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Abstract

In this paper, we introduce a novel method for extending Ricci flow to hypergraphs by
defining probability measures on the edges and transporting them on the line expansion.
This approach yields a new weighting on the edges, which proves particularly effective
for community detection. We extensively compare this method with a similar notion of
Ricci flow defined on the clique expansion, demonstrating its enhanced sensitivity to the
hypergraph structure, especially in the presence of large hyperedges. The two methods
are complementary and together form a powerful and highly interpretable framework for
community detection in hypergraphs.

1 Introduction

Hypergraphs are generalizations of graphs extending the concept of edges to encompass relationships in-
volving any number of vertices rather than being restricted to pairs. Hypergraphs provide a more faithful
data representation than graphs as many real-life interactions occur at a group level rather than at a binary
one. Examples include social interactions, simultaneous participation at an event, co-authorship, mutual
evolutionary traits, spatial proximity or molecular interactions. These interactions are better encoded by
hypergraphs instead of traditional graphs, see Davis (1941); Dotson et al. (2022); Konstantinova and Sko-
robogatov (2001); Torres et al. (2021); Klamt et al. (2009). We refer to Berge (1984) and Bretto (2013) for
a comprehensive overview of hypergraph theory.

Recently, machine learning tasks on hypergraphs have encountered a growing success, in particular for clas-
sification (Feng et al., 2019), regression (Liu et al., 2021), anomaly detection (Lee et al., 2022) or embedding
(Zhang et al., 2019; Antelmi et al., 2023). The present article focuses on the clustering problem or commu-
nity detection, i.e. recovering labels on the nodes in a fully unsupervised setting from a single hypergraph
instance. Several approaches have been taken to tackle this problem such as embeddings using neural net-
works (Zhang et al., 2021; Lee and Shin, 2023), random walks-based embeddings (Hayashi et al., 2020; Huang
et al., 2019) followed by a clustering in the Euclidean space. Some methods developed in Kumar et al. (2020);
Kamiński et al. (2024) aim at maximizing hypergraph-modularity functions that measure the strength of a
clustering. Finally, let us mention the work of Eyubov et al. (2023) that finds a partition in linear time by
streaming all the nodes one by one.

The present work investigates generalizations of Ricci flow based clustering on hypergraphs. Ollivier-Ricci
curvature, introduced by Ollivier (2007) for metric spaces and later adapted to graphs (Lin et al., 2011),
defines a distance on graph edges that quantifies local curvature using optimal transport theory. Edges
within strongly connected communities have a positive curvature while edges bridging two communities
are negatively curved. Ricci curvature can be turned into a flow dynamic in order to further stress out
this community structure and take some more global graph properties into account. Alternative notions of
curvature for graph processing are also present in Forman (2003); Sreejith et al. (2016); Iyer et al. (2024);
Tian et al. (2025). Ricci curvature on graphs has been used to derive theoretical bounds on the spectrum of
the graph Laplacian by Lin and Yau (2010) and Bauer et al. (2011). For applied purposes, it has been used
for data exploration (Ni et al., 2015), representation learning (Zhang et al., 2023), topological data analysis
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(Carriere and Blumberg, 2020; Hacquard and Lebovici, 2024), and in particular clustering (Ni et al., 2019),
relying on the property of the Ricci flow to place emphasis on the community structure.

There has been a few attempts to generalize Ollivier-Ricci curvature to hypergraphs, in particular by
Coupette et al. (2022). The authors introduce a notion of curvature using random walks on the nodes.
As pointed out by Chitra and Raphael (2019), in most practical cases, considering a random walk on the
hypergraph is equivalent to a random walk on its clique expansion (a graph representation where each hy-
peredge is replaced by a weighted clique). Doing so is a common way to circumvent the complex hypergraph
structure by replacing it with a graph with a similar structure. However, as noted in Chitra and Raphael
(2019), this reduction can result in significant information loss, as distinct hypergraphs may share identical
clique graphs (Hein et al., 2013). In addition, replacing a single hyperedge between k nodes implies adding
up to

(
k
2
)

connections between nodes which can be computationally prohibitive in a network with mutual
interactions between many agents. Extensions of Ricci curvature on directed hypergraphs have also been
proposed by Eidi and Jost (2020).

The main contribution of this work aims at defining a notion of Ricci curvature on hypergraphs where we
consider probability distributions on the edges instead than on the nodes. This approach leverages the line
expansion of the hypergraph, which is a graph representation where nodes correspond to hyperedges, and
edges reflect hyperedges intersections. The line expansion is a common way to represent a hypergraph for
learning purposes, see Bandyopadhyay et al. (2020); Yang et al. (2022). In addition, it has been demonstrated
in Kirkland (2018) that almost all the hypergraph information is retained by the joint knowledge of both its
clique and line expansions. The current work puts a particular focus on clustering. We perform a thorough
experimental study on synthetic and real data comparing the approach where we transport measures on the
edges to the more standard approach where we transport measures on the nodes. More precisely, this notion
of edge transport should be favored when we have a large number of small communities, when the edges
between communities have a larger cardinality than the ones within communities, and more generally for
hypergraphs with very large hyperedges as this approach is much more efficient computationally.

The work is organized as follows: Section 2 introduces the foundational concepts of hypergraph theory and
Ollivier-Ricci curvature on graphs. Section 3 presents two different possible expansions of Ricci curvature
for hypergraphs: the standard one where we transport measures on the nodes, and the main contribution
of this paper where we transport measures on the edges. We also compare the two approaches theoretically
on a synthetic example. Section 4 provides a detailed baseline of experiments on synthetic data and on real
data where we compare both methods to state-of-the-art clustering algorithms on hypergraphs, along with
a computational analysis of both methods.

2 Model

This section presents the main concepts related to hypergraph analysis and the hypergraph partitioning
problem. We also investigate standard methods to replace hypergraphs by traditional graphs and the loss
of information it implies.

2.1 Hypergraphs and associated graphs

Hypergraphs, definitions Undirected hypergraphs, sometimes referred to as hypernetworks or 2-modes
networks, consist of a set of nodes V and a set of hyperedges E. Extending the concept of graphs where
edges link two distinct nodes, hyperedges are defined as non-empty sets of nodes of arbitrary size. For a
hyperedge e = (u1, . . . , uk), its cardinality k is referred to as its size. A hypergraph in which all hyperedges
have the same size k is called a k−uniform hypergraph. Notably, graphs are 2−uniform hypergraphs. We
further define the star of a vertex v ∈ V as the set of hyperedges that include v: St(v) = {e ∈ E|v ∈ e}.

Clique expansion Given a hypergraph H with node set V = (v1, . . . , vn) and edge set E = (e1, . . . , em),
its incidence matrix I ∈ {0, 1}n×m is defined as Ii,j = 1 if vi ∈ ej and 0 otherwise. This representation as
a rectangular matrix makes further analysis of hypergraphs much more complicated than that of graphs,
which can be described by their adjacency matrix. A commonly used simplification of hypergraphs is the
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(a) H1 (b) H2 (c) H3 (d) H4

(e) C(H1) (f) C(H2) (g) C(H3) (h) C(H4)

(i)
L(H1)

(j) L(H2) (k) L(H3) (l)
L(H4)

Figure 1: Examples of hypergraphs Hi with their clique C(Hi) and line L(Hi) expansions. H1, H2 and H3
share the same clique but have different line expansions.

clique expansion, where each edge is replaced by a clique. More precisely, the clique expansion C(H) of
the hypergraph H is the graph with node set V and with an edge (x, y) if there exists a hyperedge e ∈ E
such that x, y ∈ e. The clique expansion provides a convenient simplification of hypergraphs by grouping
nodes belonging to the same edge. However, there is a certain loss of information since multiple hypergraphs
share the same clique expansion, see Figure 1. We refer to Hein et al. (2013) for a more thorough analysis
of differences between hypergraphs and their clique expansion. Notably, according to Chitra and Raphael
(2019) and Hayashi et al. (2020), unless the nodes are assined an edge-dependent weighting, standard notions
of random walks and Laplacians on the hypergraphs can be expressed on a reweighted clique expansion. This
implies that directly applying Laplacian-based methods, such as clustering, on hypergraphs often incurs the
information loss inherent in their clique expansions. We note that the adjacency matrix AC of the clique
graph can be derived from the incidence matrix via AC = IIT −DV where Dv is the diagonal node-degree
matrix, with entries di =

∑n
j=1 Ii,j .

Line expansion Another graph associated with H is the line graph L(H). Each edge in H now corresponds
to a node in L(H). Thus, L(H) has node set (e⋆

1, . . . , e⋆
m) and we have an edge (e⋆

i , e⋆
j ) in L(H) if the

corresponding hyperedges intersect in H, i.e. ei∩ej ̸= ∅. Similarly to the clique expansion, many hypergraphs
share the same line expansion, see Figure 1. However, joint knowledge of both the line and clique expansions
seems to capture most of the structural information of the hypergraph. Indeed in Figure 1, hypergraphs
H1, H2 and H3 all share the same clique expansion while having different line expansions (they even have
different node sets). Similarly to the clique graph, the adjacency matrix AL of the line graph can be derived
from the incidence matrix via AL = IT I−De where De is the diagonal matrix of edge-lengths, with entries
δi = |ei|. Let us define the dual hypergraph H⋆ = (E⋆, V ⋆) as the hypergraph obtained by swapping the edge
and node sets, i.e. E⋆ = (e⋆

1, . . . , e⋆
m) and V ⋆ = (v⋆

1 , . . . v⋆
n) where v⋆

i = {e⋆
j |vi ∈ ej}. We can easily observe,

see Zhou et al. (2022), that the clique expansion is the line graph of the dual hypergraph: C(H) = L(H⋆).

Gram mates We can wonder if the joint knowledge of both the clique graph and the line graph allows
to reconstruct the hypergraph. The answer is negative, as there exists pairs of distinct 0-1 matrices (A, B)
such that AAT = BBT and AT A = BT B. Such matrices are called Gram mates, and we refer to Kim and
Kirkland (2022) for a proof of this result and a thorough analysis of families of matrices that generate Gram
mates. However, it has been demonstrated in Corollary 1.1.1 of Kirkland (2018) that if we uniformly pick
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two m × n 0-1 matrices, the probability that they are Gram mates decays exponentially as (m, n) → ∞.
Thus, for practical applications, the information loss from replacing a hypergraph with its clique and line
expansions together is negligible. This representation also simplifies hypergraph analysis significantly.

Clustering We consider hypergraphs where nodes are associated with discrete labels {1, . . . , K}, repre-
senting communities or clusters. Intuitively, such hypergraphs exhibit a community structure, with denser
connections between nodes sharing the same label compared to those with different labels. We assume
a fully unsupervised setting, where we try to infer the labels (up to permutation) simply via the hyper-
graph structure. This generalization of the graph partitioning problem has been studied extensively, and
we refer to Çatalyürek et al. (2023) for a survey of different approaches to tackle this problem. A popular
method to determine the quality of a partitioning is given by modularity maximization, initially defined by
Newman (2006). We recall its definition in the graph case. For a graph G = (V, E) and a partitioning
C = (C1, . . . , CK) of V into K subsets, we define the modularity function Q as:

Q(C) =
K∑

i=1

eG(Ci)
|E|

−
K∑

i=1

(
vol(Ci)
vol(V )

)2
,

where eG(Ci) is the number of edges in the subgraph of G induced by a node set Ci, and vol(A) =∑
v∈A deg(v) is the volume of any subset A of nodes. Up to renormalization, the modularity function

computes the difference between the number of edges uncut by the partitioning and the expected number
of edges the same partitioning would yield in the Chung-Lu random graph model introduced in Chung and
Lu (2006). Maximizing Q over every partitioning yields partitions that minimize cuts within communities,
aligning with the underlying structure. There have been several works generalizing modularity for hyper-
graphs, notably Kumar et al. (2020) and Kamiński et al. (2024), by generalizing the Chung-Lu random
model to hypergraphs, and allowing different weights to hyperedges of different sizes. Modularity also serves
as a ground truth-free measure of the quality of a given clustering.

2.2 Ricci curvature and flows on graphs

This paper addresses the clustering problem using an extension of Ollivier-Ricci curvature to hypergraphs.
This method extends prior works on Ollivier-Ricci curvature, initially defined in Ollivier (2007) on metric
spaces, and extended to the case of graphs in Lin et al. (2011). In Ni et al. (2019), the Ricci curvature is
turned into a discrete flow such that edges between communities are heavily curved. They directly derive a
clustering algorithm. We start by recalling the key concepts of their method in the case of graphs.

Discrete Ricci curvature Let G = (V, E) be a weighted graph with a weight function w : E → R≥0. In
what follows, the function w is set to be a dissimilarity measure between nodes. Let d denote the shortest
path distance between nodes induced by weights w. We adopt the framework introduced in Ni et al. (2019):
for each node x, we define a probability measure να,p

x over x and its neighbors given by:

να,p
x (y) =


α if y = x,
1−α

C exp(−d(x, y)p) if y ∈ N (x),
0 otherwise,

(1)

where N (x) denotes the set of neighbors of x. Here, C =
∑

y∈N (x) exp(−d(x, y)p) is a normalization constant
to ensure that να,p

x is a probability measure. The parameters α ∈ [0, 1] and p respectively denote the amount
of mass retained at x and how much we want to penalize far neighbors. When not required or clear from
context, we will drop the superscript and simply write να,p

x = νx.

The discrete Ricci curvature κ is a function defined on the edges of the graph such that for an edge e = (x, y):

κ(x, y) = 1− W (νx, νy)
d(x, y) ,
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Figure 2: Ollivier-Ricci curvature on a graph with a clear two-communities structure.
where W is the Wasserstein distance between probability measures for the cost function d, see Santambrogio
(2015). More precisely, a discrete transport plan T between the measures νx and νy is an application
T : V × V → [0, 1] such that

∑
v′∈V A(u, v′) = νx(u) and

∑
u′∈V A(u′, v) = νy(v). The Wasserstein distance

corresponds to the total cost of moving νx to νy with the optimal transport plan for a cost function d, i.e.

W (νx, νy) = inf

 ∑
u,v∈V

T (u, v)d(u, v)|T transport plan between νx and νy

 .

The sign of κ provides information on the density of connections. Indeed, two nodes x and y belonging to
the same community will typically share many neighbors, hence transporting νx to νy has a smaller cost
than moving x to y and therefore induces a positive curvature. Conversely, nodes belonging to different
communities do not share many neighbors, such that moving νx to νy requires traveling through the edge
(x, y) bridging the two communities. This in turn corresponds to a negative curvature. We refer to Figure 2
for a concrete example: when transporting νvi to νvj and νui to νuj , most of the mass remains on the nodes
such that measures are transported at a low cost. In the extreme case where α = 1/5, all the mass remains
and κ(vi, vj) = κ(ui, uj) = 1. When transporting νv1 to νu1 , all the vi’s must be transported to ui’s through
the edge (u1, v1) such that the total transport cost is larger than d(u1, v1) and therefore κ(u1, v1) < 0.

It instantly appears that trimming edges of low curvature naturally partitions the graph where each connected
component corresponds to a different community. We note that Ricci curvature can theoretically be computed
for any pair of nodes in the graph. However, for our purposes, we only need to compute it for adjacent nodes.

Discrete Ricci flow and community detection To amplify the impact of heavily negatively curved
edges and incorporate more global graph structure, we turn Ricci curvature into a discrete flow that modifies
the graph weights. We recall that the edge weights are dissimilarities, and a high weight corresponds to a
high distance between nodes. The initial weight between x and y is w(0)(x, y) = w(x, y). We iteratively
update the weights with:

w(l+1)(x, y) =
(

1− κ(l)(x, y)
)

w(l)(x, y), (2)

where κ(l) is the Ricci curvature computed with the distance induced by the weights w(l). The updated
weights after the l-th iteration are referred to as the Ricci flow. This flow dynamic stretches edges of low
curvature, making it more and more costly to transport measures between communities. The complete
clustering algorithm is described by Algorithm 1, and simply trims edges with a high Ricci flow. The choice
of the number of flow iterations N is mostly heuristic, we refer to Ni et al. (2019) and the corresponding
python library GraphRicciCurvature for some guidelines. The threshold τ at which to trim the weights
is a crucial parameter and can also be taken as the one that maximizes the modularity function defined in
Section 2.1, which evaluates clustering quality without ground truth labels.

This approach ensures that inter-community connections are down-weighted while preserving intra-
community coherence. This enables a robust and interpretable method for clustering. Indeed, the method
relies on direct computations of the Ollivier-Ricci curvature which is strongly associated to an intrinsic com-
munity partitioning of the graph, see Figure 2. We defer an extended comparison of the interpretability of
Ricci-based clustering as opposed to neural network embeddings to Section 4.2.
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Input: Graph G = (V, E), Number of iterations N , Threshold τ
Output: Clustering labels Y
for i← 1 to N do

Update the weights using Equation 2;
end
Trim all edges with a weight larger than τ to create a new graph G̃ ;
Compute connected components C1

∐
. . .

∐
Ck of G̃ ;

for i← 1 to |V | do
Set Yi = j if vi ∈ Cj ;

end
Algorithm 1: Ricci flow algorithm.

3 Two complementary notions of Ricci curvature on hypergraphs

Extending Ricci curvature to hypergraphs presents two main challenges:

• Ricci curvature is traditionally defined for pairs of nodes and needs to be extended to hyperedges.

• Computing transport distances between measures defined on the nodes of a hypergraph typically
relies on the clique expansion (see Section 2.1 and Hayashi et al. (2020)). As a consequence, this
approach introduces a loss of structural information, as clique expansions fail to capture certain
higher-order interactions.

The first challenge is straightforward to treat, for instance by taking the average or the maximum of all
pairwise curvatures of nodes in a hyperedge (as in Coupette et al. (2022)). We will discuss different possi-
bilities in Section 3.1. The second challenge constitutes the main contribution of this paper and will further
be developed in Section 3.2 where we explore a method to transport hyperedges.

Note that we restrict our analysis to the Ollivier-Ricci curvature. Another notion, the Forman-Ricci curvature
(Forman, 2003), has been extended to the case of hypergraphs in Leal et al. (2021). We refer to Samal et al.
(2018) for a detailed comparison of these two curvature types in the graph case.

3.1 Nodes transport on the clique graph

Clique graph transport Let H be a hypergraph with nodes V = (v1, . . . , vn) and edges E = (e1, . . . , em).
To compute the Ricci curvature between two nodes x and y, we can still define measures νx and νy on x
and y and their neighbors following Equation 1, as the definition of a neighbor is unchanged. The first
solution is simply to replace the hypergraph with its clique graph. Two possibilities are considered to obtain
a clique graph from a hypergraph. For the sake of clarity, we assume the hypergraph to be unweighted. Let
AC = (aij)1≤i,j≤n be the adjacency matrix of the clique expansion of H.

(i) The first option is to consider a simple unweighted clique graph expansion where

aij =
{

1 if there exists e ∈ H such that (vi, vj) ⊂ e,

0 otherwise.

(ii) The second option is proposed by Zhou et al. (2022) and relies on a Jaccard index weighting. Recall
that for two finite sets U and V , the Jaccard index J(U, V ) = |U∩V |

|U∪V | is a measure of similarity between
sets U and V . Let H⋆ = (V ⋆, E⋆) be the dual hypergraph as defined in 2.1. We remark that for two
nodes vi and vj , aij = 0 if and only if |v⋆

i ∩ v⋆
j | = 0. The weight of two adjacent nodes in the clique

graph is given by 1/J(v⋆
i , v⋆

j ). The Jaccard index is inverted to provide a dissimilarity weighting.

A discussion on the relative performance of these two weightings can be found in Section 4.3.
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(a) Stars of x and y (b) Corresponding line graph

Figure 3: Edge-Ricci transport between nodes x and y. A measure on St(x) is transported onto a measure
on St(y) via the line graph.

Aggregating pairwise curvatures After computing the Ricci flow w
(l)
N (e) for every pair of adjacent

nodes in the clique graph of H, the Ricci weight of a given hyperedge e ∈ E is obtained by aggregating all
pairwise flows between nodes of e:

w
(l)
N (e) = Agg

vi,vj∈e

(
w(l)(vi, vj)

)
,

where Agg is an aggregation function. Experimentally, we found that aggregating using the maximum of all
pairwise curvatures systematically yielded the best clustering performance.

The clustering pipeline given by Algorithm 1 then operates similarly by trimming all hyperedges with a Ricci
flow larger than some threshold. The optimal threshold can be found by either maximizing the modularity
of the clique graph, or a corresponding notion of hypergraph modularity, see Kamiński et al. (2024).

3.2 Edges transport on the line graph

As discussed in 2.1, replacing a hypergraph by its clique graph induces a substantial loss of information. To
address this, we propose a novel notion of Ricci curvature specific to hypergraphs. Instead of transporting
measures defined on the nodes of a hypergraph, we transport measures defined on its edges. The motivation
is that two nodes from different communities should be contained in sets of hyperedges that typically do not
intersect much.

Edge-Ricci curvature The proposed method also computes pairwise curvature and then extends it to
hyperedges using an aggregation step similar to the one previously defined. We first describe the Ricci
curvature computation for a hypergraph H = (V, E) with dissimilarity weights d : E → R>0. Let x and y
be two adjacent nodes in the hypergraph. We define simple probability measures µx and µy on their stars
St(x) and St(y):

µx(e) =
{

d(e)
C if e ∈ St(x)

0 otherwise,
(3)

where C =
∑

e∈St(x) d(e) is a normalization constant to ensure that µx is a probability measure. The
definition of µy is analogous. Note that unlike the measures να,p

x defined on the nodes, the measures µx do
not depend on any hyper-parameter, simplifying their use.

The distance dH between two edges e and f is defined using the line graph: dH(e, f) = dLG(e⋆, f⋆) where dLG

is the standard shortest path distance for graphs, see Figure 3. Note that similarly to the clique graph, there
are several ways the line graph can be weighted (for instance using Jaccard weights between hyperedges).
This aspect will be discussed in more details in Section 4.3. Similarly to the graph case, we can then define
an optimal transport plan and a corresponding Wasserstein distance W between the two measures µx and
µy. The edge-Ricci curvature κE between two nodes x and y is therefore defined as
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κE(x, y) = 1− W (µx, µy)
max

e∈St(x)∩St(y)
d(e) .

Pairs of nodes in different communities tend to have very different stars, which implies in turn a low curvature.
Conversely, if the two nodes x and y belong to the same community, the measures µx and µy can be
transported onto each other with a low cost, resulting in a curvature close to 1. We remark that even in the
case of a 2-uniform hypergraph, this definition is not equivalent to the usual curvature on graphs from Section
2.2. In addition, we lose the interpretability observed in Figure 2 concerning the sign of the curvature.

Edge-Ricci flow Similarly to the graph case, the curvature is then turned into a discrete flow. We start
with an initial edge weighting w

(0)
E = d. At the l-th iteration, the weights are updated according to the

following three steps:

(i) Compute the Ricci curvature κ
(l)
E for every pair of adjacent nodes in the weighted hypergraph.

(ii) For every hyperedge e, aggregate all pairwise curvatures with an aggregation function Agg to define
the curvature of the hyperedge, similarly to Section 3.1:

κ
(l)
E (e) = Agg

vi,vj∈e

(
κ

(l)
E (vi, vj)

)
.

(iii) For every hyperedge e, update the edge weights using the Ricci flow dynamic:

w
(l+1)
E (e) =

(
1− κ

(l)
E (e)

)
w

(l)
E (e).

Similarly to the graph case this procedure is iterated N times, and hyperedges with a weight larger than
a given threshold are trimmed. The resulting connected components form the assigned node communities.
In traditional Ricci flow with p = 0, negatively curved edges gradually gain weight, increasing the cost of
moving probability measures through them. Here, we take a dual perspective: edges with low curvature are
assigned increasing mass, making them progressively more expensive to transport. The line graph, however,
remains unchanged, such that distances between edges are unaffected by the flow process. We refer to Tian
et al. (2025) for another example of method using the line graph for community detection.

3.3 A toy clustering example

We start by comparing the node-Ricci flow from Section 3.1 with the edge-Ricci flow from Section 3.2 in a
synthetic example where transport maps and curvatures can be computed explicitly. We adopt a very similar
setting to the one of Ni et al. (2019) where we consider a family of hypergraphs H(a, b) where a, b ≥ 3 are
integers. Consider b complete binary graphs C1, . . . , Cb on a distinct vertices. For each complete graph Ci,
take a particular vertex vi (called gateway vertex) and consider the hyperedge of size b, (v1, . . . vb) connecting
all gateway vertices across the communities. This hypergraph exhibits a clear community structure where
each Ci forms a distinct community, and there is a single hyperedge connecting all the communities together.
Figure 4 provides a visual representation.

The case of the node-Ricci flow for an unweighted clique expansion has been treated explicitly in Ni et al.
(2019), for measures defined by Equation 1 with α = 0 and p = 0. They observe that by symmetry, in
the clique expansion, the Ricci flow at the l−th iteration can only take three possible values: w

(l)
N ,1 for

edges between two gateway nodes, w
(l)
N ,2 for edges between a gateway node and another node from its

community, and w
(l)
N ,3 for edges between two non-gateway nodes from the same community. They further

demonstrate that if a > b, w
(l)
N ,3 =

( 1
a

)l →
l→∞

0 and that there exists λ > 1
a and constants c1 > c2 such that

w
(l)
N ,1 = c1λl + o(λl) and w

(l)
N ,2 = c2λl + o(λl) as l → ∞. This implies that the Ricci flow-based trimming

algorithm properly identifies the communities C1, . . . , Cb.
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Figure 4: Example of hypergraph H(a, b) with a = 6 and b = 4. The gateway nodes are represented in blue.
We derive a similar result for specific measures µ. Equation 3 is slightly modified such that the transported
measures are now defined, for two nodes x and y as:

µ̃x(e) =


0 if x, y ∈ e
d(e)

C if e ∈ St(x) and e /∈ St(y)
0 otherwise,

(4)

where C is a normalization constant. In practice, this choice of measure yields results extremely similar to
the ones defined by Equation 3. It simply discards edges shared between x and y, which would typically not
play a big role in deriving the transport plan. This choice simply ensures a much simpler expression for the
Ricci flow to facilitate the delivery of the following proposition:

Proposition 1 We keep the same notation as above and consider the edge-Ricci flow with measures µ̃ defined
by Equation 4 and aggregation Agg with the maximum function. At the l-th iteration, the Ricci flow can
only take three possible values: w

(l)
N ,1 for the edge of size b connecting all gateway nodes, w

(l)
N ,2 for binary

edges between a gateway node and another node from its community, and w
(l)
N ,3 for binary edges between two

non-gateway nodes from the same community. Under these circumstances, we have that for all l > 0:


w

(l)
N ,1 = 2,

w
(l)
N ,2 = 4+(a−2)w

(l−1)
N ,2

2+(a−2)w
(l−1)
N ,2

∈ [1, 2],

w
(l)
N ,3 = 1.

The proof is deferred to Appendix A. Proposition 1 implies that the edge-Ricci flow can also identify the
community structure with an edge cut-off parameter between 1 and 2. We notice that in this case, the
explicit expression of the Ricci flow, although much simpler than in the node-Ricci case, does not have an
exponential decay to 0 for the intra-community edges. This implies that the cut-off parameter might be
more delicate to tune in practice. However, note that Proposition 1 holds for any values of a and b, contrary
to the result of Ni et al. (2019) which only holds for a > b. This implies that in practice, edge-Ricci allows
for better detection of many small communities.

4 Experiments

To evaluate the practical effectiveness of Ricci flow for hypergraph clustering, we conducted a range of
experiments on synthetic and real data. We opted for a Jaccard type weighting for the clique graph and
the line graph. Curvatures of hyperedges are computed by aggregating curvatures of pairs of nodes using
the maximum function. For node-Ricci flow, we have used the python library GraphRicciCurvature with
parameters p = 1 and α = 0.5 for the measures (να,p

x )x∈V defined on the nodes. We refer to Section 4.3 for a
discussion about the choice of default values for the hyperparameters. The clustering accuracy is measured
using the Normalized Mutual Information score (NMI). The implementations of edge-Ricci and node-Ricci
flows for hypergraphs are available at https://github.com/AnonRicciHG/Ricci_curv_HG and are directly
adapted from the GraphRicciCurvature library.
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4.1 Hypergraphs stochastic block models

We first evaluate our method on a synthetic set-up to highlight differences between edge-Ricci and node-
Ricci flows. We consider a hypergraph stochastic block model inspired by Kim et al. (2018). We consider a
hypergraph with n nodes and k communities. We give ourselves two size parameters sin and sout and generate
Nin hyperedges of size sin between nodes of the same community for each community and Nout hyperedges
of size sout containing at least one node of each community. In the graph case where sin = sout = 2, this
is a form of stochastic block model, see Abbe (2018). This is a simple model where intra-community edges
can be interpreted as signal and inter-community edges as noise. In the hypergraph case, as soon as sin ≥ 3,
inter-community edges are also regrouping nodes of the same community together and cannot simply be
interpreted as pure noise.

We try to reconstruct the communities using edge-Ricci and node-Ricci flows clustering algorithms. We
consider randomly generated hypergraphs of n = 100 nodes, k = 2 equal-sized communities and compare the
performances of the two methods for various values of sin and sout. We fix the value of Nin and measure the
evolution of the clustering accuracy for a growing number Nout of "noisy" hyperedges. We compute N = 20
flow iterations for each method and take the thresholding parameter τ⋆ that maximizes the NMI. We average
over 5 random hypergraph generations and report the corresponding NMI in Figure 5. We remark that node-
Ricci flow seems to perform comparatively better than edges-flow when the size of intra-community edges sin

is large and the size of inter-community edges sout is small and conversely. These differences can be simply
understood heuristically: when contaminating a hypergraph by adding a hyperedge of size s, the clique graph
will have up to s(s− 1)/2 new edges while the line graph will only have a single new additional node. This
accounts for an improved robustness of edges-flow to large hyperedges contamination, as it mostly relies on
shortest-path computations on the line-graph.

4.2 Real data

We further compare the clustering performance of nodes and edges-flow with state-of-the-art graph and
hypergraph clustering methods.

Methodology and data We evaluate our method on the datasets presented in Table S.1. A detailed
description of the datasets can be found in Section B. Data and code to reproduce the experiments are
available at https://github.com/AnonRicciHG/Ricci_curv_HG. We adopt the same benchmark study as
in Lee and Shin (2023). For each dataset, we iterate Ricci flows N = 20 times. The edge-cutting threshold
τ is taken as the one that maximizes the hypergraph modularity, computed with the hypernetx python
package.

Quantitative results We report the NMI of our method in Table 1, where we compare ourselves with
graph and hypergraph partitioning state-of-the-art methods. Node2vec (Grover and Leskovec, 2016), DGI
(Veličković et al., 2018) and GRACE (Zhu et al., 2020) embed the hypergraph’s clique expansion in a
Euclidean space using various neural networks architectures. S2-HHGR from Zhang et al. (2021) and TriCL
from Lee and Shin (2023) directly embed the hypergraphs using a neural network architecture. Communities
are then detected using a k-means algorithm. Note that for TriCL and S2-HHGR, additional node-feature
information is used to improve the prediction, while Ricci flow methods rely only on the hypergraph structural
information. All scores for these methods are reported from Lee and Shin (2023). We also report the score
obtained by the modularity maximization algorithm from Kamiński et al. (2021). OOM indicates an out-
of-memory error on a 24GB GPU (reported from Lee and Shin (2023)). OOT indicates that the results
could not be obtained within 72 hours on a single 8-core laptop with a Intel(R) Core(TM) i5-8300H CPU @
2.30GHz processor unit.

Ricci-based clustering methods provide an overall competitive accuracy, with a better performance than
simple graph vectorization methods, while managing to be as competitive as state-of-the-art neural network-
based hypergraph embeddings on a few datasets. In particular, we achieve a perfect clustering on the Zoo
dataset using edge-Ricci flow. This dataset stands out for having very few nodes and edges and demonstrates
the ability of Ricci-based methods to capture fine structural information on small graphs. We assert that a
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(a) sin = 2, sout = 2 (b) sin = 2, sout = 4 (c) sin = 2, sout = 6

(d) sin = 3, sout = 2 (e) sin = 3, sout = 4 (f) sin = 3, sout = 6

(g) sin = 4, sout = 2 (h) sin = 4, sout = 4 (i) sin = 4, sout = 6

(j) sin = 5, sout = 2 (k) sin = 5, sout = 4 (l) sin = 5, sout = 6

Figure 5: Hypergraph stochastic block model reconstruction using hypergraph notions of Ricci flow.
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Dataset Cora-C Cora-A Citeseer Pubmed Zoo Mushroom NTU2012
Node2Vec 39.1 16.0 24.5 23.1 11.5 1.6 78.3

DGI 54.8 45.2 40.1 30.4 13.0 OOM 79.6
GRACE 44.4 37.9 33.3 16.7 7.3 OOM 74.6

S2-HHGR 51.0 45.4 41.1 27.7 90.9 18.6 82.7
TriCL 54.5 49.8 44.1 30.0 91.2 3.8 83.2

Modularity 45.0 33.4 33.8 25.0 77.7 43.4 74.5
N-Ricci 45.8 39.4 38.8 27.8 96.2 OOT 76.3
E-Ricci 43.3 39.1 38.3 22.7 100.0 42.3 77.6

Table 1: NMI clustering accuracy on real datasets.

significant advantage of our method is its high level of explainability, particularly when compared to methods
based on neural network embeddings. Specifically, Ricci flow facilitates clustering on graphs with several
notable properties:

• It is grounded in established theoretical works on metric spaces, see Ollivier (2007), and benefits
from convergence results when applied on random geometric graphs, as shown in Van Der Hoorn
et al. (2021).

• The method is computable in closed-form on simple examples as demonstrated in Ni et al. (2019)
and further elaborated in Section 3.3.

• It is strongly associated with the intuitive notion of a community on a graph, by assigning a sub-
stantial weight to edges across communities, see Figure 2.

• The method relies on explicit and transparent computations and is fully deterministic.

However, it is to be noted that when extended to hypergraphs, some of these points fail to be as com-
pelling, notably the theoretical guarantees and the interpretability of the sign of the curvature from Figure
2. Nevertheless, our method’s explicit computation of a flow process, which draws a strong analogy to
its well-established geometric counterpart, offers greater interpretability compared to neural network ap-
proaches. The latter often involves many parameters, making their interpretation challenging.

4.3 Hyperparameter discussion

Both notions of Ricci curvature on hypergraphs depend on a moderate number of hyperparameters. Some
of them can significantly influence the final performance. In this section, we review all the hyperparameters,
conduct a sensitivity analysis, and provide guidelines for tuning.

The number of flow iterations N This parameter is inherited from Ricci flow on graphs. The effect
of this parameter has been examined in Section 4.1 of the Supplementary Material of Ni et al. (2019). The
authors illustrate the convergence of the edge weights as N tend to infinity. Therefore, choosing a large
N therefore has no detrimental impact aside from increasing the running time. In the associated code, the
authors observe convergence for N between 20 and 50. This guideline still holds in our case, and we did also
observe a stabilization of the Ricci flow weights for N larger than 20.

Parameters α and p for να,p These parameters are used to define the measures in Equation 1. These
parameters are directly inherited from Ricci flow on graphs. The impact of the parameter p has been studied
in Section 4.2 of the Supplementary Material of Ni et al. (2019). We nevertheless decide to review the impact
of this parameter in Figure S.2 where we observe that in some cases, there is a drop of performance for p = 0
while p = 1 and p = 2 show a similar performance. Additionally, we decide to investigate the role of the
parameter α in some critical cases, see S.3. This study has not been conducted in loc. cit. where the authors
advocate for a default choice of α = 0.5. Although it is challenging to provide specific guidelines, extreme
values of the parameter α can lead to serious instabilities. As a result, taking α close to 0.5 is a safe choice.
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Aggregation and graph weightings Both methods compute a Ricci-curvature between pairs of adjacent
nodes which is in turn aggregated at the hyperedge level, as suggested in Coupette et al. (2022). We have
explored two choices: taking the maximum and the arithmetic average.

In addition, the transport costs depend on the initial clique graph and line graph weightings discussed in
Section 3.1. We compare between unweighted graphs and Jaccard weightings. We have studied the joint
impact of these two parameters and report the results in Figures S.4 and S.5. We make the following
observation:

• For node-Ricci flow, the clique graph weighting has little to no impact, while using the maximum of
the pairwise curvature for the hyperedge curvature consistently yields better results.

• For edge-Ricci flow, we observe a very important difference between these parameters. In short,
the combination Jaccard-maximum is the most competitive when sin ≤ sout and Uniform-average
is the most competitive when sin > sout. The other two combinations always yield an intermediate
accuracy. This implies that an intersection-sensitive line graph weighting has a strong positive
impact in the case of large hyperedges between communities. Nevertheless, we observe in Figure S.6
that edge-Ricci flow with any combination of parameters is always outperformed by a node-Ricci
flow with a maximum aggregation function in the case where sin > sout, as already observed in
Section 4.1. Therefore, we always recommend using the Jaccard-maximum parameter combination
for the edge-Ricci flow to fully leverage its potential in the case of large inter-community hyperedges.

Joint study of every hyperparameter on a real dataset In the previous paragraphs, we considered
critical cases where a change in parameters could have a dramatic impact. We now study the robustness of
the two types of transport applied to a real dataset. In Tables S.2 and S.3, we examine the joint effect of
every parameter except α and τ on the dataset NTU2012. We observe that for this real dataset, the choice
of weighting has almost no impact on the final accuracy. However, using the maximum function for Agg
provides a much better accuracy than the average. Finally, We observe a modest improvement by considering
p = 1 over p = 0.

Threshold parameter τ Both notions of Ricci flow simply operates a community-sensitive reweighting
of the edges, equivalent to a hierarchical clustering of the nodes. The cut-off parameter τ enables access
to a particular clustering, making it a crucial parameter when comparing to ground-truth labels. To chose
the value of τ , we compare the one that maximizes the hypergraph modularity τH , the one that maximizes
the graph modularity on the clique expansion τC and the one giving the clustering with the highest NMI,
i.e. closest to the ground-truth one τ⋆. We report these results in Tables S.4 and S.5. We observe that
using τH gives results relatively close from the optimal ones using τ⋆ and better accuracy than using τC . In
particular, on the Zoo dataset, τH = τ⋆ for both notions of transport, while τC gives extremely poor results.
This additional experiment aligns with the findings of Kamiński et al. (2021) and Lee and Shin (2023),
advocating for using hypergraph-specific tools when available, rather than reducing to the clique expansion.

Finally, note that there is not necessarily a single best value for the parameter τ . Indeed, modifying the
optimal τ can provide clusters coarser or finer than the ground-truth, which can be appealing in some
applications.

4.4 Computational comparison

We observe in Table 1 that node-Ricci flow failed to provide results for the Mushroom dataset in a reasonable
time. Even after 72 hours, not a single Ricci-flow iteration was completed, despite this dataset containing
a relatively small number of hyperedges (see Table S.1). To better understand this limitation, we further
investigate the computational complexity of both methods.

Computing the Ricci curvature of all edges in a hypergraph H = (V, E) requires solving |E| optimal transport
problems where E is the edge set of the clique expansion C(H). In practice, the optimal transport costs
between two measures with at most n points are computed using the Sinkhorn algorithm from Sinkhorn
(1974), which provides an ε-approximation at a cost O(n2/ε2) according to Lin et al. (2019). This implies
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Figure 6: Computation times of Ricci curvature for both methods on a K-uniform hypergraph as a function
of K.

worst-case complexities of order O

(
|E| ×max

x∈V
|N (x)|2/ε2

)
for node-Ricci and O

(
|E| ×max

x∈V
|St(x)|2/ε2

)
for

edge-Ricci. In turn, large hyperedges have a stronger impact on the node-Ricci complexity.

To justify these theoretical claims, we consider a K-uniform hypergraph with 1000 nodes and 300 edges of
length K drawn uniformly at random. We report the computational times in seconds for a single Ricci-flow
interation in Figure 6. Computations are carried out for unweighted clique and line expansions and are
averaged over five different hypergraph initializations. We observe that the computational cost of nodes-
Ricci curvature indeed blows up for hypergraphs with large hyperedges due to the inflated neighborhood size
|N (x)|. Edge-Ricci flow demonstrates much slower growth in computational time, remaining efficient even
for hypergraphs with large hyperedges. Computations are executed on a single 8-core laptop with a Intel(R)
Core(TM) i5-8300H CPU @ 2.30GHz processor unit. These computations explain why only edge-Ricci could
produce results in a reasonable time on the Mushroom dataset. Although this dataset has relatively few
hyperedges, the hyperedges are exceptionally large, inducing severe computational challenges for node-Ricci
flow. The computational times from Figure 6 along with the quantitative results from Table 1 indicate that
Ricci-flow based methods are in particular more suited to dealing with rather small hypergraphs.

4.5 Wrap-up, comparison of Node-Ricci and Edge-Ricci flows

Based on the findings from Sections 3.3 and 4, node-Ricci and edge-Ricci flows are complementary approaches
for competitive hypergraph clustering. Indeed, as the first one primarily leverages the clique expansion and
the second one the line expansion information, taken together, they capture most of the information of the
hypergraph. More precisely, edge-Ricci is preferable to node-Ricci whenever:

• There are many small communities.

• The intra-community edges are typically smaller than inter-community edges.

• The hypergraph has very large hyperedges, inducing prohibitive computations on the clique graph.

When dealing with real data with no structural a priori on the communities, both methods tend to perform
comparatively, see Section 4.2. However, they can have sensibly different computational costs making one
preferable over the other depending on the structure of the hypergraph, in particular the number of hyper-
edges and their size. We note that alternating between iterations of node-Ricci flow and edge-Ricci flow did
not provide any substantial quantitative benefit.

Conclusion

We have developed two methods to extend Ricci flow to hypergraphs. The first method, node-Ricci flow,
applies standard Ricci flow on the clique expansion and further aggregates it to hyperedges. The second
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method, edge-Ricci flow, is the main contribution of this article and constitutes an original approach to
transporting edges using the line expansion. Both methods define new weights on the hyperedges, which can
then be simply turned into a partitioning algorithm. Each method has its own advantages depending on the
specific characteristics of the hypergraph.

A natural extension of this work would be to consider a co-optimal transport of both nodes and edges, as
discussed in Titouan et al. (2020); Chowdhury et al. (2024). Additionally, the notion of discrete Ricci flow
has more practical uses beyond graph partitioning. For instance, it can be used as a method to preprocess
hypergraphs by generating new weights that better highlight underlying community structures, as seen in
Khodaei et al. (2024). Finally, several notions of curvature have been developed for graph, as explored in
Iyer et al. (2024); Cushing et al. (2022). Further extending these notions to hypergraph data constitutes a
potential research direction.
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A Proof of Proposition 1

• We start by computing w
(l)
N ,3. Let x and y be two non-gateway nodes from the same clique

(x, y, u1, . . . , ua−2). We have that St(x) \ (x, y) = {(x, u1), . . . , (x, ua−2)} and St(y) \ (x, y) =
{(y, u1), . . . (y, ua−2)}. The optimal way to transport the uniform probability measure on St(x) \
(x, y) to the uniform probability measure on St(x) \ (x, y) is to transport each (x, ui) to (y, ui),
which are adjacent in the line graph. Each edge has weight 1/(a − 2) and there is a − 2 of them,
hence a total cost of 1. Hence by induction, since w

(l)
N ,3 = 1, we have that w

(l)
N ,3 = 1 for all l.

• For w
(l)
N ,1, let x and y be two distinct gateway-nodes, connected by the large hyperedge Eb. We

have St(x)\Eb = {(x, u1), . . . , (x, ua−1)} and St(y)\Eb = {(y, v1), . . . , (x, va−1)}. The optimal way
to transport the uniform probability measure on St(x) \ Eb to the uniform probability measure on
St(y) \Eb is to transport each (x, ui) to a corresponding (y, vi) via Eb. This corresponds to a path
of length 2 on the line graph. Each edge has weight 1/(a − 1) and there is a − 1 of them, hence a
total cost of 2. As the cost is the same for each pair of nodes in Eb, the flow of Eb is equal to that
of any pair (x, y) ∈ Eb. We therefore have that w

(l)
N ,3 = 2 for all l ≥ 1.

• For w
(l)
N ,2, let x be a gateway node and y and non-gateway node from the same clique

(x, y, u1, . . . , ua−2. We have St(x) \ (x, y) = {Eb, (x, u1), . . . , (x, ua−2)} and St(y) \ (x, y) =
{(y, u1), . . . , (y, ua−2)}. We represent the line graph restricted to St(x) ∪ St(y) \ (x, y) in Figure
S.1. We write the mass of each edge according to Equation 3 where we write di = w

(l−1)
N ,i to simplify

the notation. We have just demonstrated that d1 = 2 and d3 = 1. The optimal transport plan
between µx and µy transports the mass on each (x, ui) to (y, ui). These edges are adjacent in the
line graph. These (a− 2) edges therefore occupy a fraction of the total cost of (a−2)d2

2+(a−2)d2
. The mass

d2
2+(a−2)d2

on Eb is equally transported to each (y, ui) through the corresponding (x, ui). Each (y, ui)
is at a distance 2 from Eb, see Figure S.1. This implies a cost of 2d2

2+(a−2)d2
for transporting the mass

at Eb. In the end, the total cost of transporting µx to µy is 4+(a−2)d2
2+(a−2)d2

. This implies that

w
(l)
N ,2 =

4 + (a− 2)w(l−1)
N ,2

2 + (a− 2)w(l−1)
N ,2

.

We can easily prove by induction on l that for every l, w
(l)
N ,2 ∈ [1, 2].
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Figure S.1: Restriction of the line graph to compute the flow between a gateway and a non-gateway node in
Proposition 1.
B Description of the datasets

The experiments from Section 4.2 have been conducted on these hypergraph datasets:

• Co-citation datasets Cora-C, Citeseer and Pubmed where nodes represent research papers, edges
papers co-citing these papers and the communities correspond to similar research thematic.

• The dataset Cora-A has a similar structure but is a co-authorship dataset, where hyperedges repre-
sent authors.

• In the dataset Zoo, nodes are animals, edges represent mutual traits, and communities are types of
animals (mammal, fish...).

• In the dataset Mushroom, nodes are mushroom samples, edges represent mutual traits, and there are
two communities: edible and poisonous.

• In the dataset NTU2012, nodes correspond to 3D objects, edges to proximity using image-processing
features, and communities are the type of object.

We refer to Table S.1 for a quantitative description of each dataset.
Dataset Cora-C Cora-A Citeseer Pubmed Zoo Mushroom NTU2012
♯ Nodes 1434 2388 1458 3840 101 8124 2012

♯ Hyperedges 1579 1072 1079 7963 43 298 2012
Avg. hyperedge size 3.0 4.3 3.2 4.4 39.9 136.3 5.0
Avg. node degree 3.3 1.9 2.4 9.0 17.0 5.0 5.0
♯ Communities 7 7 6 3 7 2 67

Table S.1: Basic statistics of hypergraph data used in the experiments.

C Impact of the hyperparameters

Unless specified otherwise, we report the NMI in the synthetic set-up of Section 4.1. Results are averaged
over 5 random hypergraph generation and comparison with the ground-truth is realized for the optimal
cut-off parameter τ⋆.
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Measure parameter p. In Figure S.2, we report the NMI for three values p = 0, 1, 2 for the nodes
transport, compared with the edge transport. We set Agg to be the maximum function and consider a
uniform weighting of the clique graph. We can see that in some cases, there is a clear drop of accuracy for
p = 0, while p = 1 and p = 2 display similar performances.

(a) sin = 2, sout = 3 (b) sin = 3, sout = 3 (c) sin = 4, sout = 3

(d) sin = 2, sout = 5 (e) sin = 3, sout = 5 (f) sin = 4, sout = 5

Figure S.2: Study on the impact of the parameter p to cluster hypergraph stochastic block models.

Measure parameter α. In Figure S.3, we report the NMI for a few specific critical values of
sin, sout, Nin, Nout. These results are obtained for p = 1 for the node transport. We set Agg to be the
maximum function and consider a uniform weighting of the clique graph. We can see that in these critical
cases, the parameter α can play a very big impact. It is difficult to provide any generic guideline, but extreme
values of α seem to provoke instabilities in some cases.

(a) sin = 3, sout = 6 (b) sin = 3, sout = 4 (c) sin = 3, sout = 4

Figure S.3: Study on the impact of the parameter α to cluster hypergraph stochastic block models

Aggregation and clique graph weighting In Figure S.4 we report the NMI in the synthetic set-up
of Section 4.1 where we simultaneously compare the effect of the clique graph weighting and the curvature
aggregation at the hyperedge level. We compare the four possible combinations, where the clique graph can
have either a Jaccard or a uniform weighting, and Agg can be either the maximum or the arithmetic average.
We do not notice any significant difference between the two types of clique graph weightings. However, we
observe that using the maximum pairwise curvature instead of the average yields similar to much better
results and should therefore always be preferred.
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(a) sin = 2, sout = 5 (b) sin = 3, sout = 5 (c) sin = 5, sout = 4

Figure S.4: Study on the impact of the clique graph weighting and the aggregation function to cluster
hypergraph stochastic block models with node-Ricci flow
Aggregation and line graph weighting In Figure S.5 we report the NMI in the synthetic set-up of
Section 4.1 where we simultaneously compare the effect of the line graph weighting and the curvature
aggregation at the hyperedge level. We compare the four possible combinations, where the line graph
can have either a Jaccard or a uniform weighting, and Agg can be either the maximum or the arithmetic
average. The differences can be very significative, in particular between the combinations Jaccard-maximum
and Uniform-average. Overall, we observe that the former provides a much better clustering accuracy
whenever sin ≤ sout while the latter is better when sin > sout. However, we observe in Figure S.6 that
in this case, edge-Ricci flow with any parameter still underperforms compared to node-Ricci flow, which
is particularly adapted to dealing with the situation of large intra-community hyperedges and small inter-
community hyperedges. We consider a node-Ricci flow with parameters Jaccard-maximum. As a result, we
claim that the parameter combination Uniform-average for edge-flow should never be preferred as it will
always be beaten by either the Jaccard-maximum edge-flow or by the node-Ricci flow.

(a) sin = 2, sout = 4 (b) sin = 4, sout = 2 (c) sin = 4, sout = 4

Figure S.5: Study on the impact of the line graph weighting and the aggregation function to cluster hyper-
graph stochastic block models with edge-Ricci flow

Joint study of every hyperparameter on a real dataset. We study the impact of all parameters
except α and τ for the clustering task on the dataset NTU2012. The clustering accuracies are reported for
the optimal τ⋆. Results are reported in Tables S.2 and S.3. We can see that in this real data case, The
choice of the weights for the clique graph and the line graph has a negligible impact. For both types of Ricci
flow, considering the maximum curvature over the average one has a tremendous impact. In addition, we
can observe an improvement by considering p = 1 over p = 0. For p = 2, numerical instabilities prevented
the code from compiling.

Threshold parameter τ We now try to assess the estimation of the τ⋆ parameter providing the highest
clustering accuracy. We compare the NMI obtained by trimming edges with a flow greater than τ⋆ with
the NMI obtained with τH and τC . We report the results for the clustering of the datasets NTU2012 and
Zoo in Tables S.4 and S.5. Based on the previous findings, we considered a Jaccard weighting, a hyperedge
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(a) sin = 2, sout = 4 (b) sin = 4, sout = 2 (c) sin = 5, sout = 3

Figure S.6: Comparison of Jaccard-maximum and Uniform-average edge-Ricci flow with node-Ricci flow.
Aggregation Clique graph weights p NMI

Max Jaccard 0 79.7
Max Uniform 0 79.7

Average Jaccard 0 69.1
Average Uniform 0 69.1

Max Jaccard 1 82.1
Max Uniform 1 82.5

Average Jaccard 1 69.1
Average Uniform 1 69.1

Table S.2: Node-Ricci flow clustering of the NTU2012 dataset for various sets of hyperparameters

Aggregation Clique graph weights NMI
Max Jaccard 80.2
Max Uniform 80.2

Average Jaccard 69.1
Average Uniform 69.1

Table S.3: Edge-Ricci flow clustering of the NTU2012 dataset for various sets of hyperparameters

aggregation with the max function, and p = 1 for the nodes transport. On the NTU2012 dataset, we observe a
better performance using the hypergraph notion of modularity over the clique graph modularity. The loss of
accuracy for Edge-Ricci flow is milder than for Node-Ricci flow when using an approximate τ parameter. For
the Zoo dataset, we observe a very strong difference between the two notions of modularity, as considering
the hypergraph modularity yields the optimal clustering, while the modularity on the clique graph gives
extremely poor results. This has to be paralleled with the results from Table 1 where methods relying only
on the clique graph expansion provided very unsatisfactory results.

Type of flow τ⋆ τH τC

Nodes 82.1 76.3 72.3
Edges 80.2 77.6 75.2

Table S.4: NMI for various choices of τ on the NTU2012 dataset
Type of flow τ⋆ τH τC

Nodes 96.2 96.2 18.3
Edges 100 100 18.3

Table S.5: NMI for various choices of τ on the Zoo dataset
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