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Abstract. Accurate detection of fetal anatomical landmarks in ultra-
sound images during labor is crucial for clinical labor assessment. Despite
significant progress in deep learning for medical image analysis, achieving
high-precision and robust keypoint detection remains challenging under
the realistic condition of scarce annotated data. Inspired by the Noisy
Student paradigm in image classification, this paper proposes an im-
proved semi-supervised method tailored for keypoint detection tasks.We
construct a DenseUNet teacher-student framework to perform collab-
orative training using limited annotated data and a portion of unla-
beled images. Specifically, the teacher model is trained on the labeled
set to generate heatmap pseudo-labels for the unlabeled data; the stu-
dent model, supervised by the pseudo-labels, leverages the dense con-
nectivity of DenseNet to enhance feature reuse and gradient flow, and
incorporates Dropout in the decoder to improve robustness. Further-
more, a linearly-decayed MixUp strategy is adopted for input pertur-
bation, combined with heatmap supervision, to achieve a smooth tran-
sition from strong perturbation training to stable convergence. Experi-
ments on the IUGC 2025 test set demonstrate that the proposed method
significantly improves landmark detection performance, achieving an av-
erage distance error (Distance) of 13.1574 and an AOP_MAE score of
4.4244, which verifies the effectiveness of the method in scenarios with
limited annotation resources. The project source code is available at:
https://github.com/apuomline/IUGC2025.

Keywords: Anatomical landmark detection · Intrapartum ultrasound·
Semi-supervised learning · Noisy Student framework.

1 Introduction

Accurate assessment of fetal head descent during labor is crucial for reducing
the risks of dystocia and cesarean delivery. According to the World Health Orga-
nization’s 2020 Guidelines on Intrapartum Care for a Positive Birth Experience,
real-time monitoring of fetal head progression is one of the core intervention
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measures. Among these, the Angle of Progression (AoP) serves as a key indi-
cator for quantifying this process. It is formed by two points at the distal end
of the pubic symphysis and one point on the fetal head. However, the current
measurement of AoP still relies on experienced clinicians to manually annotate
each frame, which is time-consuming and subject to significant inter-observer
variability.

To address the aforementioned limitations, the MICCAI 2025 Intrapartum
Ultrasound Challenge (IUGC 2025) introduced[1] a semi-supervised end-to-end
keypoint detection method for AoP estimation. Unlike the standard two-stage
approach of segmentation[2] followed by measurement, this approach directly
regresses the coordinates of the three anatomical landmarks from transperineal
ultrasound images and outputs the AoP in real time, enabling zero-interaction
and fully automatic measurement. This dataset covers nine descent stations of
fetal head presentation ranging from -5 to +3 and includes 32,000 multicenter
images, making it the largest and most comprehensive intrapartum ultrasound
image repository to date. The 501 hidden test samples were independently an-
notated by multiple experts, ensuring clinical-grade reliability.

However, the IUGC 2025 dataset presents significant challenges in terms
of fetal pose diversity, image quality variation, and label scarcity, limiting the
effectiveness of traditional fully supervised methods in fully unlocking its clin-
ical value. Therefore, there is an urgent need for a training strategy that can
efficiently utilize the limited labeled samples along with the large amount of
unlabeled images, in order to fully unlock the potential of this dataset in in-
trapartum assessment. Semi-Supervised Learning (SSL) provides a promising
solution for such tasks, with major approaches including consistency regular-
ization (e.g., FixMatch [3], MixMatch [4], ReMixMatch [5], UniMatch [6]) and
pseudo-labeling strategies. Among these, pseudo-labeling methods such as Noisy
Student [7] employ an iterative self-training paradigm, where a teacher model
generates high-quality pseudo labels, which are then used to train a student
model for further performance improvement. This approach introduces input
noise (e.g., RandAugment [8]) and architectural noise (e.g., Stochastic Depth
[9], Dropout [10]) into the student model, and gradually increases both model
capacity and perturbation strength during training. It has achieved remarkable
success in natural image classification tasks.

To address these challenges, we employ a DenseUNet model (as shown in
Figure 2.) with heatmap regression and introduce the Noisy Student framework
for semi-supervised training. The overall training pipeline is illustrated in Fig-
ure 1. Initially, a teacher model is trained exclusively on the labeled data by
minimizing the mean squared error (MSE) loss. Once the teacher model has
been trained, it is used to generate pseudo-labels for the unlabeled images. Sub-
sequently, self-training is performed under both input and structural noise; this
stage simultaneously receives labeled and unlabeled images as input. A student
model that mirrors the architecture of the teacher model is optimized to mini-
mize a joint mean squared error (MSE) loss computed on both the labeled data
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and the pseudo-labeled data. After the student model is trained, it replaces the
teacher model and the process proceeds to the next iteration.

Fig. 1. The Noisy Student training pipeline used for landmark detection in intrapartum
ultrasound.

To effectively enhance the generalization ability and training stability of the
model in the fetal keypoint detection task, we introduce targeted improvements
to the two noise mechanisms in the Noisy Student (NS) [7] framework. In terms of
model noise design, we fully leverage the dense connectivity pattern of the Dense
Block in DenseNet [11], whose multi-path structure inherently provides a regu-
larization effect similar to Stochastic Depth [9]. Building upon this, we introduce
Dropout [10] layers in the decoder as the primary regularization mechanism, en-
hancing model generalization while avoiding training instability that may arise
from structural complexity. In terms of input noise design, we employ data aug-
mentation methods tailored for medical ultrasound images and further propose
a MixUp [12] augmentation strategy integrated with heatmap regression. The
mixing weight coefficient in this strategy decays linearly throughout the train-
ing process, allowing the model to be exposed to stronger perturbations in the
early training stages and gradually transition to a more stable phase, thereby
enhancing model robustness.

Our main contributions can be summarized as follows:

1. We propose a semi-supervised learning framework based on the Noisy Stu-
dent paradigm and successfully apply it to the task of fetal keypoint detection
in labor ultrasound, providing a novel approach for medical image analysis
in scenarios with limited annotations.
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Fig. 2. Network architecture of DenseUNet.

2. We propose a collaborative noise injection mechanism that enhances the
model’s robustness to internal randomness by jointly leveraging the dense
connectivity characteristics of DenseNet and Dropout in the decoder.

3. We introduce a dynamic MixUp augmentation strategy, whose perturba-
tion strength linearly decays during training and is co-optimized with the
heatmap regression objective, thereby enabling stable improvement in key-
point localization accuracy.

2 Methods

The overall framework of the proposed method is illustrated in Figure 1, follow-
ing the Noisy Student paradigm for semi-supervised keypoint detection in intra-
partum ultrasound images. The process involves iterative training of a teacher
model and a student model.

2.1 Teacher Model Training and Pseudo-Label Generation

First, the teacher model is initialized and trained on the labeled dataset Dl. A
DenseUNet architecture is employed, and the model is optimized by minimizing
the Mean Squared Error (MSE) loss between the predicted heatmap Hpred and
the ground truth heatmap Hgt:

Lteacher =
1

Nl

Nl∑
i=1

∥Hi
pred −Hi

gt∥22 (1)
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where Nl denotes the number of labeled samples. After the teacher model is fully
trained, its weights are frozen and it is used to generate pseudo-labels Ĥpseudo for
the unlabeled dataset Du. For each unlabeled image xu ∈ Du, the corresponding
pseudo-label is obtained via the teacher model’s forward pass:

Ĥpseudo = fteacher(xu) (2)

where fteacher represents the inference process of the teacher model. The gen-
erated pseudo-labels are then used alongside the ground truth labels for the
subsequent training of the student model.

2.2 Linearly-Decaying MixUp Augmentation for Heatmap
Regression

The core idea of MixUp is to generate new training samples and corresponding
soft labels by linearly interpolating between two randomly selected samples (im-
ages and their labels). In the context of keypoint detection, this is realized as
follows. Let two randomly selected ultrasound frames be IA, IB ∈ RH×W×C , with
corresponding keypoint annotations KA = {(xA

i , y
A
i )}Ni=1, KB = {(xB

i , y
B
i )}Ni=1,

where N denotes the number of anatomical landmarks. A mixing coefficient is
sampled from a Beta distribution λ ∼ Beta(α, α), with hyper-parameter α > 0
controlling the interpolation strength. The mixed image and keypoint coordi-
nates are then computed as

Imix = λ IA + (1− λ) IB , (3)

(xmix
i , ymix

i ) = λ (xA
i , y

A
i ) + (1− λ) (xB

i , y
B
i ), ∀i ∈ {1, . . . , N}. (4)

Consequently, the synthetic sample (Imix,Kmix) exhibits smooth transitions
in both appearance and geometry, effectively expanding the local neighborhood
of the data distribution.

In our work, we adopt a heatmap regression-based keypoint detection ap-
proach, which is particularly well-suited for the soft-label formulation intro-
duced by MixUp. Heatmaps inherently represent keypoint locations as dense,
continuous 2D probability distributions. This characteristic aligns naturally with
the interpolation mechanism of MixUp, enabling the mixed heatmap labels to
be generated through the same linear interpolation process applied to the im-
ages and keypoint coordinates, thereby preserving spatial consistency. Moreover,
heatmaps incorporate a certain degree of spatial uncertainty via a Gaussian ker-
nel, which allows them to absorb and express the additional "blurring" effect
introduced by MixUp—specifically, when keypoint positions lie between two
true locations. Compared to direct coordinate regression, this heatmap-based
approach demonstrates greater robustness to positional variations, thereby en-
hancing the model’s generalization capability.

To align with the learning objectives at different training stages, we employ a
linearly decaying MixUp augmentation strategy. In the early stages of training,
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Algorithm 1: PyTorch-like pseudocode for our MixUp method

1 # Input:
2 # - images I: Batch of input image tensors (B, C, H, W).
3 # - heatmaps H: Corresponding heatmap tensors (B, K, H, W).
4 # - landmarks L: Corresponding landmark tensors (B, 2K).
5 # - mixup parameter alpha: Beta distribution parameter.
6 # Output:
7 # - mixed_images: Mixed images tensor (B, C, H, W).
8 # - mixed_heatmaps: Mixed heatmaps tensor (B, 2K, H, W).
9 # - mixed_landmarks: Mixed landmarks tensor (B, 2, 2K).

10 # - mixed_weights: Mixing weights tensor (B, 2).
11

12 def mixup_data(images , heatmaps , landmarks , alpha =0.2, device
=’cuda’):

13 # Sample mixing coefficient from Beta distribution
14 lam = np.random.beta(alpha , alpha) if alpha > 0 else 1.0
15 # Randomly permute batch indices
16 index = torch.randperm(images.size (0), device=device)
17 # Mix images using linear interpolation
18 mixed_images = lam * images + (1 - lam) * images[index]
19 # Mix heatmaps
20 mixed_heatmaps = torch.cat([lam * heatmaps , (1 - lam) *

heatmaps[index]], dim=1)
21 # Stack landmarks
22 mixed_landmarks = torch.stack([landmarks , landmarks[index

]], dim=1)
23 # Mixing weights
24 mix_weights = torch.tensor ([lam , 1 - lam], device=device)

.repeat(images.size (0), 1)
25 return mixed_images , mixed_heatmaps , mixed_landmarks ,

mix_weights

introducing moderate data augmentation helps the model learn more robust fea-
ture representations. This is particularly important for addressing the inherent
speckle noise, low contrast, and significant variations in fetal pose commonly
present in ultrasound images. The mixed samples during this stage also assist
the model in developing an understanding of the regions and general shapes
associated with anatomical keypoints. In the later stages of training, we gradu-
ally reduce the intensity of MixUp augmentation, enabling the model to focus
on fine-tuning keypoint localization and achieving sub-pixel accuracy. Maintain-
ing high localization precision at this stage is critical. Applying strong mixing
strategies when the model is approaching convergence may introduce ambiguous
labels or distort spatial structures, which can interfere with the learning of pre-
cise keypoint positions. The proposed decaying mechanism effectively mitigates
this issue by adaptively adjusting the augmentation strength according to the



Title Suppressed Due to Excessive Length 7

training progress. We provide the corresponding pseudo-algorithm description
algorithm 1.

3 Experiments

3.1 Dataset and Implementation Details

Participants in the MICCAI IUGC 2025 challenge are provided with 300 an-
notated ultrasound images and 31,421 unannotated images. Additionally, 2,045
unlabeled standard AOP-plane images are released as exemplars; these exem-
plars are exclusively drawn from the unannotated pool and are intended to re-
flect the overall distribution of the unlabeled data.During the model training, all
models are implemented using PyTorch and trained on a single NVIDIA Tesla
4090 GPU. The standard deviation of the Gaussian heatmap is set to σ = 6.
During training, the following eleven data augmentation operations are applied:
rotation, scaling, translation, brightness adjustment, Gaussian blur, gamma con-
trast, elastic transformation, image inversion, Cutout, and Coarse Dropout. Dur-
ing training, pixel-wise mean squared error (MSE) is adopted as the loss func-
tion for optimization, and the Euclidean distance between predicted and ground
truth keypoints on the validation set is used as the evaluation metric for model
performance, with only the best-performing parameters being saved. During in-
ference, the DARK post-processing method is introduced as a debiasing strategy
to further enhance the robustness and localization accuracy of the predictions.

Table 1. Data augmentation methods and their parameters used in the HeatmapLand-
markDataset

Augmentation Method Parameters
Rotation Range: −5 to 5 degrees
Scale Range: (1− 0.125) to (1 + 0.125)

Translation X-axis: [−30, 30], Y-axis: [−20, 20] pixels
Brightness Adjustment Multiplication factor range: (1− 0.6) to (1 + 0.6)

Gaussian Blur Applied with probability 0.1, Sigma range: (0, 1.5)
Gamma Contrast Adjustment range: (0.3, 2.0)
Elastic Transformation Alpha range: (0, 400), Sigma fixed at 30

Image Inversion Applied with probability 0.1

Cutout Iterations: 0 or 1, Size range: 0.04 to 0.3 of image
width/height, Non-square cutouts

Coarse Dropout Rate: 0.02, Area size: 8% of image size

3.2 Model Selection and Hyperparameter Tuning

During the model selection and hyperparameter tuning phase, we conducted ex-
periments based on a U-shaped network with an encoder-decoder architecture.
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In the initial stage, we first adopted a baseline UNet model to perform mod-
ule adjustments and hyperparameter optimization (as shown in Table 2). After
determining the optimal hyperparameter configuration, we selected the best-
performing backbone network based on this configuration (as shown in Table 3).

Table 2. Results of Module Adjustment and Hyperparameter Tuning

Method Distance ↓ AOP_MAE ↓
b0 (lr: 0.0001; σ: 2; step_size: 15; γ: 0.9) 33.54 16.63
b1 (lr: 0.0001; σ: 3; step_size: 10; γ: 0.9) 28.88 11.43
b2 (lr: 0.0001; σ: 6; step_size: 10; γ: 0.9) 25.49 8.24
b3 (b2 + more aug data; step_size: 10; γ: 0.9) 22.51 8.62
b4 (b3 + decoder-dropout: [0.05, 0.1, 0.2, 0.3]) 21.67 8.32
b5 (σ: 4) 25.14 8.67
b6 (γ: 0.75) 28.24 11.11
b7 (step_size: 8) 31.11 12.22
b8 (b2 + supervise the 3rd and 4th layer outputs) 24.83 8.54
b9 (b3 + ConvBlock: InstanceNorm + LeakyReLU) 22.47 8.77
b10 (b3 + ConvBlock: InstanceNorm + PReLU [13]) 23.25 8.09
b11 (b3 + ConvBlock: BatchNorm + PReLU [13]) 24.50 8.36
b12 (b3 + DARK [14]) 20.45 7.34

As shown in Table 2, the following explains how to read the table. First, the
table should be read from top to bottom. Our experimental exploration starts
from the initial baseline b0, and new modules or hyperparameters are gradually
introduced on this basis. Whenever a newly added module or adjusted hyper-
parameter configuration yields better performance than the previous baseline,
it is established as the new baseline and highlighted in the table. If a row’s
description does not explicitly mention a reference baseline, it means the con-
figuration is derived from the immediately preceding baseline with parameter
modifications. For example, b5 is modified from b4, b6 is based on b5, and b7
further improves upon b6. Through this step-by-step optimization process, we
ultimately determine b12 as the optimal configuration, which is then adopted as
the hyperparameter setting for all subsequent experiments. In the table, sigma
denotes the standard deviation σ used for generating Gaussian heatmaps, while
step_size and γ are the step size and decay factor of the StepLR learning rate
scheduler, respectively. In the table, ConvBlock refers to the ConvBlock used in
the UNet decoder.

Given that our network adopts a U-shaped encoder-decoder architecture,
guided by baseline b12 in Table 2, we trained multiple different backbones to
determine the optimal choices for the teacher and student models. As shown
in Table 3, DenseNet121 [11] achieved the best performance and was therefore
selected as the final backbone for our encoder.
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Table 3. Performance comparison of different backbone networks on the IUGC dataset

Backbone Distance ↓ AOP_MAE ↓
UNet [15] 23.70 9.04
PVT-v2-b1 [16] 20.99 5.87
PVT-v2-b2 [16] 19.06 5.60
ResNet18d [17] 26.16 7.59
ConvNeXtv2-Tiny [18] 15.51 6.63
ResNet34 [17] 25.11 8.01
seresnext26d_32x4d [19] 20.75 7.02
DenseNet121 [11] 18.08 5.99
DenseNet161 [11] 18.64 6.24

3.3 Pseudo-label filtering

We first perform 5-fold cross-validation on 300 annotated images (240 for train-
ing and 60 for validation) and construct a UNet model with DenseNet121 as the
backbone to train the teacher model. Based on the two best-performing mod-
els on the validation set, we conduct inference on the 2,045 unlabeled images,
initially setting the pseudo-label selection threshold to a maximum heatmap
activation value of no less than 0.7.

However, due to artifacts, acoustic shadows, and low contrast in ultrasound
images, the response magnitude becomes decoupled from localization accuracy:
high-confidence false positives may arise at incorrect locations, while true posi-
tives at correct landmarks are erroneously filtered out due to weak signals (loss of
low-confidence true positives). Moreover, variations in echogenicity across struc-
tures cause a uniform threshold to systematically favor “easy-to-detect” land-
marks (e.g., the pubic symphysis), while neglecting clinically critical yet challeng-
ing structures, thereby exacerbating class imbalance. To this end, we explored an
uncertainty-based pseudo-labeling paradigm, for example, an entropy-based cor-
rection strategy incorporating temperature scaling sharpness and per-landmark
adaptive thresholds, to mitigate the confidence bias issue. However, due to its
implementation complexity and difficulty in achieving stable convergence un-
der the current data conditions, this approach was ultimately not successfully
deployed.

Table 4. Comparison of different training-data compositions on the IUGC dataset

Training Data Distance ↓ AOP_MAE ↓
pse825_1e260 18.35 6.85
pse825_se_165_le260 18.27 6.74
pse825_se_100_le260 17.96 6.57
pse825_se_100_1e220 18.24 5.58
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Table 5. Comparison of different training-data with mixup compositions on the IUGC
dataset.

Training Data Distance ↓ AOP_MAE ↓
pse825_1e260 17.67 5.06
pse825_se_165_le260 17.43 5.10
pse825_se_100_le260 16.29 5.47
pse825_se_100_1e220 16.35 4.94

Fig. 3. Impact of MixUp application augmentation and probability on Distance and
AOP-MAE.

The configuration pse825_le260 trains the model using 825 pseudo-labeled
images generated via the pseudo-labeling technique and 260 fully annotated im-
ages. Building upon this, pse825_se_165_le260 incorporates an additional 165
pseudo-labeled images derived from the original unlabeled pool, while keeping
the number of annotated images fixed at 260. Similarly, pse825_se_100_le260
and pse825_se_100_le220 both introduce pseudo-labels from 100 selected un-
labeled images; however, the former uses 260 annotated images, whereas the
latter reduces the number of annotated images to 220, aiming to evaluate the
compensatory capability of pseudo-labels when labeled data is reduced., aiming
to evaluate the compensatory capability of pseudo-labeling when labeled data is
reduced.

As a compromise, we designed a multi-threshold filtering strategy.: we first
identified high-confidence samples using higher thresholds 0.7, then excluded
these from the pseudo-labels generated under a lower threshold (0.6), retaining
moderate-confidence candidates with broader spatial coverage. This yielded 825
pseudo-labeled images with more comprehensive representation. Further analysis
revealed a significant number of redundant samples with similar imaging angles,
which could lead to overfitting. Therefore, we randomly divided these 825 images
into five non-overlapping subsets, to be used for training. Furthermore, to reduce
redundancy in the annotated data, we removed 40 highly similar samples from
the original 260 annotated images and transferred them to the validation set. Fi-
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Fig. 4. Visualization of the final ensemble model’s predictions on validation set sam-
ples. The predicted keypoint locations on the input images are shown, where red dots
indicate PS1, green dots indicate PS2, and yellow dots indicate FH1. The distance
difference (Distance) between the predicted results and the ground truth labels is an-
notated in the top-left corner of each image.
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nally, the student model’s training set consists of 220 annotated images and 100
high-quality pseudo-labeled images. This strategy led to a modest improvement
in model performance, as shown in Table 4. Based on the aforementioned dataset
and with the Mixup augmentation strength set to 0.2, we further evaluate the
impact of different training data combinations on the performance of the stu-
dent model, with specific results presented in Table 5. Notably, the models under
the configurations pse825_se100_le220 and pse825_se100_le260 exhibit par-
ticularly outstanding performance. We therefore choose to ensemble the models
corresponding to the best weights obtained under these two configurations and
visualize the predictions of this ensemble model on the validation set used during
local training, as shown in Figure 4. Subsequently, this ensemble model is sub-
mitted as the final test model for the IUGC 2025 challenge. On the IUGC 2025
official validation set, the ensemble model achieves Distance and AOP_MAE
scores of 15.85 and 5.14, respectively, and further improves to 13.16 and 4.42 on
the independent test set.

On the pse825_se100_le220 training dataset, we conducted experiments on
the strength of Mixup augmentation, with results shown in subplot (a) of Fig-
ure 3. The results indicate that the model achieves optimal performance when
the Mixup strength is set to 0.2. This is primarily because this strength value
strikes a good balance between preserving keypoint spatial accuracy and en-
hancing model generalization: under this setting, the mixed samples generated
by Mixup can better retain the clear structure of the original images, effectively
avoiding blurring or distortion of keypoints caused by excessive interpolation; at
the same time, the moderate introduction of data diversity helps alleviate over-
fitting in small-sample scenarios, thereby improving model robustness. Building
upon the determination that the optimal Mixup strength is 0.2, we further ad-
justed its application probability (as shown subplot (b) of Figure 3, where the
best result is marked with a red star). All experiments set the minimum appli-
cation probability of Mixup to 0.1 to ensure that the model can converge more
stably as training approaches the end.

4 Conclusion

This study proposes a semi-supervised learning method based on the Noisy Stu-
dent framework to address the issue of insufficient accuracy in fetal anatomical
landmark detection from labor ultrasound images. We construct a Dense-UNet
model with DenseNet121 as the encoder and introduce a linearly decaying MixUp
data augmentation strategy specifically designed for heatmap regression during
training, effectively enhancing the model’s robustness and generalization capabil-
ity. On the competition dataset containing 34,421 images, our method achieved
significant performance improvement by using only 220 labeled images and an
additional 100 carefully selected unlabeled images for training. Experimental
results demonstrate that the Noisy Student training framework can effectively
leverage the value of unlabeled data even under extremely limited labeling con-
ditions, revealing its potential for fetal keypoint detection in labor ultrasound.
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