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Abstract: Visual planning, by offering a sequence of intermediate visual subgoals
to a goal-conditioned low-level policy, achieves promising performance on long-
horizon manipulation tasks. To obtain the subgoals, existing methods typically
resort to video generation models but suffer from model hallucination and com-
putational cost. We present Vis2Plan, an efficient, explainable, and white-box
visual planning framework powered by symbolic guidance. From raw, unlabeled
play data, Vis2Plan harnesses vision foundation models to automatically extract a
compact set of task symbols, which allows building a high-level symbolic transition
graph for multi-goal, multi-stage planning. At test time, given a desired task goal,
our planner conducts planning at the symbolic level and assembles a sequence
of physically consistent intermediate subgoal images grounded by the underly-
ing symbolic representation. Our Vis2Plan outperforms strong diffusion video
generation-based visual planners by delivering a 53% higher aggregate success rate
in real robot settings while generating visual plans 35× faster. The results indicate
that Vis2Plan is able to generate physically consistent image goals while offering
fully inspectable reasoning steps. More details are available on here: vis2plan.
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1 Introduction

Learning versatile and long-horizon manipulation skills from uncurated and unlabeled play data
remains challenging for robot learning. The play dataset usually consists of long trajectories, which
are composed of several unknown sub-skills that solve complex and multi-stage tasks without task
labels. Such task-agnostic datasets contain rich information for solving multi-stage and versatile
tasks. However, extracting long-horizon visual plans from play data is challenging: 1) the planner
needs to discover and stitch sub-skills from unlabeled data; 2) the planner should generate physically
reachable subgoals for multi-stage tasks. A practical approach for learning versatile skills is through
semantically grounding tasks and applying hierarchical imitation learning. Recent advances in
video generative models and vision-language models have shown promise as high-level planners
by synthesizing intermediate visual subgoals based on language descriptions or specifying visual
targets [1, 2, 3, 4, 5]. However, three core challenges limit their applicability in real-world robot
learning. First, these video generative models or vision-language models conduct planning directly
in pixel space or dense latent space by forecasting the future in a black-box way [6, 7, 8, 9], which
struggle to reason reliably over long horizons due to model hallucination [10, 11, 12, 13, 14, 15].
Second, planning via video generative models or vision-language models is extremely slow, making
these methods expensive to apply in real-world applications, especially real-time systems. Third,
these approaches require heavy human effort to label unstructured play datasets: video demonstrations
must be manually labeled with natural language descriptions. Despite recent vision-language models
(VLMs) showing great video understanding ability, they still face challenges in reliably generating
correct task descriptions [10, 11, 12, 16].
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Figure 1: Vis2Plan: Given an unlabeled play dataset, Vis2Plan first constructs a discrete transition
graph, where nodes are represented by a combination of object-centric symbols extracted from the
dataset. At inference time, given a task goal specification, a symbolic planner plans a sequence of
symbolic states, which guides visual planning via image retrieval and reachability estimation. Finally,
the visual subgoals will guide a low-level policy to generate action chunks to accomplish the task.

To overcome these limitations, we introduce Vis2Plan, a symbolic-guided visual planning framework
that combines the representational power of vision foundation models with the efficiency and
interpretability of white-box planning. Instead of training video generators, Vis2Plan first extracts a
compact set of task symbols from raw, unlabeled human play data using pretrained vision foundation
models (VFMs). VFMs serve as object detectors and provide object-centric representations to invent
symbols to describe robot task states. These combinations of object-centric symbols serve as nodes
in a discrete transition graph, capturing stable object states and the effects of primitive manipulation
skills. At test time, given a desired goal symbol extracted from a goal image specified by users,
Vis2Plan then performs a search over the symbolic graph to find a sequence of symbolic state
transitions. Based on the symbolic plan, Vis2Plan retrieves a batch of images based on each symbolic
subgoal’s label from the dataset and filters them through a reachability estimator to ensure physical
achievability. The selected sequential images form a visual plan for the goal-conditioned low-level
controller. Finally, a goal-conditioned controller generates action chunks to accomplish subgoals.
The whole hierarchical planning is executed in a closed-loop manner as shown in Figure 1.

Our approach offers several key advantages. 1)By decoupling high-level visual planning and low-
level control, we reduce computational cost and eliminate the need for large, task-specific action
annotations. 2)Symbolic search guarantees correctness and interpretability of the plan, and the
combination of symbolic image sampling and a reachability estimator prevents hallucinations and
preserves photo-realism. Moreover, 3) training relies only on unlabeled play data; no human-provided
task descriptions or reward annotations are required. We evaluate Vis2Plan in both simulation and real
robotic manipulation scenarios, comparing against end-to-end goal-conditioned policies, generative
video planners, and hybrid search-learn methods. In experiments with a real robot, across a suite of
single- and multi-stage tasks, our framework consistently outperforms the diffusion video generative
planning baseline in both subgoal completion and long-horizon success rate by 53%. Regarding
inference speed, Vis2Plan is capable of generating visual plans with an average of 0.03 seconds –
demonstrating robustness, efficiency, and fully inspectable reasoning.

2 Related Work

Learning from unlabeled play data One alternative imitation learning paradigm is multi-task
learning from uncurated play data, a form of teleoperated robot demonstration provided without a
specific goal. With play data, one typically assumes that the collected demonstrations are from a
rational teleoperator with possibly some latent intent to explore the environment [17]. Note that,
unlike standard offline-RL datasets [18], play-like behavior datasets neither contain fully random
actions, task descriptions, nor have rewards associated with the demonstrations [17, 19, 20]. Previous
work mostly focuses on training an end-to-end or hierarchical goal-conditioned visuomotor policy to
learn the versatile behaviours [17, 21]. Recent work proposes to leverage Vision-Language foundation
models to label play data to train a policy [22] or extract planning domains [23, 24, 25, 13]. However,
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these methods still face the trouble of long-horizon reasoning, requiring fine-tuning with specific
human labelling and requiring high amounts of computational resources.

Learning Abstractions from Demonstrations Learning abstractions reduces the complexity of
long-horizon planning in high-dimensional domains [26, 27, 28]. Traditional methods rely on hand-
designed abstractions [29, 30], while the PDDL format [31] represents actions as planning operators
with preconditions and effects. Recent data-driven approaches automatically discover abstractions
from interactions [32, 33, 34, 35, 36] or demonstrations [23, 37, 38, 39, 40, 41], but assume given
predicates or low-level skill generators, limiting skill extraction from unlabeled multimodal data.
Ahmetoglu et al. [42] learns predicates from raw data, yet only in simple environments. LLMs and
VLMs enable high-level planning with minimal or no demonstrations [43, 44, 45, 46, 47, 48, 23],
leveraging commonsense knowledge for efficient plan generation. However, (1) LLM-generated
plans are challenging to refine reliably into low-level actions [44, 47]; (2) VLM-based methods [25,
43, 46, 49, 50, 24] can produce unreliable image descriptions in certain domains; and (3) their scale
prohibits real-time planning. In this work, we integrate symbolic planning into hierarchical visual
planning by using relatively lightweight VFMs to (i) extract symbolic transitions offline without
prior knowledge of predicates or controllers, and (ii) leverage the symbolic skills to guide visual plan
generation instead of learning an accurate neuro-symbolic domain.

Hierarchical Planning from Visual Demonstrations Hierarchical frameworks have shown
promise in long-horizon tasks. Recent work combines hierarchical frameworks with model-free
reinforcement learning and imitation learning to learn flexible skills from unlabeled offline data [51,
52, 53, 54, 55, 56, 57, 21, 58, 59]. These approaches apply unsupervised learning (e.g., a VAE [51,
52, 53, 21]) to discover abstract skill representations. However, these approaches require large
datasets to learn a suitable skill prior and still need deep planning models, which limits the scalability
and interoperability of their plans. Some methods combine conventional white-box planning with
learning-based approaches [60, 61, 62, 63] by performing search-based planning over a learned
low-dimensional goal space and using a goal-conditioned policy to achieve subgoals. Yet these
methods often rely on simple goal spaces or short-horizon tasks (e.g., Atari games [61]; short-
horizon environments [62]), or demand large datasets [64, 65]. From a vision-planning perspective,
several works identify temporal action abstractions based on visual similarity to detect meaningful
visual skills [66, 67], but they cannot integrate directly with traditional search planning. Other
studies employ compositional large language foundation models and generative models to generate
image sequences (videos) based on task specifications [68, 69, 70]. Despite impressive advances in
foundation models, these approaches demand extensive data and computational resources, yet may
still fail due to generating unrealistic subgoals. The key idea of Vis2Plan’s hierarchical framework is
to discover symbolic abstractions, enabling physically reachable visual planning.

3 Method: Vis2Plan

Vis2Plan comprises three key stages: 1) Coarse symbolic skill extraction, where we leverage VFMs
to extract symbolic skills; 2) Planning module learning, where we utilize the symbolic representations
and dataset to train planning modules; and 3) Symbolic-guided Visual Planning, the inference stage
where we do closed-loop planning and control.

Problem Setting: Learning from unlabeled demonstrations We leverage human play data, where
a teleoperator explores the scene (e.g., opening an oven, picking up a pot) driven by curiosity without
instructions [71, 17]. More importantly, there is no human labeling work to identify or describe
tasks. The unlabeled play dataset is formulated as D = {(o, a)} ⊂ O × A of observation–action
sequences, our goal is to extract a hierarchical planner capable of discovering sub-skills with symbolic
abstractions, enabling it to "controllably generate" desired plans.

3.1 Stage 1: Coarse Symbolic Skill Extraction

Extracting long-horizon visual plans from unlabeled play data is challenging due to: 1) each play
sequence representing a long-horizon manipulation composed of several unknown sub-skills in

3



Figure 2: Processing: symbolic skill extraction. First, we convert the demonstration videos into
object-centric feature sequences (top row). Then we segment the demonstration into sub-skills based
on object-centric temporal similarities. We discover the representative status of each object. Finally,
we can convert the demonstration video into symbolic transitions.

random orders, and the planner needs to extract and stitch subgoals from different trajectories to form
a feasible plan. 2) The observation space being continuous and high-dimensional. To handle these
challenges, we should a) reduce the planning horizon by discovering sub-skills and b) simplifying
and discretizing the observation space. Thus, we designed a two-step process to extract the symbolic
representation of the task: 1) Stable state identification, where we aim to divide long-horizon
unlabeled demonstrations into sub-skills by identifying key stable states, and 2) Symbolic state
labelling, where we convert key image observations into discrete states described by symbols.

Stable State Identification First, we preprocess demonstration videos by detecting and tracking
task-relevant objects using Qwen [72] and SAM2 [73], creating object-centric feature sequences
(encoded with SigLIP2 [74]). Figure 2 (1) illustrates this procedure. We then identify the stable states,
where all objects’ visual status remain static or similar, and a skill is a transition between two stable
states. We compute the temporal similarity between object-centric consecutive frames using cosine
similarity of object-centric features, and selecting peaks through non-maximum suppression (Figure 2
(2)) [75]. The peaks identify the representative stable states and naturally divide long-horizon
demonstrations into manageable sub-skills. We refer to the appendix for more details.

Symbolic Transition Labelling Next, we want to convert the identified stable states into discrete
symbolic transitions. Recent studies have shown that VFMs can serve as a foundation for clustering,
yielding informative groupings of embeddings [76, 77, 78]. These findings suggest VFMs can discover
representative object states in an unsupervised manner. We apply Agglomerative Clustering [79]
with cosine similarity to extract each object’s representative visual states. The number of clusters
is determined via the Silhouette score [80]. Figure 2 (3) illustrates examples of each object’s
representative states. Once the unsupervised representative states are discovered, we then train KNN
classifiers to label the image frames: we take each sub-skill’s precondition (start) and effect (end)
frames, and use KNN classifiers to describe each frame’s state. Consequently, we obtain several
symbolic transitions (zbefore, zafter) (Figure 2 (4)), which can be used to construct a directed graph for
in-domain planning.

3.2 Stage 2: Planning Modules Learning

Based on the symbolic transitions extracted from Stage 1, we can construct a symbolic graph that
enables the agent to plan multistage, long-horizon tasks. However, it cannot yet support closed-loop
control because: 1) the symbolic extraction stage omits intermediate frames between key states, which
contain important information for closed-loop planning; 2) in practice, we found visual subgoals
are critical for the low-level policy to execute the plan. Therefore, we train two modules in this
stage: i) a next-symbolic-state predictor that predicts the possible next-step symbolic subgoals based
on real-time visual feedback, and ii) a reachability estimator that finds sequential images matching
symbolic-subgoals to construct a visual plan.
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Figure 3: Symbolic-Guided Visual Planning Framework: Given an observation Ot, the state
predictor C(Ot) outputs a candidate set of next symbolic states Z = {z1, . . . , zm}. Using the
user-specified task goal zg, Vis2Plan searches Z to find the shortest symbolic path from the current
state to zg. Conditioned on this path, Vis2Plan then samples reachable subgoal images from the
dataset to assemble a visual plan, which guides the goal-conditioned controller to execute the task.

Next-Symbolic-State Predictor After Stage 1, the planner only has coarse symbolic transitions
and cannot yet plan in image space: it must map image observations into symbolic states. Prior
works [81, 82, 83] typically train classifiers on images to predict the action phase: "precondition"
(state before action execution), "effect" (state after action execution) or "execution" (intermediate
states) of each symbolic transition [83]. Yet these methods can be inaccurate. Here, given an image
observation Ot, we train a classifier-like predictor Cθ to predict the next symbolic state. During
training, we sample symbolic transitions {zbefore, zafter} and their intermediate frames [OI0 , . . . , OIn].
We optimize Cθ with a cross-entropy loss to predict zafter from any intermediate OIi :

min
θ

−Ezafter,OI
i

[
logCθ(zafter | OIi )

]
.

Reachability Estimator To ensure image subgoals are physically feasible, we train a reachability
estimation function Rψ to measure reachability between visual subgoals. We adopt contrastive
reinforcement learning (CRL) [84, 85, 86], which leverages contrastive learning to estimate the
discounted state occupancy measure. We modify the MC-InfoNCE loss [84] to the state-only case:

LMC-InfoNCE(Rψ)E(o)∼p(o),o(1)∼pπ(ot+|o),o(i)∼p(o)

[
log

exp
(
Rψ(o, o(1))

)∑N
i=1 exp

(
Rψ(o, o(i))

)] , (1)

where p(o) is the visual observation distribution of unlabeled play dataset D, and o(1) ∼ pπ(ot+ |
o) denotes hindsight sampling of future observations. Since our πψ imitates the offline dataset
policy, this state-only on-policy MC-InfoNCE loss can estimate the state-occupancy measure of
πϕ. Consequently, Rψ(oi, oj) serves as a reachability score: higher values indicate better physical
reachability from oi to oj for πϕ based on offline dataset. We also calculate a reachability threshold δ
here: δ = min(Rψ(ot, ot+)).

For the low-level policy, we implement a goal-conditioned visuomotor policy πg [87, 71] as our
low-level controller. Given the current observation Ot and the next image goal Ot+h from a video
plan, πg outputs an action chunk at:t+h that advances toward Ot+h, which the agent then executes for
a fixed number of timesteps. We train πg on paired snippets (Oi:i+h, ai:i+h) by sampling a random
start index i and horizon h, and optimizing:

max
ϕ

E(Oi:i+h,ai:i+h)∼D
[
log πϕ(ai:i+h | Oi, Oi+h)

]
. (2)

3.3 Stage 3: Symbolic-guided Visual Planning

Combining the modules learned from stage 2, we now have all the ingredients for Vis2Plan. To
plan to achieve a certain specified task goal, Vis2Plan will make three-stage planning: 1) symbolic
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planning: given current image observation Ot and task symbolic goal, Cθ will predict a set of
next symbolic state candidates Znext = {z1

1 , ..., z
m
1 }. We refer to the symbolic example in Fig.2.

By applying A* search over the symbolic graph for each candidate in Znext, we choose the shortest
path plan as symbolic subgoal sequence τz = {z1, ..., zH , zg}. 2) Visual subgoal generation: For
each symbolic subgoal zi in τz , we can sample zi’s corresponding visual observation based on the
relabelled dataset Oi ∼ PD

(
· | zi

)
. Given the sampled symbolic subgoal related images, the planner

uses beam-search to find a sequence of visual subgoals τO = {O1, .., Oh} that can maximize this
objective

arg max
τO

R(τO) = −
H−1∑
i=0

Rψ(Oi, Oi+1) s.t. Rψ(Oi, Oi+1) ≤ δ, ∀i, (3)

3) Goal-conditioned action chunk generation: Based on the visual plan, πg will generate an
h-horizon action chunk u = {a0, .., ah} based on the current visual observation Ot and the next
visual subgoal Og: u = πg(Ot, Og). Figure 4 presents examples of visual plans.

(a) pot green onion in pot and put pot in sink (b) pot bowel on shelf and pan in shelf

Start

Goal

Symbolic subgoals

Visual subgoals

Start

GoalVisual subgoals

Symbolic subgoals

Figure 4: Examples of Vis2Plan’s visual plan: a real robot kitchen task (left) and a LIBERO simulation
kitchen task (right).

4 Experiments

Setting We evaluate the methods in both simulation (LIBERO Mimicplay kitchen [88, 71]) and
a real world task (kitchen manipulations). Tasks are categorized based on the number of subgoals:
single-stage tasks (e.g., grasp the bowel) and multi-stage tasks (e.g., grasp the bowel and put it on the
stove). The sub-task horizon is between 140 and 400 action steps (short-horizon), and approximately
between 500 and 1400 action steps for multi-stage tasks (long-horizon) with a 10Hz control frequency.
We use the play data from [71] as offline dataset for simulation tasks. For the real robot experiments,
we collected 15 teleoperated human play trajectories, each trajectory potentially contains 5 to 15 sub-
tasks. We use the task success rate as an evaluation metric. For more details about the environments
and simulation results, please refer to the Appendix.

Baselines 1) End-to-end goal-conditioned policies: Goal-conditioned (GC) policies naturally
handle multiple tasks and can be trained via goal-conditioned behavior cloning with hindsight
relabeling. These serve as our low-level controllers. We evaluate four GC-BC variants: GC-RNN,
GC-Transformer,GC-Diffusion from [71] and GC-ACT, an image goal-conditioned variant of [89].
2) Hierarchical planners: each of these methods will have a high-level visual planner generating
image subgoals and a low-level goal-conditioned visuomotor policy (GC-diffusion). We implemented
a) AVDC [1], which trains a video generative diffusion model to make a visual plan. b) graph-search
retrieval (GSR) [90], which builds a graph over image latents and connects two vertices if their
latent features are similar. c) UVD-graph, which uses UVD [91] to segment long-horizon tasks into
subgoals, and then builds a graph similarly to GSR. For hierarchical planner baselines, we adopt
Adaflow [87], a flow-based generative model, as low-level policy for LIBERO simulation tasks; and
we use Mimicplay policy [71] for real robot tasks. Additionally, we note that methods in [37, 6, 92],
despite sharing similar hierarchical control methodologies, failed on all tasks and are thus omitted
from further comparisons.
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Table 1: Performance comparison in MimicPlay LIBERO simulation environment. Results show
success rates for both single-goal (short-horizon) and multi-goal (long-horizon) tasks with standard
deviations across 5 seeds. Bold values indicate the highest performance. Our Vis2Plan consistently
outperforms baselines, particularly excelling in challenging long-horizon tasks where end-to-end and
other hierarchical approaches struggle.

Short Horizon (1 goal) Long Horizon (≥ 2 subgoals)
Task-1 Task-2 Task-3 Task-4 Task-1 Task-2 Task-3 Task-4 Task-5

GC-RNN 0.96±0.02 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
GC-Transformer 0.95±0.03 0.01±0.02 0.0±0.0 0.01±0.02 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
GC-Diffusion 0.70±0.05 0.81±0.03 0.92±0.03 0.34±0.03 0.02±0.00 0.04±0.00 0.14±0.00 0.28±0.00 0.14±0.00
GC-ACT 0.95±0.03 0.01±0.02 0.0±0.0 0.01±0.02 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

GSR 0.0±0.0 0.81±0.04 0.00±0.0 0.35±0.10 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
UVD-graph 0.58±0.15 0.36±0.10 0.00±0.04 0.36±0.05 0.18±0.03 0.24±0.09 0.0±0.0 0.0±0.0 0.0±0.0
AVDC 0.71±0.11 0.26±0.12 0.48±0.09 0.36±0.05 0.00±0.11 0.04±0.15 0.66±0.10 0.54±0.08 0.46±0.09

Vis2Plan (ours) 0.78±0.10 0.94±0.04 0.94±0.05 0.32±0.11 0.14±0.10 0.24±0.09 0.72±0.10 0.56±0.09 0.82±0.08

Performance in Simulation We first compare Vis2Plan with baseline approaches in the LIBERO
simulation environment [71, 88]. Table 1 reports the task success rate of our approach Vis2Plan and
baselines. First, the results indicate that end-to-end goal-conditioned approaches such as GC-RNN
and GC-Transformer generally struggle, only accomplishing the short-horizon Task-1 (turning on
the stove knob). However, GC-Diffusion achieves modest performance on some tasks: 0.81 on
Task-2 subgoal and up to 0.28 on a long-horizon task. Based on the end-to-end baseline results,
we opt to use GC-diffusion as the low-level goal-conditioned visuomotor policy for all hierarchical
frameworks. Hierarchical solutions such as GSR and UVD-graph show reasonable subgoal-level
results but suffer from inaccurate high-level subgoal planning, leading to a noticeable drop in success
rates for longer tasks. In contrast, both mimicplay and diffusion variants of Vis2Plan consistently
outperform other baselines, attaining high success rates across most subgoal tasks: 0.95 and 0.94
on Task-1 and Task-3. Vis2Plan especially excels on challenging long-horizon scenarios, yielding
0.59 and 0.82 on Task-4 and Task-5, respectively. Comparing the end-to-end GC-Diffusion with
GC-Diffusion-integrated hierarchical planners, we can see that AVDC and our Vis2Plan improve the
task performance over solely using GC-Diffusion, which indicates meaningful visual subgoal plans
can lead to better task success rates. In the following paragraph, we will conduct visual plan quality
analysis which discovers how high-level planners affect short/long-horizon task performances.

Table 2: Real robot experiment. Success rate (over 11
trials) for each method across six manipulation tasks,
grouped by short-horizon (Tasks 1–3) and long-horizon
(Tasks 4–6) scenarios. Vis2Plan achieves the highest
average performance.

GC-Diffusion GSR UVD-graph AVDC Vis2Plan
Task-1 (Short) 0.0 0.45 0.09 0.0 1.0
Task-2 (Short) 0.0 0.65 0.18 0.09 0.64
Task-3 (Short) 0.0 0.55 0.55 0.55 0.45

Task-4 (Long) 0.0 0.45 0.36 0.18 0.55
Task-5 (Long) 0.0 0.55 0.55 0.27 0.63
Task-6 (Long) 0.0 0.09 0.09 0.0 1.0

Average 0.0 0.47 0.30 0.18 0.71

Real Robot Experiments Table 2 re-
ports real-world performance in short-
horizon (Tasks 1–3) and long-horizon
(Tasks 4–6) scenarios. In this real setup,
we select the hierarchical planning frame-
works GSR, UVD-graph, AVDC, and GC-
diffusion as baselines based on their higher
simulation success rates. However, we no-
ticed that the GC-diffusion policy faces
challenges in low-level control due to po-
tentially limited training data. Instead,
we use Mimicplay policy [71] with sub-
trajectory retrieval strategy: it retrieves a sequence of end-effector poses based on the visual subgoals,
and feeds the visual-subgoals and the retrieved end-effector pose trajectory to Mimicplay policy for
control. We present the real experiment results in Table 2. GC-Diffuser, which performed moderately
well in simulation, fails to complete any task in the real world, likely due to limited demonstration
data. In contrast, our Vis2Plan approach either matches or exceeds the best-performing methods
in five out of six tasks, achieving perfect success (1.0) on Task 1 and Task 6 while outperforming
all baselines on Task 5. Although our method achieves slightly lower results for Task 3, it remains
competitive and demonstrates overall robustness and scalability for both short and long task horizons.

Visual Plan Quality Analysis We now analyze why the baseline hierarchical planners fail. One
assumption is the generated subgoal plans may not be physically achievable or photo-unrealistic.
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In our evaluation protocol, we allowed each planner to generate up to 20 plan sequences (repre-
sented as image frames) and manually inspected whether each sequence was “meaningful.” We
use the reachability estimator Rψ and the reachability threshold δ in Eq. 3 to determine if the
plan is meaningful: every adjacent subgoal pair should be physically achievable. The primary
evaluation metric was the high-level plan success rate (the ratio of making “meaningful” visual plans).

Table 3: High-level plan quality analysis. Suc-
cess rates for single- and multi-task scenarios in
simulation and real setups.

GSR UVD-graph AVDC Ours
Sim. 1 Task 0.23 0.25 0.74 1.00
Sim. ≥2 Tasks 0.00 0.50 0.48 1.00
Real 1 Task 1.00 0.75 0.48 1.00
Real ≥2 Tasks 0.57 0.86 0.16 1.00

Table 3 shows a comparative analysis of differ-
ent methods’ high-level plan quality in the real
world setting, distinguishing between single-
task (1Task) and multi-task (≥2Tasks) scenar-
ios. While GSR achieved perfect scores (1.0) for
single-task plans, it often incorrectly connected
visually similar states, resulting in lower per-
formance (0.57) in multi-task settings. AVDC
suffered from generative inconsistencies – such
as nonexistent objects including imagining two
robot arms instead of the actual single arm, or
missing items – causing its score to drop significantly when tasked with multiple goals. UVD-
graph demonstrated a reasonable overall success rate (0.75 single-task, 0.86 multi-task); however,
it frequently planned overly complicated subgoals, producing prolonged image sequences where
lower-level goal-conditioned policies were prone to failure. In contrast, our Vis2Plan approach
consistently attained perfect scores (1.0) across all tasks, underscoring its robustness in producing
precise, feasible, and coherent high-level plans – a crucial requirement for reliable execution in
real-world robotics applications. Figure 5 presents some typical failure cases observed in the baseline
visual planning results.

Figure 5: Baseline subgoal generation failure examples. The red bounding box highlights the
physically unreachable frames: the bowel disappeared in AVDC generation and UVD-graph; For the
GSR plan, the bowel’s location changed while the gripper is manipulating the pan.

5 Conclusion

In this paper, we introduced Vis2Plan, a symbol-guided visual planning framework for multi-stage
robotic manipulation from unlabeled play data. Given unlabeled play data, Vis2Plan first extracts
discrete symbolic-level task abstractions and constructs a symbolic transition graph with pre-trained
vision foundation models. The symbolic transition graph enables A* search to derive high-level
plans over these abstractions. Conditioning on the planned symbol trajectories, we retrieve and filter
images from the dataset to construct physically feasible visual subgoals to be followed by a low-level
goal-conditioned policy. We demonstrate that combining unsupervised symbolic extraction from
video-based play data with white-box planning leads to strong performance in multi-stage robot tasks.
Our experiments – both on the LIBERO simulation benchmark and on a real robotic manipulator –
demonstrate robust, interpretable, and efficient performance, paving the way for scalable, inspectable
robot learning from unlabeled data.
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6 Limitations

From the high-level planning perspective, one limitation is that task-related object names in play
data need to be specified by humans. Additionally, the extracted symbolic information still lacks the
semantic richness of natural language descriptions, making it unable to generalize to out-of-domain
settings. However, a promising research direction would be combining this framework with Vision-
Language Models (VLMs) to address their complementary weaknesses: enhancing the generalization
ability of Vis2Plan while mitigating the hallucination issues of VLMs. From the robot control
perspective, Vis2Plan’s performance bottleneck lies in the data-driven low-level goal-conditioned
policy. Improving performance would require either collecting more training data or specifically
designing task-appropriate low-level skill controllers.
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A Experiment details

A.1 Simulation environment

A.1.1 Setups

The simulation tasks are selected from the Kitchen Scene 9 environment (KITCHEN_SCENE9) of
the LIBERO benchmark [88], which is built on robosuite and MuJoCo. We choose LIBERO for its
BDDL-based goal specification language, which enables concise definitions of diverse tasks and
facilitates unified multitask evaluation when learning from play data.

A.1.2 Tasks

Initial state A flat stove is placed in the right region of the kitchen table, with its knob turned off.
A frying pan is placed in the central region of the table, and a white bowl is placed on the tabletop
just behind the pan. A wooden two-layer shelf is placed along the left edge of the table.

Short Horizon Tasks There are 4 tasks chosen for short-horizon evaluation: Task-1: turn on the
stove; Task-2: put bowel on shelf ; Task-3: put bowel on stove ; Task-4: put pan on stove. The goal
setups are visualized in Figure 6

Figure 6: Short horizon tasks in LIBERO simulation.

Long Horizon Tasks There are five tasks chosen for short-horizon evaluation: Task-1: turn on
stove, pan on stove, bowl on shelf; Task-2: turn on stove, bowl on stove, pan in shelf; Task-3: bowl
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on shelf, pan in shelf; Task-4: bowl on stove, pan in shelf; Task-5: pan on stove, bowl on shelf. The
goal setups are visualized in Figure 7

Figure 7: Long horizon tasks in LIBERO simulation.

A.2 Real World Setup

Realsense D435
Realsense D435 observation

Figure 8: Real kitchen setup.

A.2.1 Setups

Figure 8 illustrates the real-world task setup. We design kitchen object manipulation tasks for the
Boston Dynamics Spot robot arm with a control frequency of 7Hz. 1) Observation: We use a
Realsense D435 camera to receive a third-person view 512 × 512 RGB observation. 2) Action space:
The action at time step t is defined as

at =
[
∆xt, ∆yt, ∆zt, ∆ϕt, ∆θt, ∆ψt, gt

]
∈ R6 × [0, 1],

where

• ∆xt,∆yt,∆zt are the Cartesian displacement increments of the end-effector,

• ∆ϕt,∆θt,∆ψt are the roll–pitch–yaw rotation increments of the end-effector,

• gt ∈ [0, 1] is the gripper’s opening degree (0 = fully closed, 1 = fully open).

All pose increments ∆x, . . . ,∆ψ are expressed in the Spot robot’s central coordinate frame. This 6D
delta-pose plus gripper-degree parameterization enables precise, relative control of the manipulator
in reinforcement learning.

A.2.2 Tasks

For each task, the initial state and subgoals are pre-defined.

Initial state A green onion is put in the sink, microwave on the top-left corner is closed, a pot is
placed in between the stove and the sink.
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Task 2: 
Put pot on stove

Task 2: 
Put green onion in pot

Task 1: 
Open microwave

Initial State

Figure 9: Short horizon tasks in real world.

Task 4: 
Put pot on stove,


green onion in pot,

open microwave

Task 5: 
Put pot on stove


green onion in cabinet

Task 6: 
Put pot in sink,


green onion in cabinet

Initial State

Figure 10: Long horizon tasks in real world.

Short Horizon Tasks There are three tasks chosen for short-horizon evaluation in the real setup:
Task-1: Put pot on stove; Task-2: Put green onion in pot; Task-3: Open microwave. The goal setups
are visualized in Figure 7.

Long Horizon Tasks There are three tasks chosen for long-horizon evaluation in the real setup:
Task-4: Put pot on stove, green onion in pot, open microwave; Task-5: Put pot on stove, green onion
in cabinet; Task-6: Put pot in sink, green onion in cabinet. The goal setups are visualized in Figure 10.
The whole task is completed if and only if all subgoals are completed in the correct order.

A.3 Demonstration collections

1) LIBERO kitchen demonstrations: We use the demonstrations collected by Mimicplay [71]. The
Mimicplay dataset contains 33 human play demonstrations averaging 7 minutes each (30 frames
per second). 2) Real kitchen demonstrations: The robot teleoperation data is collected using an
OptiTrack motion capture system [93], which tracks the 6D pose of a gripper as it is operated by a
human demonstrator. The control frequency of the robot arm and gripper is 7Hz. We collected 15
demonstrations in total: on average, the human operator interacts with the scene for 20 minutes per
demonstration (5 frames per second). In both simulation and real-world setups, the human operator is
asked to explore the environment by randomly teleoperating the robot arm to conduct different tasks
based on the operator’s own intention.

B Vis2Plan details

B.1 Details of skill segmentation

Here we provide the additional details of segmenting skills from unlabeled demonstration videos for
Section 3.1.

Video preprocessing Here we provide detailed explanation for Figure 2 (1). Given a demonstration
video and a fixed set of K task-related object categories {o1, . . . , oK}, we first detect each ok in
the initial frame using the open-vocabulary VLM Qwen [72] and then track these bounding boxes
across time with SAM2 [73], yielding K object-centric videos. Now the demonstration video Vdemo
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can be described as a combination of object-centric videos Vk: Vdemo =
(
V1, . . . , Vk

)
. Vk =(

Ik,1, . . . , Ik,T
)
, where Ik,i is the object-centric frame and T is the total number of demonstration

frames. Next, we extract a feature trajectory from each clip via a vision foundation model FVFM
(e.g., SigLIP2 [74]):

fdk =
(
FVFM(Idk,1), FVFM(Idk,2), . . . , FVFM(Idk,Tk

)
)

∈ (RD)T ,
where D is the feature dimensionality. In this way, the unlabeled visual demonstration is represented
by the set of K feature sequences: Fd = {fd1 , fd2 , . . . , fdK}.

Figure 11: Skill segmentaion visualization: Here we provide on skill segmentation (stable state
identification) result of one demonstration. The line plots are the visualization of object-centric
adjacent similarities and the summation of object-centric adjacent similarities St (the top purple line).
The red vertical dash lines are the NMS peak-finding results of St, and the corresponding stable states
(image frames of the peaks) are plot on top of the figure.

Stable State Identification Here we provide detailed explanation for Figure 2 (2): We define
a stable state is where all objects’ visual status remain static or similar, and a skill is a transition
between two stable states. Our assumption is that the object’s visual features can describe the objects’
status (e.g., if it is under manipulation or not), and we can detect if object is under manipulation
by tracking the objects’ visual appearance. Follow this motivation, we extract segment video using
equations [75]:

St =
K∑
i=1

(
FVFM(Idi,t) · FVFM(Idi,t+1)

∥FVFM(Idi,t)∥∥FVFM(Idi,t+1)∥

)
, K = NMS(

t+k∑
i=t−k

W (St,Si)Si

t+k∑
i=t−k

W (St,Si)
) (4)

Here, St is the temporal similarity at time t, summing t and t + 1 frame’s object-centric cosine
similarities. After Gaussian smoothing, we apply non-maximum suppression (NMS) within a local
temporal window and select the highest peaks as key stable frames K (see Figure 2 (2)). Two
neighboring stable state can be used to describe one sub-skill.

Symbolic Graph As described in Section 3.1, we use SigLIP2 features with unsupervised learning
to extract the symbolic representations of key stable states. Using these representations, we construct
a symbolic graph for high-level planning. Figure 12 presents a visualization of the symbolic graph
for the LIBERO kitchen task.

B.2 Network implementations

Reachability Estimator R(s, sg) We follow the methodology from contrastive RL work [85] to
implement our reachability estimator. We modify the Contrastive RL approach to distinguish between
a future state sampled from the average discounted state-occupancy measure in the state-only case:

s+
f ∼ pπ(st+ | s) =

∫ ∫
pπ(·|g)(st+ | s, a) pπ(g | s, a)π(a|s) dgda,
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object-1: 0

object-3: 2
object-2: 3

object-4: 3
[ ]

Subgoal images

Figure 12: LIBERO kitchen symbolic graph example. Each node of the graph is described by the
symbolic representation of task-relevant objects. We also provide one symbolic node example (node
19) to illustrate the node structure.

Figure 13: Overview of contrastive RL value network architecture (reachability network). We follow
the implmentation suggestions in work [85] and modify it to state-only variant.

and a future state sampled from an arbitrary state–action pair:

s−
f ∼ p(st+) =

∫
pπ(st+ | s) p(s) ds

We train the estimator using the NCE-Binary objective:

L = Es+
f

∼pπ(st+|s)

[
log σ

(
ϕ(s)⊤ψ(s+

f )
)]

+ Es−
f

∼p(st+)

[
log
(
1 − σ

(
ϕ(s)⊤ψ(s−

f )
))]

. (5)

After training, the inner product R(s, sg) = ϕ(s)⊤ψ(sg) between the state representation ϕ(s)
and future (goal) state ψ(sg) is proportional to the state-occupancy measure and can be used as
a reachability estimator. Figure 13 illustrates the reachability network architecture. For training
hyperparameters, we strictly follow those used in [85].

Low-level goal-conditioned policies The low-level policy should generate a sequence of actions to
achieve the subgoal proposed by the visual planner. It receives the current image observation and a
goal image to generate appropriate actions. All goal-conditioned policies are trained with a hindsight
relabeling strategy: given an unlabeled video demonstration, the goal image grt ∈ Vr is defined as the
frame occurring H steps after the current time step in the demonstration. Here, H is drawn uniformly
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Table 4: Low-level Policy Hy-
perparameters: AdaFlow.

Hyperparameter AdaFlow

Learning rate 1 × 10−4

Optimizer AdamW
β1 0.95
β2 0.999
Weight decay 1 × 10−6

Batch size 64
Epochs 500
LR scheduler cosine
EMA decay rate 0.9999

η 1.0
ϵmin 10

Action prediction horizon 16
Observation inputs 2
Action execution horizon 8
Obs. input size 128 × 128

Table 5: Low-level Policy Hy-
perparameters: Mimicplay (la-
tent).

Hyperparameter Default

Batch Size 16
Learning Rate (LR) 1 × 10−4

Num Epoch 1000
LR Decay None
KL Weights λ 1000
MLP Dims [400, 400]
Img. Encoder – Left View ResNet-18
Img. Encoder – Right View ResNet-18
Image Feature Dim 64
GMM Num Modes 5
GMM Min Std 0.0001
GMM Std Activation Softplus

Table 6: Low-level Policy Hy-
perparameters: Mimicplay (ac-
tion).

Hyperparameter Default

Batch Size 16
Learning Rate (LR) 1 × 10−4

Num Epoch 1000
Train Seq Length 10
LR Decay Factor 0.1
LR Decay Epoch [300, 600]
MLP Dims [400, 400]
Img. Encoder – Wrist View ResNet-18
Image Feature Dim 64
GMM Num Modes 5
GMM Min Std 0.01
GMM Std Activation Softplus
GPT Block Size 10
GPT Num Head 4
GPT Num Layer 4
GPT Embed Size 656
GPT Dropout Rate 0.1
GPT MLP Dims [656, 128]

from the integer range [100, 600] (i.e., 5–30 seconds), serving as a data-augmentation mechanism.
We adapt AdaFlow [87] for LIBERO simulation and Mimicplay [71] for real-world tasks as our
low-level goal-conditioned policies.

• Goal-conditioned AdaFlow In LIBERO simulation, we implement a goal-conditioned
variant of the imitation-flow-based generative policy from AdaFlow [87] as our low-level
controller. At each step, this policy receives the current observation and the target subgoal
image (both at 128 × 128 resolution) and predicts a horizon of 16 consecutive actions. All
architecture and hyperparameters remain the same as implemented in [87]. In Table 4, we
summarize all key settings of the goal-conditioned AdaFlow policy.

• Mimicplay Policy In real-world tasks, we use the Mimicplay policy as the low-level
control policy. We maintain the implemented architecture and hyperparameters as used in
[71]. At each time step t, the Mimicplay policy receives the current image observation and
the next subgoal image observation (both at 128 × 128 resolution) and outputs an 16-step
end-effector pose trajectory, which conditions the low-level policy to generate a sequence
of 16-step actions for execution. Table 5 summarizes the hyperparameters used to train the
Mimicplay latent planner, and Table 6 those for the robot policy π. Parameters prefixed
with "GMM" refer to the MLP-based Gaussian mixture model, whereas those prefixed with
"GPT" specify the transformer’s configuration[71].

B.3 Pseudocode of Closed-loop Symbolic-guided Visual Planning

Here we provide pseudocode to illustrate how symbolic-guided visual planning is executed, as
additional details for Section 3.3. More specifically, we optimized the visual subgoal generation
step to accelerate visual plan generation. We use the pretrained reachability estimator to calculate
the reachability features of all key image frames and save these features with their corresponding
images. During visual subgoal sampling, instead of sampling image batches for each symbolic
subgoal, we directly sample the subgoal images’ reachability feature batch (ϕ(s) and ψ(s)) to avoid
computationally expensive reachability estimation. This optimized sampling approach is visualized
in Figure 14.
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Figure 14: Optimized visual subgoal sampling (stage 2 in Algorithm 1). The right plot illustrates
the standard visual subgoal sampling pipeline, while the left plot shows our optimized variant. We
directly sample pre-computed reachability features of subgoal images to search for the most feasible
visual plan, significantly reducing computational overhead.

Algorithm 1: Stage 3: Symbolic-guided Visual Planning with Vis2Plan
1 Input: Task goal zg , state predictor Cθ, reachability estimator Rψ , goal-conditioned policy

πg
2 Initialize: symbolic path τz = ∅, visual plan τO = ∅
3 while goal zg is not reached do
4 Receive current observation Ot
5 // Stage 1: Symbolic Planning
6 Predict next symbolic state candidates: Znext = Cθ(Ot)
7 for z1 in Znext do
8 Find symbolic path: path = SEARCH(z1, zg)
9 Update if shorter: τz = path if cost(path) < cost(τz)

10
11 // Stage 2: Visual Subgoal Generation
12 for zi in τz do
13 Sample visual observation: Oi ∼ PD(· | zi)
14 Add to visual plan: τO = τO ∪ {Oi}
15 Optimize visual plan: τO = arg maxτ ′

O

∑H−1
i=0 Rψ(O′

i, O
′
i+1) using beam search

16 s.t. Rψ(O′
i, O

′
i+1) ≤ δ, ∀i

17
18 // Stage 3: Goal-conditioned Action Generation
19 Get next visual subgoal: Og = τO[1]
20 Generate action chunk: u = πg(Ot, Og)
21 Execute action chunk u in environment
22 Return: task completed

B.4 End2End Goal-Conditioned Baselines

Goal-conditioned transformers (GC-Transformer) We use the goal-conditioned transformer ar-
chitecture defined in Mimicplay as the baseline implementation [71]. The Mimicplay GC-transformer
embed the wrist token wt, environment embedding et, and proprioceptive embedding pt to form the
sequence st:t+T = [wt, et, pt, . . . , wt+T , et+T , pt+T ], with T = 10. This sequence is processed by
a GPT-style transformer ftrans comprising N = 4 layers of multi-head self-attention (4 heads) and
position-wise feed-forward networks with intermediate dimension 656 and output dimension 128.
The model uses a block size of 10, embedding dimension of 656, and dropout rate of 0.1. Given
the past T − 1 embeddings, ftrans autoregressively predicts the next action feature xT . The final
control command at is produced by passing xt through a two-layer MLP with hidden dimensions
[400,400]. Visual observations from wrist, left, and right camera views are encoded via ResNet-18
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into 64-dimensional features. To model the multimodal action distribution, we employ an MLP-based
Gaussian mixture model with 5 components and a minimum standard deviation of 0.01 (Softplus
activation). We train the network for 1000 epochs with a batch size of 16 and initial learning rate
1 × 10−4, decayed by a factor of 0.1 at epochs 300 and 600.

Goal-conditioned Diffusion Policy (GC-Diffusion) We adapt the Goal-conditioned variant diffusion
policy from work Adaflow [87] as one baseline. The diffusion-based robot policy is trained with
the AdamW optimizer (learning rate 1 × 10−4, β1 = 0.95, β2 = 0.999, weight decay 1 × 10−6),
using a batch size of 64. We train for 500 epochs in the likelihood-weighting phase and 3000
epochs in the reverse-mapping phase, employing a cosine learning-rate scheduler and an exponential
moving-average decay of 0.9999. The denoising diffusion model uses 100 forward diffusion steps
and 100 inference steps under the DDPM framework. At test time, the policy predicts an action
horizon of 16 steps conditioned on the two most recent observations, executes 8 actions per cycle,
and processes visual inputs at a resolution of 128 × 128.

Goal-conditioned Action-Chunk Transformer (GC-ACT) Action-chunk transformer (ACT)
was proposed in [89]. For our work, we implemented a goal-conditioned variant of ACT based on the
code repository available at https://github.com/Shaka-Labs/ACT. Our GC-ACT receives the
current image observation and a goal image observation as inputs, and generates a 16-step action
chunk for execution.

B.5 High-level Planner Baselines

AVDC We adapt the video diffusion generation model from [1] as one of our visual planner
baselines. We strictly follow the configuration provided in the AVDC public code repository (https:
//github.com/flow-diffusion/AVDC). Specifically, we modify the original implementation to
use an image goal instead of a task text description. The AVDC diffusion video generation model
receives the current image observation and a goal image observation (both at 128 × 128 resolution)
and outputs a 9-step horizon image plan, with each subgoal image at 64 × 64 resolution. We train
the AVDC video generation model similarly to training a goal-conditioned policy: we hindsight
sample the future image of the current trajectory as the goal image, and subsample the intermediate
frames to 9 frames as the subgoals (target video frames). Given an unlabeled video demonstration,
the goal image grt ∈ Vr is defined as the frame occurring H steps after the current time step in the
demonstration. Here, H is drawn uniformly from the integer range [100, 1500] (i.e., 5–75 seconds).

GSR We implemented the baseline GSR follow the instruction from [90], where the author build a
directed graph from offline demonstrations. Based on GSR implementation, each image observation
from demonstrations is treated as a vertex of a graph, and the directed edge between vertexes
indicate the image state transition. There are two types of edges built in GSR: 1) Dataset edge:
represents ground truth transitions on each demonstration trajectory (v0, v1), (v1, v2), ..., serving as
an approximation of the world dynamics; 2) Augmented edge: a bidirectional edge between nodes u
and v is added if they both lie in the tolerance range of each other in the pretrained representation
space, bridging similar states across trajectories. In this work, we use our trained reachability
estimator R(s, sg) as the pretrained representation network to construct the augmented edges.

UVD-graph Here, we develop a graph-based approach using the UVD implementation. We finetune
the UVD feature extraction following the instructions in [91] (https://github.com/zcczhang/
UVD/). We then use UVD to segment the demonstration into sub-tasks. Similar to GSR, we use
our pretrained reachability estimator R(s, sg) to build a graph based on the segmented subgoals.
This implementation creates a more sparse graph compared to GSR. The key difference between
UVD-graph and our Vis2Plan is that Vis2Plan uses object-centric features to identify subgoals and
creates a symbolic description of key states, enabling more structured and interpretable planning.
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Table 7: Average visual plan generation speed (seconds) for different planners across task types.
"Sim" refers to LIBERO simulation and "Real" refers to real-world tasks. AVDC shows consistent
visual plan generation times across tasks because it generates a fixed number of subgoals (9) regardless
of task complexity.

Planner Sim Short Sim Long Real Short Real Long
GSR 0.10 15.12 0.11 10.13
UVD-graph 1.2×10−4 2.8×10−4 1.1×10−4 1.8×10−4

AVDC 1.42 1.42 1.42 1.42
Vis2Plan (ours) 0.03 0.04 0.03 0.05

C Visual Planning Results

C.0.1 Visual Planning Inference Speed Comparison

Here we compare the visual plan generation inference speed across different methods (Table 7). GSR
builds a graph based on one-step temporal transitions, where each vertex represents an image frame
from the demonstration. This creates an extremely complicated graph that is time-consuming to
search, resulting in visual plan generation times of several seconds for long-horizon tasks. AVDC uses
a diffusion generative model to generate image sequences, but the diffusion process is computationally
expensive, making real-time planning infeasible.

Despite having similar graph complexity to GSR, the UVD-graph approach is the fastest planner as it
does not require a visual goal sampling procedure. However, our Vis2Plan framework still achieves
near real-time planning performance while maintaining high plan quality and physical feasibility.

C.1 Visual Plan results

Here we provide some representative planning results of Vis2Plan in both simulation and real-world
tasks. For additional visualization results, please refer to the second supplementary material.

The choice metric is simple: the feature extracted by the VFM shall have good ability to distinguish
in an unsupervised manner We design the experiment in this way:
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Initial State Symbolic sub-goals Visual sub-goals Goal: Put bowel on stove

(a) Simulation short-horizon Vis2Plan visual planning example: put bowl on stove

Initial State

Symbolic sub-goals Visual sub-goals

Goal: 
Bowel on stove,


Pan in shelf

(b) Simulation long-horizon Vis2Plan visual planning example: put bowl on stove and pan in shelf

Goal 
Put pot on stoveInitial State Symbolic sub-goals Visual sub-goals

(c) Real world short-horizon Vis2Plan visual planning example: put pot on stove

Initial State Symbolic sub-goals Visual sub-goals Goal 
Put pot on stove


green onion in cabinet

(d) Real world long-horizon Vis2Plan visual planning example: put pot on stove and green onion in cabinet

Figure 15: Representative Vis2Plan visual planning examples in both simulation and real-world
environments. (a)-(b) Simulation examples showing short and long-horizon tasks. (c)-(d) Real-world
examples demonstrating similar capabilities in physical environments.
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