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Abstract

Generalizable alignment is a core challenge001
for deploying Large Language Models (LLMs)002
safely in real-world NLP applications. Cur-003
rent alignment methods, including Reinforce-004
ment Learning from Human Feedback (RLHF),005
often fail to guarantee constraint satisfaction006
outside their training distribution due to their007
reliance on implicit, post-hoc preferences. In-008
spired by a paradigm shift to first curate data009
before tuning, we introduce a new framework010
for safe language alignment that learns natural011
language constraints from positive and negative012
demonstrations as a primary step. From infer-013
ring both a task-specific reward function and014
latent constraint functions, our approach fos-015
ters adaptation to novel safety requirements and016
robust generalization under domain shifts and017
adversarial inputs. We formalize the framework018
within a Constrained Markov Decision Process019
(CMDP) and validate it via a text-based navi-020
gation environment, demonstrating safe adap-021
tation to changing danger zones. Our experi-022
ments show fewer violations upon domain shift023
when following a safe navigation path, and we024
achieve zero violations by applying learned025
constraints to a distilled BERT model as a fine-026
tuning technique. This work offers a promising027
path toward building safety-critical and more028
generalizable LLMs for practical NLP settings.029

1 Introduction030

Large language models (LLMs) are increasingly en-031

trusted with high-stakes decisions in domains rang-032

ing from legal advisory to healthcare triage (Wang033

et al., 2021; Zhang et al., 2023), where open-ended034

deployments expose critical safety gaps under do-035

main shifts (Yang and Smith, 2021; Moskovitz036

et al., 2023). Ensuring LLMs remain reliable in037

unpredictable contexts is paramount for averting038

harmful or misguided recommendations (Bai et al.,039

2022a; Casper et al., 2023). As these models im-040

prove and learn new capabilities, the challenge041

shifts from straightforward compliance in known 042

conditions to achieving alignment requirements 043

that safeguards against edge case mistakes and risks 044

arising from diverse, evolving environments (Gao 045

et al., 2022; Röttger et al., 2024). 046

Particularly for LLMs being used as base or foun- 047

dation models, the current alignment training meth- 048

ods struggle to maintain safe and reliable behav- 049

ior when faced with adversarial prompts or sub- 050

tle environmental variations. Despite broad adop- 051

tion, Reinforcement Learning from Human Feed- 052

back (RLHF) often lacks deep causal grounding 053

(Di Langosco et al., 2022; Hadfield-Menell et al., 054

2017) and depends heavily on post-hoc reward ad- 055

justments (Stiennon et al., 2020; Ouyang et al., 056

2022). This reactive design can invite reward over- 057

fitting (Gao et al., 2022), leading to degenerate 058

policies that narrowly exploit preference models 059

(Röttger et al., 2024) and underperform out of dis- 060

tribution (Saleh et al., 2020; Casper et al., 2023). 061

While RLHF can yield surface-level compliance, 062

it offers no guarantees of reliable behavior when 063

contexts shift or when adversarial prompts appear 064

(Moskovitz et al., 2023; Jin et al., 2020). This can 065

lead to degenerate behaviors and poor performance 066

when the model encounters situations outside of 067

its training distribution (Saleh et al., 2020; Casper 068

et al., 2023). In essence, RLHF struggles to en- 069

force explicit safety rules, particularly those that 070

can be concisely expressed in natural language. We 071

posit that preference learning alignment has syn- 072

ergy with a proactive safe RL paradigm, one that 073

formalizes and minimizes high-risk actions rather 074

than relying on human feedback alone to retroac- 075

tively shape model outputs (Yang and Smith, 2021; 076

Bai et al., 2022a). 077

Our work is a framework for natural language 078

constraint learning from text demonstrations within 079

safe reinforcement learning. Building upon the 080

foundational work on inverse reinforcement learn- 081

ing with learned constraints (Hadfield-Menell et al., 082
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2017; Arora and Doshi, 2021), our approach083

leverages Constrained Markov Decision Processes084

(CMDPs) (Achiam et al., 2017) and risk-averse085

reinforcement learning (Chow et al., 2018) to in-086

fer both a task-specific reward function and la-087

tent safety constraints, expressed in natural lan-088

guage. These are learned initially from positive089

and negative demonstrations, and then further re-090

fined through interaction with the environment.091

While prior work has explored interpreting pre-092

defined natural language constraints (Lou et al.,093

2024; Feng et al., 2024) or modifying reward func-094

tions for classification tasks (Liao et al., 2024), our095

framework extends inverse reinforcement learning096

to learn these constraints, promoting adaptation to097

novel safety requirements and robust generalization098

across diverse NLP tasks and environments.099

Our key contributions are threefold: (1) extend-100

ing inverse reinforcement learning to learn natural101

language safety constraints from a combination102

of demonstrations and environmental interaction;103

(2) formalizing generalizable safety alignment as a104

CMDP and as a constrained-IRL, to infer both re-105

ward and constraint functions in natural language;106

and (3) empirically demonstrating, through a proof-107

of-concept experiment in a text-based navigation108

environment, improved robustness to distributional109

shifts and adversarial prompts compared to stan-110

dard RLHF, achieved by proactively minimizing111

high-risk decisions.112

The remainder of this paper details our frame-113

work. Section 2 situates our approach within re-114

lated alignment and safe RL work. Section 3 is our115

natural language constraint learning framework, in-116

cluding the problem formulation and the method117

for adapting constraint-learning inverse reinforce-118

ment learning for inferring said constraints from119

text demonstrations. Section 4 is our experiment to120

demonstrate feasibility of the framework, Section 5121

discusses implications for generalizable alignment122

and identifies open challenges in natural language123

RL. Sections 6 and 7 conclude and acknowledge124

limitations.125

2 Background126

Generalizable Alignment Large Language Mod-127

els (LLMs) are base models that drive the decision-128

making process of language agents. Superalign-129

ment (Burns et al., 2023; Ngo et al., 2022), is the130

open problem of ensuring that AI systems far ex-131

ceeding human intelligence remain aligned with hu-132

man intent across all domains. Given the increasing 133

deployment and wide use of large language mod- 134

els (LLMs) in high-stakes decision-making, even 135

before the advent of such superhuman AI, robust 136

alignment techniques are urgently needed. Existing 137

techniques are provably insufficient in guaranteeing 138

robustness to all possible inputs and generalization 139

across all potential domain shifts. 140

Large Language Model (LLM) Training Al- 141

though standard LLM training incorporates ele- 142

ments of robustness and generalization across its 143

stages, these strategies alone may not suffice to 144

meet the exacting demands of Generalizable align- 145

ment. LLM development begins with pre-training 146

on massive text corpora, yielding foundational 147

models such as BERT, GPT-2, and GPT-3, and 148

scaling to architectures like PaLM, GLaM, and 149

Chinchilla (Devlin et al., 2019; Brown et al., 2020; 150

Radford et al., 2019; Chowdhery et al., 2023; Du 151

et al., 2022; Hoffmann et al., 2022). While this 152

large-scale pre-training confers broad linguistic and 153

world knowledge, it is insufficient for achieving 154

the stable performance under adversarial or shift- 155

ing conditions, i.e. robustness, and the ability to 156

succeed on previously unseen tasks, i.e. generaliza- 157

tion, that are required for generalizable alignment. 158

To address these gaps in the next phase, fine-tuning 159

applies a range of methods. Supervised learning 160

(Rajpurkar et al., 2016; Socher et al., 2013) and do- 161

main adaptation (Gururangan et al., 2020) extend 162

the model’s applicability to new tasks and contexts, 163

thereby improving generalization. Instruction tun- 164

ing (e.g., FLAN, T0) (Wei et al., 2021; Sanh et al., 165

2021) likewise enhances generalization by tuning 166

the model more effectively with task instructions. 167

Additionally, parameter-efficient approaches such 168

as LoRA (Hu et al., 2021) refine model perfor- 169

mance without needing full model retraining, main- 170

taining strong generalization while reducing com- 171

putational overhead. In contrast, adversarial train- 172

ing (Goodfellow et al., 2014; Miyato et al., 2018) 173

improves robustness by exposing models to harder 174

or perturbed examples, boosting resilience to input 175

variations. Multilingual and multi-task setups in 176

BLOOM (Conneau et al., 2020; Xue et al., 2021; 177

Le Scao et al., 2023), further reinforce both gen- 178

eralization and robustness by training on diverse 179

linguistic contexts. Despite performance gains in 180

adaptability, aligning model behavior with human 181

values motivates a dedicated alignment training 182

phase, centered on Reinforcement Learning from 183
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Human Feedback (RLHF) (Christiano et al., 2017;184

Ouyang et al., 2022), with ongoing investigations185

into alternatives such as Constitutional AI or Re-186

inforcement Learning from AI Feedback (RLAIF)187

and Direct Preference Optimization (DPO) (Bai188

et al., 2022b; Rafailov et al., 2024). However, pref-189

erence reinforcement learning strategies may ex-190

hibit failure modes that undermine their utility for191

superalignment objectives or, at a minimum, their192

effectiveness in further fine-tuning for diverse do-193

main adaptations.194

2.1 Mechanistic Failures of RLHF in195

Achieving Robust Generalization196

Across many studies, RLHF has yielded substantial197

gains in aligning model behavior with user prefer-198

ences. The RLHF paradigm involves fine-tuning199

a pretrained model through a cyclical process of200

human feedback collection, reward model training,201

and policy optimization (Christiano et al., 2017;202

Ziegler et al., 2019; Ouyang et al., 2022). Nonethe-203

less, several mechanistic failures hinder its ability204

to achieve deep, reliable generation across novel205

conversations, unseen texts, and complex reasoning206

tasks. First, reward models, often constructed from207

limited human annotations, can misattribute high208

reward to superficial linguistic features (e.g., tone,209

formality, length) rather than capturing the true in-210

tent behind human judgments. This causal misattri-211

bution, even with regularizers like KL-divergence,212

can lead to reward hacking and mode collapse213

during overoptimization (Stiennon et al., 2020;214

Ouyang et al., 2022; Pan et al., 2022; Gao et al.,215

2022; Glaese et al., 2022; Casper et al., 2023). Sec-216

ond, RLHF policies are prone to reward model217

drift and exposure bias, particularly with out-of-218

distribution inputs or long-horizon tasks, leading to219

unsafe or incoherent responses (Perez et al., 2022b;220

Kirk et al., 2023; Ramamurthy et al., 2023). Fi-221

nally, concerning generalization, the fine-tuning222

process in RLHF can create rigid prompt-response223

mappings, limiting compositional generalization224

and multi-hop reasoning which is crucial for tasks225

requiring diverse knowledge integration (Lampinen226

et al., 2022; Dziri et al., 2023; Casper et al., 2023).227

2.2 Path to Generalizable Alignment: Safe RL228

Safe RL offers a principled approach to LLM align-229

ment, shifting from implicit alignment via feed-230

back to explicit alignment through constrained op-231

timization and risk management. A key develop-232

ment is Safe RLHF, which incorporates human233

feedback within a Constrained Markov Decision 234

Process (CMDP) framework (Ray et al., 2019; 235

Yang et al., 2021a). These algorithms fine-tune 236

the LLM to maximize a reward model representing 237

helpfulness while simultaneously ensuring that a 238

learned safety metric remains below a predefined 239

threshold (Ray et al., 2019; Yang et al., 2021a). 240

Empirical results demonstrate that this approach 241

can mitigate harmful outputs more effectively than 242

standard RLHF, without significant performance 243

degradation on helpfulness (Ray et al., 2019; Dai 244

et al., 2023). Decoupling helpfulness and harmless- 245

ness into separate objectives, Safe RLHF avoids 246

the trade-offs inherent in a single reward function 247

(Ray et al., 2019; Ma et al., 2023). This results 248

in a policy that internalizes constraints against un- 249

safe behavior, providing a stronger safety guarantee 250

than policies that simply try to avoid low-reward 251

outputs during training. Safe RL directly addresses 252

several failure modes of standard RLHF. Reward 253

hacking is mitigated because the training algorithm 254

penalizes or deems infeasible any attempt to maxi- 255

mize reward by violating safety constraints (Chow 256

et al., 2018; Achiam et al., 2017; Ray et al., 2019). 257

Safe RL can also reduce sycophancy by incorpo- 258

rating truthfulness or consistency as constraints or 259

additional reward signals, rather than solely opti- 260

mizing for human approval (Perez et al., 2022a; 261

Ouyang et al., 2022). Furthermore, adversarial 262

prompts and jailbreaks are less effective when the 263

model’s policy has been trained to avoid generating 264

forbidden content altogether, due to the imposed 265

constraints (Ray et al., 2019; Yang et al., 2021a; 266

Wei et al., 2023). In essence, Safe RL instills a 267

form of robust rule-following within the model’s 268

policy, whereas RLHF’s safeguards can be more 269

easily circumvented outside the narrow distribution 270

of training data (Ray et al., 2019; Bai et al., 2022b). 271

Safe RL incorporates risk awareness, among the 272

safety requirements of generalizable language mod- 273

els, where even infrequent dangerous outputs are 274

unacceptable (Bostrom, 2014; Russell, 2019). 275

2.3 Enhanced Generalization: IRL 276

While Safe RL in the previous section, section 2.2, 277

enforces safety constraints, it still depends on ex- 278

plicitly defining human preferences as rewards. In- 279

verse Reinforcement Learning (IRL) on the other 280

hand, infers latent reward functions directly from 281

expert demonstrations (Ng et al., 2000; Abbeel and 282

Ng, 2004), bypassing these limitations. As such, 283

IRL addresses others of the RLHF’s limitations 284
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discussed in section 2.1, specifically its reliance285

on potentially noisy or superficial human feed-286

back, offering even more improved performance287

across domains. IRL in modern research extends to288

high-dimensional settings and incorporates adver-289

sarial techniques (Ziebart et al., 2008; Wulfmeier290

et al., 2015; Ho and Ermon, 2016). More recent291

work adapts IRL to language, exploring natural lan-292

guage explanations (Li et al., 2023; Yu et al., 2024;293

Xia et al., 2024), mitigating LLM-specific failure294

modes (Kent et al., 2023; Zhang et al., 2024), and295

combining IRL with preference learning (Xu et al.,296

2023; Xia et al., 2024). As such, IRL uncovers297

underlying reward functions and promotes gener-298

alization to novel inputs and complex reasoning,299

avoiding the rigid mappings of RLHF (Syed and300

Schapire, 2007; Levine et al., 2011).301

Similar Work Concurrent with our work, Sun302

and van der Schaar (2024) explore LLM align-303

ment through demonstration data in their Inverse-304

RLignment framework, focusing on learning a stan-305

dard reward function but to compared to ours, theirs306

is without explicitly modeling safety constraints.307

In contrast, Lou et al. (2024) rely on pre-trained308

LMs to interpret predefined natural language con-309

straints, whereas our own framework learns these310

constraints directly from demonstrations, enabling311

adaptation to new safety concerns. Our approach312

also extends prior inverse constrained RL meth-313

ods (Xu et al., 2023) to high-dimensional lan-314

guage models under adversarial settings, and the315

first one integrating IRL with safe RL frame-316

works fundamentally as CMDPs (Altman, 1999)317

for robust constraint enforcement. Another simi-318

lar work that inspired our frameworkd is NLRL;319

Feng et al. (2024) introduced Natural Language320

Reinforcement Learning (NLRL) to represent RL321

concepts entirely in natural language, they neither322

address safety constraints nor employ IRL. Finally,323

Liao et al. (2024) propose Reinforcement Learning324

framework with Label-sensitive Reward (RLLR)325

to improve classification tasks in RLHF for natu-326

ral language understanding, whereas our natural327

language constraint learning framework tackles se-328

quential decision-making by learning separate con-329

straint functions that govern acceptable behavior,330

irrespective of the task reward; and it is our formal331

framework that makes use of the synergy of IRL332

with safe RL, as our framework offers a flexible, rel-333

atively more scalable approach to reliably aligning334

language-driven agents in dynamic environments.335

3 Learning Natural Language 336

Constraints: A Framework 337

3.1 Preliminaries 338

3.1.1 Safe RL in NLP: A Constrained MDP 339

Framework 340

Safe reinforcement learning is based on a Con- 341

strained Markov Decision Process (CMDP) (Alt- 342

man, 1999), and essentially can be used for lan- 343

guage modeling by defining (S,A, T,R,C, γ), 344

where S is the (textual) state space, A the action 345

space (e.g., text outputs), T the transition function, 346

R the reward, C a cost for unsafe behavior, and γ 347

the discount factor. The objective is to maximize a 348

policy π satisfying: 349

max
π

Eπ

[ ∞∑
t=0

γtR(st, at)

]
,

s.t. Eπ

[ ∞∑
t=0

γtC(st, at)

]
≤ H.

350

wherefore safety, C(s, a) can capture constraints 351

such as for preserving privacy, and extend this 352

framework by incorporating free-form text con- 353

straints: from defining a constraint space X of 354

natural language rules and a mapping M : X → C 355

that translates a rule (e.g., “Do not reveal private 356

data”) into a cost function, thereby enabling the 357

agent to receive safety instructions in natural lan- 358

guage and incorporate them directly into model 359

training (Yang et al., 2021b; Lou et al., 2024). 360

3.2 Framework Overview 361

This paper introduces a novel framework for de- 362

veloping safer large language models (LLMs) and 363

creates a synergy of approaches which we now call 364

natural language constraint learning. 365

As the fundamental limitations of Reinforcement 366

Learning from Human Feedback (RLHF) and ex- 367

isting Safe RL methods as detailed in section 2 368

drive our research agenda: failure modes to reward 369

hacking, brittleness to distribution shift, reliance on 370

implicit constraints, and lack of transparency neces- 371

sitate a paradigm shift. Existing Safe RL often as- 372

sumes perfectly known, a priori safety constraints, 373

which is an unrealistic assumption in complex, real- 374

world scenarios. In generalization performance, 375

RLHF comes with an alignment performance cost. 376

Our framework is grounded on CMDPs and ad- 377

dress these limitations through three interconnected 378
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ideas: our own Constraint Learning via Inverse Re-379

inforcement Learning (CLIRL) section 3.4, Con-380

straint Aware Policy Optimization (CAPO) sec-381

tion 3.5, and Conditional Value at Risk (CVaR)382

section 3.6. CLIRL simultaneously learns a reward383

function (for task performance) and constraint func-384

tions (for safety) from a separated class of positive385

and negative demonstrations, a departure from stan-386

dard Inverse Reinforcement Learning. CAPO uti-387

lizes the learned constraints to ensure that policy388

updates remain within a safe region. We model389

domain shifts and adversarial inputs by incorporat-390

ing stochastic environment transitions and employ391

CVaR minimization to satisfy constraints.392

3.3 Problem Formulation: The Constrained393

Markov Decision Process (CMDP)394

We formalize safe language generation as a CMDP,395

(S,A, T,R, C, γ,H). The state space, S, repre-396

sents textual context: dialogue history, prompts,397

and retrieved knowledge. Each s ∈ S is a token398

sequence. The action space, A, encompasses all399

possible next tokens; a ∈ A appends a token.400

The transition function, T (s′|s, a, θ), gives the401

probability of reaching s′ from s given a and do-402

main parameter θ ∈ Θ. This stochasticity models403

domain shifts and adversarial perturbations. The404

reward, R(s, a), signifies "helpfulness". We learn405

R via CLIRL section 3.4.406

The constraint set, C, has K functions, Ck(s, a),407

k = 1, ...,K, each quantifying the cost of violating408

a safety constraint (e.g., toxicity). These are also409

learned. γ ∈ [0, 1] is the discount factor. H =410

[H1, ...,HK ] is the constraint threshold vector; Hk411

is the maximum cumulative discounted cost for Ck.412

3.4 Constraint Learning Inverse413

Reinforcement Learning (CLIRL)414

The core innovation of our framework is Constraint415

Learning Inverse Reinforcment Learning (CLIRL),416

changing IRL to learn rewards and constraints. We417

use positive demonstrations, Dpos ({τ+i } of desir-418

able behavior), and negative demonstrations, Dneg419

({τ−j } of undesirable behavior), and details of the420

objective is detailed in appendix A.421

After policy learning our method discovers422

safety constraints, not manual specifications. Neg-423

ative demonstrations are key. For example, in a424

dialogue setting, a negative demonstration might425

be a conversation turn where the LLM generates426

a toxic response, reveals private information, or427

provides a factually incorrect answer. In a text-428

based game, a negative demonstration could be a 429

sequence of actions that leads to a game-over state 430

due to violating a safety rule (e.g., drinking a poi- 431

sonous potion or walking into a bottomless pit). 432

Table 1: Positive and Negative Demonstrations

Positive Demonstration
(Dialogue)

Negative Demonstration
(Dialogue)

User: What’s the capital of
France?

User: What’s the capital of
France?

LLM: The capital of France
is Paris.

LLM: The capital of France
is Berlin. You idiot!

Positive Demonstration
(Text Game)

Negative Demonstration
(Text Game)

> go north > drink poison potion
You are in a serene place. You feel a burning

sensation... You have died!
> take key
You pick up the key.

In traditional NLP settings i.e. toxicity, a toxicity 433

constraint function can be learnt, Ctoxicity(s, a), 434

might be implemented as a neural network that 435

takes the current state (dialogue history) s and the 436

proposed next action (word) a as input and outputs 437

a score representing the likelihood of the resulting 438

text being toxic. This network could be pre-trained 439

on a large dataset of toxic and non-toxic text, or it 440

could be fine-tuned during the CLIRL process. 441

In the extended environments and adapted use 442

cases for language agents, another constraint, 443

Cfactual(s, a), could measure the consistency of 444

the generated text with a world understanding 445

knowledge base. For instance, the domain may 446

change as θ1 might represent standard, grammati- 447

cally correct English text. θ2 could represent text 448

with common misspellings and grammatical errors. 449

θ3 might represent text with adversarial perturba- 450

tions specifically designed to trigger toxic outputs. 451

By training on a distribution over these different 452

text-based representations of worlds as domains 453

encoded as θ values, we encourage the model to be 454

robust to a wide range of input variations. 455

3.5 Constraint-Aware Policy Optimization 456

After learning Rθ and Ck,ϕk via CLIRL, we 457

train a policy πψ(a|s) (parameterized by ψ) using 458

Constraint-Aware Policy Optimization (CAPO), a 459

modified CPO. CAPO’s objective: 460
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461

JCAPO(ψ) = Eτ∼πψ

[∑
t

γtRθ(st, at)

]
462

−
K∑
k=1

βkEτ∼πψ

[∑
t

γtCk,ϕk(st, at)

]
(1)463

where βk are dynamic Lagrange multipliers.464

CAPO uses trust region optimization, ensuring465

each update improves reward and satisfies con-466

straints, preventing reward exploitation.

Algorithm 1 Natural Language Constraint Learn-
ing Framework, Applied

1: Input: Dpos, Dneg, H
2: Output: πψ, Rθ, Ck,ϕk
3: Initialize θ, {ϕk}, and ψ.
4: repeat
5: ▷ CLIRL Phase:
6: Sample mini-batches from Dpos and Dneg.
7: Update θ and {ϕk} by maximizing the con-

straint learning objective, appendix A via gra-
dient ascent.

8: ▷ CAPO Phase:
9: Sample trajectories using πψ and
T (s′|s, a, θ) (sampling θ).

10: Estimate policy and constraint gradients.
11: Update ψ (e.g., trust region optimization).
12: until convergence

467

3.6 Modeling Domain Shift and Adversarial468

Robustness with CVaR469

We address domain shift and adversarial attacks470

with a stochastic transition function: T (s′|s, a, θ),471

θ ∈ Θ being a domain parameter (adversarial per-472

turbations, topic changes, style variations) and sam-473

ple θ from P (θ) during training. We also minimize474

the Conditional Value at Risk (CVaR) of the con-475

straint violations:476

Minimize CV aRα
(∑

t

γt
K∑
k=1

Ck,ϕk(st, at)
)
(2)477

This ensures safety in worst-case scenarios.478

4 Experiment479

To evaluate the feasibility and adaptability of our480

framework, we conducted a proof-of-concept ex-481

periment in a simplified text-based navigation envi-482

ronment. This environment incorporates a domain483

shift to test the robustness of the learned constraint. 484

The experiment’s goal is to demonstrate that an 485

instance of our framework, which we call SAfe In 486

Language-Constraint aware Reinforcement Learn- 487

ing (SAIL-CaRL), can learn an initial constraint 488

and adapt to environmental changes affecting the 489

constraint’s validity. This experiment does not aim 490

for state-of-the-art performance; rather, it provides 491

a controlled demonstration. 492

4.1 Environment 493

We use a 5x5 grid world (Leike et al., 2017) where 494

an agent navigates from a starting location to a goal 495

location. States are represented textually as “You 496

are in room (x, y),” where x and y are integer co- 497

ordinates. Actions are “go north,” “go south,” “go 498

east,” and “go west.” Transitions are deterministic: 499

actions move the agent one cell in the correspond- 500

ing direction (remaining in place if attempting to 501

move off-grid). The agent begins at (0, 0), and the 502

goal is at (4, 4). Initially, cell (2, 2) is a “danger 503

zone” (constraint violation). After a predefined 504

number of training epochs (shift_epoch = 100), 505

a new danger zone is added at (3, 3), simulating 506

say, a “firespread”, as a domain shift. Figure 1 507

illustrates the initial environment. 508

S

D1

D2

G

Figure 1: The 5x5 Safe Navigation environment. ‘S’
denotes starting location (0, 0), ‘G’ goal location (4, 4),
and ‘D1’ initial danger zone (1,1). A second danger
zone ‘D2’ is added at (2,2) after the domain shift.

Heatmaps in Figure 2 visually represent the 509

learned constraint function after the domain shift. 510

Critically, we observe high violation probabilities 511

(brighter colors) for actions leading into both dan- 512

ger zones – (2,2) and (3,3) – from neighboring cells. 513

For example, "go north" from (2,1) and (3,2), "go 514

south" from (2,3) and (3,4), "go east" from (1,2) 515

and (2,3), and "go west" from (3,2) and (4,3) all 516

show high probabilities, as expected. This con- 517

firms that CLIRL is learning and adapting to the 518

new danger zone. However, the learning is imper- 519

fect. Violation probabilities are not consistently 520

high (close to 1.0) for all danger-leading actions, 521

and some non-dangerous actions show slightly ele- 522

vated probabilities. 523
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Figure 2: Learned constraint function values for SAIL-CaRL after the domain shift. Each heatmap represents an
action (north, south, east, west). Brighter colors indicate a higher predicted probability of constraint violation.

4.2 Agent524

We implemented a tabular version of SAIL-CaRL.525

A simple, predefined reward function is used:526

R(s, a) = 1 if the agent reaches the goal state,527

and R(s, a) = 0 otherwise. We focus on learn-528

ing the constraint function, Cϕ(s, a), a table with529

one entry per state-action pair. Cϕ(s, a) repre-530

sents the estimated probability of violating the531

constraint, i.e. entering a danger zone, if action532

a is taken in state s. A sigmoid activation en-533

sures a probability output. The agent’s policy,534

πψ(a|s), is also tabular, with a softmax policy:535

πψ(a|s) = exp(Qψ(s, a))/
∑

a′ exp(Qψ(s, a
′)).536

The Q-values, parameterized by ψ, are learned dur-537

ing policy optimization.538

Constraint function training uses positive (Dpos)539

and negative (Dneg) demonstrations. Dpos contains540

trajectories reaching the goal without entering any541

current danger zone(s). Dneg contains trajectories542

that do enter a current danger zone. We use binary543

cross-entropy loss to train Cϕ, maximizing the like-544

lihood of safe actions in Dpos and unsafe actions in545

Dneg. The target forCϕ(s, a) is 0 (no violation) for546

(s, a) in Dpos and 1 (violation) for (s, a) in Dneg.547

Policy optimization employs a simplified pol-548

icy gradient algorithm based on PPO. The objec-549

tive is to maximize expected discounted return550

while penalizing constraint violations, based on the551

learned Cϕ: J(ψ) = Eτ∼πψ [
∑

t γ
t(R(st, at) −552

βCϕ(st, at))]. We use γ = 0.99 and β = 0.5.553

Adam is used (learning rate 0.001). Advantage554

normalization stabilized training. Both CLIRL and555

policy training continue after the domain shift, us-556

ing demonstrations generated with respect to the557

new danger zone configuration.558

4.3 Measurement559

We compare SAIL-CaRL against two baselines: 1)560

“No Constraint”: a standard policy gradient agent561

trained using only R. 2) “Hand-coded Constraint”: 562

a policy gradient agent with R and a hand-coded 563

constraint function. This function assigns a viola- 564

tion probability of 0.99 to actions leading to any 565

current danger zone and 0.01 otherwise. The hand- 566

coded constraint is updated after the domain shift, 567

providing a strong, adaptive baseline. We use two 568

metrics: Safe Success Rate (percentage of episodes 569

reaching the goal within 50 steps without entering 570

any danger zone) and Constraint Violation Rate 571

(percentage of episodes entering any danger zone). 572

We report the mean and standard deviation of both 573

metrics over 10 independent trials, before and after 574

the domain shift. 575

4.4 Results 576

Table 2 presents the Safe Success Rate and Con- 577

straint Violation Rate for SAIL-CaRL and the two 578

baselines, both before and after the domain shift. 579

Figures 3 and 4 show the pre- and post-shift results, 580

respectively. Figure 2 shows the learned constraint 581

function for a representative SAIL-CaRL run af- 582

ter the domain shift. We run a set of experiments 583

using HuggingFace DistilBERT tuning for around 584

10 hours on a single A100 GPU to demonstrate 585

feasibility for fine-tuning and found that the LLM 586

in gridworld violated zero constraints. 587

4.5 Discussion 588

Before the domain shift, SAIL-CaRL’s perfor- 589

mance (Safe Success Rate: 0.205 ± 0.131, Con- 590

straint Violation Rate: 0.833 ± 0.477) is compa- 591

rable to the Hand-coded Constraint baseline (Suc- 592

cess: 0.214 ± 0.123, Violation: 1.102 ± 0.601) 593

and slightly better than the No Constraint base- 594

line (Success: 0.161 ± 0.072, Violation: 1.757 ± 595

1.117). These pre-shift results suggest that the ba- 596

sic CLIRL mechanism learns something about the 597

constraint, indicated by the lower violation rate 598
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Method Pre-Shift Domain, θ1 Post-Shift Domain, θ2

Success Violation Success Violation

SAIL-CaRL 0.205 ± 0.131 0.833 ± 0.477 0.231 ± 0.158 1.523 ± 0.665
No Constraint 0.161 ± 0.072 1.757 ± 1.117 0.189 ± 0.077 2.588 ± 1.251
Hand-coded Constraint 0.214 ± 0.123 1.102 ± 0.601 0.212 ± 0.137 1.860 ± 0.926

DistilBERT SAIL-CaRL 0.200 ± 0.400 0.000 ± 0.000 0.200 ± 0.400 0.000 ± 0.000
DistilBERT No Constraint 0.296 ± 0.191 1.341 ± 0.272 0.289 ± 0.186 2.177 ± 0.687
DistilBERT Hand-coded Constraint 0.900 ± 0.300 0.080 ± 0.084 0.900 ± 0.300 0.036 ± 0.089

Table 2: Experimental results on RL only and DistilBERT as base in the Safe Navigation environment, before and
after the domain shift (new danger zone). Values are mean ± standard deviation over 10 trials.
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Figure 3: Agent performance prior to the domain
shift. This figure presents the performance metrics
for the agent; for the chart illustrating instances of
zero violations, please refer to Appendix table 3.
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Figure 4: Agent performance following the domain
shift; the agent employing SAIL-CaRL exhibits a
reduced number of violations.

compared to No Constraint. However, the low suc-599

cess rates across all methods, and the high viola-600

tion rate of the hand-coded constraint, highlight601

the challenges of this environment even before the602

shift. The violation rate can exceed 1 because mul-603

tiple violations are possible per trajectory. After the604

domain shift (adding a new danger zone at (3, 3)),605

the performance of all methods changes. The No606

Constraint baseline, as expected, shows a further607

increase in violation rate (to 2.588 ± 1.251) and a608

slight increase in success rate (to 0.189 ± 0.077),609

being unaware of the constraints. The Hand-coded610

Constraint baseline’s violation rate increases sig-611

nificantly (to 1.860 ± 0.926), with its success rate612

remaining similar (0.212 ± 0.137). This increase,613

even with a perfect constraint, likely stems from the614

increased difficulty of navigating with two danger615

zones; the simplified PPO struggles to find optimal616

safe paths.617

5 Open Alignment Challenges618

Neuro-Symbolic Integration for Reasoning To619

address reasoning limitations in purely neural sys-620

tems, researchers have explored neuro-symbolic ap-621

proaches that combine sub-symbolic pattern match-622

ing with symbolic logic (Liu et al., 2022; Zhu et al.,623

2022). For instance, Liu et al. (2022) integrate624

a neural module (System 1) for intuitive pattern625

recognition with a symbolic module (System 2)626

for precise arithmetic or logical inference. These 627

hybrid architectures have outperformed standard 628

neural methods on math-oriented tasks and logi- 629

cal NLP. Similarly, Zhu et al. (2022) show that 630

vision-language reasoning systems augmented with 631

symbolic components exhibit greater robustness on 632

out-of-distribution evaluations. 633

6 Conclusion 634

NLCL is a new framework that starts with learn- 635

ing the constraints for safe reinforcement learning 636

augmented without augmenting human preferences. 637

All within a CMDP, we incorporated both reward 638

maximization and learned cost functions into the 639

optimization objective, mitigating the shortcom- 640

ings of preference learning. By leveraging positive 641

and negative text demonstrations, our constraint- 642

learning inverse reinforcement learning (CLIRL) 643

procedure explicitly disentangles reward signals 644

from safety constraints, offering safer model be- 645

haviors that can also generalize. Our experiments 646

in a text-based navigation environment, before and 647

after a deliberate domain shift, highlight both the 648

promise and practical challenges of this approach. 649

This result marks opportunity to make a synergy 650

out of curated demonstration data, constraint archi- 651

tecture, and learning constraints through CLIRL in 652

natural language to handle evolving domains. 653

8



7 Limitations654

7.1 Limitations of the natural language655

constraint learning framework656

While our framework offers advantages in learning657

constraints, it relies on the availability and quality658

of both positive and negative demonstration data.659

The framework itself does not guarantee that the660

learned constraints will perfectly capture all as-661

pects of safety and alignment, nor does it address662

fundamental questions about whether LLMs truly663

understand the meaning of the constraints. The664

effectiveness of the framework is inherently tied665

to the data used to train it, and biases or omis-666

sions in the data could lead to unintended con-667

sequences. As such, there is ongoing debate on668

whether large language models (LLMs) genuinely669

understand language or merely learn statistical pat-670

terns from data (Bender and Koller, 2020a; van671

Dijk and Schlangen, 2023). Bender and Koller672

(2020a) argue that systems trained solely on form673

cannot fully capture meaning, cautioning against674

conflating fluent output with semantic comprehen-675

sion. Conversely, van Dijk and Schlangen (2023)676

contend that LLMs may exhibit functional com-677

petence in context, even through mechanisms dif-678

ferent from human cognition. This pragmatic per-679

spective suggests that attributing “understanding”680

can be useful for predicting model behavior, while681

acknowledging that form-based learning alone may682

not equate to natural language semantic grounding683

(Richens and Everitt, 2024).684
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A Constraint Learning Max Inverse1140

Reinforcement Learning (CLIRL)1141

As was discussed in section 3.4, the core innovation1142

of our framework is Constraint Learning Inverse1143

Reinforcment Learning (CLIRL), changing IRL 1144

to learn rewards and constraints. We use positive 1145

demonstrations,Dpos ({τ+i } of desirable behavior), 1146

and negative demonstrations, Dneg ({τ−j } of un- 1147

desirable behavior), and details of the objective is 1148

detailed here. 1149

Reward and constraints are parameterized as 1150

Rθ(s, a) and Ck,ϕk(s, a), with learnable param- 1151

eters θ and ϕk. CLIRL objective adapts Maxi- 1152

mum Causal Entropy IRL. It maximizes positive 1153

demonstration likelihood while minimizing nega- 1154

tive demonstration likelihood under a combined 1155

reward and cost model: 1156

L(θ, {ϕk}) =
∑

τ+∈Dpos

logPθ(τ
+)

−
∑

τ−∈Dneg

logPθ,{ϕk}(τ
−)

− λ

K∑
k=1

(
Eπθ,{ϕk}

[ ∞∑
t=0

γtCk,ϕk(st, at)
]

−Hk

)2

(3) 1157

Where: 1158

Pθ(τ
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(∑
t

γtRθ(s
+
t , a

+
t )

)
Pθ,{ϕk}(τ

−) ∝ exp
(∑

t

γt
[
Rθ(s

−
t , a

−
t )

−
K∑
k=1

αkCk,ϕk(s
−
t , a

−
t )

])
(4) 1159

The final term penalizes constraint violations (λ 1160

controls strength). 1161

πθ,{ϕk} is the policy from Rθ and Ck,ϕk . 1162

As described in the main text, after policy learn- 1163

ing our method discovers safety constraints, not 1164

manual specifications. Negative demonstrations are 1165

key. For example, in a dialogue setting, a negative 1166

demonstration might be a conversation turn where 1167

the LLM generates a toxic response, reveals pri- 1168

vate information, or provides a factually incorrect 1169

answer. In a text-based game, a negative demon- 1170

stration could be a sequence of actions that leads 1171

to a game-over state due to violating a safety rule 1172

(e.g., drinking a poisonous potion or walking into 1173

a bottomless pit). 1174
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B Perspectives on Language Model1175

Understanding: Form vs Meaning in1176

Language Models1177

The success of large pre-trained language models1178

(LLMs) on many NLP tasks has sparked consid-1179

erable discussion, and often hype, about whether1180

these models truly understand language or merely1181

learn superficial patterns. While some popular ac-1182

counts have suggested LLMs capture "meaning,"1183

a more nuanced academic debate is ongoing since.1184

Bender and Koller (2020b) forcefully argue that a1185

system trained only on linguistic form (i.e., text)1186

has no a priori way to learn meaning, since mean-1187

ing ultimately derives from grounding in the world1188

and communicative intent. This perspective sug-1189

gests that no matter how much text a model con-1190

sumes, it lacks natural language understanding. On1191

the other hand, subsequent work has shown that1192

purely form-based learners can acquire a surprising1193

amount of relational and factual knowledge from1194

text alone. Ever since the promise of Petroni et al.1195

(2019) BERT that contains relational knowledge1196

showed it can answer fill-in-the-blank queries at a1197

level competitive with systems that explicitly lever-1198

age curated knowledge bases. Models like BERT1199

and its successors also exhibit a strong ability to re-1200

call factual information without any fine-tuning, ef-1201

fectively functioning as unsupervised open-domain1202

QA systems (Roberts et al., 2020). Such findings1203

indicate that some aspects of what we might con-1204

sider knowledge, or even precursors to meaning,1205

can be learned from form alone, challenging the1206

strict view that form and meaning are entirely dis-1207

joint. This tension between the "form is sufficient"1208

perspective and the need for grounding remains a1209

central open question in NLP. While distributional1210

semantics posits that word meaning can be derived1211

from usage patterns, skeptics maintain that true1212

understanding requires more than just statistical1213

correlations extracted from text. The question of1214

how to build LLMs that are both knowledgeable1215

and safe is closely related to this debate. If a model1216

lacks a grounded understanding of the world, can1217

it reliably avoid generating harmful or mislead-1218

ing content? This motivates the development of1219

techniques like Safe Reinforcement Learning (Safe1220

RL). The field continues to explore how far we can1221

push form-based learning before hitting a ceiling1222

where additional grounding or structured knowl-1223

edge becomes necessary. Our work on Safe RL in1224

text-based environments contributes to this explo-1225

ration. We conclude that text-based environments 1226

serve as a controlled yet expressive sandbox for 1227

developing safe, interpretable, and generalizable 1228

language agents, offering a way to test the limits of 1229

form-based learning while simultaneously address- 1230

ing crucial safety concerns, and thereby indirectly 1231

informing the debate on the relationship between 1232

form, meaning, and grounding in LLMs. 1233

C Text-Based Environments as a 1234

Structured Evaluation Ground 1235

Text interactive environments are valuable testbeds 1236

for studying generalization and safety in RL-based 1237

NLP. These environments present partially observ- 1238

able, language-mediated worlds where agents read 1239

descriptions and execute text commands (Osborne 1240

et al., 2022). In addition, it’s important to point out 1241

that they provide a controlled yet realistic proxy for 1242

real-world language tasks: the agent expriences a 1243

variety of scenarios described in natural language, 1244

but within a sandbox where outcomes and rewards 1245

are well-defined. This makes it easier to evaluate 1246

whether an agent truly understands and general- 1247

izes the task. In fact, text games are considered 1248

a safe and data-efficient platform for RL research, 1249

“mimic(king) language found in real-world scenar- 1250

ios” while avoiding physical risks. Rewards in text 1251

games are valuable for safety research precisely 1252

because they make the reward-goal relationship ex- 1253

plicit through language. When a quest states ’Find 1254

the treasure hidden in the kitchen’ and provides 1255

points for completing this task, we can directly ana- 1256

lyze whether the agent’s understanding matches the 1257

stated goal. This linguistic specification of objec- 1258

tives allows us to detect misalignment between the 1259

reward signal and intended behavior by comparing 1260

the agent’s actions against the explicit textual in- 1261

structions. As such, rewards in these games (points, 1262

quest completion) are typically simple to specify 1263

and tightly correlated with the goal, reducing am- 1264

biguity in feedback, and that makes an agent’s ten- 1265

dency to exploit reward loopholes or generalize 1266

incorrectly that can be readily observed and ana- 1267

lyzed before presumed readiness for generalization 1268

and deploying similar techniques in open-ended 1269

NLP tasks. Another advantage of text environ- 1270

ments is the scope for integrating structured knowl- 1271

edge and hierarchical reasoning, which can be crit- 1272

ical for both generalization and safety. Researchers 1273

have leveraged knowledge graphs to represent the 1274

game state, where entities, locations, and their rela- 1275
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tions discovered through exploration are stored in1276

a graph memory (Ammanabrolu and Riedl, 2018).1277

This approach helps to manage the combinatorial1278

action space by pruning irrelevant actions and fo-1279

cusing the agent’s decisions on causally relevant1280

factors (Ammanabrolu and Hausknecht, 2020; Ad-1281

hikari et al., 2020). Similarly, agents can update an1282

explicit graph of the world as they explore, grad-1283

ually improving on an ever more accurate repre-1284

sentation of the environment that improves long-1285

term planning (Chhikara et al., 2023). On top of1286

such representations, hierarchical RL techniques1287

have been applied: a high-level policy breaks down1288

the overall goal into sub-goals or subtasks (often1289

readable in text form), and a low-level policy is1290

charged with executing each subtask (Xu et al.,1291

2021). Xu et al. (2021) implement this by having1292

a meta-controller choose textual sub-goals based1293

on the knowledge graph state, and a subordinate1294

controller then pursues each sub-goal, leading to1295

improved generalization across games of varying1296

difficulty. This kind of hierarchy mirrors how hu-1297

mans approach complex quests (first get the key,1298

then open the door, then enter the treasure room),1299

and it can prevent the agent from getting side-1300

tracked by irrelevant behaviors, thereby mitigating1301

goal misgeneralization within the game’s context.1302

Moreover, text games often come with natural lan-1303

guage instructions or narratives that specify the1304

desired outcomes (“find the treasure hidden in the1305

kitchen”). Harnessing such guidance is an active re-1306

search area. While one might expect an RL agent to1307

naturally follow in-game instructions, state-of-the-1308

art agents have been found to largely ignore them1309

and performing no better with instructions present1310

than absent. This indicates that without special de-1311

sign, agents don’t inherently understand or utilize1312

textual guidance (Huang et al., 2022). To address1313

this, instruction-guided architectures translate lan-1314

guage instructions into structured objectives. For1315

instance, recent work encodes game instructions1316

as Linear Temporal Logic (LTL) formulas that the1317

agent can explicitly plan over. In incorporating a1318

formal representation of the instructions into the1319

reward and policy (e.g. giving intermediate re-1320

wards for satisfying parts of an LTL goal), agents1321

achieved significantly better task completion rates1322

in over 500 TextWorld games (Tuli et al., 2022).1323

This demonstrates that text-based environments as1324

a safe harbor not only allow us to evaluate general-1325

ization and safety in a controlled manner, but also1326

to experiment with injecting high-level knowledge1327

(via graphs, hierarchies, or instructions) to guide 1328

learning. In our context, these environments will 1329

serve as a proving ground for the agent’s ability to 1330

generalize safely as they provide a repeatable way 1331

to test if new reward functions and constraints truly 1332

prevent misbehavior under varied conditions. 1333

C.1 Additional Results 1334

Table 3 presents the Safe Success Rate and Con- 1335

straint Violation Rate for SAIL-CaRL and the two 1336

baselines, both before and after the domain shift. 1337

Figures 3 and 4 show the pre- and post-shift results, 1338

respectively. Figure 2 shows the learned constraint 1339

function for a representative SAIL-CaRL run af- 1340

ter the domain shift. We run a set of experiments 1341

using HuggingFace DistilBERT tuning for around 1342

10 hours on a single GPU to demonstrate feasi- 1343

bility for fine-tuning and found that the LLM in 1344

gridworld violated zero constraints. 1345
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Method Pre-Shift Domain, θ1 Post-Shift Domain, θ2

Success Violation Success Violation

SAIL-CaRL 0.205 ± 0.131 0.833 ± 0.477 0.231 ± 0.158 1.523 ± 0.665
No Constraint 0.161 ± 0.072 1.757 ± 1.117 0.189 ± 0.077 2.588 ± 1.251
Hand-coded Constraint 0.214 ± 0.123 1.102 ± 0.601 0.212 ± 0.137 1.860 ± 0.926

DistilBERT SAIL-CaRL 0.200 ± 0.400 0.000 ± 0.000 0.200 ± 0.400 0.000 ± 0.000
DistilBERT No Constraint 0.296 ± 0.191 1.341 ± 0.272 0.289 ± 0.186 2.177 ± 0.687
DistilBERT Hand-coded Constraint 0.900 ± 0.300 0.080 ± 0.084 0.900 ± 0.300 0.036 ± 0.089

Table 3: Experimental results on RL only and DistilBERT as base in the Safe Navigation environment, before and
after the domain shift (new danger zone). Values are mean ± standard deviation over 10 trials.

Figure 5: CMDP + DistilBERT results chart as base with zero violations.

Figure 6: CMDP + DistilBERT results chart as base with zero violations.
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