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Abstract

Commonsense Knowledge Bases (CSKB) Pop-
ulation, which aims at automatically expanding
knowledge in CSKBs with external resources,
is an important yet hard task in NLP. Fang et al.
(2021a) proposed a CSKB Population (CKBP)
framework with an evaluation set CKBP vl.
However, CKBP v1 relies on crowdsourced an-
notations that suffer from a considerable num-
ber of mislabeled answers, and the evaluation
set lacks alignment with the external knowl-
edge source due to random sampling. In this
paper, we introduce CKBP v2, a new high-
quality CSKB Population evaluation set that
addresses the two aforementioned issues by
employing domain experts as annotators and
incorporating diversified adversarial samples to
make the evaluation data more representative.
We show that CKBP v2 serves as a challeng-
ing and representative evaluation dataset for
the CSKB Population task, while its develop-
ment set aids in selecting a population model
that leads to improved knowledge acquisition
for downstream commonsense reasoning. A
better population model can also help acquire
more informative commonsense knowledge as
additional supervision signals for both genera-
tive commonsense inference and zero-shot com-
monsense question answering. Specifically, the
question-answering model based on DeBERTa-
v3-large (He et al., 2023b) even outperforms
powerful large language models in a zero-shot
setting, including ChatGPT and GPT-3.5.

1 Introduction

Recently introduced LLMs have shown a re-
markable performance on many reasoning bench-
marks (Hoffmann et al., 2022; Chowdhery et al.,
2022; Bang et al., 2023; Chan et al., 2023), yet
there still exists a need to ensure the alignment
between the generation of LLMs with external
knowledge at the inference time to avoid hallu-
cination and for safer use (Kim et al., 2022a; He
et al., 2023a; Peng et al., 2023). The source of
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Figure 1: An example of CSKB Population. The coral
part indicates the conventional case of CSKB Comple-
tion, and the blue part is the population on external
knowledge graphs. We include an adversarially con-
structed sample set in our CKBP v2 by re-annotating
the confident predictions by language models.

external knowledge, which can be commonsense,
factual, or domain knowledge, should be selected
and processed carefully depending on the purpose
of generation. However, existing (high-quality)
human-annotated knowledge bases are usually far
from complete to serve as the source of external
knowledge for LLMs.

Regarding commonsense knowledge bases, to
extend limited human annotations, CSKB Popula-
tion (Fang et al., 2021a) stands as a way to acquire
missing knowledge, thereby enriching and expand-
ing the existing CSKBs. Unlike CSKB Comple-
tion (Li et al., 2016; Saito et al., 2018; Malaviya
et al., 2020), which adopts a close-world assump-
tion and only deals with entities and events within
CSKBs, the Population task deals with both exist-
ing and unseen entities and events, thus requiring a



more generalized reasoning ability.

Several works have been conducted on CSKB
Population. Fang et al. (2021a) studied a frame-
work that links four CSKBs, ConceptNet (Speer
et al.,, 2017), ATOMIC (Sap et al.,, 2019a),
ATOMIC3) (Hwang et al., 2021), and GLU-
COSE (Mostafazadeh et al., 2020), to a large-scale
discourse knowledge base, ASER (Zhang et al.,
2020, 2022). The resulting knowledge base not
only served as the unified source of commonsense
knowledge but also was used as the training set to
train population models in order to identify miss-
ing commonsense knowledge. To evaluate models,
the authors created an evaluation set (denoted as
CKBP v1), in which they applied fine-grained rules
to select candidate commonsense knowledge from
ASER and enlisted human annotators to manually
annotate these candidates.

However, there are two major limitations in
CKBP vl. First, the quality of CKBP v1 is limited.
CKBP vl instances are randomly sampled from
the whole population space, resulting in a low re-
call of plausible commonsense knowledge due to
the noise in candidate discourse knowledge. More-
over, as pointed out by Davis (2023), current crowd-
sourced commonsense benchmarks often contain a
substantial fraction of incorrect answers, we also
find it true for CKBP v1 after manual inspection.
For example, annotators frequently make mistakes
on some subtle relations such as xIntent, which
should describe an intention instead of a conse-
quence. Second, it’s unclear how to leverage pop-
ulated or expanded commonsense knowledge in
CKBP to further improve downstream common-
sense reasoning. All previous investigations into
CKBP stay within the population task itself without
generalizing to actual downstream applications.

Therefore, to address the two limitations, this
work presents a more high-quality and adversarially
constructed evaluation set by expert annotation, and
a comprehensive pipeline for conducting a series
of downstream experiments. The aim is to leverage
the new CKBP benchmark effectively and facilitate
improved utilization for downstream commonsense
reasoning tasks.

Leveraging the existing framework, we build
CKBP v2 by randomly sampling 2.5k instances
from CKBP vl and adding 2.5k adversarial in-
stances, leading to a total of 5k instances as an
evaluation set. These instances are then anno-
tated by experts with substantial expertise in ma-
chine commonsense. Then, we present both in-

trinsic and extrinsic experiments based on CKBP
v2. We study the performance of both supervised
and semi-supervised task-specific models, together
with powerful off-the-shelf language models, such
as ChatGPT (OpenAl, 2022) and Vera (Liu et al.,
2023), and show that the CKBP v2 evaluation set is
still challenging even for advanced language mod-
els. Moreover, by employing a CSKB Population
model that demonstrates satisfactory performance
on CKBP v2, we can enrich existing CSKBs with
diverse and novel knowledge that significantly ben-
efits downstream reasoning. We present method-
ologies and experiments on generative common-
sense inference (Bosselut et al., 2019) and zero-
shot commonsense question answering (Ma et al.,
2021), and show that the acquired commonsense
knowledge can be valuable augmented data on the
original CSKB and lead to improved downstream
performance. In particular, CKBP v2-preferred
population model exhibits better alignment than
CKBP vl with advancements in generative com-
monsense inference.

In summary, our contributions are three-fold:
First, We introduce a new evaluation benchmark
CKBP v2 for the CSKB Population task, which ad-
dresses the quality issues of its predecessor CKBP
vl. Second, We launch a pioneer study to use
populated commonsense knowledge as additional
supervision signals to help downstream common-
sense reasoning. Third, We conduct extensive ex-
periments and evaluations with different models on
both CKBP v2 itself as well as downstream genera-
tive commonsense inference and zero-shot question
answering. The results show that CKBP v2 is still
a hard task for language models, and the acquired
populated knowledge can improve language mod-
els’ (zero-shot) commonsense reasoning ability on
two downstream tasks across six datasets.

2 Related Work

In this section, we discuss 1) CSKBs and their role
in the era of LLMs and 2) methods and benchmarks
for completing and populating knowledge bases in
general.

Commonsense Knowledge Bases. There
are many commonsense knowledge bases!
introduced in the past few years, such as
ATOMIC2020 (Hwang et al., 2021), Com-
Fact (Gao et al., 2022), CICERO (Ghosal et al.,

"Here, despite the subtle differences between datasets and
knowledge bases, we refer to both as knowledge bases



2022), PIQA (Bisk et al., 2020a), Numersense (Lin
et al., 2020). Unlike the decades-old knowledge
base ConceptNet (Liu and Singh, 2004) that only
focuses on taxonomic commonsense, these knowl-
edge bases study a broad range of commonsense,
including human-event-centric, contextualized,
physical, numerical commonsense.

Along with pure-symbolic CSKBs whose knowl-
edge is obtained from corpora and stored in textual
format, there is a stream of research that works on
developing neural(-symbolic) CSKBs, which are ei-
ther knowledge models such as COMET (Bosselut
et al., 2019) or symbolic CSKBs built by prompt-
ing knowledge from language models, such as
ATOMIC!X  (West et al., 2022a), SODA (Kim
et al., 2022a). Although the approach seems highly
scalable and seems promising to build more and
larger CSKBs, knowledge from neural(-symbolic)
CSKBs remains unreliable (Kim et al., 2022a; He
et al., 2023a; Peng et al., 2023) thus often needs to
have a robust critic model to filter for good/correct
knowledge.

Completing and Populating Knowledge Bases.
Regarding conventional knowledge bases like
Wordnet (Miller, 1995) and Freebases (Bollacker
et al., 2008), tasks involving completion and popu-
lation have been well-studied as transductive and
inductive link prediction problems in the field of
graph neural network (Bordes et al., 2013; Yang
et al., 2015; Sun et al., 2019; Shang et al., 2019;
Fang et al., 2021b). Methods powered by pre-
trained language models have also been studied
in these tasks thanks to the models’ representation
power (Yao et al., 2019). In that setting, knowledge
instances of the knowledge bases are serialized to
a text sequence, which serves as input to LMs such
as BERT or RoBERTa.

Specific to CSKB Population task on CKBP
vl, Fang et al. (2021a) proposed KGBertSAGE,
a combination of KG-BERT (Yao et al., 2019) and
GraphSAGE (Hamilton et al., 2017). The model
showed higher performance over baselines yet still
suffered from the out-of-domain problem. The
follow-up work PseudoReasoner (Fang et al., 2022)
employs the pseudo-labeling technique to solve
that problem. Despite the significant gain in per-
formance, PseudoReasoner is still far from human
performance, suggesting that CKBP remains a chal-
lenging task in commonsense reasoning.

3 Dataset Construction

In this section, we introduce the task definition, the
preparation of the candidate evaluation set, annota-
tion guidelines, and data analysis.

3.1 Task Definition

The task of CKBP (Fang et al., 2021a) is defined as
follows. Given G¢ = {(h,r,t)|h € H,r € R,t €
T} (where H, R, T is the set of head events, rela-
tions, and tail events), the graph-like knowledge
base formed by aligning a union of commonsense
knowledge bases C' and a much larger discourse
knowledge graph G into the same format; the goal
of CSKB population task is to learn a scoring func-
tion that gives a candidate knowledge triple (h, 7, t)
higher score if the triple is plausible commonsense.
The training process is formulated as triple classifi-
cation, with ground-truth positive triples from the
CSKB C and negative triples randomly sampled
from G — C with an equal amount. The model
is then evaluated on a human-annotated evaluation
set /. Here, CKBP v2 serves as the evaluation set.

3.2 Dataset Preparation

We randomly sampled 2.5k instances from CKBP
vl and 2.5k adversarial instances to form CKBP
v2. Instances from CKBP v1 are sampled so that
the ratio of the number of triples between rela-
tions remains unchanged. Meanwhile, the adver-
sarial instances are ones from the candidate knowl-
edge base ASER that the finetuned baseline KG-
BERT (Yao et al., 2019) model confidently believes
they are plausible, i.e., receives plausibility score
> 0.9. To ensure the diversity of adversarial in-
stances and hence the evaluation set, we adopt an
additional diversity filter using self-BLEU follow-
ing West et al. (2022a). The triples annotated as
negative are considered hard negatives as they are
what a standard CSKB Population model would fa-
vor. Note that we only consider instances of 15 re-
lations other than general Want/React/Effect,
because most of the triples on the three relations
are broken sentences in CKBP v1. We also remove
samples of these relations in the training set.

3.3 Annotation Process

Setup We recruited four human experts for the
annotation work. The experts are graduate NLP re-
searchers with at least one year of experience work-
ing on CSKBs. We randomly divide 5k samples
into 4 parts, then for i from O to 3, assign the ‘"



# Triples % Plau. % Unseen
split
Dev 958 20.46 56.79
Test 4,048 22.06 60.43
instance type
In-Domain 845 34.56 43.79
Out-of-Domain 1,653 11.92 63.37
Adv. 2,508 23.92 61.12
relation
xWant 611 22.75 54.01
oWant 239 25.94 58.18
xEffect 603 29.68 55.23
oEffect 172 21.51 58.91
xReact 533 20.64 51.18
oReact 183 13.66 50.70
xAttr 605 23.47 52.91
xIntent 239 16.32 58.40
xNeed 378 25.66 55.37
Causes 236 21.61 55.41
xReason 5 40.0 30.0
isBefore 157 28.03 54.80
isAfter 182 24.73 55.40
HinderedBy 777 12.1 63.17
HasSubEvent 86 26.74 61.04

Table 1: Statistics of CKBP v2. # Triples, % Plausible,
and % Unseen, respectively, indicate the number of
triples in the subset, the proportion of plausible triples
after label finalization, and the proportion of nodes that
do not appear in the training set.

and (i + 1 mod 4)*" parts to the ¥ expert. In this
way, two different annotators annotate each triple,
and we can fully compare the pairwise agreement
between all four annotators. Experts are provided
with knowledge triples in the format of (h, r, t), ref-
erencing the definition and examples of all relations
in Hwang et al. (2021). We ask annotators to judge
the plausibility of triples in a three-point Likert
scale with corresponding scores: Always/Often (1),
Sometimes (0.5), Rarely/Never/Ambiguous/Invalid
(0). The final label of an instance is determined
as plausible if and only if it receives at least one
score of 1 and the other score is at least 0.5. For
remaining cases, the final label is implausible. Af-
ter finalizing the annotation, we split the evaluation
set into development and test sets with a ratio of
1:4 with the preservation of distribution w.r.t labels,
relations, and instance types. To estimate human
performance, we treat expert annotations as two
sets of predictions and compare them to the final
labels.

Similar to CKBP v1, we categorize the eval-
uation set into three groups based on their ori-
gin, which are 1) ID: in-domain, whose head and
tail events are all from CSKBs, 2) OOD: out-of-

domain, which has at least one event outside of
CSKBs (equivalent to “CSKB head + ASER tail”
and “ASER Edges” in CKBP v1), and 3) Adv.: ad-
versarial examples newly introduced in CKBP v2.

Quality Control Although annotators are experts
with a clear understanding of the CSKB Population,
we acknowledge the ambiguity of CSKB relations
and the difficulty in discriminating between them.
To control the quality, we provide guidance as a
list of scoring criteria. We also carried out a dry
run, which asked them to annotate 60 instances
covering all relations in order to establish a unified
understanding of the problem among participants.
After that, we carry out the main round, where
the annotators perform their jobs individually and
independently. Throughout the process, we regu-
larly conduct random checks on the samples and
engage in discussions with annotators to address
any disagreements. We then use the insights gained
from these discussions to update and refine our
guidance iteratively. After the individual annota-
tion, we facilitated a conflict resolution session to
address instances with contrasting scores of 1 and
0. After resolving conflicts, we have the average
inter-annotator agreement score IAA as 90.55%.

3.4 Data Analysis

The overall statistics of CKBP v2 are shown in Ta-
ble 1. It can be easily observed that the new evalua-
tion set has data imbalance issues. However, we do
not down-sample the evaluation set to achieve the
data balance since the imbalance better reflects the
true distribution of plausible and implausible com-
monsense knowledge in ASER. Given this imbal-
ance, we notice that the AUC scores of examined
population models will naturally be high. Also, in
the real application of population models, we fo-
cus on the precision and recall of the detection for
plausible commonsense instances. Thus, in Section
4, along with AUC, we also report the binary F1
scores for each experimented model.

4 Intrinsic Evaluation

4.1 Setup

We examine several models which were previ-
ously evaluated on CKBP v1, including zero-shot
GPT models (Radford et al., 2019), supervised-
learning baselines KG-BERT (Yao et al., 2019)
and COMET (Bosselut et al., 2019), and semi-
supervised-learning models PseudoReasoner (Fang



Category Model AUC Fl
all OOD  Adv. all ID OOD  Adv.
GPT2-large 5647 56.60 5831 5422 | 3537 4740 24.06 36.84
Zero-shot GPT2-XL 56.79 5447 5670 54.63 | 3522 47.62 2349 36.65
" GPT3 text-davinci-003 61.63 6593 59.17 5998 | 39.44 51.09 2857 3820
ChatGPT gpt-3.5-turbo 65.77 7037 6256 6227 | 4593 6259 4479 26.86
KG-BERT (BERT-base) 7133  84.60 6447 629 | 4503 69.27 2653 4197
Supervised KG-BERT (RoBERTa-L) 73.70 85.53 67.70 65.60 | 46.70 69.73 30.73 43.27
Lezrnin COMET (GPT2-L) 70.00 79.02 6643 62.62 | 45.55 6190 32.14 42.15
& COMET (GPT2-XL) 7032  79.66 66.53 63.22 | 4532 6334 31.18 40.83
Vera (T5-xxlarge) 7245 78.84 6840 68.16 | 5213 7173 36.74 50.02
Semi- PseudoReasoner BERT-base | 71.93 8423  66.67 63.43 | 4547 68.67 30.17 41.77
Supervised | PseudoReasoner RoBERTa-L | 74.33 85.57 69.33 66.37 | 46.63 69.70 30.87 43.13
Human ‘ 94.1 949 914 945 91.5 94.3 869 915

Table 2: Main experimental results on CKBP v2. Both AUC and F1 are used as evaluation metrics. The “all” column
indicates the overall performance, and ID, OOD, Adv. indicate the performance of the In-domain, Out-of-domain,
and Adversarial subset. The best results are boldfaced, and the second-best ones are underlined.

et al., 2022) with two backbone encoders, BERT-
base-uncased (Devlin et al., 2019) and RoBERTa-
large (Liu et al., 2019). We use Huggingface?
Transformers (Wolf et al., 2020) to build our code
base. For discriminative models, we set the learn-
ing rate as le-5, batch size 64/32 for base/large
variants, respectively, and the number of training
epochs as 1. For generative models (COMET), we
use learning rate le-5 and batch size 32 to train in
3 epochs. Negative perplexity scores are used as
the final prediction scores. For PseudoReasoner,
we adopt the best settings in Fang et al. (2022),
where we first finetune the KG-BERT model on
pseudo-labeling data for one epoch, then from the
best checkpoint, we resume the finetuning process
on the original training data. Note that the training
data and unlabeled data are taken from Fang et al.
(2022). We run each baseline three times with dif-
ferent random seeds, then average the result and
report in Table 2. For GPT3 (Brown et al., 2020a)
and ChatGPT experiments, we use simple prompts
asking them to decide whether an assertion is plau-
sible or not.

4.2 Result and Analysis

The results are shown in Table 2. We provide the
AUC score and F1 score of all the baselines on
the test set in terms of overall performance (all),
performance on the subset of ID, OOD, and Adv.
samples. When calculating F1, for discriminative
models, we set the decision threshold as 0.5 (as
default), while for generative models, as perplexity

Zhttps://huggingface.co/

serves as the final prediction score, we tune the
threshold to obtain the highest F1 score on the
development set for each run.

In the zero-shot setting, the scores increase by
the version of GPT. GPT3 text-davinci-003
gives a significant improvement over GPT2
models, and ChatGPT surpasses its sibling
text-davinci-003 with a similar margin of im-
provement. Nonetheless, despite the performance
improvement from ChatGPT, there is still a clear
gap between the zero-shot and (semi-)supervised
settings.

In terms of supervised and semi-supervised
learning, we observe different scenarios between
KG-BERT’s performance and COMET’s perfor-
mance, comparing to the result on CKBP v1 re-
ported in Fang et al. (2022). Here, on CKBP v2,
KG-BERT outperforms COMET with a significant
gap of 3 AUC overall and also outperforms in all
subsets of the test set. This shows the importance
of including negative (implausible) examples in
the training for discriminating commonsense. This
also explains why there is no significant improve-
ment of PseudoReasoner over the baseline KG-
BERT on this new evaluation set.

4.3 Artifacts Analysis

There is an uprising acknowledgment of “arti-
facts” (Gururangan et al., 2018; Poliak et al., 2018;
Gardner et al., 2021) in a dataset, in other words,
spurious correlations or confounding factors be-
tween the surface properties of textual instances
and their labels, that may incidentally appear in the
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Figure 2: Artifacts statistics of CKBP v2. Colored dots
(either square or circle) represent artifacts in the new
evaluation set.

annotation process. “Artifacts” may undermine the
designated evaluation purpose of the dataset. Thus,
it is necessary for us to check if “artifacts” exist in
CKBP v2.

We identify artifacts in CKBP v2 by following
the previous work Gardner et al. (2021). Par-
ticularly, for each word z in the vocab list?, we
compute all quantities appearing in the z-statistic
formula

p(ylz) —po

Vpo(l —po)/n

These include word count n, estimated probability
p(y|z) as the fraction of the number of target label
y in the corresponding n samples over n. After that,
we compute the z-statistic and reject or not reject
the null hypothesis p(y|x) = po with a significance
level @ = 0.01 and a conservative Bonferroni cor-
rection (Bonferroni, 1936) for all 3852 vocabulary
items. Note that the “true” probability pg = p(y|z)
is taken to be the proportion of samples with label
y in the whole evaluation set. Also, we do not con-
sider artifacts with a word count less than 20, as
they are not statistically significant.

Figure 2 shows the plot of word count against
the estimated probability p(y|z) for CKBP v2. The
additional green and red curves correspond to the
largest value of p(y|z) w.r.t n to keep the null hy-
pothesis from being rejected, where y takes value
“Plausible” and “Implausible” respectively. This
means that any dot above the corresponding curve
with a frequency of at least 20 is marked as an arti-
fact. The artifacts with the largest word count are
labeled in the plot. Overall, CKBP v2 contains rel-
atively few artifacts (83 artifacts out of 3852 vocab-
ulary items), and the artifacts do not significantly

3We exclude all relation tokens, as well as special pronoun
tokens, namely PersonX, PersonY, PersonZ, PeopleX

affect the evaluation set quality as their frequencies
are not high.

5 Extrinsic Evaluation

In this section, we study two downstream applica-
tions of CKBP. After acquiring a population model,
it act as a scoring function to determine whether a
triple from the candidate knowledge base G is plau-
sible or not, thus serving as a source of common-
sense knowledge acquisition (Fang et al., 2021b).
We leverage the populated knowledge as additional
training data for both generative commonsense in-
ference (COMET; Bosselut et al., 2019) and zero-
shot commonsense question answering (Ma et al.,
2021).

5.1 Generative Commonsense Inference
(COMET)

Setup We follow the basic settings as in the orig-
inal ATOMIC%g paper (Hwang et al., 2021) to gen-
erate commonsense tails ¢ given head h and rela-
tion r as input. The evaluation dataset is the an-
notated 5,000 test examples provided by Hwang
et al. (2021). We use BLEU (Papineni et al., 2002),
ROUGE-L (Lin, 2004), METEOR (Lavie and Agar-
wal, 2007), and CIDEr (Vedantam et al., 2015) as
the automatic evaluation metrics.

Specifically, we compare the performance of
the following training paradigms: 1) Training the
model using the official training set of ATOMIC3).
2) Pre-training the model using a comparable
amount of CKBP-acquired data, and subsequently
fine-tune on ATOMIC%g training set. 3) Training on
a mixture of CKBP-acquired data and ATOMIC3)
training data.

We filter the CKBP-acquired data using two fil-
ters. First, we employ two typical population mod-
els, RoOBERTa-L (Liu et al., 2019) fine-tuned on
CKBP training set and Vera (Liu et al., 2023) to
provide a plausibility score for each triple. We set
an empirical threshold of 0.8 and selecting triples
with plausibility score higher than that as populated
commonsense knowledge. For the RoBERTa-L
model, we select the best-performed checkpoints
based on both CKBP v1 and CKBP v2 to evaluate
which evaluation set is better aligned with down-
stream performance. Second, we utilize a diversity
filter defined in G-DAUG (Yang et al., 2020), which
is a heuristic favoring diverse n-grams. The diver-
sity filter is applied such that we select the same
amount of CKBP-acquired data as the training set



Training Data

| BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE-L | CIDEr

ATOMIC 41.8 26.6
ATOMIC + CKBPROBERTa-L (V1) 41.9 26.6
ATOMIC + CKBPROoBERTa-L (V2) 42.5 26.7
ATOMIC + CKBPvera 42.9 27.2
ATOMIC + CKBPvera (mix) 43.3 27.6

19.2 14.5 50.0 21.2 66.1
18.8 13.8 49.7 21.2 66.2
18.8 13.8 50.2 21.4 67.1
19.4 14.4 50.2 214 67.5
19.7 14.7 50.3 21.5 67.4

Table 3: Performance (%) of GPT2-Large on generative commonsense inference modeling (COMET). ATOMIC
stands for ATOMIC39 training set, and CKBP stands for our CKBP data. Subscripts under CKBP indicating the
population model to select populated commonsense knowledge. The best performances are bold-faced.

of ATOMIC3).

We choose GPT2-Large as our backbone lan-
guage model. We didn’t use GPT2-XL as in Hwang
et al. (2021) because the XL version performs rel-
atively poorer than the Large version in terms of
most automatic evaluation metrics on the evalua-
tion set of ATOMICZ) despite twice the model size.
The learning rate is set as le-5, and we train the
model for three epochs on both CKBP-acquired
data and ATOMIC3) training data.

Results and Analysis The results of generative
commonsense inference are presented in Table 3.
First, adding CKBP-acquired commonsense knowl-
edge for either pre-training or co-training can yield
a general performance improvement in generative
commonsense inference. Specifically, the model
trained on ATOMIC + CKBP vera achieves the best
performance and outperforms that only fine-tuned
on ATOMICZ) on all automatic evaluation met-
rics. This indicates that leveraging the abundant
unlabeled discourse knowledge from ASER (G),
accompanied by appropriate plausibility filtering
through the population model, can effectively serve
as valuable augmented data to enhance common-
sense reasoning. Among the population models,
we observe that a better population model, as eval-
uated by our CKBP v2 evaluation set, corresponds
to a higher performance gain in the generative com-
monsense inference task. This finding highlights
the promising potential of developing improved
population models, which subsequently contribute
to enhanced downstream applications.

Second, the RoBERTa-L model selected by
CKBP v2 demonstrates greater efficacy in enhanc-
ing generative commonsense inference compared
to the model selected by CKBP v1. This finding
suggests that CKBP v2 exhibits improved align-
ment with real-world downstream applications, sur-
passing its predecessor in terms of practical utility.
It’s also noteworthy that COMET is an important
task that inherently benefits a pile of further down-
stream tasks that requires commonsense reason-

ing, including zero-shot commonsense question
answering with self-talk (Shwartz et al., 2020) and
dynamic graph construction (Bosselut et al., 2021),
narrative reasoning (Peng et al., 2022), and dia-
logue generation (Tu et al., 2022). In this regard,
our work exhibits significant potential for gener-
alization to tasks extending beyond the realm of
commonsense reasoning.

5.2 Zero-shot Commonsense QA

Setup For the zero-shot commonsense question
answering (QA) task, we adopt the task defini-
tion and evaluation pipeline proposed by Ma et al.
(2021) to evaluate the benefit CKBP v2 brings to
extrinsic QA. Several methods have been proposed
to tackle this task, including those by Shwartz et al.
(2020); Bosselut et al. (2021); Kim et al. (2022b)
The most effective pipeline, as proposed by Ma
et al. (2021), injects commonsense knowledge into
pre-trained language models through fine-tuning on
QA pairs synthesized from knowledge in CSKBs.
To perform this fine-tuning, the head h and relation
r of a (h,r,t) triple are transformed into a question
using natural language prompts, while the tail ¢ is
used as the correct answer option. Distractors or
negative examples are created by randomly sam-
pling tails from triples that do not share common
keywords with the head. This fine-tuning process
enhances the model’s knowledge not only for QA
benchmarks constructed from CSKBs, such as So-
ciallQA (Sap et al., 2019b) derived from ATOMIC,
but also improves its ability to answer previously
unseen commonsense questions in a more general-
ized manner.

We adopt the original QA synthesis and model
training pipeline by Ma et al. (2021) on the original
ATOMIC and the one augmented with populated
knowledge from CKBP v2 to ablatively study the
sole benefit that knowledge in CKBP v2 brings.
Similar with that in COMET experiments, we use
the best-performed CKBP model, Vera, to score
the whole population space in ASER and select



Model \ CSKB \ a-NLI CSQA PIQA SIQA WG \ Avg.
Zero-shot Baselines

Random - 50.0 20.0 50.0 33.3 50.0 | 40.7
Majority - 50.8 20.9 50.5 33.6 504 | 41.2
RoBERTa-L (Liu et al., 2019) - 65.5 45.0 67.6 47.3 57.5 | 56.6
DeBERTa-v3-L (He et al., 2023b) - 59.9 25.4 44.8 47.8 50.3 | 45.6
Self-talk (Shwartz et al., 2020) - - 324 70.2 46.2 54.7 | -
COMET-DynGen (Bosselut et al., 2021) ATOMIC - - - 50.1 - -
SMLM (Banerjee and Baral, 2020) * 65.3 38.8 - 48.5 - -
MICO (Su et al., 2022) ATOMIC - 44.2 - 56.0 - -
STL-Adapter (Kim et al., 2022b) ATOMIC 71.3 66.5 71.1 64.4 60.3 | 66.7
Backbone: DeBERTa-v3-Large 4351

DeBERTa-v3-L (MR) (Ma et al., 2021) ATM-10X | 75.1 71.6 79.0 59.7 71.7 | 714
DeBERTa-v3-L (MR) (Ma et al., 2021) ATOMIC 76.0 67.0 78.0 62.1 76.0 | 71.8
DeBERTa-v3-L (MR) (Ma et al., 2021) CKBP (our) | 79.2 69.6 77.9 64.3 77.2 | 73.6
Large Language Models

GPT-3.5 (text-davinci-003) - 61.8 68.9 67.8 68.0 60.7 | 65.4
ChatGPT (gpt-3.5-turbo) - 69.3 74.5 75.1 69.5 62.8 | 70.2
Supervised Learning & Human Performance

RoBERTa-L (Supervised) - 85.6 78.5 79.2 76.6 79.3 | 79.8
DeBERTa-v3-L (Supervised) - 89.0 82.1 84.5 80.1 84.1 | 84.0
Human Performance - 91.4 88.9 94.9 86.9 94.1 | 91.2

Table 4: Zero-shot evaluation results (%) on five commonsense question answering benchmarks. The best results
are bold-faced, and the second-best ones are underlined. The performance of supervised learning and human are

for reference only.

the populated knowledge with plausibility scores
of over 0.8. Then the same diversity filter as in
Section 5.1 is used to downsample the number of
populated triples to be comparable with the size of
the training set in ATOMIC3). For the QA model,
DeBERTa-v3-Large (He et al., 2023b) is used as the
backbone, and we train the model using a learning
rate of 7e-6 for one epochs on both the CKBP-
acquired data and ATOMIC-synthesized data as
provided by Ma et al. (2021).

Once trained, we evaluate the model on the
validation splits of five commonsense QA bench-
marks: Abductive NLI (aNLI; Bhagavatula et al.,
2020), CommonsenseQA (CSQA; Talmor et al.,
2019), PhysicallQA (PIQA; Bisk et al., 2020b),
SociallQA (SIQA; Sap et al., 2019b), and Wino-
Grande (WG; Sakaguchi et al., 2021). Accuracy
is used as the evaluation metric. Furthermore, we
compare our model not only against existing zero-
shot knowledge injection methods (Shwartz et al.,
2020; Bosselut et al., 2021; Banerjee and Baral,
2020; Su et al., 2022; Kim et al., 2022b; Ma et al.,
2021) but also against large language models such
as ChatGPT (OpenAl, 2022) and GPT-3.5 (Brown
et al., 2020b).

Results and Analysis The zero-shot common-
sense QA results are shown in Table 4. Among all
the zero-shot methods, the model trained on CKBP
v2 demonstrates the highest performance. It out-

performs models trained solely on ATOMIC (with
an increase of 2.2%) and ATOMIC10X (West et al.,
2022b) (with an increase of 1.8%). Importantly,
our method surpasses large language models by
an average of 3.4%. This performance gain high-
lights the significant advantage of our populated
commonsense knowledge over both human annota-
tions and distilled knowledge from large language
models. Furthermore, we observe that the model
trained on CKBP-acquired data shows the most
improvement on the aNLI and WinoGrande bench-
marks. One potential reason for this is that the
populated knowledge in CKBP v1 encompasses a
wider range of commonsense knowledge beyond
only social commonsense, which benefits tasks in-
volving abductive reasoning (based on narrative)
and pronoun coreference resolution.

6 Conclusion

In this paper, we introduce a new CSKB Popula-
tion benchmark CKBP v2 which addresses two
problems of the predecessor CKBP v1. Besides,
we conduct a broad range of experiments with dif-
ferent models, including GPT3.5 and ChatGPT,
on the new evaluation set. The result shows that
the CSKB Population task remains a hard task of
commonsense reasoning even for state-of-the-art
LLMs, which challenges the community for future
research.



Limitations

We observe several limitations of this work. First,
CKBP v2 still follows the lemmatized format of
events, which may hinder the usage of the resulting
population model on knowledge bases other than
ASER. Second, the paradigm of CSKB is context-
free, which may have difficulty in directly applying
to actual downstream tasks. Third, As this paper
focuses on proposing a new evaluation set of the
CSKB Population, we do not present novel tailored
methods for solving this task, leaving it to future
research.

Ethical Statements

This work presents CKBP v2, an open-source
benchmark for the research community to study
the CSKB population problem. The training set is
directly adapted from CKBP v1 and ATOMIC(%B),
GLUCOSE, and ConceptNet, which would have
the same ethical issues as in those previous works.
Instances in the evaluation set are retrieved from
CKBP vl and ASER, both being open-source with
an MIT license. Events in all data instances are
anonymized. Thus, the benchmark does not pose
any privacy problems about any specific entities
(e.g., a person or company). We carried out human
expert annotation, where annotators are fairly paid
according to the minimum wage requirement of the
local government.
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