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Abstract

Deep latent variable models such as variational
autoencoders and energy-based models are widely
used for neural text generation. Most of them fo-
cus on matching the prior distribution with the
posterior distribution of the latent variable for text
reconstruction. In addition to instance-level recon-
struction, this paper aims to integrate contrastive
learning in the latent space, forcing the latent vari-
ables to learn high-level semantics by exploring
inter-instance relationships. Experiments on vari-
ous text generation benchmarks show the effective-
ness of our proposed method. We also empirically
show that our method can mitigate the posterior
collapse issue for latent variable based text genera-
tion models.

1 INTRODUCTION

Deep latent variable models such as variational autoencoder
(VAEs) [Bowman et al.|[2015]] and deep energy-based mod-
els [Deng et al.,[2020, |[Pang et al.| 2020] have been widely
used for text generation applications, such as machine trans-
lation [|Calixto et al.,2019]], language modeling [Deng et al.,
2020]], dialogue understanding [Shen et al., 2017, and
story generation [Chen et al.| 2021, Jhamtani and Berg{
Kirkpatrick, 2020]. These models follow a sequence-to-
sequence [Sutskever et al.,[2014] task setting, first stochas-
tically mapping the input sentence into a latent variable
according to proper probabilistic distribution assumptions
and then reconstruct the whole sentence. By manipulating
the latent variable, controllable text generation models with
both diversity and fluency can be achieved. In such models,
the latent variable is expected to encode high-level semantic
and style information of the input sequence, which can serve
to guide the generation of output sequences in different text
generation tasks.
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Figure 1: Contrastive learning over latent variables.

In this paper, we consider VAE and its variant iVAE [Fang
et al.l 2019], which addresses two limits of simple VAEs.
The first is the simple posterior, which is usually assumed
to be isotropic Gaussian, limiting the expressive power of
the latent variable. Many efforts have been made to use
an enhanced posterior [Casale et al., |2018|, [Tomczak and
Welling, [2018]]. Another problem is the posterior collapse
issue [Bowman et al., 2015]], where the learned latent vari-
able can be largely ignored in a trained model. iVAE solves
these problems by using implicit representation of posterior
distributions of latent variables, where the posterior distribu-
tion are represented by a set of samples. Mutual information
maximization is considered to encourage the correlation
between the inputs and the induced latent variables.

It has been shown that the strength of iVAE as compared
to vanilla VAE lies in better latent variable representations
[Fang et al.,[2019]. In particular, the latent variable should
faithfully represent the semantics of the input, while allow-
ing diversified outputs. Intuitively, further improvements
towards these two characteristics in the latent variable can
potentially lead to stronger VAE methods. However, there
is an intrinsic tradeoff between diversity and faithfulness, as
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it is more challenging to ensure that a set of different latent
representations all embody the same semantic information.
To this end, both VAE and iVAE make use of the reconstruc-
tion objective, learning to reconstruct the same input from
different latent variable samples. The effectiveness can be
limited by the number of samples that can be drawn, which
can hardly match the number of possible variations in the
reconstruction output. To address this issue, we consider
adding direct supervision signals on the latent representa-
tion itself, by ensuring that different latent variable samples
of the same input are closer in the vector space as compared
to latent variable samples of two different sentences. This
loss ensures semantic faithfulness without losing diversity.
It can be viewed as belonging to the category of contrastive
loss [[Khosla et al.| 2020, Le-Khac et al.,[2020].

Our model structure is shown in Figure|l} In particular, for
VAE, we encode the same input sentence twice with dif-
ferent dropout masks and then sample the corresponding
latent codes for obtaining positive pairs. Negative pairs are
constructed by comparing the sampled latent vector with
the remaining latent vectors resided in the same batch. Con-
trastive learning is used to increase the semantic similarity
of positive pairs and decrease the similarities of negative
pairs. For iVAE, we observe that the KL divergence between
the implicit posterior distribution and the prior distribution
can explode. The main reason is that, to calculate the KL,
divergence between sample-based representations, iVAE
uses an approximation based on Fechel duality theorem
[Rockafellar et al., (1966, Dai et al., 2018]]. However, this
approximation cannot guarantee the non-negativity of KL
divergence. We empirically observe that contrastive learn-
ing on the latent space can ease the explosion problem. We
further adapt this approximation by borrowing the idea from
CircleLoss [Sun et al.| [2020] to ensure the non-negativity of
the KL approximation.

We conduct experiments on a synthetic dataset and three
language modeling benchmarks. Results show that our
model can learn better latent representations on the syn-
thetic dataset and achieve better perplexity scores than
VAE and iVAE. For example, on PennTreebank lan-
guage modeling benchmark, our model can decrease the
perplexity scores by more than 10 points compared to
iVAE. Including contrastive learning over latent variable
in VAEs can alleviate the posterior collapse issues and
avoid approximated KL divergence explosion in iVAEs.
To our knowledge, we are the first to combine con-
trastive learning with latent variable models for natural
language processing. We make our models and codes pub-
licly available at https://github.com/zeeeyang/
constrastive_vaeland an alternative implementation
using MindSporeE] which is a new deep learning comput-
ing framework, can be found athttps://github.com/
zeeeyang/constrastive_vae_mindsporel

"nttps://www.mindspore.cn/

2 RELATED WORK

Varational Auto-Encoders for Text Generation VAE
[Bowman et al., 2015]] proposes the first model to enable
text generation from continuous space using variational in-
ference and an isotropic Gaussian prior. Many efforts have
been made to improve VAE by using advanced prior dis-
tributions [[Tomczak and Welling}, |2018, [Wang and Wang,
2019, Ding and Gimpell 2021]] and alleviate the the poste-
rior collapse issue of VAE [[Bowman et al., 2015/ Higgins
et al.| 2017, |He et al.| 2019 |Fu et al.l |2019], making the
generation depends on latent representations. iVAE [Fang
et al.,|2019] uses implicit sample-based representation, with-
out requiring an explicit density form for the approximate
posterior, which enables more flexibility. To solve the pos-
terior collapse issue, iVAE adopts a mutual information
regularization to match the aggregated posterior to the prior
distribution. APO-VAE [Dai et al., [2018|| defines both the
prior and posterior of latent variables over a Poincaré ball
in hyperbolic space, which also adopts the training scheme
of iVAE. We do not compare with Apo-VAE since it addi-
tionally adopts a data-dependent VampPrior [Tomczak and
Welling}, [2018]]. Our model is based on iVAE, with direct
supervision of latent variables using contrastive learning.

Contrastive Learning for Sentence Representations Con-
trastive learning [[Oord et al.,|2018| |Hjelm et al., 2019, [He
et al., [2020} |Chen et al., [2020] has achieved great success
in self-supervised visual representation learning. Recent
work transfers this learning strategy to texts with different
network architectures and augmenting methods for unsuper-
vised sentence representation learning [Zhang et al., 2020,
Giorgi et al., 2021} |Carlsson et al.| 2021} |Gao et al., 2021]].
Among these, SimCSE [Gao et al.,[2021]], which only uses
standard dropout as minimal data augmentation, achieves
the state of art and even performs on par with previously
supervised counterparts. Our method uses the same data
augmentation method as SimCSE, applying dropout to the
input batch twice to obtain two different views. Similarly, R-
drop [Liang et al.,|2021]] applies dropout twice to regularize
the behaviours of the decoders in language modeling. How-
ever, different from SimCSE and R-drop, the goal of our
method is to better supervise the latent states of variational
auto-encoders.

Contrastive Learning for Text Generation Dai et al.
[2021]] use CPC to do utterance-level contrastive learning be-
tween the dialogue context and the corresponding response.
Su et al.|[2022] propose a contrastive training objective for
text generation, which is used to improve MLE based train-
ing and beam search decoding. In their methods, the hidden
vector of a token is contrasted with the hidden representa-
tion vectors of the remaining tokens in the same sentence,
which is different from our method. To our knowledge, we
are the first to directly apply contrastive learning over the la-
tent vectors for variational auto-encoders. Lee et al.|[2021]]
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Figure 2: Relationships among the models.

combines adversarial perturbations with contrastive learning
to solve the exposure bias problem for conditional sequence
generation. Their contrastive learning is done in the embed-
ding space, which is different from our method.

3 METHOD

Figure [2] shows the models we investigated in this paper.
The blue boxes denote our proposed models. We introduce
the VAE baselines in Sec 3.1. In Sec 3.2, we describe iVAE,
which considers sample-based posterior distribution with
VAE, and a variant of iVAE (iVAE,;;) which considers mu-
tual information between input data and latent. In Sec 3.3,
we first show two models cIVAE and clVAE,; by integrat-
ing contrastive learning over latent variables for text gen-
eration based on iVAE and iVAE,;, respectively. Then, we
discuss cIVAE™ and clVAE™;, which solve the explosion
problem of approximated KL divergence by using circle
loss enhancement.

3.1 VARIATIONAL AUTO-ENCODER BASELINE

Formally, given a sentence x = {x1,z2,..., 27}, where
T is the length of x, an auto-regressive language model
finds a neural network @ that can maximize the log-
likelihood log P(x; 0) = ]\, log P(zi|z1,...,2i—1;0).
Variational auto-encoder (VAE) introduces a random latent
variable z to model P(x;0) = [ P(z;0)P(x|z;6)dz. To
generate a sentence X, a z is first sampled from the prior
distribution P(z;0) and then a decoder network is used
to produce x from z according to P(x|z; 8). In this paper,
z is is continuous, log P(x; 8) becomes intractable due to
the integration over z. To train 6, a variational posterior
distribution Q(z|x; ¢) over z is introduced to approximate
the true posterior P(z|x; 0). To ensure that z from the prior
P(z;0) can encode meaningful semantic representations
of the input sentence, Q(z|x; ¢) is forced to match P(z;6)
during training. Based on Q(z|x; ¢), an evidence lower
bound (ELBO) [Bowman et al., 2015]] to log P(x;8) is

defined as:
ELBO(x; ¢, 0) 8))
= Exnq(eixia) log P(x|z:0) ~KL(Q(zlx: 8). P(2:0))

reconstruction loss

regularizer

0 and ¢ are jointly trained by maximizing ELBO in Eq[I]
where the first term is a reconstruction loss. The encoder
first generates z according to Q(z|x; ¢), which is called
an encoder network or a recognition network. z is required
to reconstruct x by maximizing log P(x|z; 0). The second
term of Eq([I]is the Kullback-Leibler divergence, which reg-
ularizes the posterior distribution to be close to the prior
distribution. The posterior distribution and the prior distri-
bution are often assumed to belong to the same parametric
distributions with different parameters, which can ease the
learning burden. Ideally, a good model maximizes the first
term and minimizes the second term. When the KL term
tends to be 0, Q(z|x; ¢) degenerates to P(z;0) and the
posterior collapse issue happens. For text generation, it is
common due to the auto-regressive decoder can be very
strong, which totally ignores z and generates z; solely from
[1'1, e 7{1’}2‘,1] [Fu et al., 2019]

3.2 IMPLICIT VAE BASELINE (IVAE)

Q(z|z; @) is typically assumed to be multivariate Gaus-
sian distributions for computational convenience. However,
Gaussians are not enough to capture the rich semantics of
natural sentences in latent space. Implicit VAEs (iVAE) in-
troduce a sample-based posterior representation which does
not depend on an explicit density form. Q(z|x; ¢) is repre-
sented by a set of samples {z ;} iS:p where S is the sample
size. The i-th sample is given by

gi NN(S),Z;&I‘ = ENC(:Bvé-ﬂ ¢)7 (2)

where N (&) is the standard Gaussian, ENC(x, &;; @) is a
noise aware encoder network. The sentence representation
hr of « is generated by a LSTM encoder [Hochreiter and
Schmidhuber, [1997]|and hy is concatenated with &; by a
multi-layer perceptron layer (MLP) to produce z ;.

The KL divergence of Eq[I]is intractable after using the
sample based posterior representation. Following [Fang et al.
[2019], its dual form is calculated according to Fenchel
duality theorem [Rockafellar et al., {1966, |Dai et al., 2018|]
by introducing an auxiliary function f(x, z; 1),

KL(Q(z|x; ¢), P(2;0)) 3)
=max . q(z|ze) [ (T, 2;¢) — E.opz0exp(f(z, 2;9)),

where f outputs a real value and %) is the model parameters
for f. f is implemented as a MLP, which distinguishes be-
tween (z, zg) and (x, zp) where zg and zp denote latent



samples drawn from the posterior and the prior distributions,
respectively. Using Eq[3] ELBO can be written as

Livag = Eznq(zja:g) 02 P (22 6) —
+E2~P(z;9)exp(f(waz7'l/)))- (4)

Considering a dataset D = {x;}?_,, the loss function of
the whole D using VAE and iVAE are:

Lyvag =Ez~p |:]EZNQ(Z‘X;¢) log P(x|z; 9)]

~ Eap [KL(Q(2]x: 9), P(:0))] . (9)
Livag =Ez~p []Ez~Q(z\m,¢)10gP(fE|27 9)}

—Ez~p [EzNQ(z|m,¢)f(w’ z,7)

+ o p(zoyexp(f (@, 2,9))|. ©)

Mutual Information Regularized iVAE (iVAEy) In
Eq [I] the KL term forces a data-dependent posterior
Q(z|x, ¢) to match the same data-agnostic prior distri-
bution P(z;0). An variant of iVAE uses aggregated pos-
terior Q(z ¢) to match P(x|z;0), where Q(z;¢) =
| Q(x)Q(z|x; ¢)dx and Q(x) is the empirical data dis-
tr1but10n Using aggregated posterior Q(z; ¢), the latent
space can be better regularized by cooperating different
posterior distributions of all sentences to jointly match
the prior. Given a dataset D = {x;}! ,, replacing the
expected KL term E,.pKL(Q(z|x;®), P(2;0)) with
KL(Q(z; ¢), P(z;0)), the new training objective is,

ACI\/AEMI =Ez-D Esz(z|:c~¢')10gP(w‘z; 0):| 7)
—E.q(zi)9(2, %) + Ezopzi0)exp(9(2, 9)),

where ¢ is a similar function as f to produce a
real value. The dual form of KL(Q(z;¢), P(2;0)) is
maxg EZNQ (z; ¢ (Z 1/") z~P (z;0) CXP( (Z 1p)) Differ-
ently, g only considers z instead of the concatenation of x
and z. To generate samples from Q(z, ¢»), ancestral sam-
pling can be used. First, « is sampled from D and then 2
is sampled from Q(z|x; ¢). [Fang et al.| [2019] show that
optimizing the aggregated posterior based KL term is to
maximize the mutual information I(, z) under the joint
distribution Q(x, z; ¢). We take the above model (iVAEyy,)
as our main baseline.

3.3 CONTRASTIVE LEARNING OVER LATENT
VARIABLES FOR TEXT GENERATION

As shown in Figure[I] the overall structure for our proposed
model is based on the framework of iVAE. It contains three
main components, an encoder, a contrastive learning module
and a decoder. The encoder is quite similar to iVAE, except
that dropout is enabled. The decoder is exactly the same as

Ez~Q(z\m;¢)f(ma z, "/")

iVAE. The contrastive learning module is our main design.
In this section, we show how to integrate contrastive learning
over latent variables with iVAE.

Formally, given the latent sample z; of the i-th input sen-
tence, its positive latent sample zp = {z;"} which is se-
mantically similar to z;, its M negative latent samples
zn = {z;; }Jle which is semantically far away from z;,
the training objective using contrastive learning for the ¢-th
sentence is to maximize:
exp(ST™(zi, 2] ) /T)

D ne(zpuzn) EXP(SIM(24,2)/7)’

where 7 is a temperature hyper-parameter and SIM(z1, 22)
is a function for measuring semantic similarities between z;
and zo. Particularly, we use cosine similarity as the semantic
similarity metric,

®

Ei = log

Z;FZQ

M _
SM(=1.22) = 2T el

©))

where ||z||2 denotes the £2 norm of z. Following (Chen
et al.[[2020] and |Gao et al.|[2021]], we consider batch-based
contrastive learning. For each sentence x;, we follow |Gao
et al.|[2021]] and use dropout as data augmentation. We en-
code the input sentence twice with dropout being enabled,
and obtain two different views x; and ;" of the same sen-
tence. x; is then regarded as the anchor sentence and z;"
is the positive sample of x;. The remaining sentences in
the same batch are treated as the negative samples of x;. In
this way, the number of negative examples M = N — 1.
To obtain the corresponding posterior latent variables, we
sample z; ~ Q(z|x;; ¢) and 27 ~ Q(z|z; ; ¢). For the
posterior samples z; ~ Q(z|x;; ¢) and j = 4, they are the
negative samples of z;. Denote u; = {z; } U {z; };‘4 , and
the overall contrastive learning loss for the whole batch is
exp(SiM(z;, z,)/T)

Lo = NZl zem exp(SiM(z;,2z)/T)"

Adding the contrastive loss into Livag and Livag,,,, we have
Leivag = Livag + Lo, (11)

Levaky = Livaky + Lo (12)

Improved Dual Function KL(Q(z|x; ¢), P(z;0)) should

(10)

be non-negative according to its definition. However, the
approximation by the dual function in Eq[3]cannot ensure
this property since E, g (z|2;¢) f (T, 2; %) can be less than
E.~p(z0)exp(f(x, z;1)). To encourage the KL approxi-
mation to be non-negative, we resort to a new constraint
EzNQ(z\a:;(b)f(ma z; ¢) >0> Esz(z;O)eXp(f(mv Z;’I,b)).
Using this constraint, we define a new approximation in-
spired by circle loss [Sun et al., [2020],

KL(Q(z|x; ¢), P(2;0)) 13)
= mfin log (1 + exp ( — Ez~Q(z|m;¢)f($7 z; 1/))))

—+ log (1 + exp (EZNP(Z;G)eXp(f(w7 z; 1/’))))7



To  minimize Eq E.nq(zlae) f (T, 2;7)
should be forced to be much greater than O and
E.~p(z0)f(x,2;9) should be much less than O.
Similarly, KL(Q(z; ¢), P(z; 0)) can be approximated as,

KL (Q(z; ¢), P(2;8)) (14)
Ez~@(z;¢)9(z?¢)))

+log (1 +exp (Ezvp(z0)exp(g(2 ‘/’))))

=minlog (1 + exp ( —
g

Using the proposed KL approximation term, the full objec-
tive is to maximize

Ldvag = Eznqzlz,¢)l02P(2]2,0) + Lo

“log (1 +exp (= Eagafm f (T, 2; zp)))

~log (1+exp (Empeopexp(f(@, 25 9)) ), (15)
ﬁérLVAEW =E.q(z]a,¢)l08P (2|2, 0) + Lo

—log (1 +exp (= Ezugaig9(2; ’¢)))

~10g (1+exp (Eawp(zoexplo(z ) ). (16)

Training Algorithm Algorithm|I]|shows the training algo-
rithm of our proposed method. We first sample a mini-batch
of paired random Gaussian noise vectors &; and £i+ . After
obtaining a mini-batch of input sentences, we pass them
through the LSTM encoder with dropout being enabled
to produce the latent vectors z, ; and zJr Then the con-
trastive loss defined in Eq [I0] is calculated and a paired
prior vectors are sampled from P(z;6). v in f(x, z,) is
updated according to Eq[I8] Here we further consider to
minimize the differences between the dual functions of the
same input data by defining a squared loss Lgq, which is
given by

Lso =Y (f(®i zo03%) = f(®@i, 25, 59)). (A7)
Given the same input and different z, the values of function
f are forced to reside in a small region. v is fixed afterwards.
The encoder parameters ¢ and decoder parameters 6 are
updated according to Eq[I9] If the dual function g instead
of f is used, a similar loss as chan be defined using g,
and Eq[I8]and Eq[I9]can be changed accordingly.

4 EXPERIMENTS

We evaluate our proposed models on two tasks: 1) language
modeling; 2) a synthetic clustering setting;

4.1 DATA AND SETTINGS

Language Modeling For language modeling, we consider
three datasets, including the Penn Treebank [Marcus et al.|

Input: The training data set D and the training epochs
T;
Model parameters: 0, ¢ and ;
while t < T do
1. Sample a mini-batch of §; ~ N (€), & ~ N(€);
2. Sample a mini-batch of input sentences x; ~ D;
3. Generate z,, ; = ENC(z;, &;; ¢) and
23, = ENC(z, £ );
4. Calculate L, in Eq[10}
5. Sample a mini-batch of z;, z;” ~ P(z;0);
6. Update v in f(x, z, ) to minimize

Lsq +log (1+ exp(Y _ —f (i, 22,5 %))
+log (1 + eXp(Z expéf(:ci, zis1)))

Hlog (1-+-exp(Y (e 285)
+10g(1+exp(iexp(f(mi,zi+;¢))). (18)

7. Update parameters {q;, 6} to minimize

- ZlogP(a:i\zi, ZIOgP |z, 0) = Lot

—|—log( +exp Zf muzwzv‘p)))

+log 1+exp Zf (i, 2 mm"/’ 19)
8.t+—t+1;

Output: 0, ¢ and v;

Algorithm 1: The training algorithm (a single step SGD)
for contrastive learning over latent variables for text
generation.

1993|], Yahoo [Yang et al.|[2017]] and Yelp [He et al., 2019].
The Penn Treebank (PTB) is a common benchmark for lan-
guage modeling, which consists of 42K sentences of varying
lengths and 1 million words of Wall Street Journal material
in 1989. Yahoo and Yelp are much larger datasets compared
to the PTB. They both consist of 100K sentences and the av-
erage length of them are 78.7 and 96.0 words, respectively.
Each dataset contains train, validation and test sets. The
detailed data statistics are in Appendix A.1. We select the
best model according to the performance on validation set
and report the results on the test set using the corresponding
best model.

Synthetic Clustering Data Following [Fang et al.|[2019]],
we design an experiment of synthetic clustering to show the
learning dynamics of the induced latent variable. Given
a random input category k, k € [0, K — 1] and K is
the number of categories, a 2-dimensional random Gaus-
sian noise sampled from N(0,1) is combined with the
one-hot representation of the input category as the in-
put variable x. An encoder with multi-layered feedfor-
ward neural networks transforms x into a 2-dimensional
latent vector z. An decoder is trained to reconstruct x
from z. Suppose that the reconstructed output is y and
y € RX, the binary cross-entropy loss is used, namely



Table 1: Language modeling on PTB.

METHODS -ELBO| PPL| KLt MIt AUt
VAE 102.6  108.26 1.08 0.8 2
Bo.5 VAE 104.5 117.92  7.50 3.1 5
SaVAE 102.6  107.71 123 0.7 2
CycVAE 103.1  110.50 3.48 1.8 5
iVAE 87.6 5446 632 3.5 32
iVAEwm 87.2 53.44 1251 122 32
clVAE 82.7 4351 837 555 32
clVAEw 82.7 43.49 1395 13.69 32
clVAE* 79.8 38.04 7.01 472 32
clVAE 71.7 3461 994 958 32

L=—e;logo(yr)+ Z#k(l —e;)log(l—o(y;)), where
k is the input category, e is the corresponding one-hot vec-
tor representation of the category k and o is the sigmoid

function 0'(37) = m

During training, we generate a batch of one-hot vectors by
randomly choosing from [1,0, 0, 0], [0,1,0,0], [0,0,1,0]
and [0, 0,0, 1] when K = 4. The batch size is 256 and we
train the encoder-decoder 30K to 80K epochs until conver-
gence. Ideally, the cluster of latent variable z in 2 dimen-
sional space should exactly correspond to the input category
after training. To understand the training behaviour of our
proposed model, we visualize z in 2D space.

4.2 LANGUAGE MODELING RESULTS

PTB Results We compare our models with state-of-the-art
VAE language models without using contrastive learning,
including: 1) traditional VAE models with a KL-annealing
strategy [Bowman et al.l[2015]]; 2) 6VAE [Higgins et al.,
2017]], which controls the penalty on KL using a small
hyper-parameter 3; 3) SaVAE [Kim et al.,[2018]], which is a
semi-amortized VAE; 4) CycVAE [Fu et al.|[2019]], which
anneals the KL term in a cyclical way; 5) lagVAE [He et al.,
2019]], which lags the update of decoder by aggressively
updating encoder several times; 6) ¢ VAE [Fang et al.|[2019],
which assumes an implicit distribution of latent variable
as mentioned before; 7) :VAE,,; is an enhanced version
of i{VAE by directly considering the mutual information
between the input x and the latent variable z. We denote
our model as cIVAE (Eq|11) and the circle loss enhanced
version is named as cIVAET (Eq[15). clVAE,, (Eq[12)
and clVAET; (Eq are their corresponding enhanced
versions by mutual information.

We evaluate the models in terms of the quality of both the
generation texts and the induced latent features. To measure
the generation outputs, we use negative ELBO scores (-
ELBO) and perplexity scores (PPL). The lower they are,
the better the generated outputs are. Following |[Fang et al.
[2019], we evaluate the quality of induced latent features in
terms of KL(Q(z|x; ¢)||P(z; 0)), the mutual information

Table 2: Language modeling on Yahoo and Yelp.

MEeTHODS -ELBOJ PPL| KL1 MIT AU?T
DATASET: Yahoo
VAE 328.6 6121 0.0 0.0 0
Bo.4aVAE 328.7 61.29 63 2.8 8
SaVAE 3272  60.15 52 2.7 10
LagVAE 3267  59.77 57 29 15
iVAE 309.5 4822 80 44 32
iVAEwm 309.1 47.93 11.4 10.7 32
clVAE 303.3 461 86 7.7 32
DATASET: Yelp
VAE 357.9 40.56 0.0 0.0 0
Bo.aVAE 3582  40.69 42 2.0 4
SaVAE 3559  39.73 2.8 1.7 8
LagVAE 355.9 3973 3.8 2.4 11
iVAE 3482 3670 7.6 4.6 32
iVAEMr 348.7  36.88 11.6 11.0 32
clVAE 343.6 3497 88 8.2 32

1(x,z) under the joint distribution of Q(x, z; ¢), and the
number of active units of z, which is defined as AU(z) =
COVx (. ~0(zx;0)[2]) > 0.01. Since all these terms cannot
be solved in an analytical way, they are approximated by
sample z 128 times from Q(z|x; ¢). In general, higher KL,
larger MI and AU values indicate the latent feature is more
sufficiently used by the model.

Table [I] shows the main results on PTB test set. Our sim-
plest model cIVAE outperforms all the baselines, which
shows that adding contrastive learning over latent variables
greatly improves the model performance. clVAE reduces
ELBO and PPL by 4.9 and 10.95 points compared to : VAE.
The KL and MI values are increased by 2.05 points com-
pared to ¢:VAE. There results show that our model make
better use of the latent vector compared to baselines, and
produce better outputs. Similar conclusions hold for the
models enhanced by mutual information, which suggests
that contrastive learning can be complementary to mutual
information estimation. Particularly, cIVAE\; gives the best
KL and MI values among all the models, demonstrating that
it is a good choice to use the learned latent features. Using
the proposed circle loss enhancement, the model perfor-
mance improves with respect to ELBO and PPL, with 79.8
ELBO and 38.04 PPL, which are much better than cIVAE
(82.7 ELBO and 43.51 PPL). Among them, cVAE ™ gives
the best results, presenting 77.7 ELBO and 34.61 PPL. In
terms of KL and MI, using the circle loss enhancement
slightly hurts the sufficient use of latent variables compared
to clVAE,;. However, the KL and MI values are relative
large, ranking the third among all the models. Therefore,
considering both the generation quality and the effective use
of latent space, the circle loss enhancement is useful.

Yahoo and Yelp Results We use the best configuration
model of cIVAE™,, to conduct experiments on Yahoo and
Yelp. Table[2]shows the results. On Yahoo, our model outper-



Table 3: Contrastive learning using h or z.

WHERE METHODS -ELBO| PPL] KL1 MIT AU?T

h clVAE 83.0 44.10 7.51 4.92 32
clVAEMm; 86.7 52.13 13.35 13.09 32
clVAE 82.7 43.51 8.37 5.55 32

z clVAEm 82.7 4349 1395 13.69 32

Table 4: Forward and reverse PPL on PTB test set.
MODEL FORWARD] REVERSEJ
VAE 18,494 10,149
CycVAE 3,390 5,587
AE 672 2,589
BoVAE 625 1,897
Bo.s VAE 939 4,078
SaVAE 341 10,651
1VAE 116 1,520
iVAEw 134 1,137
clVAE", 120 1,047

form iVAE,; in terms of both ELBO and PPL. For ELBO,
our model outperform ¢tVAE,; by 5.8 points. For PPL, our
model gives 44.61 points, reducing the PPL of i VAE,;; by
3.32 points. For KL and MI values, our model are better
than :VAE and comparable to : VAE,;;. Similar observations
can be found on Yelp dataset. clVAE™,, reduces ELBO and
PPL by 5.1 and 1.91 points compared to i VAE,;. On Yelp,
for KL and MI values are 8.8 and 8.2, respectively, ranking
the second. Since both Yahoo and Yelp are large corpora, it
is challenging to greatly reduce the PPL and ELBO scores
while maintaining high KL and MI values at the same time.
Our model is empirically well balanced.

4.3 ANALYSIS

The effect of contrastive learning for latent variable Ta-
ble [3] shows the comparison results of doing contrastive
learning using the encoder output h and the latent variable z
on PTB test set, respectively. For simplicity, we use two ba-
sic models: namely clVAE and clVAE,;,. As shown in Table
1, when the same models are used, doing contrastive learning
over z instead of h gives better results. For example, when
using the cVAE),; model, the model based on h gives 52.13
PPL, while the model based on z obtains 43.49 PPL, which
is much lower than the model based on h. Only in terms
of ELBO and PPL values, the basic model clIVAE over z
even performs better than the mutual information enhanced
clVAE,; models over h. Besides, when doing contrastive
learning on h, the performance gap between clVAE and
clVAE,; are large, whereas the corresponding gap is short-
ened when doing contrastive learning on z. These results
suggest that it is necessary to do contrastive learning over la-
tent variables, producing better results compared to directly
doing contrastive learning on the encoder hidden output.

The effect on the decoder To evaluate whether the decoder

KL(Q(z|x; ¢)||P(z; 6))
o N
> » o
——

—-— iVAE
== CIVAE
—— CIVAE;
-0

0 5 10 15 20 25 30 35 40
Epoch

(a) Estimated K L(Q(z|x, ¢)||P(z, 0)) w.r.t training epoch.
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(b) Mutual information I(x, z) w.r.t training epoch.

Figure 3: KL and MI w.r.t the training epoch.

is being improved by making better use of latent features,
we sample latent variables from the prior distribution P(z)
and ask the decoder to generate outputs based on the sam-
pled latent codes, following [Fang et al.| [2019] and |[Kim
et al. [2017]]. The generated text is evaluated by KenLM
[Heafield et al., 2013]] using two metrics: forward PPL and
reverse PPL. The forward PPL evaluates the generated texts
based on a language model trained on the PTB-train corpus.
Lower forward PPL indicates the generated texts are more
fluent. The reverse PPL evaluates the PTB corpus based
on a language model trained on the generated texts. Lower
reverse PPL means the generated texts are better representa-
tive of the PTB corpus. For the underlying language model,
5-gram KenLM is used.

Table @ shows the forward PPL and reverse PPL on the PTB.
For reverse PPL, our cIVAE " performs better than all the
baselines and cIVAE); gives the best values, which shows
that our models can better represent the true data distribution.
For forward PPL, our model performs better than most of
baselines models including SaVAE and Sy 5VAE. iVAE
gives the best forward PPL scores (116) since it imposes
less constraints on the latent variable and thus benefits from
a smoother space. Our model give 120 forward PPL scores,
which is comparable to iVAE and acceptable by sacrificing
a little fluency, but it can generate more diverse outputs and
make text appear more human like.

The negativity of approximate KL and MI terms Sec-
tion 3.3 mentioned that the approximated KL and MI term
can become negative during training iVAE. Empirically, we
demonstrate this problem by using the PTB language model-
ing task. Figure[3ajand Figure[3b|show how the KL term and
the mutual information term change with the training epoch
of the three models, including iVAE, clVAE and clVAE™,,
respectively. As shown in Figure [3a] the approximate KL



Table 5: Comparisons of iVAE and cIVAE " on toy data.
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term of iVAE suddenly becomes a large negative number
at the 39th epoch. From Figure [3b] we can observe that
the approximate MI term at Oth epoch, 2nd epoch and the
39th epoch are all negative. This observation shows that
the negativity problem of approximate KL and MI terms do
exist in iVAE. Adding the contrastive learning module alle-
viates this problem to some extent. The KL and MI values
of c1VAE become more stable than iVAE. However, the KL
value of cIVAE dramatically decreases at the 10th epoch.
In contrast, no such phenomenons exist in our cIVAE™
model based on the empirical observations. Its KL and MI
values gradually increase as the training goes on in general.
These evidences suggest that our proposed circle loss en-
hancement can learn a more robust model in term of the
stability of the approximated KL and MI values.

4.4 RESULTS ON SYNTHETIC DATA

K = 4 Table 5a shows the visualizations of the learned
2D latent vector of VAE, iVAE and our model with dif-
ferent training epochs. When epoch= 0K, the distribution
of the induced latent variable of VAE is basically a nor-
mal distribution and the points are mixed together. Since
both iVAE and our model represents the latent variable us-
ing an implicit distribution, there are no clues about the
distribution of the latent variable in the beginning. After
training with 5K epochs, we observe that VAE can make an
initial guess concerning the corresponding cluster of the in-

duced latent variable, iVAE is still struggling to cluster these
points, whereas our model can achieve a clear separation
between clusters, and capture well the latent distribution of
the data. As the training continues to 15K and 30K epochs,
VAE shapes the data distribution as a sandwich, as shown
in Table2, the green and blue points are widely mixed to-
gether and the data points within the same cluster are wide
spread. Meanwhile, iVAE still could not provide a nearly
clear separation between clusters. However, our model starts
to shorten the distance among points within the same cluster
and enlarge the distance between different clusters. As a
fact, our model only needs 3.5K epochs to converge while
both VAE and iVAE take 80K epochs to converge. After 80k
epochs, iVAE divides the 2D space into the corresponding
clusters successfully, and it can provide a better data dis-
tribution compared to VAE. However, the data points with
the same cluster given by iVAE are dispersed. As shown
in Table [5a our model converges much faster than VAE
and iVAE. It also gives a more compact and coherent rep-
resentation, making the intra-class distance smaller and the
inter-class distance larger compared to VAE and iVAE. This
shows that adding contrastive learning over latent spaces
can better regularize the distributions of latent variables.

K > 4 When the number of category becomes large, the
difﬁculty of representing data points in the 2D latent vari-
able also increases. Table [5b] shows the comparisons of
converging trend between iVAE and our model when the
input category is larger than K = 4. When K = 8, iVAE
fails to converge even using 80K training epochs, while our
model obtains a decent separation boundaries using only 5K
epochs. After training 80K epochs, our model successfully
cluster the input data into the corresponding category. To
show the capability of our method, we further set K = 16,
making it more challenging. In this setting, the class bound-
aries appear after SK epochs, but not so clear as those when
K = 8 using the same training budget. Separation between
clusters gets refined as the iterations go on. With 80K train-
ing epochs, our models can manage to reconstruct the input
categories from the 2D latent variable. This not only shows
the discriminatory nature of the learnt representations, but
also the speed with which becomes a potential advantages
of combining contrastive learning with latent variables, and
the capacity of handling more complex situations compared
to the traditional latent variable models.

4.5 SENTENCE INTERPOLATION

Table|§| shows the sentence interpolation [Bowman et al.|
2015] results of two example sentences. Similar to VAE,
our model can generate sentences by interpolating the la-
tent semantic vectors. Given two sentences x; and Xg, we
generate vectors z; and z, by averaging samples from
Q4 (z|x). Given z; and z2, we generate a new latent vector
z = A*xz1 + (1 — A) * zy by interpolating the sentence



Table 6: Interpolation of latent representation.

A =0 there was $ N billion and more interest income
A = 0.1 there was $ N billion and more interest in 30-year
A = 0.2 there was $ N billion and more than $ N billion
A = 0.3 there was $ N million more than two days

A = 0.4 there was $ N million more than in chicago

A = 0.5 we had $ N million in the stock market

A =0.6 wehad $ N million in the latest period

A = 0.7 we had $ N million in the latest period

A = 0.8 we Il N years in its latest day

A = 0.9 iwentin N with a few months ago

A =1 iwentin N with a few months in N

J

semantics of z; and z,. Then z is used by the decoder to
produce a sentence with mixed semantics. A is varied from 0
to 1 with a step size of 0.1. As shown in Table [6] our model
can generate sentences by smooth considering the semantics
from the two input sentences.

4.6 EFFECT OF DIFFERENT DROPOUT RATES

Figure 4: PPL and ELBO values w.r.t dropout rate.
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We use the PTB to study the effect of different dropout
rates by varying the dropout ratio from 0.1 to 0.9 with a
step size 0.1. Figure [d] shows the PPL and ELBO values of
different dropout rates. We find that droput = 0.3 gives the
optimal performance. Empirically, increasing the dropout
rates from 0.1 to 0.3, the performances become better. When
the dropout ratio is in range [0.3, 0.6], the performances are
stable. Using a large dropout rate (dropout >= 0.7), the
performances degrade.

4.7 DIFFERENT DATA AUGMENTATION
METHODS

The selection of positive and negative samples are very im-
portant for the success of contrastive learning. In this paper,
we follow|Gao et al.|[2021]] and use dropout as the minimum
data augmentation. Applying dropout twice to a recurrent
encoder for the same input sentence can lead to two different
(but still semantically related) posterior distributions. The
latent samples which represent the two implicit posterior

Table 7: Comparisons with different augmentation methods.
AUGMENTATION -ELBO| PPL} KLt MI1T AU®

36.96 9.21 8.95 32
34.61 994 958 32

SWAP 79.1
DROPOUT 77.7

distributions can be sufficiently different, therefore being
useful for contrastive learning for variational auto-encoders.
We additionally perform experiments by using random swap
to create negative samples. Given an input sentence, we flip
a coin with a probability 0.1 to decide whether to swap the
positions of the ¢-th token and the (i+1)-th token, from ¢ = 1
to 2 = n — 1. In this way, the word order is perturbed. We
compare the dropout-based augmentation with swap-based
augmentation. Table [/| shows that dropout is a better aug-
mentation method for the proposed model than swap-based
method. Considering more different data augmentations will
be considered in future work.

S CONCLUSION

We proposed contrastive learning over latent variables in
variational autoencoders (VAE), designing a circle loss en-
hancement to solve the approximation problem of the KL
term used in a state-of-the-art VAE models. Experiments
showed that combining contrastive learning with latent vari-
able models can both improve the generation quality and
make sufficient use of latent space. In future, we intend to
expand our framework to graph and image data.
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