
Under review as a conference paper at ICLR 2022

CONTRACTIVE ERROR FEEDBACK FOR
GRADIENT COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

On-device memory concerns in distributed deep learning are becoming more se-
vere due to i) the growth of model size in multi-GPU training, and ii) the adoption
of neural networks for federated learning on IoT devices with limited storage. In
such settings, this work deals with memory issues emerging with communication
efficient methods. To tackle associated challenges, key advances are that i) instead
of EFSGD that inefficiently manages memory, the sweet spot of convergence and
memory usage can be attained via what is here termed contractive error feed-
back (ConEF); and, ii) communication efficiency in ConEF should be achieved
by biased and allreducable gradient compression. ConEF is validated on various
learning tasks that include image classification, language modeling, and machine
translation. ConEF saves 80% – 90% of the extra memory in EFSGD with almost
no loss on test performance, while also achieving 1.3x – 5x speedup of SGD.

1 INTRODUCTION

Many modern machine learning tasks can be cast as an optimization problem

min
x∈Rd

f(x) :=
1

N

N∑
i=1

Eξ∼D
[
fi(x, ξ)

]
. (1)

Typically, the possibly nonconvex loss function fi(x, ξ) is continuously differentiable with respect
to (w.r.t.) x. We assume that f∗ > −∞ is a global minimum of (1). In this work, we will focus
on training neural networks (NN) by solving (1) in two important scenarios: i) data parallelism in
a multi-GPU setting, and ii) federated learning where clients could be edge devices such as smart
phones. In both cases, N denotes the number of workers (GPUs or devices) and f∗ is no smaller
than 0 given common choices of loss functions such as cross entropy and mean square.

While training NNs is a resource-hungry task, bandwidth and memory prevent us from fully har-
vesting the merits of parallelism. Limited bandwidth slows down the speed of information (e.g.,
gradients) exchange among workers. In multi-GPU settings, it is observed that communication of
gradients becomes a bottleneck that significantly drags down the training speed. While for feder-
ated learning, the system capacity is usually confined by communication latency between the server
and workers. Memory constraints are less studied compared with bandwidth (Sohoni et al., 2019).
However, given the trend of an increasing model size in both computer vision and natural language
processing, e.g., ViT (0.6B) (Dosovitskiy et al., 2020), Megatron-LM (8.3B) (Shoeybi et al., 2019),
T5 (11B) (Raffel et al., 2019), it evidences that memory is becoming an unavoidable constraint for
training large models in current GPU generation with 16/32GB memory. For federated learning, it
is also necessary to reduce the memory footprint on workers especially for those IoT applications.

In this work, we will focus on the parsimonious setting, jointly dealing with limited bandwidth and
memory. The priority is still communication efficiency for speeding up training time, otherwise one
can simply rely on SGD with almost no additional memory consumption. Many existing works are
unable to cope with such a challenging problem because memory is not carefully taken care of.

Communication efficiency. A well-documented approach to alleviate communication bottleneck is
to compress the (stochastic) gradients such that training can be made faster with reduced overhead
(Seide et al., 2014; Alistarh et al., 2017; Karimireddy et al., 2019). Depending on whether the
gradient compressor is biased, these schemes are categorized as follows.

1

Under review as a conference paper at ICLR 2022

Unbiased compressors maintain the unbiasedness of stochastic gradients at the price of enlarged
variance. For example, uniform quantization of stochastic gradients is studied in QSGD (Alistarh
et al., 2017). A concurrent work (Wen et al., 2017) focuses on a special case of QSGD by quantizing
each entry of the gradient into {±1, 0}. Other variants include natural quantization (Horvath et al.,
2019), non-uniform quantization (Ramezani-Kebrya et al., 2021) and adaptive quantization (Faghri
et al., 2020). Another route to obtain an unbiased compressor is through (scaled) gradient sparsi-
fication (Wangni et al., 2018) or its generalized form, atomic decomposition (Wang et al., 2018).
However, such methods may be practically slow with performance degradation (Vogels et al., 2019).
Biased gradient compressors, on the other hand, have been more successful in practice since not
only do they support a more impressive compression ratio, but also a test accuracy comparable with
SGD can be obtained in many scenarios. Examples of such compressors contain top-k or (unscaled)
random-k sparsification (Lin et al., 2018; Alistarh et al., 2019), signSGD (Bernstein et al., 2018a;b),
and PowerSGD (Vogels et al., 2019). Due to the bias, such compressors typically rely on error
feedback (EF) schemes to ensure convergence (Stich et al., 2018; Karimireddy et al., 2019).
Memory concerns in communication efficient methods. Memory concerns are highly entangled
with communication efficiency in distributed training. On the one hand, memory footprint can be
alleviated through a smaller batchsize (Krause et al., 2016; Spring et al., 2019), leading to increased
iterations as well as communication rounds per epoch. Hence, communication efficient methods
are particularly useful for accelerating training time in such cases. On the other hand, existing
communication efficient methods are challenged by limited memory due to several reasons. First,
a smaller batch size, which enlarges the variance, degrades the applicability of unbiased gradient
compressors. Confirmed in our experiments, the exploded variance typically calls for a small step
size which decelerates convergence. Unbiased gradient compressors such as quantization, are also
hindered by the need of AllGather (Xu et al., 2020), since peak memory proportional to the number
of workers is required. This renders them inefficient for the parsimonious setting, especially when
the number of workers is large. Memory is also not handled well in methods with biased gradient
compressors due to the need of error feedback, where additional memory the same as model size
has to be consumed to keep track of accumulated compression error. Note that although no memory
footprint is introduced in Local SGD (Stich, 2019), it suffers from variance blown problem as well.
More importantly, local SGD cannot be integrated with ZeRO 3 (Rajbhandari et al., 2020), state-of-
the-art method for coping with limited memory, due to partitioned optimizer states among workers.
In this work, we will focus on EF-based methods because of the capability of adopting a biased
gradient compressor, which is typically contractive thus more robust to the gradient variance in a
small batchsize setting. The additional memory consumption of EFSGD over SGD is the local error
vector, which is delicate and critical for ensuring convergence. Meanwhile, the designed manner
for memory efficiency can only come with lightweight and negligible runtime overhead, otherwise
it violates the ultimate goal of communication efficient methods. Contractive error feedback is thus
introduced to address these challenges. In a nutshell, our contributions can be summarized as:

• To the best of our knowledge, this is the first work that systematically studies memory concerns
in communication efficient methods. Contractive error feedback (ConEF), is introduced to effec-
tively manage memory given the preference of an allreducable and biased gradient compressor.

• Convergence of ConEF is established. Our theoretical results suggest a tradeoff between memory
efficiency and a faster convergence, and ConEF finds the sweet spot.

• ConEF is capable of saving 80% – 90% additional memory of EFSGD on various learning prob-
lems such as image classification, language modeling, and machine translation. With almost the
same runtime of EFSGD, ConEF achieves 1.3x – 5x speedup over SGD. Though test perfor-
mance slightly drops on smaller models, the proposed method is more useful and reliable for
larger networks where improved test accuracy over EFSGD is observed.

Notation. Bold lowercase (uppercase) letters denote vectors (matrices); ‖x‖ stands for `2 norm of
x; and 〈x,y〉 denotes the inner product of x and y. In addition, we use [x]i ([X]i,j) to denote the
i-th entry of vector x (i, j-th entry of matrix X).

2 PRELIMINARIES

This section briefly recaps EFSGD (Stich et al., 2018; Karimireddy et al., 2019) listed under Alg.
1. We use git to denote the stochastic gradient at xt on worker i, and assume that the stochas-
tic gradients are mutually independent among different workers per iteration. In line 5, the scaled

2

Under review as a conference paper at ICLR 2022

Algorithm 1 EFSGD
1: Initialize: x0 ∈ Rd, ei0 = 0 ∈ Rd,∀i, η
2: for t = 0, 1, . . . , T − 1 do
3: assert xt = xit for every worker i
4: for worker i = 1, . . . , N in parallel do
5: pit = ηgit + eit
6: ∆i

t = Q(pit)
7: ∆t = Aggregate(∆i

t,∀i)
8: xt+1 = xt −∆t

9: eit+1 = pit −∆i
t

10: end for
11: end for

Algorithm 2 ConEF
1: Initialize: x0 ∈ Rd, ei0 = 0 ∈ Rd,∀i, η
2: for t = 0, 1, . . . , T − 1 do
3: assert xt = xit for every worker i
4: for worker i = 1, . . . , N in parallel do
5: pit = ηgit + eit
6: ∆i

t = Q(pit)
7: ∆t = Aggregate(∆i

t,∀i)
8: xt+1 = xt −∆t

9: eit+1 = C(pit −∆i
t)

10: end for
11: end for

stochastic gradient is augmented via accumulated compression error eit, then compressed and
communicated. There is no restriction to the biasedness of gradient compressor Q. Examples
of Q include (scaled) sign, random/top-k, and powerSGD. The “aggregate” in line 7 refers to
∆t = 1

N

∑
i ∆

i
t, and the compression error eit+1 is recomputed in line 9 after updating model

xt. More implementation details on communication of gradients, and reasons for the preference of
AllReduce, are deferred to Apdx. A.1 to save space.
Besides the widely appreciated allreducable gradient compressors, those biased ones are more tai-
lored for settings where the inclination is to rely on a smaller batchsize for memory saving. This is
because biased gradient compressors are usually contractive; see more details shortly in Assump-
tion 4. However, due to the need of error feedback to ensure convergence, the additional memory
consumption of eit can confine the applicability of biased compressors as well as EFSGD in parsi-
monious setups, and this issue is somehow omitted by existing works. Other error feedback variants,
e.g., (Wu et al., 2018; Basu et al., 2019; Xu et al., 2021; Richtárik et al., 2021), also rely on additional
vectors for the compression error, hence may benefit from the proposed technique as well.

3 MEMORY SAVING VIA CONTRACTIVE ERROR FEEDBACK

To endow EFSGD with memory efficiency, contractive error feedback is introduced in this section.
The key idea is to apply another compressor C on the error vector eit such that the memory footprint
can be mitigated. The proposed method is summarized in Alg. 2, where the name contractive error
feedback (ConEF) originates from the fact that the error vector is represented in its compressed
format. Note that the encoding and decoding of compression in Alg. 2 are omitted for notational
convenience. Q and C are adopted to denote the gradient and error compressors, respectively, to
highlight their different roles. The gradient compressor Q is general and a biased one is more rec-
ommended for small batchsizes that can squeeze more memory out. An unbiased error compressor
C is preferable since it is helpful for generalization as we shall discuss later in Section 4. Moreover,
the implementation of C has to be lightweight to avoid slowing down runtime. We will focus on
theoretical properties first, and practical guidances for the choice of C are deferred to Section 4.

3.1 CONVERGENCE

Convergence of Alg. 2 is established in this subsection under standard assumptions for communi-
cation efficient algorithms in the distributed setting (Alistarh et al., 2017; Karimireddy et al., 2019;
Stich et al., 2018; Zheng et al., 2019; Abdi & Fekri, 2020; Basu et al., 2019; Alistarh et al., 2019).
Assumption 1. The objective function f : Rd → R has L-Lipchitz continuous gradients; that is,
‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖,∀x,y ∈ Rd.

Assumption 2. The stochastic gradient git is unbiased with bounded variance E
[
git|xt

]
= ∇f(xt),

and E[‖git −∇f(xt)‖2|x] ≤ σ2. The gradient is also upper bounded E[‖∇f(xt)‖2] ≤ G2.

Assumption 3. (Unbiased error compressor C). For any given x, E[C(x)|x] = x. In addition, there
exist θ ≥ 0 such that E[‖C(x)− x‖2|x] ≤ θ‖x‖2.

Assumption 4. (Contractive gradient compressor Q). For any given x, there exists δ ∈ (0, 1) such
that E[‖Q(x)− x‖2|x] ≤ δ‖x‖2.

Holding true for many allreducable and biased gradient compressors such as unscaled random-
(block)-k and powerSGD, Assumption 4 implies contractivity – the compression error is always
smaller than the norm square of the compressed vector. Such compressors are more preferable when
working with small batchsizes (for memory saving) since they do not amplify the gradient variance

3

Under review as a conference paper at ICLR 2022

as explained in Apdx. A.2 and (Stich et al., 2018). Unbiased compressors satisfying Assumption 4
are usually not allreducable; see also Apdx. A.2. The convergence of Alg. 2 is established below.
Theorem 1. Suppose that Assumptions 1 - 4 hold and T is large. Choosing η = O

(
1

L(
√
T/N+T 1/3)

)
,

Alg. 2 guarantees that

1

T

T−1∑
t=0

E
[
‖∇f(xt)‖2

]
≤ O

(
L
(
f(x0)− f∗

)
+ (σ2 +G2)√

NT

)
+O

(
δθ(σ2 +G2)√

NT

)
. (2)

The dependence on N demonstrates that linear speedup is achieved by ConEF. The second term in
the right hand side of (2) is the additional error term incurred by compression. Next, we compare it
with existing works to gain deeper understanding of ConEF. Upon relating Theorem 1 with EFSGD
(Karimireddy et al., 2019), the price paid for memory efficiency can be clearly visualized. Since
only the single worker case is considered in the EFSGD paper, we let N = 1 in Theorem 1 for a
fair comparison. From the additional error term of EFSGD, i.e., O(δ(σ

2+G2)
T), it is observed that

ConEF converges slower. However, ConEF still benefits from the locally compressed error vector
when further compared to QSGD which does not employ error feedback schemes (Alistarh et al.,
2017). Suppose that Q is unbiased with Assumption 3 satisfied, then the error term in QSGD is
O
((1+θ)(σ2+G2)√

NT

)
. Therefore, ConEF improves the dependence on θ over QSGD. In addition, The-

orem 1 is also tighter than (Horváth & Richtárik, 2020) since their error term is O((1+δθ)(σ2+G2)√
NT

).

ConEF finds the sweet spot. The comparisons above suggest a tradeoff between memory efficiency
and a fast convergence. QSGD is at one extreme where no extra memory is needed at the price of
slower convergence due to the blown variance introduced by unbiased gradient compressors. Note
also that in general biased gradient compressors cannot be applied in QSGD. EFSGD is at another
extreme, where the extra memory consumption is induced by eit with the benefit of a small error
term in the convergence rate. Our proposed Alg. 2 lives in between EFSGD and QSGD, it saves
memory compared to EFSGD, but incurs an error term smaller than QSGD yet larger than EFSGD.

3.2 IMPROVED CONEF

Algorithm 3 iConEF
1: Initialize: x0, ẽ

i
0 = 0,qi0 = 0, η

2: for t = 0, 1, . . . , T − 1 do
3: assert xt = xit for every worker i
4: for worker i = 1, . . . , N in parallel do
5: pit = ηgit + ẽit + qit
6: ∆i

t = Q(pit)
7: ∆t = Aggregate(∆i

t,∀i)
8: xt+1 = xt −∆t

9: if version 1 then:
10: ẽit+1 = C(pit −∆i

t) . iConEF-v1
11: else:
12: ẽit+1 = Q(pit −∆i

t) . iConEF-v2
13: end if
14: qit+1 = C(pit −∆i

t − ẽit+1)
15: end for
16: end for

In this subsection, we show that when Q (or
C) is accurate, the dependence on θ (resp. δ)
in Theorem 1 can be improved. The basic
idea is to apply contractive error feedback
on top of contractive error feedback such
that the compression error can be further re-
duced. The resultant algorithm, improved
ConEF (iConEF), is summarized in Alg. 3.
Depending on whether C orQ is used twice,
there are two versions of iConEF as marked
in lines 9 – 13.
Equipping with an accurate C with θ < 1,
the compression error can be reused to re-
tain performance. Mathematically, this error
pit −∆i

t − ẽit+1 is once again compressed
and added back to pit+1 in the next iteration
to reduce the variance of (ẽit+1 + qit+1); see
(20). However, this approach might require
to store both ẽit+1 and qit+1, thus less efficient in terms of memory consumption compared to Alg.
2 with the exception of cases where C is a linear compressor such as count sketch.
Theorem 2. Suppose that Assumption 3 holds with 0 ≤ θ < 1. Given Assumptions 1, 2 and 4, and
choosing η = O

(
1

L(
√
T/N+T 1/3)

)
, iConEF-v1 guarantees that

1

T

T−1∑
t=0

E
[
‖∇f(xt)‖2

]
≤ O

(
L
(
f(x0)− f∗

)
+ (σ2 +G2)√

NT

)
+O

(
δθ2(σ2 +G2)√

NT

)
.

The θ2 in the last term tightens Theorem 1 showcasing the benefit of the third compressor. Examples
of an accurate C satisfying 0 ≤ θ < 1 include quantization working in “dense regime” (Alistarh

4

Under review as a conference paper at ICLR 2022

et al., 2017). In particular, when the quantization level is chosen as s = 2
√
d, we have θ = 1

4 . Note
also that it is possible to encode a compressed vector with less than 3.44d+ 32 bits (Alistarh et al.,
2017, Lemma A.6). This means the memory reduction is almost 90%. Another example is natural
compression that can offer at least 3.5x memory saving with θ ≤ 1

8 (Horvath et al., 2019).

Similarly, when Q satisfies Assumption 4, which amounts to most of commonly adopted biased
gradient compressors with δ < 1, the dependence on δ can be improved through iConEF-v2.
Theorem 3. Suppose that Assumptions 1 – 4 hold. Choosing η = O

(
1

L(
√
T/N+T 1/3)

)
, iConEF-v2

guarantees that

1

T

T−1∑
t=0

E
[
‖∇f(xt)‖2

]
≤ O

(
L
(
f(x0)− f∗

)
+ (σ2 +G2)√

NT

)
+O

(
δ2θ(σ2 +G2)√

NT

)
.

4 A CLOSER LOOK AT ERROR COMPRESSORS

Previous sections have coped with contractive error feedback in its general form. In what follows,
we will discuss the error compressor C in detail to gain more insights and practical guidances.

4.1 GENERALIZATION PROPERTIES

The merits of an unbiased C over a biased one come from generalization properties. To see this
point, consider overparameterized least square problems (Wilson et al., 2017) as an example

min
x
f(x) :=

1

2
‖Ax− y‖2 (3)

where A ∈ Rn×d with d � n is the data matrix and y ∈ Rd denotes the labels. Since d is larger
than the number of data samples n, this overparameterized problem has multiple global minima with
zero loss collected in the set X ∗ := {x|f(x) = 0}. Define R(X) as the range of X. Given the
fact that any stochastic gradient of (3) lies in R(A>), it is straightforward that SGD converges to a
point inR(A>) when initialized well. It is further shown that the solution SGD converges to has the
smallest norm among X ∗, i.e., x∗ = arg minx∈X∗ = A>(AA>)−1y. This x∗ is also known as the
maximum margin solution, which leads to potential generalization benefits (Valiant, 1984; Cortes
& Vapnik, 1995). In fact, for problem (3), if the iterates of a converging algorithm lie in R(A>),
finding the maximum margin solution is ensured (Karimireddy et al., 2019, Lemma 9).

EFSGD converges to a point that is sufficiently close to R(A>) (Karimireddy et al., 2019). This
gives the potential generalization benefit when adopting biased gradient compressors Q compared
with e.g., sign-SGD (Bernstein et al., 2018a;b). Next, we show that such a generalization merit is
maintained in Alg. 2 and its variants when C is unbiased.
Theorem 4. If Assumptions 1 - 4 hold, initialized at x0 ∈ R(A>), ConEF ensures E

[
xt −

1
N

∑
i e
i
t

]
∈ R(A>); moreover, iConEF-v1 and v2 guarantee E

[
xt− 1

N

∑
i q

i
t− 1

N

∑
i ẽ
i
t

]
∈ R(A>).

Note that for ConEF, we have ‖E[1
N

∑N
i=1 eit]‖2 ≤ E[‖ 1

N

∑N
i=1 eit‖2] = O(η2). This implies that

xt is close to the maximum margin solution at convergence. We are unable to obtain such a property
for a biased C. The potential generalization merits justify the unbiased choice for C.

4.2 CHOICES OF ERROR COMPRESSOR

Recall that a prudent error compressor C for ConEF should: i) satisfy Assumption 3; and, ii) have a
lightweight implementation to avoid runtime overhead. Two representative examples, quantization
and count sketch, will be discussed in detail in this subsection.

4.2.1 QUANTIZATION

Quantization is a large family of compression schemes. For the ease of presentation, here we only
describe the basic version (Alistarh et al., 2017). Given s uniformly distributed quantization levels
in [0, 1], this approach quantizes the i-the entry of e as

C([e]i) = ‖e‖ · sign([e]i) · ξsi ([e]i) (4)

5

Under review as a conference paper at ICLR 2022

· · ·

w

v

log(i)
01234567

epoch
10 20 30 40

log(e
i)

5

4

3

2

1

log(i)
01234567

epoch
10 20 30 40

log(e
i)

5

4

3

2

1

(a) (b) (c)

Figure 1: (a) An illustration of count sketch compressing the first 4 entries of eit. A collision is at
[S]2,5 (index starts with 1); (b) magnitude of eit in EFSGD; (c) magnitude of eit in partial EFSGD.

where ξsi (·) is a random variable designed to ensure the unbiasedness of C([e]i). In particular, let
integer l ∈ [0, s] such that |[e]i|‖e‖ ∈ [ls ,

l+1
s], and then ξsi ([e]i) is set to l+1

s with probability |[e]i|‖e‖ s− l
and l

s otherwise. Assumption 3 is naturally satisfied according to the proposition below.
Proposition 1. (Alistarh et al., 2017) For any e, the quantization in (4) satisfies: i) E[C(e)] = e;
ii) E[‖C(e) − e‖2] ≤ min{ ds2 ,

√
d
s }‖e‖2; and, iii) there exists an encoding scheme that requires

Õ(s2 + s
√
d) bits in expectation to represent C(e).

When setting quantization level s = O(1), the memory saving is impressive since it only requires
O(
√
d) bits for a d-dimensional vector at the cost of additional implementation burden of e.g., Elias

encoding. Stochastic quantization is also suitable for the error compressor C in iConEF-v1 since it
can ensure θ < 1 when s = O(

√
d).

Other quantization approaches can also be applied as the error compressor. For instance, one can use
int-quantization (Mishchenko et al., 2021), where a fp32 number is compressed into int8 or int16;
and non-uniform quantization (Ramezani-Kebrya et al., 2021) is also a valid choice.

4.2.2 COUNT SKETCH

While quantization is straightforward to come up with, it relies on bit operations for compression
rather than working on float numbers directly. Therefore, we introduce count sketch (Charikar et al.,
2002) in this subsection, whose implementation is simply incrementing entries in a matrix.

Count sketch compresses a vector e by maintaining a matrix S of size v × w < d, i.e., C(e) := S.
Both v and w are chosen according to some desirable accuracy guarantees discussed shortly. Count
sketch relies on hash functions hi : {1, 2, . . . , d} 7→ {1, 2, . . . , w} and random sign functions
si : {1, 2, . . . , d} 7→ {+1,−1} in i-th row of S. Count sketches leverage [e]p to update each
row i of S by incrementing hi(p)-th column by si(p)[e]p. Compression of e can be obtained by
updating S with {(p, [e]p)}dp=1; see Fig. 1 (a). To decompress and estimate [e]p from S, one needs
to calculate Median(si(p) · [S]i,hi(p),∀i). Replacing median with mean also works, but typically
median performs better. Count sketch satisfies Assumption 3 as shown in the following proposition.
Proposition 2. (Charikar et al., 2002) Count sketch is unbiased, i.e., E[C(e)] = e. With w = Θ(1

ε2)

and v = Θ(log d
p), count sketch ensures ‖e− C(e)‖∞ ≤ ε‖e‖ with probability at least 1− p.

Proposition 2 (Spring et al., 2019) suggests that count sketch is unbiased. Using inequality ‖a‖∞ ≤
‖a‖ ≤

√
d‖a‖∞, it is not difficult to verify ‖e− C(e)‖ ≤ ε

√
d‖e‖. Although count sketch satisfies

a high probability variant of Assumption 3 with θ = ε2d, it works well in our experimental studies
with the recommendation of v = 1 or v = 3. Hence, this error compressor is more practical
relative to the theoretical bounds. Another useful property of count sketch is the linearity, i.e.,
C(e1 + e2) = C(e1) + C(e2). This is helpful since i) it opens the possibility to squeeze ẽt+1 and
qt+1 in iConEF-v1 to further reduce the memory consumption by adding these two count sketches;
and ii) it eases error reset (Basu et al., 2019; Xie et al., 2020), which synchronizes the local errors
every a few iterations among all workers. The second merit is because count sketch is small in size
and allreducable, and more on this can be found in Apdx. G.4.
Empirically, count sketch performs best when the compressed vector follows power law1. We train
ResNet18 on CIFAR10, and plot the magnitude of eit on the first worker at the end of epochs

1The magnitude-index plot is roughly a line in log-log scale.

6

Under review as a conference paper at ICLR 2022

Table 1: β vs. sketch size for convergence
β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

smallest sketch size 0.9 0.8 0.7 0.6 0.4 0.4 0.3 0.2 0.1

{10, 20, 30, 40} in Fig. 1(b). It is observed that power law is not satisfied. However, in Fig. 1(c)
we find that the error vectors in a variant of EFSGD, termed partial EFSGD (Abdi & Fekri, 2020)
(see Alg. 4 in Apdx. F due to space limitation), follow broken power law, that is, a piece-wise linear
function in the log-log plot. Partial EFSGD adds part of the compression error, i.e., (1 − β)eit for
β ∈ [0, 1), to stochastic gradients before compressing. As we shall see in numerical experiments,
the update in partial EFSGD is helpful to save more memory when working with count sketch.

5 NUMERICAL RESULTS

In this section, experimental studies are carried out to validate the proposed algorithms. Since our
major goal is to push the limit of memory saving, we will mostly focus on ConEF, and experi-
ments of iConEF can be found in Apdx. G.4. Overall, the experiments are designed to answer
three research questions (RQs): 1) how should we choose hyperparameters in ConEF. Since quan-
tization is well-known in community, we put more efforts on the less understood count sketch; 2)
when the gradient is aggressively compressed, how much memory can be saved; and, 3) how will
the proposed method perform on different learning tasks. Although allreducable gradient compres-
sors are advocated, we also include numerical results for scaled-sign, which requires AllGather for
communication, to mimic parameter-server scenarios in RQ1. Testing various gradient compres-
sors is also helpful to demonstrate the generality of ConEF. We follow common practice where
both gradient and error compressors are applied in their layerwise form. Our implementation uti-
lizes torch.DistributedDataParallel so that the bucket trick can be leveraged to overlap
gradient computation and communication, and NCCL is chosen as communication backend.

5.1 RQ1: GUIDANCE ON HYPERPARAMETER CHOICE

In this subsection, we focus on the parameter choices of count sketch and quantization in ConEF us-
ing scaled-sign gradient compressor Q(g) = ‖g‖1

d sign(g) as an example. About 97% communi-
cation overhead can be reduced. As AllGather is required for communication, the peak memory
consumption is increased. Such a gradient compressor is adopted to simulate the parameter-server
setting, where there is enough memory capacity on the server side. We test this setting with 4 GPUs
on an Amazon EC2 p3.8xlarge instance, where more implementation details are put into Apdx. G.1
given the page limitation. When using allreducable gradient compressors, the general guidance for
parameter choices is similar, although the numbers might change; see Apdx. G.1 for additional illus-
tration of this point. Most of experiments are tested on CIFAR10,2 which consists of 60000 32x32
images in 10 classes with 50000 training samples and 10000 test ones. Standard data augmentation
and preprocessing techniques are employed (He et al., 2016).
We start with comparing contractive error feedback for vanilla and partial EFSGD using count
sketches. With v = 1, the sketch size has to be 0.95x model size to ensure a good convergence
for compressing the error vector in vanilla EFSGD. On the other hand, the error vector of partial
EFSGD follows the broken power law, and hence is more suitable for count sketches. We list the
choice of β and the smallest sketch size for convergence in Table. 1. Note that only {0.9, 0.8, 0.7,
0.6, 0.5, 0.4, 0.3, 0.2, 0.1} are tested, though there is no barrier to choose other values. It is observed
that a larger β leads to more saved memory. This is possibly because that a larger β helps to suppress
the error accumulation in count sketches; see Apdx. F.

Next we focus on choices for v and w in count sketches. We implement the partial EFSGD variant

0 30 60 90 120 150
epoch

70

80

90

100

te
st

 a
cc

ur
ac

y

v=1, w=0.6xSize
v=3, w=0.2xSize

Figure 2: ConEF with different
count sketches.

of ConEF (see Alg. 4 in Apdx. F) with memory budget as 0.6x
model size. Two specific sketches, v = 1, w = 0.6x model size
and v = 3, w = 0.2x model size, are tested. It can be seen in
Fig. 2 that the first sketch with v = 1 performs better. This sug-
gests that a larger w, leading to less collision of hash functions, is
more numerically beneficial compared with an increased v. Simi-
lar observations also appear on allreducable compressors. Hnece,
v = 1 is adopted in most of our experiments.

2https://www.cs.toronto.edu/ kriz/cifar.html

7

Under review as a conference paper at ICLR 2022

0 30 60 90 120 150
epoch

10 3

10 2

10 1

tra
in

 lo
ss

SGD
QSGD
EFSGD
ConEF-Q16
ConEF-Q8
ConEF-CS

0 30 60 90 120 150
epoch

87

88

89

90

91

92

93

94

te
st

 a
cc

ur
ac

y

SGD
QSGD
EFSGD
ConEF-Q16
ConEF-Q8
ConEF-CS

0 30 60 90 120 150
epoch

10 3

10 2

10 1

tra
in

 lo
ss

SGD
EFSGD
ConEF-CS

0 30 60 90 120 150
epoch

87

88

89

90

91

92

93

94

te
st

 a
cc

ur
ac

y

SGD
EFSGD
ConEF-CS

Figure 3: Performance of ConEF on ResNet18 and MobileNetv2. From left to right: (a) train loss
and (b) test accuracy on ResNet18; and (c) train loss and (d) test accuracy on MobileNetv2.

After clarifying the parameter choices, the effectiveness of ConEF in parameter-server settings is
tested with ResNet18 on CIFAR10 for 150 epochs as shown in Fig. 3. The detailed parameter
choices are deferred to Apdx. G.1. We use ConEF-CS, ConEF-Q16 and ConEF-Q8 to denote
Alg. 2 with error compressors C being count sketch, 16-level quantization, and 8-level quantization,
respectively. Note that when C is a stochastic quantizer, we follow common practice to replace the
`2 norm in (4) with max-norm for superior performance (Alistarh et al., 2017). It is observed that
on ResNet18, ConEF-Q16 achieves a test accuracy that is almost the same as SGD and EFSGD,
demonstrating EFSGD uses unnecessary memory. On the other hand, 44Mb is saved on a 50Mb
model with count sketch, while only incurring a slight drop of 0.24 on test accuracy compared
with SGD. To further validate the potential of ConEF in smart phone based applications, we test
MobileNetv2 (Sandler et al., 2018), a more tailored model for the targeted setting. We set w = 0.1x
model size to save 8Mb on a 14Mb model compared with EFSGD, while almost losing no test
accuracy. Another interesting observation is that the convergence of ConEF-CS tends to be faster in
the first 80 epochs before decreasing the learning rate. This might be useful in federated learning
with IoT devices where each worker may not participate in training for too many iterations.

5.2 RQ2: MEMORY SAVING WITH AGGRESSIVELY COMPRESSED GRADIENTS

Next we focus on allreducable gradient compressors. We use 16 GPUs on 4 Amazon EC2 p3.8xlarge
instances for experiments.

To investigate the performance of ConEF under aggressively compressed gradients, powerSGD is
selected (Vogels et al., 2019). PowerSGD finds a rank-r approximation to the gradient matrix G. It
is allreducable and different levels of communication efficiency can be achieved by tuning r. This
is a challenging setting for ConEF given that i) the performance of the heuristic powerSGD highly
depends on eit, and ii) eit plays a more important role when the gradient is aggressively compressed.

ResNet18 is trained on CIFAR10 with r = 4 in powerSGD, which reduces 98.5% communication
overhead. Unlike (Vogels et al., 2019), a small batchsize, e.g., 16 per worker, is considered here for
reducing memory requirement (Krause et al., 2016). Mixed precision trick is also adopted to facil-
itate memory saving, where we use fp16 numbers on count sketches instead of fp32 (Micikevicius
et al., 2018). Two more benchmarks are compared with. qSGD (Vogels et al., 2019): SGD with an
unbiased and allreducable gradient compressor that has the same communication overhead as pow-
erSGD. In particular, the gradient matrix G ∈ Rn×m is approximated by (GU)U> for a random
matrix U ∈ Rm×r. Small-sized matrices GU and U> are communicated. We term such a scheme
as qSGD to distinguish it with QSGD (Alistarh et al., 2017). Another benchmark is hEFSGD, which
is a heuristic method by keeping the top-k elements of eit in EFSGD for memory saving.

The results can be found in Fig. 4, where we mark the percentage of saved memory with ConEF in
the figure legend. There are several observations. ConEF-CS has a similar runtime as EFSGD, and

0 1000 2000 3000 4000 5000
runtime (s)

60

70

80

90

100

te
st

 a
cc

ur
ac

y

SGD
qSGD
EFSGD
hEFSGD 60%
ConEF-CS 60%
ConEF-CS 90%

Figure 4: ConEF with a pow-
erSGD gradient compressor.

both are 10% faster than SGD. This demonstrates the benefit of
reduced communication overhead in distributed training. ConEF-
CS significantly outperforms qSGD, which confirms the necessity
of additional memory to enable a good convergence in memory
constraint setting with small batchsizes. When 60% memory is
saved, ConEF-CS also outperforms hEFSGD by a large margin in
terms of both runtime and test accuracy, validating the general-
ization merits of an unbiased error compressor (cf. Theorem 4).
ConEF-CS has a comparable performance with EFSGD, and more
saved memory leads to larger accuracy loss.

8

Under review as a conference paper at ICLR 2022

0 500 1000 1500 2000 2500 3000
runtime (s)

60

70

80

90

100

te
st

 a
cc

ur
ac

y
SGD
rbSGD
EFSGD
ConEF-CS 60%
ConEF-CS 90%

2200 2400
92.5

0 2000 4000 6000 8000
runtime (s)

60

70

80

90

100

te
st

 a
cc

ur
ac

y

SGD
rbSGD
EFSGD
ConEF-CS 60%
ConEF-CS 90%

3500 4000

94

96

0 5000 10000 15000 20000 25000
runtime (s)

100

110

120

130

140

te
st

 p
er

pl
ex

ity

SGD
rbSGD
EFSGD
ConEF-CS 60%
ConEF-CS 80%

Figure 5: Performance of ConEF with an unscaled random block gradient compressor on: ResNet-
18, WideResNet-28-10, and LSTM (left to right).

5.3 RQ3: MEMORY SAVING ON VARIOUS LEARNING TASKS

In this subsection, ConEF is tested on different learning tasks. The unscaled random block gradient
compressor is adopted, where a continuous block of k coordinates are chosen in a uniformly ran-
dom fashion to improve 90% communication efficiency. When using the same random seed among
GPUs, AllReduce is readily applied. Such a gradient compressor is more suitable for ConEF, since
the error vector eit has d − k zeros. Three different training tasks are considered: i) ResNet-18 on
CIFAR10; ii) WideResNet-28-10 on CIFAR10; and iii) LSTM for language modeling on Wikitest-2
(Merity et al., 2016). To demonstrate the necessity of additional memory, an unbiased variant of ran-
dom block gradient compressor enabled by scaling with importance sampling is also implemented.
We term the corresponding method as rbSGD. A setting with small batchsizes is still the main focus
here, and the results can be found in Fig. 5.

On ResNet-18, it is observed that EFGSD and ConEF save 22% and 21% training time compared
with SGD. The percentage of time saving improves over powerSGD even with a smaller compres-
sion ratio here. This is because more time is spent on the complicated encoding in powerSGD. It
is observed that ConEF significantly outperforms rbSGD, once again demonstrating the need of ad-
ditional memory when training with a small batchsize of 16. Compared with EFSGD, ConEF-CS
drops 0.04 and 0.5 on test accuracy to save 60% and 90% memory, respectively.

For WideResNet-28-10, EFSGD and ConEF are 49.0% and 48.6% faster than SGD. Algorithms
with (contractive) error feedback again considerably outperform rbSGD. EFSGD does not catch up
with the test accuracy of ConEF-CS with 60% memory saving at a difference of 0.6, suggesting that
EFSGD consumes memory inefficiently. ConEF-CS with 90% memory saving only drops 0.1 test
accuracy compared with EFSGD. In light of the results on ResNet-18, a larger model (WideResNet)
appears to be more robust when used jointly with contractive error feedback.

Next we focus on language modeling with LSTM on WikiText-2. All tested algorithms reduce about
78% training time of SGD. rbSGD fails to match the performance of both ConEF-CS and EFSGD.
When 60% memory is saved, ConEF-CS has a 0.3 lower perplexity compared to EFSGD. ConEF-CS
with 80% memory saved performs slightly worse than EFSGD with 0.2 higher test perplexity.

We also train a transformer for machine translation on Multi30K (Elliott et al., 2016) in Apdx. G.
Adam based heuristic methods with (contractive) error feedback are adopted. In such a case, even
90% memory saved ConEF-CS has a slightly better performance than EF-Adam.

0 30 60 90 120 150
epoch

80

85

90

95

te
st

 a
cc

ur
ac

y

EFSGD
ConEF
iConEF-v1
iConEF-v2

120 140

92.5

93.0

Figure 6: iConEF with a ran-
dom k gradient compressor.

Additional experiments. Performance of iConEF-v1 and v2 can be
found in Fig. 6. In this experiment, another allreducable gradient
compressor, unscaled random-k, is adopted to reduce 90% commu-
nication. Both versions of iConEF outperform ConEF, validating
our findings in Theorems 2 and 3. Due to space limitation, more im-
plementation details and numerical results regarding random-k gra-
dient compressor are deferred to Apdx. G.4, where we observe that
ConEF can reduce 95% additional memory of EFSGD on ResNet18.

6 CONCLUSION AND FUTURE WORK

Contractive error feedback (ConEF) is introduced to alleviate memory concerns in communication
efficient methods. The key insight is that the error vector can be compressed and an effective error
compressor, such as count sketch, saves memory with almost no accuracy drop. ConEF is tested
on various image classification and language processing tasks, reducing 80% − 90% of additional
memory footprint in EFSGD. Our next step will focus on saving memory more aggressively.

9

Under review as a conference paper at ICLR 2022

ETHICS STATEMENT

The main topic of this work is speeding up distributed training on devices with limited memory.
Since this work focuses on an algorithmic perspective, the impact would be mainly scientific rather
than ethical.

REPRODUCIBILITY STATEMENT

All missing proofs can be found in Appendix. Detailed choices for hyperparameters and additional
experiments are deferred to Appendix G due to space limitation, and publicly available code will be
provided after review process to ensure anonymity.

REFERENCES

Afshin Abdi and Faramarz Fekri. Quantized compressive sampling of stochastic gradients for effi-
cient communication in distributed deep learning. In Proc. of the AAAI Conf. on Artificial Intelli-
gence, volume 34, pp. 3105–3112, 2020.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quantization and encoding. Proc. of Neural Infor-
mation Processing Systems, 30:1709–1720, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Kririrat, Nikola Konstantinov, and Cedric
Renggli. The convergence of sparsified gradient methods. Proc. of Neural Information Processing
Systems, pp. 5973–5983, 2019.

Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-SGD: Distributed sgd
with quantization, sparsification and local computations. Proc. of Neural Information Processing
Systems, 32, 2019.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signSGD: Compressed optimization for non-convex problems. In Proc. of Intl. Conf. on Machine
Learning, pp. 560–569. PMLR, 2018a.

Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, and Anima Anandkumar. signSGD with
majority vote is communication efficient and fault tolerant. In Proc. of Intl. Conf. on Learning
Representations, 2018b.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. In
Intl. Colloquium on Automata, Languages, and Programming, pp. 693–703. Springer, 2002.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. In Proc. of Intl. Conf.
on Learning Representations, 2020.

Desmond Elliott, Stella Frank, Khalil Sima’an, and Lucia Specia. Multi30k: Multilingual english-
german image descriptions. In Proc. of the 5th Workshop on Vision and Language, pp. 70–74.
Association for Computational Linguistics, 2016.

Fartash Faghri, Iman Tabrizian, Ilia Markov, Dan Alistarh, Daniel M Roy, and Ali Ramezani-
Kebrya. Adaptive gradient quantization for data-parallel SGD. Proc. of Neural Information
Processing Systems, 33:3174–3185, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 770–778,
2016.

10

Under review as a conference paper at ICLR 2022

Samuel Horváth and Peter Richtárik. A better alternative to error feedback for communication-
efficient distributed learning. arXiv preprint arXiv:2006.11077, 2020.

Samuel Horvath, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, and Peter
Richtárik. Natural compression for distributed deep learning. arXiv preprint arXiv:1905.10988,
2019.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback fixes
signSGD and other gradient compression schemes. In Proc. of Intl. Conf. on Machine Learning,
pp. 3252–3261. PMLR, 2019.

Ben Krause, Liang Lu, Iain Murray, and Steve Renals. Multiplicative LSTM for sequence modelling.
arXiv preprint arXiv:1609.07959, 2016.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reduc-
ing the communication bandwidth for distributed training. In Proc. of Intl. Conf. on Learning
Representations, 2018.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. In Proc. of Intl. Conf. on Learning Representations, 2018.

Konstantin Mishchenko, Bokun Wang, Dmitry Kovalev, and Peter Richtárik. IntSGD: Floatless
compression of stochastic gradients. arXiv preprint arXiv:2102.08374, 2021.

Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan Wu, and Chuanx-
iong Guo. A generic communication scheduler for distributed dnn training acceleration. In Proc.
of ACM Symposium on Operating Systems Principles, pp. 16–29, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In Proc. Intl. Conf. for High Performance Computing,
Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. arXiv:2102.12092, 2021.

Ali Ramezani-Kebrya, Fartash Faghri, Ilya Markov, Vitalii Aksenov, Dan Alistarh, and Daniel M
Roy. NUQSGD: Provably communication-efficient data-parallel SGD via nonuniform quantiza-
tion. Journal of Machine Learning Research, 22(114):1–43, 2021.

Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. EF21: A new, simpler, theoretically better, and
practically faster error feedback. arXiv preprint arXiv:2106.05203, 2021.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and
its application to data-parallel distributed training of speech dnns. In Proc. of Annual Conf. of the
Intl. Speech Communication Association, 2014.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

Nimit Sharad Sohoni, Christopher Richard Aberger, Megan Leszczynski, Jian Zhang, and
Christopher Ré. Low-memory neural network training: A technical report. arXiv preprint
arXiv:1904.10631, 2019.

11

Under review as a conference paper at ICLR 2022

Ryan Spring, Anastasios Kyrillidis, Vijai Mohan, and Anshumali Shrivastava. Compressing gradient
optimizers via count-sketches. In Proc. of Intl. Conf. on Machine Learning, pp. 5946–5955.
PMLR, 2019.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory. Proc.
of Neural Information Processing Systems, 31:4447–4458, 2018.

Sebastian Urban Stich. Local SGD converges fast and communicates little. In Proc. of Intl. Conf.
on Learning Representations, number CONF, 2019.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. PowerSGD: Practical low-rank gradient
compression for distributed optimization. Proc. of Neural Information Processing Systems, 32:
14259–14268, 2019.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and Stephen
Wright. ATOMO: Communication-efficient learning via atomic sparsification. Proc. of Neural
Information Processing Systems, 31:9850–9861, 2018.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-
efficient distributed optimization. Proc. of Neural Information Processing Systems, 31:1299–
1309, 2018.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. TernGrad:
Ternary gradients to reduce communication in distributed deep learning. Proc. of Neural Infor-
mation Processing Systems, 30, 2017.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht. The
marginal value of adaptive gradient methods in machine learning. In Proc. of Neural Information
Processing Systems, pp. 4151–4161, 2017.

Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. Error compensated quantized sgd
and its applications to large-scale distributed optimization. In Proc. of Intl. Conf. on Machine
Learning, pp. 5325–5333. PMLR, 2018.

Cong Xie, Shuai Zheng, Oluwasanmi O Koyejo, Indranil Gupta, Mu Li, and Haibin Lin. CSER:
Communication-efficient SGD with error reset. Proc. of Neural Information Processing Systems,
33, 2020.

An Xu, Zhouyuan Huo, and Heng Huang. Step-Ahead Error Feedback for Distributed Training
with Compressed Gradient. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 10478–10486, 2021.

Hang Xu, Chen-Yu Ho, Ahmed M Abdelmoniem, Aritra Dutta, El Houcine Bergou, Konstantinos
Karatsenidis, Marco Canini, and Panos Kalnis. Compressed communication for distributed deep
learning: Survey and quantitative evaluation. Technical report, 2020.

Mingchao Yu, Zhifeng Lin, Krishna Narra, Songze Li, Youjie Li, Nam Sung Kim, Alexan-
der Schwing, Murali Annavaram, and Salman Avestimehr. Gradiveq: Vector quantization for
bandwidth-efficient gradient aggregation in distributed cnn training. Proc. of Neural Information
Processing Systems, 31:5123–5133, 2018.

Shuai Zheng, Ziyue Huang, and James Kwok. Communication-efficient distributed blockwise mo-
mentum SGD with error-feedback. Proc. of Neural Information Processing Systems, 32:11450–
11460, 2019.

12

Under review as a conference paper at ICLR 2022

Supplementary Document

A MISSING DETAILS

A.1 HOW GRADIENTS ARE COMMUNICATED

While the “aggregation” in line 7 of Alg. 1 is a highly abbreviated term, in practice (compressed)
gradients are communicated through AllReduce, AllGather, or parameter-server, among which allre-
ducable compressors are widely appreciated. In contrast to AllGather, AllReduce enjoys low com-
munication cost that is nearly independent of the number of workers (Vogels et al., 2019; Peng et al.,
2019). In addition, compressed gradients that are allreducable relieve runtime since it only needs to
be decoded once. In AllGather, a worker receives N compressed gradients that not only take addi-
tional space but also need to be decompressed individually. This has a negative impact on memory
and runtime scalability given the number of workers can be large Vogels et al. (2019). When com-
pared to parameter-server, AllReduce bypasses the need of double compression, where compression
is applied to the bidirectional communication of clients and server. Parameter-server structure can
also introduce communication congestion due to the centralized aggregation at the server side (Yu
et al., 2018).

A.2 BIASED GRADIENT COMPRESSORS ARE MORE SUITABLE FOR SMALL BATCHSIZES

Suppose that g is a stochastic approximation of ∇f(x) satisfying Assumption 2. We show that
compressors satisfying Assumption 4, typically biased, are more robust to the large variance (σ2) in
the small batchsize settings. Consider gradient compressorQ1 satisfying Assumption 4 with δ < 1.
The compression error of Q1 can be calculated as

E[‖Q1(g)− g‖2] ≤ δE[‖g‖2] ≤ δE[‖∇f(x)‖2] + δσ2. (5)

Let Q2 denote an unbiased compressor satisfying Assumption 3. Typically to get a good compres-
sion ratio, we have θ > 1. The compression error is bounded by

E[‖Q2(g)− g‖2] ≤ θE[‖g‖2] ≤ θE[‖∇f(x)‖2] + θσ2. (6)

Given θ > 1, the bound in (6) amplifies the variance; while the bound in (5) shrinks the variance.
Therefore, a contractive compressor satisfying Assumption 4, which is typically biased, is more
suitable for a small batchsize setting due to the large σ2. Although some of unbiased gradient
compressors, such as QSGD working in “dense regime” (Alistarh et al., 2017) and natural dithering
(Horvath et al., 2019), ensure θ < 1, unfortunately they are not allreducable, and hence are not
suitable for our setting.

Other works such as (Stich et al., 2018) also observe the variance blow-up in unbiased gradient
compressors.

A.3 APPLYING CONEF TO ZERO

ZeRO (Rajbhandari et al., 2020) can be used to address memory issues for training large models
in a distributed fashion. Mathematically, ZeRO is equivalent to Adam or other chosen optimizers,
while the memory issues are addressed by partitioning optimizer states, gradients, and even model
parameters among different workers. Here we consider the case of ZeRO3, where all aforementioned
parts are partitioned among different workers.

Being most memory efficient, ZeRO3 increases the communication overhead. Hence, it is helpful
to use gradient compression to speed up training. However, EF based approach cannot be applied
here due to the requirement of a model-sized local error vector that is burdensome to GPU memory.
In addition, because of the partitioned gradients, it is impossible to employ the memory trick in
(Ramesh et al., 2021) where one puts local error vector to gradient buffer to save space.

We believe ConEF is helpful to reduce the runtime of ZeRO3 while respect constraints on GPUs
memory. In this paper, we first demonstrate the feasibility and convergence of ConEF to clear up
the theoretical barrier of integrating ConEF to ZeRO3. The detailed implementation is left for future
work.

13

Under review as a conference paper at ICLR 2022

B PROOF OF THEOREM 1

Proof. For convenience, define the compression error of C on worker i as ζit = eit+1 − pit + ∆i
t.

Following Assumption 3, we have

E
[
ζit |pit,∆i

t

]
= 0, (7)

E
[
‖ζit‖2|pit,∆i

t

]
= E

[
‖C(pit −∆i

t)− pit+∆i
t‖2|pit,∆i

t

]
≤ θ‖pit −∆i

t‖2. (8)

Next, we rewrite local error eit+1 using ζit as

eit+1 = pit −∆i
t + ζit

(a)
= ηgit + eit −∆i

t + ζit

where (a) follows from pit = ηgit + eit. Then summing over N workers, we have

1

N

N∑
i=1

eit+1

=
η

N

N∑
i=1

git +
1

N

N∑
i=1

eit −
1

N

N∑
i=1

∆i
t +

1

N

N∑
i=1

ζit

(b)
=

η

N

N∑
i=1

git +
1

N

N∑
i=1

eit + xt+1 − xt +
1

N

N∑
i=1

ζit

where (b) is because 1
N

∑N
i=1 ∆i

t = ∆t = xt − xt+1. Rearranging the terms and define zt :=

xt − 1
N

∑N
i=1 eit, we arrive at

zt+1 = zt −
η

N

N∑
i=1

git −
1

N

N∑
i=1

ζit . (9)

The analysis will rely on (9). By Assumption 1, we have

f(zt+1)− f(zt) (10)

≤ 〈∇f(zt), zt+1 − zt〉+
L

2
‖zt+1 − zt‖2

= − 1

N

N∑
i=1

〈∇f(zt), ζ
i
t〉 −

η

N

N∑
i=1

〈∇f(zt),g
i
t〉+

L

2

∥∥∥ η
N

N∑
i=1

git +
1

N

N∑
i=1

ζit

∥∥∥2
= − 1

N

N∑
i=1

〈∇f(zt), ζ
i
t〉 −

η

N

N∑
i=1

〈∇f(zt)−∇f(xt),g
i
t〉

− η

N

N∑
i=1

〈∇f(xt),g
i
t〉+

L

2

∥∥∥ η
N

N∑
i=1

git +
1

N

N∑
i=1

ζit

∥∥∥2.
Given (7) and taking expectation w.r.t. the randomness ofQ, we arrive at E[ζit |pit] = E[ζit |git, eit] =
0. Then conditioning on xt and taking expectation w.r.t. the randomness of git, we have
E[ζit |xt, eit] = 0. Hence, we have

E
[
〈∇f(zt), ζ

i
t〉|xt, eit

]
= 〈∇f(zt),E[ζit |xt, eit]〉 = 0

⇒ E
[
〈∇f(zt), ζ

i
t〉
]

= 0. (11)

We also have

E
[
〈∇f(zt)−∇f(xt),g

i
t〉|xt, eit

]
= E

[
〈∇f(zt)−∇f(xt),∇f(xt)〉|xt, eit

]
.

14

Under review as a conference paper at ICLR 2022

Then taking expectation w.r.t. xt and eit, we have

−ηE
[
〈∇f(zt)−∇f(xt),g

i
t〉
]

= −ηE
[
〈∇f(zt)−∇f(xt),∇f(xt)〉

]
(12)

(c)

≤ η

2
E
[
‖∇f(xt)‖2

]
+
η

2
E
[
‖∇f(zt)−∇f(xt)‖2

]
(d)

≤ η

2
E
[
‖∇f(xt)‖2

]
+
ηL2

2
E
[∥∥∥ 1

N

N∑
i=1

eit

∥∥∥2]
(e)

≤ η

2
E
[
‖∇f(xt)‖2

]
+
η3L2

2

c

(1− c)λ (σ2 +G2)

where (c) is by Young’s inequality; (d) uses Assumption 1 and zt = xt− 1
N

∑N
i=1 eit; and (e) comes

from Lemma 1.

Next, we have

ηE
[
〈∇f(xt),g

i
t〉
]

= ηE
[
E
[
〈∇f(xt),g

i
t〉|xt

]]
= ηE

[
‖∇f(xt)‖2

]
. (13)

To proceed, we have

L

2
E
[∥∥∥ η
N

N∑
i=1

git +
1

N

N∑
i=1

ζit

∥∥∥2] (14)

≤ Lη2E
[∥∥∥ 1

N

N∑
i=1

git −∇f(xt) +∇f(xt)
∥∥∥2]+ LE

[∥∥∥ 1

N

N∑
i=1

ζit

∥∥∥2]
≤ Lη2E

[
‖∇f(xt)‖2

]
+ Lη2E

[∥∥∥ 1

N

N∑
i=1

git −∇f(xt)
∥∥∥2]+ LE

[∥∥∥ 1

N

N∑
i=1

ζit

∥∥∥2]
≤ Lη2E

[
‖∇f(xt)‖2

]
+
Lη2σ2

N
+ LE

[∥∥∥ 1

N

N∑
i=1

ζit

∥∥∥2]
≤ Lη2E

[
‖∇f(xt)‖2

]
+
Lη2σ2

N
+

1− c+ c/λ

1− c
2Lδθη2

N
(σ2 +G2)

where the last inequality comes from Lemma 2.

Taking expectation on both sides of (10), and plugging (11), (12), (13), and (14) in, we have

E
[
f(zt+1)− f(zt)

]
≤ (−η

2
+ Lη2)E

[
‖∇f(xt)‖2

]
+

c

(1− c)λ
L2η3(σ2 +G2)

2
+
η2σ2L

N
+

1− c+ c/λ

1− c
2δθη2L(σ2 +G2)

N
.

Rearranging the terms and dividing both sides with η, we arrive at

(
1

2
− Lη)E

[
‖∇f(xt)‖2

]
≤ E

[
f(zt)− f(zt+1)

]
η

+
c

(1− c)λ
L2η2(σ2 +G2)

2
+
ησ2L

N
+

1− c+ c/λ

1− c
2δθηL(σ2 +G2)

N
.

Summing over t, and using the facts z0 = x0 and f(zT) ≥ f∗, we arrive at

(
1

2
− Lη)

1

T

T−1∑
t=0

E
[
‖∇f(xt)‖2

]
≤
(
f(x0)− f∗

)
ηT

+
c

(1− c)λ
L2η2(σ2 +G2)

2
+
ησ2L

N
+

1− c+ c/λ

1− c
2δθηL(σ2 +G2)

N
.

15

Under review as a conference paper at ICLR 2022

Let η = min
{

1
4L ,

1

L(
√

T
N+T 1/3)

}
. In this case, we have 1

2 − Lη ≥ 1
4 , η ≤ (1

LT 1/3 and η ≤
√
N

L
√
T

.

Using these three inequalities, we have

1

4T

T−1∑
t=0

E
[
‖∇f(xt)‖2

]
≤ 4L

(
f(x0)− f∗)

T
+
L
(
f(x0)− f∗)√

NT
+
L
(
f(x0)− f∗)
T 2/3

+
c

(1− c)λ
σ2 +G2

2T 2/3
+

σ2

√
NT

+
1− c+ c/λ

1− c
2δθ(σ2 +G2)√

NT
.

If we consider a sufficiently large T , i.e, T > N3, we have
√
NT < T 2/3. Plugging this inequality

in and viewing both λ and c as constants, we have

1

T

T−1∑
t=0

E
[
‖∇f(xt)‖2

]
≤ O

(
L
(
f(x0)− f∗

)
√
NT

)
+O

(
σ2 +G2

√
NT

)
+O

(
δθ(σ2 +G2)√

NT

)
.

The proof is thus completed.

Lemma 1. Suppose that there exist c ∈ (0, 1) and λ > 0 such that δ = c
(1+λ)(1+

√
θ)2

. It is
guaranteed to have

E
[∥∥∥ 1

N

N∑
i=1

eit+1

∥∥∥2] ≤ c

(1− c)λη
2(σ2 +G2),∀t ≥ 0.

Proof. To start with, we have

E
[∥∥∥ 1

N

N∑
i=1

eit+1

∥∥∥2] =
1

N2
E
[∥∥∥ N∑

i=1

eit+1

∥∥∥2] ≤ 1

N

N∑
i=1

E
[
‖eit+1‖2

]
. (15)

Conditioning on git, the randomness only comes from two compressors.

E
[
‖eit+1‖2

∣∣git] = E
[
‖pit −∆i

t + ζit‖2|git
]

(16)
(a)

≤ (1 + α)E
[
‖pit −∆i

t‖2|git
]

+
(

1 +
1

α

)
E
[
‖ζit‖2|git

]
(b)

≤
(

1 + α+ θ +
θ

α

)
E
[
‖pit −∆i

t‖2|git
]

(c)

≤
(
1 +
√
θ
)2E[‖pit −∆i

t‖2|git
]

(d)

≤ δ
(
1 +
√
θ
)2E[‖pit‖2|git]

= δ
(
1 +
√
θ
)2E[‖ηgit + eit‖2|git

]
(e)

≤
(

1 +
1

λ

)
δ
(
1 +
√
θ
)2
η2‖git‖2 + (1 + λ)δ

(
1 +
√
θ
)2E[‖eit‖2|git]

where (a) is by Young’s inequality, i.e., ‖a + b‖2 ≤ (1 + α)‖a‖2 + (1 + 1
α)‖b‖2 with α > 0

to be specified shortly; (b) is the result of (8); (c) is by choosing α =
√
θ, which minimizes the

coefficient; (d) results from Assumption 4; and (e) follows again from Young’s inequality.

Then taking expectation w.r.t. git, we arrive at

E
[
‖eit+1‖2

]
≤
(

1 +
1

λ

)
δ
(
1 +
√
θ
)2︸ ︷︷ ︸

:=Bλ

η2E
[
‖git‖2

]
+ (1 + λ)δ

(
1 +
√
θ
)2︸ ︷︷ ︸

:=Aλ

E
[
‖eit‖2

]

16

Under review as a conference paper at ICLR 2022

Summing over i, we get

1

N

N∑
i=1

E
[
‖eit+1‖2

]
≤ Bλη

2

N

N∑
i=1

E
[
‖git‖2

]
+
Aλ
N

N∑
i=1

E
[
‖eit‖2

]
(17)

(f)

≤ Bλη
2(σ2 +G2) +

Aλ
N

N∑
i=1

E
[
‖eit‖2

] (g)

≤ Bλ
1−Aλ

η2(σ2 +G2).

where (f) follows from Assumption 2; and (g) is obtained by recursively unrolling
1
N

∑N
i=1 E

[
‖eit‖2

]
and using the fact that ei0 = 0. Given the parameter choice δ = c

(1+λ)(1+
√
θ)2

for some c ∈ (0, 1), we have Aλ = c and Bλ = c
λ . The proof can be completed by using (15).

Lemma 2. Choosing the parameters the same as those in Lemma 1, it is guaranteed to have

E
[∥∥∥ 1

N

N∑
i=1

ζit

∥∥∥2] ≤ 1− c+ c/λ

1− c
2δθη2(σ2 +G2)

N
.

Proof. Given (7), it is not hard to see that for i 6= j,

E
[
〈ζit , ζjt 〉|xt

]
= 0

which implies that

E
[∥∥∥ 1

N

N∑
i=1

ζit

∥∥∥2] =
1

N2

N∑
i=1

E
[
‖ζit‖2

]
. (18)

Then we have from (8) that

E
[
‖ζit‖2|pit,∆i

t

]
≤ θ‖pit −∆i

t‖2

Then taking expectation w.r.t. the randomness of Q, and by Assumption 4, we have

E
[
‖ζit‖2|pit

]
≤ δθ‖pit‖2 = δθ‖ηgit + eit‖2.

Finally, taking expectation w.r.t. pit, we have

E
[
‖ζit‖2

]
≤ δθE

[
‖ηgit + eit‖2

]
≤ 2δθη2E

[
‖git‖2] + 2δθE

[
‖eit‖2

]
.

Summing over i, we arrive at

1

N

N∑
i=1

E
[
‖ζit‖2

]
≤ 2δθη2

1

N

N∑
i=1

E
[
‖git‖2] + 2δθ

1

N

N∑
i=1

E
[
‖eit‖2

]
≤ 2δθη2(σ2 +G2) + 2δθ

c

(1− c)λη
2(σ2 +G2)

≤ 1− c+ c/λ

1− c 2δθη2(σ2 +G2)

where we use Assumption 2 and (17) in Lemma 1 simultaneously in the second last inequality. The
proof is completed by applying (18).

C PROOF OF THEOREM 2

The proof idea is to define eit+1 := ẽit+1+qit+1 and to view eit+1 as a single error compressor so that
we can reuse the proof of Theorem 1. To see this, define compression error as ζit = eit+1−pit+∆i

t.
Then we have

E
[
ζit |pit,∆i

t

]
= E

[
eit+1|pit,∆i

t

]
− (pit −∆i

t) (19)

= E
[
ẽit+1|pit,∆i

t

]
+ E

[
C(pit −∆i

t − ẽit+1)|pit,∆i
t

]
− (pit −∆i

t) = 0.

17

Under review as a conference paper at ICLR 2022

where the last equation uses the fact E
[
C(pit −∆i

t − ẽit+1)|pit,∆i
t, ẽ

i
t+1

]
= pit −∆i

t − ẽit+1. This
means that eit+1 is still an unbiased estimator of pit −∆i

t. However, by adding the compression
error back, the variance of ζit can be reduced, i.e.,

E
[
‖ζit‖2|pit,∆i

t

]
= E

[
‖ẽit+1 + C(pit −∆i

t − ẽit+1)− pit + ∆i
t‖2|pit,∆i

t

]
(20)

≤ θE
[
‖ẽit+1 − (pit −∆i

t)‖2|pit,∆i
t

]
= θE

[
‖C(pit −∆i

t)− (pit −∆i
t)‖2|pit,∆i

t

]
≤ θ2‖pit −∆i

t‖2.
Comparing with (8), one can see that θ dependence is indeed improved given an accurate C with
θ < 1. Next, we modify Lemmas 1 and 2 to finish the proof.
Lemma 3. Suppose that there exists c ∈ (0, 1) and λ > 0 such that δ = c

(1+λ)(1+θ)2 . It is
guaranteed to have

E
[∥∥∥ 1

N

N∑
i=1

eit+1

∥∥∥2] ≤ c

(1− c)λη
2(σ2 +G2),∀t ≥ 0.

Proof. The proof is basically the same as Lemma 1 except for using (20) rather than (8) in (16) to
tighten the bound. Hence, we only highlight the difference here.

E
[
‖eit+1‖2

∣∣git] = E
[
‖pit −∆i

t + ζit‖2|git
]

(21)

≤ (1 + α)E
[
‖pit −∆i

t‖2|git
]

+
(

1 +
1

α

)
E
[
‖ζit‖2|git

]
(a)

≤
(

1 + α+ θ2 +
θ2

α

)
E
[
‖pit −∆i

t‖2|git
]

(b)

≤
(
1 + θ

)2E[‖pit −∆i
t‖2|git

]
≤ δ
(
1 + θ

)2E[‖pit‖2|git]
= δ
(
1 + θ

)2E[‖ηgit + eit‖2|git
]

(e)

≤
(

1 +
1

λ

)
δ
(
1 + θ

)2
η2‖git‖2 + (1 + λ)δ

(
1 + θ

)2E[‖eit‖2|git]
where in (a) we uses (20); (b) chooses α = θ.

Lemma 4. Choosing parameters the same as those in Lemma 3, it is guaranteed to have

E
[∥∥∥ 1

N

N∑
i=1

ζit

∥∥∥2] ≤ 1− c+ c/λ

1− c
2δθ2η2(σ2 +G2)

N
.

Proof. The proof is exactly the same as Lemma 2 except for using (20) rather than (8). Hence it is
omitted here.

Proof of Theorem 2. The rest of proof is the same as Theorem 1, except for i) applying Lemma 3
in (12); and ii) applying Lemma 4 in (14).

D PROOF OF THEOREM 3

Proof. The basic idea is again to define eit+1 = ẽit+1 + qit+1 and to view eit+1 as a single error
compressor so that we can reuse the proof of Theorem 1. Applying (Horváth & Richtárik, 2020,
Theorem 3), we have eit+1 is unbiased with bounded variance. In particular, we have

E
[
eit+1 − (pit −∆i

t)|pit,∆i
t

]
= E

[
(ẽit+1 + qit+1)− (pit −∆i

t)|pit,∆i
t

]
= 0 (22)

E
[
‖eit+1 − (pit −∆i

t)‖2|pit,∆i
t

]
= E

[
‖(ẽit+1 + qit+1)− (pit −∆i

t)‖2|pit,∆i
t

]
(23)

≤ δθ‖pit −∆i
t‖2.

18

Under review as a conference paper at ICLR 2022

Therefore, we can reuse the derivation in Theorem 1. The only change we need is to modify Lemmas
1 and 2 to Lemmas 5 and 6, respectively. After applying these modified lemmas, Theorem 3 directly
follows.

Lemma 5. Suppose that there exists c ∈ (0, 1) and λ > 0 such that δ = c
(1+λ)(1+

√
θ)2

. It is
guaranteed to have

E
[∥∥∥ 1

N

N∑
i=1

eit+1

∥∥∥2] ≤ c

(1− c)λη
2(σ2 +G2),∀t ≥ 0.

Proof. The proof is basically the same as Lemma 1, hence we only highlight the different steps in
(16) here. Define ζit = eit+1 − pit + ∆i

t, we have

E
[
‖eit+1‖2

∣∣git] = E
[
‖pit −∆i

t + ζit‖2|git
]

(24)

≤ (1 + α)E
[
‖pit −∆i

t‖2|git
]

+
(

1 +
1

α

)
E
[
‖ζit‖2|git

]
(a)

≤
(

1 + α+ δθ +
δθ

α

)
E
[
‖pit −∆i

t‖2|git
]

(b)

≤
(
1 +
√
δθ
)2E[‖pit −∆i

t‖2|git
]

(c)

≤
(
1 +
√
θ
)2E[‖pit −∆i

t‖2|git
]

where (a) is the result of (23); (b) is by choosing α =
√
δθ; and (c) follows from δ < 1.

Lemma 6. Choosing the parameters the same as those in Lemma 5, it is guaranteed in iConEF-v2
to have

E
[∥∥∥ 1

N

N∑
i=1

ζit

∥∥∥2] ≤ 1− c+ c/λ

1− c
2δ2θη2(σ2 +G2)

N
.

Proof. The proof is almost the same as that of Lemma 2, hence we only highlight the differences.

From (23), we have

E
[
‖ζit‖2|pit

]
≤ δ2θ‖pit‖2 = δ2θ‖ηgit + eit‖2.

Finally, taking expectation w.r.t. pt, we have

E
[
‖ζit‖2

]
≤ δ2θE

[
‖ηgit + eit‖2

]
≤ 2δ2θη2E

[
‖git‖2] + 2δ2θE

[
‖eit‖2

]
≤ 1− c+ c/λ

1− c 2δ2θη2(σ2 +G2).

where we use Assumption 2 and Lemma 5 simultaneously in the last inequality With this modifica-
tion, Lemma 6 follows directly.

E PROOF OF THEOREM 4

We focus on ConEF. The proofs for iConEF-v1 and iConEF-v2 follow the same steps (simply by
defining eit+1 = ẽit+1 + qit+1) and hence are omitted here. Recall that in (9) we have zt+1 =

zt − η
N

∑N
i=1 git − 1

N

∑N
i=1 ζ

i
t with zt = xt − 1

N

∑N
i=1 eit. This implies that

xt+1 −
1

N

N∑
i=1

eit+1 = xt −
1

N

N∑
i=1

eit −
η

N

N∑
i=1

git −
1

N

N∑
i=1

ζit .

19

Under review as a conference paper at ICLR 2022

Conditioned on {xt, {eit}i, {git}i} := Pt and only take expectation w.r.t. the randomness of C, we
have

E
[
xt+1 −

1

N

N∑
i=1

eit+1|Pt
]

= E
[
xt −

1

N

N∑
i=1

eit −
η

N

N∑
i=1

git

∣∣∣Pt]− E
[1

N

N∑
i=1

ζit

∣∣∣Pt]
= E

[
xt −

1

N

N∑
i=1

eit −
η

N

N∑
i=1

git

∣∣∣Pt].
Then we further take expectation w.r.t. Pt and unroll E

[
xt − 1

N

∑N
i=1 eit

]
, we can get

E
[
xt+1 −

1

N

N∑
i=1

eit+1

]
= x0 − ηE

[t∑
τ=0

1

N

N∑
i=1

giτ

]
.

Given that x0 ∈ R(A>), and git ∈ R(A>),∀t, it is straightforward to see that E
[
xt+1 −

1
N

∑N
i=1 eit+1

]
∈ R(A>). Hence the proof is completed.

F PARTIAL CONEF/EFSGD

To utilize memory in the most efficient manner when adopting count sketches as the error com-
pressor, we introduce a variant ConEF, termed partial ConEF in Alg. 4. Partial ConEF is adapted
from partial EFSGD (Abdi & Fekri, 2020), which can be recovered when C in line 9 is an identity
mapping. The main difference with ConEF is the introduction of the scaler β ∈ [0, 1), highlighted
in blue. Partial EFSGD/ConEF adds part of the compression error, i.e., (1− β)eit, to the stochastic
gradient before compressing; see line 5. The remained local error βeit is kept and included in the
update of eit+1 in line 9 for the use of next iteration. The convergence of partial ConEF is straight
forward when combining our proof with (Abdi & Fekri, 2020).

Algorithm 4 Partial EFSGD / partial ConEF
1: Initialize: x0 ∈ Rd, ei0 = 0 ∈ Rd,∀i, η, β ∈ [0, 1)
2: for t = 0, 1, . . . , T − 1 do
3: assert xt = xit for every worker i
4: for worker i = 1, . . . N in parallel do
5: pit = ηgit + (1− β)eit
6: ∆i

t = Q(pit)
7: ∆t = Aggregate(∆i

t,∀i)
8: xt+1 = xt −∆t

9: eit+1 = C(βeit + pit −∆i
t)

10: end for
11: end for

The partial ConEF update in line 9 is helpful when C is count sketch. In particular, we can rewrite
line 9 as eit+1 = C(eit − (1− β)eit + pit −∆i

t). This means that the compression error in eit is also
scaled down or subtracted. This is helpful for suppressing the accumulation of compression error.

Partial ConEF benefits from the linearity of count sketch since the decompression of eit can be
avoided when updating eit+1 in line 9. One can simply compress pit−∆i

t and add it to the scaled eit.
Moreover, auxiliary variables in global memory can be avoided by taking advantage of the shared
memory of the GPU. Compared to a nonlinear error compressor C, count sketch further reduces the
burden on runtime.

G MORE ON NUMERICAL EXPERIMENTS

20

Under review as a conference paper at ICLR 2022

Table 2: β vs. sketch size for convergence for unscaled random block k gradient compressor
β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

smallest sketch size − 0.9 0.9 0.8 0.7 0.5 0.3 0.3 0.1

0 30 60 90 120 150
epoch

70

80

90

100

te
st

 a
cc

ur
ac

y

column
row

Figure 7: ConEF with row or
column hashes has similar per-
formance.

Experiments are repeated 3 times and averaged results are re-
ported. In the implementation of count sketches, the tensor trick
can be employed to avoid computing too many hashes, which im-
proves the runtime. In the tensor trick, instead of using element-
wise compressing, we view the error vector as a matrix, and treat
one row or column as an “entry” of the compressed vector, result-
ing in a tensor sketch (matrix when v = 1). More specifically,
suppose the error vector lives in Rd, whose matrix view is Rn×m
with d = mn. It takes n (resp. m) hash computation in a row-
(resp. column-) tensor trick, whilemn hashes are needed without
this trick. Differences on test accuracy between row- or column-based tensor tricks are not observed;
see Fig. 7.

G.1 PARAMETER CHOICES FOR RQ1

Experiments in this subsection is carried out using a single Amazon EC2 p3.8xlarge instance with 4
GPUs. The goal here is to simulate a parameter-server setting since we do not have a real testbed.

ResNet18 on CIFAR10. The model is trained for 150 epochs with weight decay 10−4 and momen-
tum 0.9. We decrease the learning rate by a factor of 10 at epochs 80 and 120. Overall batchsize
128 (32 per worker). And the initial learning rate for SGD is tuned from {0.1, 0.075, 0.05, 0.025},
with final choice of 0.1. EFSGD, ConEF, and QSGD use the same learning rate. In ConEF-CS we
use β = 0.9.

MobileNetV2 on CIFAR10. The model is trained for 150 epochs with weight decay 4 × 10−5

and momentum 0.9. We decrease the learning rate by a factor of 10 at epochs 80 and 120.
Overall batchsize is 128 (32 per worker). And the initial learning rate for SGD is tuned from
{0.1, 0.075, 0.05, 0.025}, with final choice of 0.1. The same learning rate is used for EFSGD and
ConEF. β = 0.9 is adopted in ConEF-CS.

Choices of β for allreducable gradient compressors. While the parameter guidances for scaled-
sign gradient compressor are discussed, we also include the choice of β and the smallest sketch size
for convergence in Table. 2 when the gradient compressor Q is unscaled random-block-k, which is
allreducable. We choose k such that 90% of communication overhead is reduced. Similar to scaled-
sign, it is observed that a larger β leads to more saved memory. Hence, we recommend to choose
β = 0.9 or even larger.

G.2 PARAMETER CHOICES FOR RQ2

The experiments are carried out using 4 Amazon EC2 p3.8xlarge instances (16 GPUs in total).

ResNet18 on CIFAR10. The model is trained for 150 epochs with weight decay 10−4 and momen-
tum 0.9. We decrease the learning rate by a factor of 10 at epochs 80 and 120. We focus on small
batchsize setting with 16 data sample per worker (256 in total). The initial learning rate for SGD is
tuned from {0.1, 0.075, 0.05, 0.025}, finally chosen as 0.1. EFSGD, ConEF, and hEFSGD use the
same learning rate. ConEF-CS with 60% memory saving uses β = 0.85; while its 90% memory
saving relies on β = 0.9.

G.3 PARAMETER CHOICES FOR RQ3

All experiments are carried out using 4 Amazon EC2 p3.8x large instances (16 GPUs in total).

ResNet18 on CIFAR10. We train this model for 120 epochs and decrease the learning rate by 10 at
epochs 60 and 100. Momentum is chosen as 0.9 and weight decay is set to 10−4. To save memory,
we focus on small batch setting with batchsize 16 per GPU (hence 256 in total). The learning rate
for SGD is tuned from {0.05, 0.1, 0.2}, and 0.2 is chosen. We use the same learning rate in EFSGD

21

Under review as a conference paper at ICLR 2022

Table 3: Numerical results for ResNet18
Algorithm test accuracy runtime (min) memory saving (MB)

SGD 93.20 54.83 -
rbSGD 86.58 40.12 48.2
EFSGD 92.52 40.41 0

ConEF 60% 92.53 42.45 31.5
ConEF 90% 92.02 42.45 44.1

Table 4: Numerical results for WRN-28-10
Algorithm test accuracy runtime (min) memory saving (MB)

SGD 96.12 139.70 -
rbSGD 82.92 70.88 122.1
EFSGD 95.28 71.13 0

ConEF 60% 96.00 72.11 76.2
ConEF 90% 95.23 71.98 101.5

and ConEF-CS. For ConEF-CS with 60% saved memory, we choose β = 0.9; and for ConEF-CS
with 90% memory saving we use β = 0.95. For rbSGD, we test step sizes from {0.05.0.1, 0.2} and
0.1 is chosen.

WideResNet28-10 on CIFAR10. The model is trained 150 epochs. Learning rate is decreased by
5 on epochs 50, 90, and 120. We set weight decay as 5 × 10−4 and momentum 0.9. Nesterov
momentum is also adopted. A small batchsize 16 per GPU (256 in total) is considered for memory
saving. The learning rate for SGD is tuned from {0.05, 0.1, 0.2}, where 0.1 performs the best.
EFSGD and ConEF-CS adopt the same learning rate. For ConEF-CS with 60% saved memory, we
choose β = 0.75; and for ConEF-CS with 90% memory saving we use β = 0.995. For rbSGD, we
test step sizes from {0.001, 0.005, 0.05.0.1} and 0.005 is the final choice.

LSTM on Wikitext-2. We use a 2-layer LSTM with 672 hidden units and 672-dimension word
embeddings. We set BPTT as 35, and clip the gradient norm to 0.25. The momentum is chosen
as 0.9, aided with Nesterov momentum as well. Dropout rate is chosen as 0.5. We also consider
a small batchsize setting, e.g., 2 per GPU (32 in total). The model is trained for 60 epochs where
the learning rate is decreased by 4 at epochs 15, 30, and 45. The initial learning rate for SGD is
tuned from {0.5, 1, 2, 4}, and 2 is chosen. The same learning rate schedule is adopted for EFSGD
and ConEF-CS. For ConEF-CS with 60% saved memory, we choose β = 0.8; and for ConEF-CS
with 80% memory saving we use β = 0.9. For rbSGD, we test step sizes from {0.5, 1, 2, 4} and 1
is chosen.

G.4 ADDITIONAL EXPERIMENTS

Adam type algorithms on a transformer. A single layer transformer for English-Germen machine
translation is trained on Multi30k dataset (Elliott et al., 2016). In particular, we use a 512 dimen-
sional embedding layer. Both encoder and decoder have 3 layers with hidden dimension 512 per
layer and 8-head attention is adopted. The initial learning rate for ADAM and other algorithms is set
as 10−4. The transformer is trained for 30 epochs, where the learning rate is decreased by 4 at the
end of epochs 15 and 25. Batchsize is set to 128 and dropout ratio is set as 0.1. The biased gradient
compressor is chosen as unscaled random block k to reduce 90% communication overhead.

Adam with an allreducable and unbiased gradient compressor (rb-Adam) struggles in terms of train-
ing loss. EF-Adam converges even slower than its ConEF counterpart. This once again demonstrates

Table 5: Numerical results for LSTM
Algorithm perplexity runtime (hour) memory saving (MB)

SGD 92.72 7.57 -
rbSGD 120.07 1.45 262.5
EFSGD 98.29 1.49 0

ConEF 60% 97.76 1.51 180.3
ConEF 80% 98.59 1.50 220.2

22

Under review as a conference paper at ICLR 2022

0 5 10 15 20 25 30
epoch

1

2

3

4

5

6

tra
in

 lo
ss

Adam
rb-Adam
EF-Adam
ConEF-CS 60%
ConEF-CS 90%

0 5 10 15 20 25 30
epoch

2.0

2.5

3.0

3.5

4.0

va
lid

at
io

n
lo

ss

Adam
rb-Adam
EF-Adam
ConEF-CS 60%
ConEF-CS 90%

(a) train (b) validation

Figure 8: Performance of ConEF with unscaled random block gradient compressor on a transformer.

0 25 50 75 100 125 150 175 200
epoch

60

70

80

90

100

te
st

 a
cc

ur
ac

y

EFSGD
ConEF-CS 95%
ConEF-CS 98%

Figure 9: More aggressively saved memory
with random-k gradient compressor.

0 30 60 90 120 150
epoch

80

85

90

95

te
st

 a
cc

ur
ac

y

EFSGD
ConEF
ER-ConEF

Figure 10: Test of ConEF-CS with error reset
using random-k gradient compressor.

that EF-Adam does not take full advantage of memory. ConEF with 60% and 90% memory saved
obtain similar training loss both slightly larger than Adam, but there is a gap on validation.

Regarding validation loss, rb-Adam fails to match with other tested algorithms. With 90% mem-
ory saved, ConEF-CS still outperforms EF-Adam slightly. ConEF-CS with 60% saved memory has
a comparable performance to vanilla Adam, and both are much better than EF-Adam. These ob-
servations suggest that ConEF is an improved alternative of error feedback to endow Adam type
optimizers with communication and memory efficiency in distributed training. Lastly, the validation
gap between ConEF with 60% and 90% memory saved intuitively makes sense, since as shown
in Theorem 4, the best generalization error can be achieved when subtracting averaged local error
vectors from current model. The count sketch in ConEF-CS introduces larger compression error
when more memory is saved (small sketch size), thus losing more on its generalization behavior.

Random-k gradient compressor with more memory saving. We also test the unscaled random-k
gradient compressor on ResNet-18 with CIFAR10, where 90% communication burden is reduced.
As shown in Fig. 9, EFSGD has a test accuracy of 93.42, while ConEF-CS with w = 0.05 (95%
memory saving) and w = 0.02 (98% memory saving) achieve a test accuracy of 92.70 and 92.68.
Hence, it is possible to have an aggressive memory saving with less than 1 loss on test accuracy.
In addition, it is observed that the compressed error vector is helpful to get a faster convergence
initially. But after decreasing the step size, it has negative impact resulting in the accuracy drop.

iConEF with a random-k gradient compressor. To validate the improvement of iConEF over
ConEF, we train a ResNet-18 on CIFAR10, and the results are reported in Fig. 6. A random-
k gradient compressor reducing 90% communication overhead is adopted. For ConEF, we use a
s = 64-level stochastic quantizer as the error compressor. iConEF-v2 is considered in this case, and

23

Under review as a conference paper at ICLR 2022

we use top-k compressor (5% elements) as the first error compressor, and s = 64-level stochastic
quantizer as the second error compressor. As shown in Fig. 6, although ConEF has a similar
performance as EFSGD, iConEF-v2 outperforms both of them, validating its efficiency. iConEF-v1
is also included in Fig. 6. In this case, both error compressors are chosen as s = 256-level quantizer.
iConEF-v1 converges much faster comparing with EFSGD initially, and it has a similar test accuracy
after learning rate is decreased.

ConEF-CS can be used easily with error reset (ER). As discussed in Section 4.2.2, error reset
(Basu et al., 2019; Xie et al., 2020) can be applied directly when the error compressor C is count
sketch. Thanks to the fact that count sketch is allreducable and small in size, ER can be done
through allreducing the compressed error among all workers every a few iterations, which in our
case is 512. ER slightly improves the test accuracy of ConEF-CS by 0.1 as observed in Fig. 10.
More specifically, we train a ResNet-18 on CIFAR10 with unscaled random-k gradient compressor
to reduce 90% communication overhead, and choose β = 0.9 with a count sketch that saves 80%
memory. As shown here, both ConEF and ER-ConEF outperform EFSGD, and ER-ConEF has the
best test accuracy.

24

	Introduction
	Preliminaries
	Memory saving via contractive error feedback
	Convergence
	Improved ConEF

	A closer look at error compressors
	Generalization properties
	Choices of error compressor
	Quantization
	Count sketch

	Numerical results
	RQ1: guidance on hyperparameter choice
	RQ2: Memory saving with aggressively compressed gradients
	RQ3: memory saving on various learning tasks

	Conclusion and future work
	Missing details
	How gradients are communicated
	Biased gradient compressors are more suitable for small batchsizes
	Applying ConEF to ZeRO

	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Partial ConEF/EFSGD
	More on numerical experiments
	Parameter choices for RQ1
	Parameter choices for RQ2
	Parameter choices for RQ3
	Additional experiments

