X − x}
P(X = x)

4 (A− π(x)) (2π(x)− 1), (49)

IF
(
λlog(ν(x));X,A

)
=

δ{X − x}
P(X = x)

(A− π(x)) (2π(x)− 1)

ν(x)
, (50)

IF
(
plog(ν(x));X,A

)
=

δ{X − x}
P(X = x)

(A− π(x)) (1− 2π(x))

(1− log(4ν(x)))2
, (51)

IF
(
λm2 (ν(x));X,A

)
=

δ{X − x}
P(X = x)

(A− π(x)) (2π(x)− 1)

8ν(x)3
, (52)

IF
(
pm2 (ν(x));X,A

)
=

δ{X − x}
P(X = x)

32 ν(x) (A− π(x)) (2π(x)− 1), (53)

where δ{·} is a Dirac delta function. Furthermore, by construction, L⋄
dOAR is a Neyman-orthogonal

risk.

Proof. We follow a standard technique for constructing Neyman-orthogonal risks (Foster & Syrgkanis,
2023) by using a one-step bias-correction with efficient influence functions (Kennedy, 2022; Luedtke,
2024):

Ld(g, η) = L(g, η) + E
[
IF(L(g, η);Z)

]
, (54)

where L(g, η) is an original target risk, Ld(g, η) is a Neyman-orthogonal risk, and IF(L(g, η);Z) is
an efficient influence function of the original target risk.

To construct a debiased (one-step bias-corrected) version of our OAR, we consider the OAR applied
on top of the original target risk from Eq. (2):

L⋄
OAR(g, η) = E

[
Eξ

[
w
(
π(X)

)(
µ1(X)− µ0(X)− g(X̃ξ)

)2]]
, (55)

where ξ ∼ N(0,
√
λ(ν(X))

2
) or ξ ∼ Drop(p(ν(X))), and X̃ξ = X + ξ or X̃ξ = X ◦ ξ, corre-

spondingly, depending on the OAR version. Then, the efficient influence function of LOAR(g, η) is as
follows

IF(L⋄
OAR(g, η);Z) =

∫
X
IF
(
Eξ

[
w
(
π(X)

)(
µ1(X)− µ0(X)− g(X̃ξ)

)2])P(X = x) dx (56)

+ Eξ

[
w
(
π(X)

)(
µ1(X)− µ0(X)− g(X̃ξ)

)2]− L⋄
OAR(g, η).

Therefore, per Eq. (54), the debiased version of our OAR has a following form:

L⋄
dOAR(g, η) = L⋄

OAR(g, η)+E
[ ∫

X
IF
(
w
(
π(X)

)
Eξ

[(
µ1(X)−µ0(X)− g(X̃ξ)

)2])P(X = x) dx

]
. (57)
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The second term can then be found with a product rule:

E
[ ∫

X
IF
(
w
(
π(X)

)
Eξ

[(
µ1(X)− µ0(X)− g(X̃ξ)

)2])P(X = x) dx

]
(58)

=E
[ ∫

X
IF
(
w
(
π(X)

))
Eξ

[(
µ1(X)− µ0(X)− g(X̃ξ)

)2]P(X = x) dx

]
(59)

+ E
[ ∫

X
w
(
π(X)

)
IF
(
Eξ

[(
µ1(X)− µ0(X)− g(X̃ξ)

)2])P(X = x) dx

]
=E
[
(A− π(X))w′(π(X)

)
Eξ

[(
µ1(X)− µ0(X)− g(X̃ξ)

)2]] (60)

+ E
[ ∫

X
w
(
π(X)

)
IF
(
Eξ

[(
µ1(X)− µ0(X)− g(X̃ξ)

)2])P(X = x) dx

]
.

Hence, the debiased version of our OAR is

L⋄
dOAR(g, η) = E

[
ρ(A, π(X))Eξ

[(
µ1(X)− µ0(X)− g(X̃ξ)

)2]] (61)

+ E
[ ∫

X
w
(
π(X)

)
IF
(
Eξ

[(
µ1(X)− µ0(X)− g(X̃ξ)

)2])P(X = x) dx

]
,

where ρ(A, π(X)) = (A − π(X))w′(π(X)
)
+ w

(
π(X)

)
. Now we focus on the second term of

Eq. (61): it differs depending on the OAR version.

First, we consider OAR noise regularization. Let ε ∼ N(0, 1) and consider a reparametrization
trick ξ = ε · λ(ν(X)), then

IF
(
Eξ

[(
µ1(X)− µ0(X)− g(X̃ξ)

)2])
= IF

(
Eε

[(
µ1(X)− µ0(X)− g(X + ε · λ(ν(X)))

)2]) (62)

= 2Eε

[(
µ1(X)− µ0(X)− g(X + ε · λ(ν(X)))

)
IF
(
µ1(X)− µ0(X)

)]
(63)

− 2Eε

[(
µ1(X)− µ0(X)− g(X + ε · λ(ν(X)))

)
IF
(
g(X + ε · λ(ν(X))

))]
.

Given that IF
(
µ1(x) − µ0(x);Z

)
= δ{X−x}

P(X=x)

(
A−π(x)
ν(x)

(
Y − µA(x)

))
, the debiased version of our

OAR becomes

L+ξ
dOAR(g, η) = E

[
ρ(A, π(X))Eξ

[(
µ1(X)− µ0(X)− g(X̃ξ)

)2]] (64)

+ 2E

[
ρ(A, π(X))Eξ

[
w(π(X))

ρ(A, π(X))

(
µ1(X)− µ0(X)− g(X̃ξ)

)(A− π(X)

ν(X)

(
Y − µA(X)

))]]

+ E

[∫
X
Eε

[
−2w

(
π(X)

) (
µ1(X)− µ0(X)− g(X + ε · λ(ν(X)))

)
IF
(
g(X + ε · λ(ν(X)))

))︸ ︷︷ ︸
C+ξ(X;A;ξ;∇ξ[g];η)

]
P(X = x) dx

]
.

By completing a square, the latter target risk is equivalent in minimization to the following:

L+ξ
dOAR(g, η) = E

[
Eξ

[
ρ(A, π(X))

(
w(π(X))

ρ(A, π(X))

(
A− π(X)

ν(X)

(
Y − µA(X)

))
+ µ1(X)− µ0(X)︸ ︷︷ ︸

ϕ(Z,η)

−g(X̃ξ)

)2]]

+ E
[ ∫

X
Eε

[
C+ξ(X;A; ξ;∇ξ[g]; η)

]
P(X = x) dx

]
, (65)

where ϕ(Z, η) is a pseudo-outcome (Morzywolek et al., 2023), and, thus, the first term recovers our
OAR applied to a Neyman-orthogonal target risk from Eq. (5). Note that, to recover IVW-learner
(Fisher, 2024), we need to set w(π(X))

ρ(A,π(X)) = 1. This is a reasonable choice when w(π) = ν (as in the

case of the IVW-learner) as E
[

w(π(X))
ρ(A,π(X)) | x

]
= E

[
ν(X)

(A−π(X))2 | x
]
= 1. Also, it is easy to see that,

after this modification, the IVW-learner is still Neyman-orthogonal.
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To derive C+ξ(X;A; ξ;∇ξ[g]; η), we use chain rule for IF
(
g(X + ε · λ(ν(X))

)
:

IF
(
g(X + ε · λ(ν(X))

)
= g′(X + ε · λ(ν(X))) ε IF

(
λ(ν(X))

)
= ∇ξ[g](X, ξ) IF

(
λ(ν(X))

)
, (66)

where IF
(
λ(ν(X))

)
= IF

(
λ(ν(x));X,A

)
is the efficient influence function of the regularization

function (will be derived later).

Similarly, we can derive a debiasing term for our OAR dropout. Let ε ∼ Bern(1− p(ν(X))) so that
ξ = ε/(1− p(ν(X))) and consider a log-derivative trick:

IF
(
Eξ

[(
µ1(X)− µ0(X)− g(X̃ξ)

)2])
= IF

(
Eε

[(
µ1(X)− µ0(X)− g

(
X ◦ ε

1− p(ν(X))

))2])
(67)

=

∫
IF
((

µ1(X)− µ0(X)− g

(
X ◦ ε

1− p(ν(X))

))2)
P(ε) dε (68)

+

∫ (
µ1(X)− µ0(X)− g

(
X ◦ ε

1− p(ν(X))

))2

IF
(
ε log[1− p(ν(X))] + (1− ε) log[p(ν(X))]

)
P(ε) dε

= 2Eξ

[(
µ1(X)− µ0(X)− g(X ◦ ξ)

)
IF
(
µ1(X)− µ0(X)

)]
− 2Eε

[(
µ1(X)− µ0(X)− g

(
X ◦ ε

1− p(ν(X))

))
IF
(
g

(
X ◦ ε

1− p(ν(X))

))]
(69)

+ Eε

[(
µ1(X)− µ0(X)− g

(
X ◦ ε

1− p(ν(X))

))2(
ε

p(ν(X))− 1
+

1− ε

p(ν(X))

)
IF
(
p(ν(X))

)]

= 2Eξ

[(
µ1(X)− µ0(X)− g(X ◦ ξ)

)
IF
(
µ1(X)− µ0(X)

)]
− 2Eε

[(
µ1(X)− µ0(X)− g

(
X ◦ ε

1− p(ν(X))

))
g′
(

X ◦ ε
1− p(ν(X))

) IF
(
p(ν(X)))

)
(1− p(ν(X)))2

]
(70)

+ Eε

[(
µ1(X)− µ0(X)− g

(
X ◦ ε

1− p(ν(X))

))2(
ε

p(ν(X))− 1
+

1− ε

p(ν(X))

)
IF
(
p(ν(X))

)]

= 2Eξ

[(
µ1(X)− µ0(X)− g(X ◦ ξ)

)
IF
(
µ1(X)− µ0(X)

)]
− 2Eξ

[(
µ1(X)− µ0(X)− g(X ◦ ξ)

)
∇ξ[g](X, ξ) IF

(
p(ν(X)))

)]
(71)

+ Eξ

[(
µ1(X)− µ0(X)− g(X ◦ ξ)

)2 1− ξ

p(ν(X))
IF
(
p(ν(X))

)]
,

where IF
(
p(ν(X))

)
= IF

(
p(ν(x));X,A

)
is the efficient influence function of the regularization

function (will be derived later). Now, we can complete the square, similarly to Eq. (65), which yields
the following debiased target risk:

L◦ξ
dOAR(g, η) = E

[
Eξ

[
ρ(A, π(X))

(
w(π(X))

ρ(A, π(X))

(
A− π(X)

ν(X)

(
Y − µA(X)

))
+ µ1(X)− µ0(X)︸ ︷︷ ︸

ϕ(Z,η)

−g(X̃ξ)

)2]]

(72)

+ E
[ ∫

X
Eε

[
C◦ξ(X;A; ξ;∇ξ[g]; η)

]
P(X = x) dx

]
,

where the second term is

C◦ξ(X;A; ξ;∇ξ[g]; η) = w(π(X))
(
µ1(X)− µ0(X)− g(X ◦ ξ)

)2 1− ξ

p(ν(X))
IF
(
p(ν(X))

)
(73)

− 2w(π(X))
(
µ1(X)− µ0(X)− g(X ◦ ξ)

)
∇ξ[g](X, ξ) IF

(
p(ν(X)))

)
.

Finally, we aim to derive IF
(
λ(ν(x));X,A

)
and IF

(
p(ν(x));X,A

)
. For the multiplicative regu-

larization function, namely:

λm(ν(x)) = 1/(4ν(x))− 1 and pm(ν(x)) = 1− 4ν(x), (74)
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the efficient influence functions are

IF
(
1/(4ν(x))− 1;X,A

)
= − IF(ν(x))

4ν(x)2
=

δ{X − x}
P(X = x)

(A− π(x)) (2π(x)− 1)

4ν(x)2
, (75)

IF
(
1− 4ν(x);X,A

)
=

δ{X − x}
P(X = x)

4 (A− π(x)) (2π(x)− 1). (76)

For the logarithmic regularization function, namely:

λlog(ν(x)) = − log(4ν(x)) and pm(ν(x)) = 1− 1

1− log(4ν(x))
, (77)

the efficient influence functions are

IF
(
− log(4ν(x));X,A

)
= − IF(ν(x))

ν(x)
=

δ{X − x}
P(X = x)

(A− π(x)) (2π(x)− 1)

ν(x)
, (78)

IF
(
1− 1

1− log(4ν(x))
;X,A

)
=

1

(1− log(4ν(x)))2
IF(ν(x))
ν(x)

(79)

=
δ{X − x}
P(X = x)

(A− π(x)) (1− 2π(x))

(1− log(4ν(x)))2
. (80)

Then, for the squared multiplicative regularization function, namely:

λm2(ν(x)) = 1/16ν(x)2 − 1 and pm2(ν(x)) = 1− 16ν(x)2, (81)

the efficient influence functions are

IF
(
1/16ν(x)2 − 1;X,A

)
= − IF(ν(x))

8ν(x)3
=

δ{X − x}
P(X = x)

(A− π(x)) (2π(x)− 1)

8ν(x)3
, (82)

IF
(
1− 16ν(x)2;X,A

)
=

δ{X − x}
P(X = x)

32 ν(x) (A− π(x)) (2π(x)− 1). (83)

Notably, Dirac delta functions are later smoothed out with the integration
∫
X · P(X = x) dx in the

final formula of LdOAR(g, η). Thus, they do not appear in the practical implementation.

Proposition 5 (Excess prediction risk of our OAR/dOAR dropout with linear second-stage model).
Let g∗(x) = β∗Tx denote the best linear predictor for the second-stage risk with oracle nui-
sance functions (β∗ = argminβ E

[
(ϕ(Z, η) − βTX)2

]
); and let ĝ(x) = β̂Tx denote the

finite-sample linear predictor based on CR/OAR/dOAR with the estimated nuisance functions
(β̂ = argminβ L̂◦ξ

⋄ (g, η̂), ⋄ ∈ {CR,OAR, dOAR}). Also, we consider the following reformula-
tion of the DR pseudo-outcome ϕ(Z, η) = β∗TX + ϕ̃(Z, η), where ϕ̃(Z, η) is a non-linear term with
E[ϕ̃(Z, η) | X] = 0 (without the loss of generality).

Then, the excess prediction risk of the DR-learner with the linear second-stage model and dropout
regularization has the following form:

||ĝ − g∗||2L2
= E

[
(β̂TX − β∗TX)2

]
≲

1

n
tr

[
Σ(Σ + Γ)−1Σϕ̃(Z,η)2 (Σ + Γ)−1

]
︸ ︷︷ ︸

variance term

+β∗TΓβ∗︸ ︷︷ ︸
bias term

+R(η, η̂), (84)

where ΓCR = λI for the CR, ΓOAR = diag
[
Σλ(ν)

]
for the OAR/dOAR. Given this bias-variance

decomposition, the following holds:

• For the CR and our dOAR, the remainder term R(η, η̂) only contains higher-order errors
of the nuisance functions (thus, the CR and our dOAR are less sensitive to the nuisance
functions’ misspecification). For example, the CR contains doubly-robust terms ||µ̂a −
µa||2L2

||π̂ − π||2L2
; our OAR contains doubly-robust terms ||µ̂a − µa||2L2

||π̂ − π||2L2
and a

same-order propensity error ||π̂ − π||2L2
; and our dOAR contains both doubly-robust terms

||µ̂a − µa||2L2
||π̂ − π||2L2

and a higher-order propensity error ||π̂ − π||4L4
.
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• Under a conditional variance assumption (Var[ϕ̃(Z, η) | X] = σ2/ν(X), where σ2 =
Var[Y | X,A] is assumed to be constant), our OAR/dOAR reduces the variance term in
comparison to the CR (given that OAR/dOAR is properly rescaled, i.e., E(λ̃(ν(X))) = λ,
see Appendix E). That is,

tr
[
Σ(Σ + ΓOAR)

−1Σϕ̃(Z,η)2(Σ + ΓOAR)
−1

]
≤ tr

[
Σ(Σ + ΓCR)

−1Σϕ̃(Z,η)2(Σ + ΓCR)
−1

]
.

(85)

• Under a mild low-overlap–low-heterogeneity (LOLH-IB) condition, OAR/dOAR does not
increase the bias term too much. This means that the terms β∗TΓOARβ

∗ and β∗TΓCRβ
∗

only differ insignificantly. This is the case, as the LOLH-IB assumes small values for β∗
j if

some values of Xj lead to the low overlap.

Proof. Our proof follows in several steps.

1. Bias term. We start by defining an oracle regularized estimator, β◦ = argminβ L◦ξ
⋄ (g, η), that

relates to the oracle unregularized estimator β∗ with a shrinkage error b:

b = β◦ − β∗ = −(Σ + Γ)−1Γβ∗. (86)

Then, the excess risk between β◦ and β∗ can be then upper-bounded by the bias term:

||g◦ − g∗||2L2
= E

[
(β◦TX − β∗TX)2

]
= bTΣb = β∗TΓ(Σ + Γ)−1Σ(Σ + Γ)−1Γβ∗ ≤ β∗TΣβ∗.

(87)

2. Variance term. The finite-sample linear predictor with the estimated nuisance is given by the
following:

(Σ̂ + Γ̂)β̂ = ĉ(η̂), (88)
where ĉ(η̂) is given by a finite-sample estimator of c(η̂) = E[ϕ(Z, η̂)X] (the formula for β◦ is
analogous with c(η)). Then, the following holds asymptotically:

β̂ − β◦ ≈ (Σ + Γ)−1(ĉ(η̂)− c(η)). (89)

Here, if β̂ is based on the dOAR, an additional second-order remainder has to be added R(η, η̂).

Also, the following holds due to the Neyman-orthogonality:

c(η̂)−c(η) = E[ϕ̃(Z, η)X]+R(η, η̂) and Cov[ĉ(η̂)−c(η̂)] =
1

n
E[ϕ̃(Z, η)2XXT ]+R(η, η̂).

(90)

Finally, the excess risk between β̂ and β◦ recovers our variance term:

||ĝ − g◦||2L2
= E

[
(β̂TX − β◦TX)2

]
≈ 1

n
tr
[
Σ(Σ + Γ)−1 Cov[ĉ(η̂)− c(η̂)](Σ + Γ)−1

]
+R(η, η̂)

(91)

=
1

n
tr
[
Σ(Σ + Γ)−1Σϕ̃(Z,η)2(Σ + Γ)−1

]
+R(η, η̂). (92)

3. Now, we combine the bias and variance terms by decomposing β̂ − β∗ = β̂ − β◦ + β◦ − β∗ and
formulate the final excess risk:

||ĝ−g∗||2L2
= E

[
(β̂TX−β∗TX)2

]
≲

1

n
tr
[
Σ(Σ + Γ)−1Σϕ̃(Z,η)2(Σ + Γ)−1

]
+β∗TΓβ∗+R(η, η̂).

(93)

4. To see why our OAR/dOAR improves the CR, under the conditional variance assumption, we show
the following. Assuming the correlation matrix Σ is diagonal and has Var(Xj) = 1 (w.l.o.g.), the
variance term has the following form:

V (Γ) =
1

n

dx∑
j=1

mj

(1 + sj)2
(94)
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where mj = diag[Σϕ̃(Z,η)2 ]j = diag[Σσ2/ν ]j = E[σ2/ν(X) · X2
j ] and sj = diag

[
Σλ(ν)

]
j
=

E[λ(ν) · X2
j ]. If we then compare penalties with the same average strength (

∑
sj = const), the

minimal value of V (Γ) is achieved when sj ∝ m
1/3
j − 1 (namely, a KKT solution). The latter

can be achieved by choosing the regularization function λ(ν) as described in Definition 1 (e. g.,
multiplicative, logarithmic, or squared multiplicative).

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

D.3 NON-PARAMETRIC TARGET MODELS: OAR RKHS NORM

Proposition 6 (Kernel ridge regression with an OAR-based RKHS norm). Let
√
λ(ν)g ∈ HK for

every g ∈ HK+c. Then, the minimizer of the target risk g∗ = argming∈HK+c
[LH

OAR(g, η)] is in
HK+c and has the following form:

g∗(x) = (Tρ,K +Mλ(ν))
−1Sρ,K(x) + c∗, c∗ = E[p(A, π(X))ϕ(Z, η)]/E[p(A, π(X))], (95)

where (Tρ,Kg)(x) = E[ρ(A, π(X))K(x,X)g(X)] is a weighted covariance operator (Tρ,K :

HK → HK), (Sρ,K)(x) = E[ρ(A, π(X))K(x,X)ϕ̃(Z, η)] is a weighted cross-covariance func-
tional, ϕ̃(Z, η) = ϕ(Z, η) − c∗ is a centered pseudo-outcome, and (Mλ(ν)g) = λ(ν(x))g(x) is a
bounded multiplication operator on (Mλ(ν) : HK → HK).

Proof. The OAR-based KRR aims to minimize the following objective:

g∗ = argmin
g∈HK+c

[
E
[
ρ
(
A, π(X)

)(
ϕ(Z, η)− g(X)

)2]
+
∥∥∥√λ(ν)g

∥∥∥2
HK

]
, (96)

which is equivalent to the minimization of the following objective:

g∗ = c∗ + argmin
g∈HK

[
E
[
ρ
(
A, π(X)

)(
ϕ̃(Z, η)− g(X)

)2]
+
∥∥∥√λ(ν)g

∥∥∥2
HK︸ ︷︷ ︸

L̃H
OAR(g,η)

]
, (97)

ϕ̃(Z, η) = ϕ(Z, η)− c∗ is a centered pseudo-outcome.

Under the strong overlap assumption (ii),
√
λ(ν) is a bounded kernel multiplier and we can define

two self-adjoint multiplication operators (Szafraniec, 2000; Paulsen & Raghupathi, 2016), M√
λ(ν)

and Mλ(ν), that act from HK onto HK :

(M√
λ(ν)

g) =
√

λ(ν(x))g(x) and (Mλ(ν)g) = λ(ν(x))g(x). (98)

These two operators have the following property:∥∥∥√λ(ν)g
∥∥∥2
HK

= ⟨M√
λ(ν)

g,M√
λ(ν)

g⟩HK = ⟨g,M∗√
λ(ν)

M√
λ(ν)

g⟩HK = ⟨g,Mλ(ν) g⟩HK , (99)

where M∗ is an adjoint operator.

Then, to find a minimizer of the centered OAR-based KRR objective in Eq. (97), we take a path-wise
(Gâteaux) derivative in an arbitrary direction h ∈ HK (Zhang et al., 2023):

DgL̃H
OAR(g, η)[h] =

d

dt

[
E
[
ρ
(
A, π(X)

)(
ϕ̃(Z, η)− g(X)− th(X)

)2]
+ ⟨g + th,Mλ(ν) (g + th)⟩HK

]∣∣∣∣∣
t=0

(100)

= −2E
[
ρ
(
A, π(X)

)(
ϕ̃(Z, η)− g(X)

)
h(X)

]
+ ⟨g,Mλ(ν) h⟩HK

+ ⟨h,Mλ(ν) g⟩HK
(101)

= −2E
[
ρ
(
A, π(X)

)
ϕ̃(Z, η)h(X)

]
+ 2E

[
ρ
(
A, π(X)

)
g(X)h(X)

]
+ 2⟨h,Mλ(ν) g⟩HK

(102)

(∗)
= −2⟨h, Sρ,K⟩HK

+ 2⟨h, Tρ,Kg⟩HK
+ 2⟨h,Mλ(ν) g⟩HK

(103)

= 2
〈
h, (Tρ,K +Mλ(ν))g − Sρ,K

〉
HK

, (104)

where (Tρ,Kg)(x) = E[ρ(A, π(X))K(x,X)g(X)] is a weighted covariance operator (Tρ,K : HK →
HK); (Sρ,K)(x) = E[ρ(A, π(X))K(x,X)ϕ̃(Z, η)] is a weighted cross-covariance functional; and
the equality (∗) holds due to a Mercer representation theorem (Theorem 4.51 in Steinwart & Christ-
mann (2008)). Namely, the Mercer representation theorem connects L2 dot product and the RKHS
dot product: E[g(X)h(X)] = ⟨h, TKg⟩HK

.

Then, the centered OAR-based KRR objective in Eq. (97) is optimized when for every h ∈ HK :

DgL̃H
OAR(g̃

∗, η)[h] = 0 ⇐⇒ g̃∗ = (Tρ,K +Mλ(ν))
−1Sρ,K . (105)

The latter then recovers the desired optimizer g∗ = g̃∗ + c∗.
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Corollary 1. Consider that the assumptions (i)-(ii) of Proposition 6 hold and denote KXX ∈
Rn×n = [K(x(i), x(j))]i,j=1,...,n; KxX ∈ R1×n = [K(x, x(j))]j=1,...,n; R(π) ∈ Rn×n =

[ρ(a(i), π(x(i)))]i=1,...,n ◦ In; Λ(ν) ∈ Rn×n = [λ(ν(x(i)))]i=1,...,n ◦ In; and Φ(η) ∈ Rn×1 =

[ϕ(z(i), η)]i=1,...,n. Then, a finite-sample KRR solution from Proposition 6 has the following form:

ĝ(x) = KxX

(
R(π̂)KXX + nΛ(ν̂)

)−1
R(π̂)Φ(η̂) + ĉ. (106)

Proof. The finite-sample KRR solution immediately follows from Proposition 6. Specifically, we use
a plug-in estimator of the weighted-covariance operator T̂ρ,K = 1

nR(π̂)KXX ; a plug-in estimator
of the weighted cross-covariance operator Ŝρ,K = 1

nR(π̂)Φ(η̂)KxX ; and a plug-in estimator of the
multiplication operator M̂λ(ν̂) = Λ(ν̂). Then, the finite-sample KRR solution is as follows:

ĝ(x) = KxX

(
1

n
R(π̂)KXX +Λ(ν̂)

)−1
1

n
R(π̂)Φ(η̂) + ĉ (107)

= KxX

(
R(π̂)KXX + nΛ(ν̂)

)−1
R(π̂)Φ(η̂) + ĉ. (108)

Corollary 2. A solution of (i) the KRR with constant RKHS norm regularization with λ = 1 for the
original risks of the retargeted learners (R-/IVW-learners) coincides with a solution of (ii) the KRR
with our OAR-based RKHS norm regularization with λ(ν(x)) = 1/ν(x) for the original risk of the
DR-learner, given the ground-truth nuisance functions η:

ĝ(x) = KxX

(
W(π)KXX + nIn

)−1
W(π)T(η)︸ ︷︷ ︸

(i)

+ĉ = KxX

(
KXX + nΛ(ν)

)−1
T(η)︸ ︷︷ ︸

(ii)

+ĉ,

(109)

where W(π) ∈ Rn×n = [π(x(i)) (1 − π(x(i)))]i=1,...,n ◦ In and T(η) ∈ Rn×1 = [µ1(x
(i)) −

µ0(x
(i))]i=1,...,n.

Proof. Corollary 2 follows from Corollary 1 and a push-through identity:

(PQ+ I)−1P = P(QP+ I)−1, (110)

where P and Q are conformable matrices, and I is an identity matrix. Hence, by setting P = 1
nW(π)

and Q = KXX , the following holds:

ĝ(x) = KxX

(
1

n
W(π)KXX + In

)−1
1

n
W(π)T(η)︸ ︷︷ ︸

(i)

+ĉ (111)

= KxX
1

n
W(π)

(
KXX

1

n
W(π) + In

)−1

T(η) + ĉ (112)

= KxX
1

n
W(π)

((
KXX + nIn (W(π))−1

) 1

n
W(π)

)−1

T(η) + ĉ (113)

= KxX

(
KXX + nΛ(ν)

)−1
T(η)︸ ︷︷ ︸

(ii)

+ĉ. (114)

Proposition 7 (Excess prediction risk of our OAR RKHS norm). Let g∗ denote the best RKHS pre-
dictor for the second-stage risk with oracle nuisance functions (g∗ = argming∈HK+c

E
[
(ϕ(Z, η)−

g(X))2
]
); and let ĝ denote the finite-sample RKHS predictor based on CR/OAR with the estimated
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nuisance functions (ĝ = argming∈HK+c
L̂H
⋄ (g, η̂), ⋄ ∈ {CR,OAR}). Also, we consider the follow-

ing reformulation of the DR pseudo-outcome ϕ(Z, η) = g∗(X) + ϕ̃(Z, η), where ϕ̃(Z, η) is a RKHS
approximation error term with E[ϕ̃(Z, η) | X] = 0. We assume c∗ = 0 w.l.o.g.

Then, the excess prediction risk of the DR-learner with the RKHS second-stage model and RKHS
norm regularization has the following form:

||ĝ − g∗||2L2
≲

1

n
tr
[
(TK + Γ)−1TK(TK + Γ)−1Tϕ̃(Z,η)2,K

]
︸ ︷︷ ︸

variance term

+ ⟨g∗,Γg∗⟩HK︸ ︷︷ ︸
bias term

+R(η, η̂), (115)

where (TKg)(x) = E[K(x,X)g(X)] and (Tϕ̃(Z,η)2,Kg)(x) = E[ϕ̃(Z, η)2K(x,X)g(X)] are
(weighted) covariance operators (TK , Tϕ̃(Z,η)2,K : HK → HK); (ΓCRg)(x) = λg(x) is a con-
stant scaling operator for the CR; and (ΓOARg)(x) = (Mλ(ν)g)(x) = λ(ν(x))g(x) is a bounded
multiplication operator on (Mλ(ν) : HK → HK) for the OAR.

Given this bias-variance decomposition, the following holds:

• For the CR, the remainder term R(η, η̂) only contains higher-order errors of the nuisance
functions (thus, the CR is less sensitive to the nuisance functions’ misspecification). Specifi-
cally, the CR contains doubly-robust terms ||µ̂a − µa||2L2

||π̂ − π||2L2
. At the same time, our

OAR contains doubly-robust terms ||µ̂a − µa||2L2
||π̂ − π||2L2

and a same-order propensity
error ||π̂ − π||2L2

.

• Under a conditional variance assumption (Var[ϕ̃(Z, η) | X] = σ2/ν(X), where σ2 =
Var[Y | X,A] is assumed to be constant), our OAR/dOAR reduces the variance term in
comparison to the CR (given that OAR/dOAR is properly rescaled, i.e., E(λ̃(ν(X))) = λ,
see Appendix E). That is,

tr
[
(TK + ΓOAR)

−1TK(TK + ΓOAR)
−1Tϕ̃(Z,η)2,K

]
≤ tr

[
(TK + ΓCR)

−1TK(TK + ΓCR)
−1Tϕ̃(Z,η)2,K

]
.

(116)

• Under a mild low-overlap–low-heterogeneity (LOLH-IB) condition, OAR/dOAR does
not increase the bias term too much. This means that the terms ⟨g∗,ΓOAR g

∗⟩HK
and

⟨g∗,ΓCR g
∗⟩HK

only differ insignificantly. This is the case, as the LOLH-IB assumes a small
norm for g∗ in the low-overlap regions.

Proof. Our proof proceeds in 4 steps, similarly to Proposition 5.

1. Bias term. We start by defining an oracle regularized estimator, g◦ = argming∈HK+c
LH
⋄ (g, η).

Then, the excess risk between g◦ and g∗ can be upper-bounded by the bias term:

||g◦ − g∗||2L2
= E

[
(g◦(X)− g∗(X))2

]
= ||g◦ − ϕ(·, η)||2L2

− ||g∗ − ϕ(·, η)||2L2
(117)

= LH
⋄ (g◦, η)− ⟨g◦,Γg◦⟩HK

− LH
⋄ (g∗, η) + ⟨g∗,Γg∗⟩HK

(118)
(∗)
≤ −⟨g◦,Γg◦⟩HK

+ ⟨g∗,Γg∗⟩HK

(∗∗)
≤ ⟨g∗,Γg∗⟩HK

, (119)

where (∗) holds as g◦ is a minimizer of the corresponding loss, and (∗∗) holds as Γ is positive
semi-definite operator.

2. Variance term. Similarly to Proposition 5, it can be shown that for the finite-sample KRR solution,
the variance term is approximately

||ĝ − g◦||2L2
= E

[
(ĝ(X)− g◦(X))2

]
≈ 1

n
tr
[
(TK + Γ)−1TK(TK + Γ)−1Tϕ̃(Z,η)2,K

]
+R(η, η̂).

(120)

3. Now, we combine the bias and variance terms by decomposing ĝ − g∗ = ĝ − g◦ + g◦ − g∗ and
formulate the final excess risk:

||ĝ − g∗||2L2
≲

1

n
tr
[
(TK + Γ)−1TK(TK + Γ)−1Tϕ̃(Z,η)2,K

]
+ ⟨g∗,Γg∗⟩HK

+R(η, η̂). (121)
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4. Under (i) the conditional-variance assumption, the following holds approximately:

Tϕ̃(Z,η)2,K ≈ T
1/2
K M1/νT

1/2
K . (122)

.

Thus, the operator (TK + Γ)−1TK(TK + Γ)−1 would suppresses the high-variance low-overlap
eigenmodes more effectively when Γ = ΓOAR in comparison with Γ = ΓCR (given the same average
regularization, namely tr[ΓOAR] = tr[ΓCR]). Hence, we obtain the desired inequality:

tr
[
(TK + ΓOAR)

−1TK(TK + ΓOAR)
−1Tϕ̃(Z,η)2,K

]
≤ tr

[
(TK + ΓCR)

−1TK(TK + ΓCR)
−1Tϕ̃(Z,η)2,K

]
.

(123)
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E OAR IMPLEMENTATION DETAILS

E.1 RESCALING

In all the experiments, we performed the rescaling of our OAR so that it can be compared with the
constant amount of regularization λ > 0 (or p ∈ (0, 1)):

λ̃(ν(x)) = λ+ γ · λ

E[λ(ν(X))]

(
λ(ν(x))− E[λ(ν(X))]

)
, (124)

p̃(ν(x)) = p+ γ ·min

{
p

E[p(ν(X))]
;

1− p

1− E[p(ν(X))]

}(
p(ν(x))− E[p(ν(X))]

)
, (125)

where γ ∈ [0, 1] is an adaptivity coefficient. Here, γ = 1 leads to a full OAR, and γ = 0 is a constant
regularization. In our experiments, we set γ = 1 for (a) parametric target models and γ = 0.9 for
(b) non-parametric target KRR (to bound away the RKHS norm regularization from zero). The
rescaling is crucial, as now we can ensure that λ̃γ(ν) (1) is on average λ, (2) varies depending on
overlap, and (3) lies in the admissible bounds (λ̃γ(ν) > 0 and p̃γ(ν) ∈ (0, 1)).

Notably, after rescaling our OAR, we also need to adjust our debiased OAR (dOAR). Specifically, now
we need to use IF(λ̃(ν(x));X,A) instead of IF(λ(ν(x));X,A) (and IF(p̃(ν(x));X,A) instead of
IF(p(ν(x));X,A), respectively) in Eq. (10)–(11). The influence functions of the rescaled OAR can
be found by using the chain rule (Kennedy, 2022; Luedtke, 2024) and are thus given by the following
expressions:

IF(λ̃(ν(x));X,A) = γλ

(
IF(λ(ν(x));X,A)

E[λ(ν(X))]
− λ(ν(X)) IF(E[λ(ν(X))];X,A)

(E[λ(ν(X))])2

)
, (126)

IF(E[λ(ν(X))];X,A) =

∫
X
IF(λ(ν(x));X,A)P(X = x) dx+ λ(ν(X))− E[λ(ν(X))], (127)

IF(p̃(ν(x));X,A) =


γp

(
IF(p(ν(x));X,A)

E[p(ν(X))]
− p(ν(X)) IF(E[p(ν(X))];X,A)

(E[p(ν(X))])2

)
, if p

E[p(ν(X))]
< 1−p

1−E[p(ν(X))]
,

γ(1− p)

(
IF(p(ν(x));X,A)
1−E[p(ν(X))]

− (1−p(ν(X))) IF(E[p(ν(X))];X,A)

(1−E[p(ν(X))])2

)
, else,

(128)

IF(E[p(ν(X))];X,A) =

∫
X
IF(p(ν(x));X,A)P(X = x) dx+ p(ν(X))− E[p(ν(X))], (129)

where IF(λ(ν(x));X,A) are IF(p(ν(x));X,A) provided in Proposition 4.

E.2 OTHER IMPLEMENTATION DETAILS

We implemented our OAR/dOAR in PyTorch and Pyro. It proceeds in two stages as follows (see all
the details in Algorithm 1).

Nuisance
networks

Target network, 

 

 

Stage 1: Estimating nuisance functions Stage 2: Fitting a target network with
(i) (debiased) OAR noise regularization / (ii) (debiased) OAR dropout

Fully-connected
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Figure 3: An overview of our OAR for a neural network as a (a) parametric target model g.
Our OAR/debiased OAR are used at the second stage of the meta-learner to regularize the target
network proportionally to the level of overlap (lower overlap leads to stronger regularization). Here,
we instantiate OAR with noise injection for the middle layer of g: (i) OAR noise regularization and
(ii) OAR dropout.
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Stage 1. At the first stage, we used neural networks (NNs) with fully-connected (FC) layers and
exponential linear units (ELUs) as activation functions. Specifically, to estimate the propensity score,
we employed a multi-layer perceptron (MLP) FCπ consisting of L FC layers (with a tunable number
of hidden units in each layer). For the conditional expected outcomes, we used a TARNet (Shalit
et al., 2017) FCµ consisting of a representation sub-network FCµ,ϕ and outcomes sub-networks
FCµ,a (again, each sub-network has a tunable number of layers). We trained the propensity network
FCπ and the outcomes network FCµ,a with AdamW (Loshchilov & Hutter, 2019) and nepochs = 200
(nepochs = 20 for HC-MNIST dataset).

Stage 2 (parametric target models). For a second stage model, we used a target MLP g with two
sub-networks FCϕ and FCτ and ELU activations. Both FCϕ and FCτ have a fixed number of hidden
units, matching the hidden units of the TARNet FCµ from the first stage. Again, for training, we
employed AdamW (Loshchilov & Hutter, 2019) with nepochs = 200 (nepochs = 20 for HC-MNIST
dataset). For all the experiments with the parametric models, we set the adaptivity coefficient γ = 1.
To further stabilize training of the target network, we (i) used exponential moving average (EMA) of
model weights (Polyak & Juditsky, 1992) with a smoothing hyperparameter (κ = 0.995); (ii) trimmed
too low propensity scores for both the pseudo-outcomes and our OAR/dOAR (0.05 ≤ π̂(X) ≤ 0.95);
and (iii) clipped too large values of the bias-correction term with a threshold α = 1.0 (|C⋄| ≤
α & |C⋄| ≤ L̂⋄

OAR(g, η̂)).

Stage 2 (non-parametric target models). We used KRR with a radial basis function (RBF) kernel.
An RBF bandwidth h is fixed individually for each dataset (see Table 5). For all the experiments with
the non-parametric models, we set the adaptivity coefficient γ = 0.9.

We use the same training data D for two stages of learning, as the (regularized) NNs belong to the
Donsker class of estimators (van der Vaart, 2000; Kennedy, 2022).

Computational complexity. Importantly, the computation of the OAR/dOAR weights does not
introduce a lot of computational burden: Given that we have the estimated propensity scores, both
OAR/dOAR are functions of the latter. The dOAR additionally requires the evaluation of the gradient
wrt. the target model inputs. Yet, this operation also scales linearly wrt. the minibatch size. Therefore,
both OAR/dOAR can be evaluated in linear time depending on the minibatch size.
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Algorithm 1 Pseudocode of our OAR/dOAR with meta-learners

1: Input: Training dataset D; OAR/dOAR version ⋄ ∈ {+ξ, ◦ξ,H}; average regularization strength λ >
0/p ∈ (0, 1)

2: Stage 1: Estimate nuisance functions η̂ = (µ̂0, µ̂1, π̂)

3: Fit a propensity network FCπ (MLP) by minimizing a BCE loss, L̂π = Pn{BCE(FCπ(X), A)}
4: Fit an outcomes network FCµ (TARNet) by minimizing an MSE loss, L̂MSE = Pn{(Y −FCµ(X,A))2}
5: Output: Nuisance functions estimators η̂ = (FCµ(x, 0), FCµ(x, 1), FCπ(x))

6: Stage 2: Fit a target model ĝ = argming∈G L̂⋄
OAR(g, η̂) / ĝ = argming∈G L̂⋄

dOAR(g, η̂)

7: λ(ν̂(X))← . . . (see Eq. (4)); p(ν̂(X))← λ(ν̂(X))/(λ(ν̂(X)) + 1)
8: I(X)← 1{0.05 ≤ π̂(X) ≤ 0.95} ▷ Trimming indicator
9: ̂E[λ(ν(X))]← Pn{I(X) · λ(ν̂(X))}/Pn{I(X)}

10: ̂E[p(ν(X))]← Pn{I(X) · p(ν̂(X))}/Pn{I(X)}
11: λ̃(ν̂(X))← λ+ γ · I(X) · λ

̂E[λ(ν(X))]

(
λ(ν̂(x))− ̂E[λ(ν(X))]

)
(see Eq. (124)) ▷ Rescaling

12: p̃(ν̂(X))← p+ γ · I(X) ·min

(
p

̂E[p(ν(X))]
; 1−p

1− ̂E[p(ν(X))]

)(
p(ν̂(x))− ̂E[p(ν(X))]

)
(see Eq. (125))

13: if Target model == MLP then ▷ Parametric target models
14: for i = 0 to ⌈nepochs · n/bT⌉ do
15: Draw a minibatch B = {X,A, Y, λ̃(ν̂(X)), p̃(ν̂(X)), I(X)} of size bT from D
16: Φ← FCϕ(X)

17: ξ ∼ N
(
0,
√

λ̃(ν̂(X))
2) /

ξ ∼ Drop(p̃(ν̂(X))) ▷ Noise regularization / dropout

18: g(X)← FCτ (Φ + ξ) / g(X)← FCτ (Φ ◦ ξ)
19: L̂⋄

OAR(g, η̂)← PbT

{
ρ(A, π̂(X))

(
I(X) · ϕ(Z, η̂)− g(X)

)2}
20: if dOAR then
21: C⋄ ← PbT

{
I(X) · C⋄(X;A; ξ;∇ξ[g]; η̂)

}
(see Eq. (10)-(11) and Eq. (126),(128))

22: L̂⋄
dOAR(g, η̂)← L̂⋄

OAR(g, η̂) + C⋄ · 1{|C⋄| ≤ α & |C⋄| ≤ L̂⋄
OAR(g, η̂)}

23: end if
24: Gradient & EMA update of the target network g wrt. L̂⋄

OAR(g, η̂)/L̂⋄
dOAR(g, η̂)

25: end for
26: ĝ(x)← FCτ (FCϕ(x))
27: else if Target model == KRR then ▷ Non-parametric target models
28: if OAR then
29: ĝ(x)← KxX

(
R(π̂)KXX + nΛ(ν̂)

)−1
R(π̂)Φ(η̂) (see Eq. (21))

30: else
31: Undefined (see discussion in Appendix C)
32: end if
33: end if
34: Output: CATE estimator ĝ
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E.3 HYPERPARAMETER TUNING

We performed hyperparameter tuning of the first-stage models based on five-fold cross-validation
using the training subset. For the second stage, we used fixed hyperparameters for all the experiments,
as an exact hyperparameter search is not possible for target CATE models solely with the observational
data (Curth & van der Schaar, 2023). Table 5 provides all the details on hyperparameter tuning. For
reproducibility, we made tuned hyperparameters available in our GitHub.7

Table 5: Hyperparameter tuning for our OAR/dOAR with meta-learners.

Stage Model Hyperparameter Range / Value

Stage 1

Propensity network (MLP)

Learning rate 0.001, 0.005, 0.01
Minibatch size, bN 32, 64, 128
Weight decay 0.0, 0.001, 0.01, 0.1
Hidden layers in FCπ L
Hidden units in FCπ Rdx, 1.5 Rdx, 2 Rdx
Tuning strategy random grid search with 50 runs
Tuning criterion factual BCE loss
Optimizer AdamW

Outcomes network (TARNet)

Learning rate 0.001, 0.005, 0.01
Minibatch size, bN 32, 64, 128
Hidden units in FCµ,ϕ Rdx, 1.5 Rdx, 2 Rdx
Dimensionality of Φ, dϕ Rdx, 1.5 Rdx, 2 Rdx
Hidden units in FCµ,a Rdϕ, 1.5 Rdϕ, 2 Rdϕ
Weight decay 0.0, 0.001, 0.01, 0.1
Tuning strategy random grid search with 50 runs
Tuning criterion factual MSE loss
Optimizer AdamW

Stage 2
Target network (MLP)

Learning rate 0.005
Minibatch size, bT 64
EMA of model weights, κ 0.995
Hidden units in g Hidden units in FCµ

Tuning strategy no tuning
Optimizer AdamW
Adaptivity coefficient, γ 1

Target KRR RBF bandwidth, h h
Adaptivity coefficient, γ 0.9

L = 1 (synthetic data, IHDP dataset, ACIC 2016 datasets), L = 2 (HC-MNIST dataset)
R = 2 (synthetic data), R = 1 (IHDP dataset), R = 0.25 (ACIC 2016 datasets, HC-MNIST dataset)
h = 0.1 (synthetic data), h = 2 (ACIC 2016 datasets), h = 5 (IHDP dataset)

7https://anonymous.4open.science/r/ada-reg.
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F DATASET DETAILS

F.1 SYNTHETIC DATA

We adapted the synthetic dataset from Melnychuk et al. (2023) where the amount of overlap can
be varied. Specifically, we took the original generative mechanisms for the covariate X and the
treatment A but modified the data-generating process of the outcome Y :


X ∼ Mixture

(
0.5N(0, 1) + 0.5N(b, 1)

)
,

A :=

{
1, −UA < log

(
π(X)/(1− π(X))

)
0, otherwise

, π(x) = N(x;0,12)

N(x;0,12)+N(x;b,12)
, UA ∼ Logistic(0, 1),

Y ∼ N(3 cos(3X2 − 2X + 0.5)− 2.5 sin(3X2 − 2X + 0.5), 12),

(130)

where N(x;µ, σ2) is a density of a normal distribution N(µ, σ2) with a mean µ and a standard
deviation σ; and a parameter b ∈ R regulates the amount of overlap (b = 0 implies a perfect overlap).
In our synthetic experiments, we set b = 2.

F.2 IHDP DATASET

The Infant Health and Development Program (IHDP) dataset (Hill, 2011; Shalit et al., 2017) is a
standard semi-synthetic benchmark for assessing treatment effect estimators. It comes with 100
predefined train–test splits, each containing ntrain = 672, ntest = 75, and dx = 25. The ground-truth
CAPOs are then given by an exponential function (µ0(x)) and a linear function (µ1(x)). Notably, the
IHDP dataset has a well-known drawback of a severe lack of overlap, which causes instability for
approaches that depend on propensity-score re-weighting (Curth & van der Schaar, 2021b; Curth
et al., 2021).

F.3 ACIC 2016 DATASETS

The ACIC 2016 benchmark (Dorie et al., 2019) builds its covariates from the extensive Collaborative
Perinatal Project on developmental disorders (Niswander, 1972). Its datasets differ in (i) the number
of ground-truth confounders, (ii) the degree of covariate overlap, and (iii) the smoothness and the
functional form of the CAPOs. In total, ACIC 2016 supplies 77 different data-generating processes,
each paired with 100 identically sized samples. After one-hot encoding categorical variables, every
sample contains n = 4, 802 observations and dX = 82 features.

F.4 HC-MNIST DATASET

The HC-MNIST benchmark was proposed as a high-dimensional, semi-synthetic dataset (Jesson et al.,
2021), derived from the original MNIST digit images (LeCun, 1998). It contains ntrain = 60, 000
training images and ntest = 10, 000 test images. HC-MNIST compresses each high-resolution image
into a single latent coordinate, ϕ, so that the potential outcomes are complex functions of both
the image’s mean pixel intensity and its digit label. Treatment assignment is determined by this
one-dimensional summary ϕ together with an additional latent (synthetic) confounder U , which we
treat as an observed covariate. Hence, HC-MNIST is characterized by the following data-generating
process:

U ∼ Bern(0.5),
X ∼ MNIST-image(·),
ϕ :=

(
clip

(
µNx−µc

σc
;−1.4, 1.4

)
−Minc

)
Maxc−Minc
1.4−(−1.4)

,

α(ϕ; Γ∗) := 1
Γ∗ sigmoid(0.75ϕ+0.5)

+ 1− 1
Γ∗ , β(ϕ; Γ∗) := Γ∗

sigmoid(0.75ϕ+0.5)
+ 1− Γ∗,

A ∼ Bern
(

u
α(ϕ;Γ∗) +

1−u
β(ϕ;Γ∗)

)
,

Y ∼ N
(
(2A− 1)ϕ+ (2A− 1)− 2 sin(2(2A− 1)ϕ)− 2(2U − 1)(1 + 0.5ϕ), 1

)
,

(131)

where c is a label of the digit from the sampled image X; µNx
is the average intensity of the sampled

image; µc and σc are the mean and standard deviation of the average intensities of the images with
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the label c; and Minc = −2 + 4
10c,Maxc = −2 + 4

10 (c + 1). The parameter Γ∗ defines what
factor influences the treatment assignment to a larger extent, i.e., the additional confounder or the
one-dimensional summary. We set Γ∗ = exp(1). For further details, we refer to Jesson et al. (2021).
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G ADDITIONAL EXPERIMENTAL RESULTS

G.1 SYNTHETIC DATA

We adapted a fully-synthetic dataset (dx = 1) from Melnychuk et al. (2023) where the amount of
overlap can be varied. Here, the ground truth CATE is 0, yet both conditional expected outcomes are
highly non-linear. We simulated a low-overlap setting with ntrain = 250 (see Fig. 1).

Results. Results are shown in Fig. 4. We see that our OAR/dOAR noise regularization improves the
performance of the CR + DR-Learner. At the same time, both OAR/dOAR dropout and RKHS norm
improve the performance of (almost) all the learners + CR. This hints at a more flexible nature of
dropout and RKHS norm, as they depend on the covariates and, thus, are more adaptive.
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Figure 4: Results for synthetic experiments. Reported: rPEHEout; mean ± se over 40 runs. Lower
is better.
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G.2 HC-MNIST DATASET

In Table 6, we demonstrate the remaining8 experiments for the HC-MNIST dataset. Therein, our
OAR/dOAR improves over CR + DR-/R-/IVW-learners in the majority of combinations, often
significantly. Furthermore, the best performance for almost every regularization value is achieved by
our OAR/dOAR.

Table 6: Results for HC-MNIST experiments for OAR/dOAR(λ̃log/p̃log) and
OAR/dOAR(λ̃m2/p̃m2 ) . Reported: rPEHEout (∆rPEHEout); mean ± std over 30 runs.

Reg. Noise reg. Dropout

λ/p = 0.05 0.1 0.25 0.1 0.3 0.5
Learner Approach

DR

CR (λ/p = const) 0.741 ± 0.038 0.729 ± 0.037 0.702 ± 0.030 0.735 ± 0.036 0.716 ± 0.032 0.704 ± 0.025
OAR(λ̃log/p̃log) 0.736 ± 0.039 (−0.006) 0.724 ± 0.035 (−0.005) 0.686 ± 0.031 (−0.016) 0.730 ± 0.039 (−0.005) 0.713 ± 0.031 (−0.004) 0.700 ± 0.025 (−0.005)
dOAR(λ̃log/p̃log) 0.737 ± 0.038 (−0.004) 0.725 ± 0.036 (−0.004) 0.687 ± 0.030 (−0.015) 0.703 ± 0.038 (−0.032) 0.710 ± 0.029 (−0.007) 0.702 ± 0.025 (−0.002)
OAR(λ̃m2/p̃m2 ) 0.719 ± 0.037 (−0.023) 0.713 ± 0.063 (−0.017) 0.710 ± 0.068 (+0.008) 0.731 ± 0.038 (−0.004) 0.708 ± 0.033 (−0.009) 0.701 ± 0.026 (−0.003)
dOAR(λ̃m2/p̃m2 ) 0.703 ± 0.026 (−0.039) 0.699 ± 0.041 (−0.030) 0.709 ± 0.214 (+0.007) 0.700 ± 0.040 (−0.035) 0.692 ± 0.036 (−0.025) 0.699 ± 0.026 (−0.005)

R

CR (λ/p = const) 0.714 ± 0.015 0.705 ± 0.010 0.673 ± 0.007 0.715 ± 0.027 0.705 ± 0.027 0.692 ± 0.018
OAR(λ̃log/p̃log) 0.715 ± 0.015 (+0.001) 0.702 ± 0.011 (−0.003) 0.674 ± 0.008 (+0.001) 0.713 ± 0.022 (−0.002) 0.700 ± 0.015 (−0.006) 0.687 ± 0.014 (−0.006)
dOAR(λ̃log/p̃log) 0.711 ± 0.013 (−0.003) 0.701 ± 0.010 (−0.004) 0.676 ± 0.008 (+0.003) 0.688 ± 0.020 (−0.027) 0.699 ± 0.024 (−0.006) 0.688 ± 0.018 (−0.004)
OAR(λ̃m2/p̃m2 ) 0.699 ± 0.070 (−0.015) 0.699 ± 0.145 (−0.005) 0.695 ± 0.448 (+0.022) 0.717 ± 0.022 (+0.002) 0.696 ± 0.020 (−0.010) 0.684 ± 0.020 (−0.008)
dOAR(λ̃m2/p̃m2 ) 0.694 ± 0.031 (−0.020) 0.696 ± 0.072 (−0.008) 0.731 ± 0.341 (+0.058) 0.680 ± 0.011 (−0.035) 0.680 ± 0.013 (−0.025) 0.680 ± 0.011 (−0.012)

IVW

CR (λ/p = const) 1.062 ± 0.246 1.043 ± 0.235 0.987 ± 0.201 1.089 ± 0.251 1.050 ± 0.259 1.047 ± 0.281
OAR(λ̃log/p̃log) 1.038 ± 0.242 (−0.025) 1.007 ± 0.219 (−0.036) 0.893 ± 0.193 (−0.094) 1.099 ± 0.266 (+0.010) 1.027 ± 0.242 (−0.023) 0.975 ± 0.220 (−0.072)
dOAR(λ̃log/p̃log) 1.051 ± 0.236 (−0.011) 1.022 ± 0.218 (−0.021) 0.904 ± 0.186 (−0.083) 1.070 ± 0.257 (−0.019) 1.098 ± 0.311 (+0.048) 1.075 ± 0.294 (+0.028)
OAR(λ̃m2/p̃m2 ) 1.039 ± 0.231 (−0.023) 1.030 ± 0.226 (−0.013) 1.053 ± 0.431 (+0.066) 1.087 ± 0.256 (−0.002) 1.039 ± 0.252 (−0.011) 0.820 ± 0.189 (−0.227)
dOAR(λ̃m2/p̃m2 ) 1.009 ± 0.244 (−0.053) 1.047 ± 0.224 (+0.004) 1.136 ± 0.295 (+0.149) 1.036 ± 0.231 (−0.052) 1.093 ± 0.319 (+0.043) 0.810 ± 0.240 (−0.238)

Oracle 0.513
Lower = better (best in bold, second best underlined). Change over the baseline in brackets (significant improvement in green, significant worsening in red, α = 0.05)

G.3 ADDITIONAL BASELINES

Baselines. In the following, we provide an absolute comparison between our OAR/dOAR approach
and other existing approaches that tackle low overlap (see Sec. 2). Here, we included trimming of
the IPTW weights (with the threshold t ∈ {0.05, 0.1, 0.2}). Note that OAR/dOAR also uses a default
amount of trimming t = 0.05 to stabilize the training. Also, we added balancing representations
with different empirical probability metrics (Johansson et al., 2016; Shalit et al., 2017) with α ∈
{0.5, 5.0}, namely Wasserstein metric (WM) and maximum mean discrepancy (MMD). For a fair
comparison, we implemented balancing for the target models (as it was suggested by Melnychuk
et al. (2025)).

Results. Results for synthetic and the HC-MNIST datasets are shown in Tables 7 and 8, respectively.
For the synthetic data, our OAR/dOAR with the multiplicative regularization function in combination
with the DR-learner outperforms other approaches. For the HC-MNIST dataset, our OAR/dOAR
with the multiplicative regularization function outperforms all the other baselines. The main reason
that other baselines fall short of our approach in the HC-MNIST is that (i) trimming simply discards
datapoints with low overlap; and (ii) balancing representations becomes highly unstable with the
high-dimensional data (as it gets increasingly harder to estimate empirical probability metrics).

8Notably, we do not report the results for OAR/dOAR RKHS norm, as kernel ridge regression does not scale
well with the dimensionality of the covariates (here, dx = 784 + 1).
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Table 7: Results for synthetic experiments for OAR/dOAR(λ̃m/p̃m) and other baselines that
tackle low overlap. Reported: rPEHEout; mean ± std over 40 runs.

DR-learner R-learner

Trimming (t = 0.05) 1.306 ± 0.375 0.837 ± 0.861
Trimming (t = 0.1) 1.339 ± 0.374 0.837 ± 0.861
Trimming (t = 0.2) 1.353 ± 0.376 0.837 ± 0.861
Balancing (α = 0.5; MMD) 1.032 ± 0.406 0.658 ± 0.037
Balancing (α = 0.5; WM) 1.222 ± 0.370 0.658 ± 0.037
Balancing (α = 5.0; MMD) 0.878 ± 0.289 0.658 ± 0.037
Balancing (α = 5.0; WM) 1.156 ± 0.359 0.658 ± 0.037
OAR Dropout (p̃m; p = 0.5) 0.815 ± 0.203 0.713 ± 0.249
dOAR Dropout (p̃m; p = 0.5) 0.828 ± 0.211 0.691 ± 0.072
OAR Noise reg. (λ̃m;λ = 1.0) 0.853 ± 0.211 0.689 ± 0.099
dOAR Noise reg. (λ̃m;λ = 1.0) 0.856 ± 0.207 0.737 ± 0.172

Oracle 0.652
Lower = better (best in bold, second best underlined)

Table 8: Results for HC-MNIST experiments for OAR/dOAR(λ̃m/p̃m) and other baselines that
tackle low overlap. Reported: rPEHEout; mean ± std over 30 runs.

DR-learner R-learner

Trimming (t = 0.05) 0.754 ± 0.040 0.731 ± 0.029
Trimming (t = 0.1) 0.736 ± 0.019 0.731 ± 0.029
Trimming (t = 0.2) 0.714 ± 0.010 0.731 ± 0.029
Balancing (α = 0.5; MMD) 0.721 ± 0.027 0.780 ± 0.045
Balancing (α = 0.5; WM) 0.908 ± 0.167 0.946 ± 0.033
Balancing (α = 5.0; MMD) 0.842 ± 0.230 1.210 ± 0.007
Balancing (α = 5.0; WM) 1.171 ± 0.177 1.124 ± 0.031
OAR Dropout (p̃m; p = 0.3) 0.713 ± 0.032 0.696 ± 0.013
dOAR Dropout (p̃m; p = 0.3) 0.705 ± 0.031 0.687 ± 0.013
OAR Noise reg. (λ̃m;λ = 0.1) 0.726 ± 0.036 0.696 ± 0.009
dOAR Noise reg. (λ̃m;λ = 0.1) 0.712 ± 0.033 0.695 ± 0.010

Oracle 0.513
Lower = better (best in bold, second best underlined)

G.4 RUNTIME

Table 9 provides the duration of one run on the IHDP dataset. Each run includes two stages: in stage 1,
we fit nuisance functions; and, in stage 2, we fit all three meta-learners, namely, DR-/R-/IVW-learners
(see Algorithm 1). Here, we compared the constant regularization strategy (CR) with our OAR
and dOAR w/ the multiplicative regularization function, λ̃m/p̃m (runtimes for the logarithmic and
squared multiplicative regularization functions are analogous). We observe that our OAR has almost
the same runtime as the constant regularization. On the other hand, our dOAR has slightly longer
training times that are attributed to the calculation of the gradient ∇ξ[g] in the debiasing term, see
Eq.(10)–(11).

Table 9: Total runtime (in minutes) for different regularization strategies. Reported: mean ±
std over 100 runs. Lower is better. Experiments were carried out on 2 GPUs (NVIDIA A100-PCIE-
40GB) with Intel Xeon Silver 4316 CPUs @ 2.30GHz.

Reg. Noise reg. Dropout RKHS norm
Approach

CR (λ/p = const) 1.85 ± 0.03 1.88 ± 0.04 1.40 ± 0.21
OAR (λ̃m/p̃m) 1.87 ± 0.04 1.89 ± 0.03 1.35 ± 0.25
dOAR (λ̃m/p̃m) 2.96 ± 0.09 3.86 ± 0.08 —
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