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Abstract

Meta learning is a promising paradigm to enable skill transfer across tasks. Most
previous methods employ the empirical risk minimization principle in optimization.
However, the resulting worst fast adaptation to a subset of tasks can be catastrophic
in risk-sensitive scenarios. To robustify fast adaptation, this paper optimizes meta
learning pipelines from a distributionally robust perspective and meta trains models
with the measure of expected tail risk. We take the two-stage strategy as heuristics
to solve the robust meta learning problem, controlling the worst fast adaptation
cases at a certain probabilistic level. Experimental results show that our simple
method can improve the robustness of meta learning to task distributions and reduce
the conditional expectation of the worst fast adaptation risk.

1 Introduction
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Figure 1: Illustrations of Distributionally Robust
Fast Adaptation. Shown are histograms of meta risk
function values ℓ(DT

τ ,D
C
τ ;ϑ) in the task distribution

p(τ). Given a probability α, we optimize meta learn-
ing model parameters ϑ to decrease the risk quantity
CVaRα in Definition (3).

The past decade has witnessed the remarkable
progress of deep learning in real-world appli-
cations (LeCun et al., 2015). However, train-
ing deep learning models requires an enormous
dataset and intensive computational power. At
the same time, these pre-trained models can fre-
quently encounter deployment difficulties when
the dataset’s distribution drifts in testing time
(Lesort et al., 2021).

As a result, the paradigm of meta learning or
learning to learn is proposed and impacts the ma-
chine learning scheme (Finn et al., 2017), which
leverages past experiences to enable fast adapta-
tion to unseen tasks. Moreover, in the past few
years, there has grown a large body of meta learning methods to find plausible strategies to distill
common knowledge into separate tasks (Finn et al., 2017; Duan et al., 2016; Garnelo et al., 2018a).

Notably, most previous work concentrates merely on the fast adaptation strategies and employs the
standard risk minimization principle, e.g. the empirical risk minimization, ignoring the difference
between tasks in fast adaptation. Given the sampled batch from the task distribution, the standard meta
learning methods weight tasks equally in fast adaptation. Such an implementation raises concerns
in some real-world scenarios, when worst fast adaptation is catastrophic in a range of risk-sensitive
applications (Johannsmeier et al., 2019; Jaafra et al., 2019; Wang et al., 2023b). For example, in
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robotic manipulations, humanoid robots (Duan, 2017) can quickly leverage past motor primitives to
walk on plain roads but might suffer from tribulation doing this on rough roads.

Research Motivations. Instead of seeking novel fast adaptation strategies, we take more interest
in optimization principles for meta learning. Given the meta trained model, this paper stresses the
performance difference in fast adaptation to various tasks as an indispensable consideration. As the
concept of robustness in fast adaptation has not been sufficiently explored from the task distribution
perspective, researching this topic has more practical significance and deserves more attention in
meta learning. Naturally, we raise the question below:

Can we reconsider the meta learning paradigm through the lens of risk distribution, and are there
plausible measures to enhance the fast adaptation robustness in some vulnerable scenarios?

Developed Methods. In an effort to address the above concerns and answer these questions, we
reduce robust fast adaptation in meta learning to a stochastic optimization problem within the
principle of minimizing the expected tail risk, e.g., conditional value-at-risk (CVaR) (Rockafellar
et al., 2000). To tractably solve the problem, we adopt a two-stage heuristic strategy for optimization
with the help of crude Monte Carlo methods (Kroese and Rubinstein, 2012) and give some theoretical
analysis. In each optimization step, the algorithm estimates the value-at-risk (VaR) (Rockafellar et al.,
2000) from a meta batch of tasks and screens and optimizes a percentile of task samples vulnerable
to fast adaptation. As illustrated in Fig. (1), such an operation is equivalent to iteratively reshaping
the task risk distribution to increase robustness. The consequence of optimizing the risk function
distributions ϑk → ϑk+1 is to transport the probability mass in high-risk regions to the left side
gradually. In this manner, the distribution of risk functions in the task domain can be optimized
toward the anticipated direction that controls the worst-case fast adaptation at a certain probabilistic
level.

Outline & Primary Contributions. We overview related meta learning and robust optimization
work in Section (2). Section (3) introduces general notations and describes meta learning optimization
objectives together with typical models. The distributionally robust meta learning problem is presented
together with a heuristic optimization strategy in Section (4). We report experimental results and
analysis in Section (5), followed by conclusions and limitations in Section (6). Our primary
contribution is two-fold:

1. We recast the robustification of meta learning to a distributional optimization problem. The
resulting framework minimizes the conditional expectation of task risks, namely the tail risk,
which unifies vanilla meta-learning and worst-case meta learning frameworks.

2. To resolve the robust meta learning problem, we adopt the heuristic two-stage strategy and
demonstrate its improvement guarantee. Experimental results show the effectiveness of our
method, enhancing fast adaptation robustness and mitigating the worst-case performance.

2 Literature Review

Meta Learning Methods. In practice, meta learning enables fast learning (adaptation to unseen
tasks) via slow learning (meta training in a collection of tasks). There exist different families of meta
learning methods. The optimization-based methods, such as model agnostic meta learning (MAML)
(Finn et al., 2017) and its variants (Finn et al., 2018; Rajeswaran et al., 2019; Grant et al., 2018;
Vuorio et al., 2019; Abbas et al., 2022), try to find the optimal initial parameters of models and then
execute gradient updates over them to achieve adaptation with a few examples. The context-based
methods, e.g. conditional neural processes (CNPs) (Garnelo et al., 2018a), neural processes (NPs)
(Garnelo et al., 2018b) and extensions (Gordon et al., 2019; Foong et al., 2020; Wang and Van Hoof,
2020; Gondal et al., 2021; Wang and van Hoof, 2022; Shen et al., 2021; Wang et al., 2023a), learn
the representation of tasks in the function space and formulate meta learning models as exchangeable
stochastic processes. The metrics-based methods (Snell et al., 2017; Allen et al., 2019; Bartunov and
Vetrov, 2018) embed tasks in a metric space and can achieve competitive performance in few-shot
classification tasks. Other methods like memory-augmented models (Santoro et al., 2016; Xiao et al.,
2021, 2022), recurrent models (Duan et al., 2016) and hyper networks (Zhao et al., 2020; Beck et al.,
2023) are also modified for meta learning purposes.

Besides, there exist several important works investigating the generalization capability of methods.
Bai et al. (2021) conduct the theoretical analysis of the train-validation split and connect it to
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optimality. In (Chen et al., 2021), a generalization bound is constructed for MAML through the lens
of information theory. Denevi et al. (2019) study an average risk bound and estimate the bias for
improving stochastic gradient optimization in meta learning.

Robust Optimization. When performing robust optimization for downstream tasks in deep learning,
we can find massive work concerning the adversarial input noise (Goodfellow et al., 2018; Goel et al.,
2020; Ren et al., 2021), or the perturbation on the model parameters (Goodfellow et al., 2014; Kurakin
et al., 2016; Liu et al., 2018; Silva and Najafirad, 2020). In contrast, this paper studies the robustness
of fast adaptation in meta learning. In terms of robust principles, the commonly considered one is
the worst-case optimization (Olds, 2015; Zhang et al., 2020; Tay et al., 2022). For example, Collins
et al. (2020) conducts the worst-case optimization in MAML to obtain the robust meta initialization.
Considering the influence of adversarial examples, Goldblum et al. (2019) propose to adversarially
meta train the model for few-shot image classification. Wang et al. (2020) adopt the worst-case
optimization in MAML to increase the model robustness by injecting adversarial noise to the input.
However, distributionally robust optimization (Rahimian and Mehrotra, 2019) is rarely examined in
the presence of the meta learning task distribution.

3 Preliminaries

Notations. Consider the distribution of tasks p(τ) for meta learning and denote the task space by Ωτ .
Let τ be a task sampled from p(τ) with T the set of all tasks. We denote the meta dataset by Dτ . For
example, in few-shot regression problems, Dτ refers to a set of data points {(xi, yi)}mi=1 to fit.

Generally, Dτ are processed into the context set DC
τ for fast adaptation, and the target set DT

τ for
evaluating adaptation performance. As an instance, we process the dataset Dτ = DC

τ ∪DT
τ with a

fixed partition in MAML (Finn et al., 2017). DC
τ and DT

τ are respectively used for the inner loop and
the outer loop in model optimization.

Definition 1 (Meta Risk Function) With the task τ ∈ T and the pre-processed dataset Dτ and the
model parameter ϑ ∈ Θ, the meta risk function is a map ℓ : Dτ ×Θ 7→ R+.

In meta learning, the meta risk function ℓ(DT
τ ,D

C
τ ;ϑ), e.g. instantiations in Example (1)/(2), is

to evaluate the model performance after fast adaptation. Now we turn to the commonly-used risk
minimization principle, which plays a crucial role in fast adaptation. To summarize, we include the
vanilla and worst-case optimization objectives as follows.

Expected Risk Minimization for Meta Learning. The objective that applies to most vanilla meta
learning methods can be formulated in Eq. (1), and the optimization executes in a distribution over
tasks p(τ). The Monte Carlo estimate corresponds to the empirical risk minimization principle.

min
ϑ∈Θ
E(ϑ) := Ep(τ)

[
ℓ(DT

τ ,D
C
τ ;ϑ)

]
(1)

Here ϑ is the parameter of meta learning models, which includes parameters for common knowledge
shared across all tasks and for fast adaptation. Furthermore, the task distribution heavily influences
the direction of optimization in meta training.

Worst-case Risk Minimization for Meta Learning. This also considers meta learning in the task
distribution p(τ), but the worst case in fast adaptation is the top priority in optimization.

min
ϑ∈Θ

max
τ∈T

ℓ(DT
τ ,D

C
τ ;ϑ) (2)

The optimization objective is built upon the min-max framework, advancing the robustness of meta
learning to the worst case. Approaches like TR-MAML (Collins et al., 2020) sample the worst
task in a batch to meta train with gradient updates. Nevertheless, this setup might result in a highly
conservative solution where the worst case only happens with an incredibly lower chance.
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4 Distributionally Robust Fast Adaptation

This section starts with the concept of risk measures and the derived meta learning optimization
objective. Then a heuristic strategy is designed to approximately solve the problem. Finally, we
provide two examples of distributionally robust meta learning methods.

4.1 Meta Risk Functions as Random Variables

Assumption 1 The meta risk function ℓ(DT
τ ,D

C
τ ;ϑ) is βτ -Lipschitz continuous w.r.t. ϑ, which

suggests: there exists a positive constant βτ such that ∀{ϑ, ϑ′} ∈ Θ:

|ℓ(DT
τ ,D

C
τ ;ϑ)− ℓ(DT

τ ,D
C
τ ;ϑ

′)| ≤ βτ ||ϑ− ϑ′||.

Let (Ωτ ,Fτ ,Pτ ) denote a probability measure over the task space, where Fτ corresponds to a
σ-algebra on the subsets of Ωτ . And we have (R+,B) a probability measure over the non-negative
real domain for the previously mentioned meta risk function ℓ(DT

τ ,D
C
τ ;ϑ) with B a Borel σ-algebra.

For any ϑ ∈ Θ, the meta learning operatorMϑ : Ωτ 7→ R+ is defined as:

Mϑ : τ 7→ ℓ(DT
τ ,D

C
τ ;ϑ).

In this way, ℓ(DT
τ ,D

C
τ ;ϑ) can be viewed as a random variable to induce the distribution

p(ℓ(DT
τ ,D

C
τ ;ϑ)). Further, the cumulative distribution function can be formulated as Fℓ(l;ϑ) =

P({ℓ(DT
τ ,D

C
τ ;ϑ) ≤ l; τ ∈ Ωτ , l ∈ R+}) w.r.t. the task space. Note that Fℓ(l;ϑ) implicitly depends

on the model parameter ϑ, and we cannot access a closed-form in practice.

Definition 2 (Value-at-Risk) Given the confidence level α ∈ [0, 1], the task distribution p(τ) and
the model parameter ϑ, the VaR (Rockafellar et al., 2000) of the meta risk function is defined as:

VaRα [ℓ(T , ϑ)] = inf
l∈R+
{l|Fℓ(l;ϑ) ≥ α, τ ∈ T }.

Definition 3 (Conditional Value-at-Risk) Given the confidence level α ∈ [0, 1], the task distribu-
tion p(τ) and the model parameter ϑ, we focus on the constrained domain of the random variable
ℓ(DT

τ ,D
C
τ ;ϑ) with ℓ(DT

τ ,D
C
τ ;ϑ) ≥ VaRα[ℓ(T , ϑ)]. The conditional expectation of this is termed as

conditional value-at-risk (Rockafellar et al., 2000):

CVaRα [ℓ(T , ϑ)] =
∫ ∞

0

ldFα
ℓ (l;ϑ),

where the normalized cumulative distribution is as follows:

Fα
ℓ (l;ϑ) =

{
0, l < VaRα[ℓ(T , ϑ)]
Fℓ(l;ϑ)−α

1−α , l ≥ VaRα[ℓ(T , ϑ)].

This results in the normalized probability measure (Ωα,τ ,Fα,τ ,Pα,τ ) over the task space, where
Ωα,τ :=

⋃
ℓ≥VaRα[ℓ(T ,ϑ)]

[
M−1

ϑ (ℓ)
]
. For ease of presentation, we denote the corresponding task

distribution constrained in Ωα,τ by pα(τ ;ϑ).

Rather than optimizing VaRα, a quantile, in meta learning, we take more interest in CVaRα optimiza-
tion, a type of the expected tail risk. Such risk measure regards the conditional expectation and has
more desirable properties for meta learning: more adequate in handling adaptation risks in extreme
tails, more accessible sensitivity analysis w.r.t. α, and more efficient optimization.

Remark 1 CVaRα [ℓ(T , ϑ)] to minimize is respectively equivalent with the vanilla meta learning
optimization objective in Eq. (1) when α = 0 and the worst-case meta learning optimization objective
in Eq. (3) when α is sufficiently close to 1.

4.2 Meta Learning via Controlling the Expected Tail Risk

As mentioned in Remark (1), the previous two meta learning objectives can be viewed as special
cases within the CVaRα principle. Furthermore, we turn to a particular distributionally robust fast
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adaptation with the adjustable confidence level α to control the expected tail risk in optimization as
follows.

Distributionally Robust Meta Learning Objective. With the previously introduced normalized
probability density function pα(τ ;ϑ), minimizing CVaRα [ℓ(T , ϑ)] can be rewritten as Eq. (3).

min
ϑ∈Θ
Eα(ϑ) := Epα(τ ;ϑ)

[
ℓ(DT

τ ,D
C
τ ;ϑ)

]
(3)

Even though CVaRα[ℓ(T , ϑ)] is a function of the model parameter ϑ, the integral in Eq. (3) is
intractable due to the involvement of pα(τ ;ϑ) in a non-closed form.

Assumption 2 For meta risk function values, the cumulative distribution function Fℓ(l;ϑ) is βℓ-
Lipschitz continuous w.r.t. l, and the implicit normalized probability density function of tasks pα(τ ;ϑ)
is βθ-Lipschitz continuous w.r.t. ϑ.

Assumption 3 For any valid ϑ ∈ Θ and corresponding implicit normalized probability density
function of tasks pα(τ ;ϑ), the meta risk function value can be bounded by a positive constant Lmax:

sup
τ∈Ωα,τ

ℓ(DT
τi ,D

C
τi ;ϑ) ≤ Lmax.

Proposition 1 Under assumptions (1)/(2)/(3), the meta learning optimization objective Eα(ϑ) in Eq.
(3) is continuous w.r.t. ϑ.

Further, we use ξα(ϑ) to denote the VaRα[ℓ(T , ϑ)] for simple notations. The same as that in
(Rockafellar et al., 2000), we introduce a slack variable ξ ∈ R and the auxiliary risk function[
ℓ(DT

τ ,D
C
τ ;ϑ)− ξ

]+
:= max{ℓ(DT

τ ,D
C
τ ;ϑ) − ξ, 0}. To circumvent directly optimizing the non-

analytical pα(τ ;ϑ), we can convert the probability constrained function Eα(ϑ) to the below uncon-
strained one after optimizing ξ:

φα(ξ;ϑ) = ξ +
1

1− α
Ep(τ)

[[
ℓ(DT

τ ,D
C
τ ;ϑ)− ξ

]+]
.

It is demonstrated that Eα(ϑ) = minξ∈R φα(ξ;ϑ) and ξα ∈ argminξ∈R φα(ξ;ϑ) in (Rockafellar
et al., 2000), and also note that CVaRα is the upper bound of ξα, implying

ξα ≤ φα(ξα;ϑ) ≤ φα(ξ;ϑ), ∀ξ ∈ R and ∀ϑ ∈ Θ. (4)

With the deductions from Eq.s (3)/(4), we can resort the distributionally robust meta learning
optimization objective with the probability constraint into a unconstrained optimization objective as
Eq.(5).

min
ϑ∈Θ,ξ∈R

ξ +
1

1− α
Ep(τ)

[[
ℓ(DT

τ ,D
C
τ ;ϑ)− ξ

]+]
(5)

Sample Average Approximation. For the stochastic programming problem above, it is mostly
intractable to derive the analytical form of the integral. Hence, we need to perform Monte Carlo
estimates of Eq. (5) to obtain Eq. (6) for optimization.

min
ϑ∈Θ,ξ∈R

ξ +
1

(1− α)B
B∑

i=1

[
ℓ(DT

τi ,D
C
τi ;ϑ)− ξ

]+
(6)

Remark 2 If ℓ(DT
τ ,D

C
τ ;ϑ) is convex w.r.t. ϑ, then Eq.s (5)/(6) are also convex functions. In this

case, the optimization objective Eq. (6) of our interest can be resolved with the help of several convex
programming algorithms (Fan et al., 2017; Meng et al., 2020; Levy et al., 2020).
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Figure 2: Optimization Diagram of Distributionally Robust Meta Learning with Surrogate Functions.
From left to right: the meta model parameters ϑ in the middle block are optimized w.r.t. the constructed surrogate
function φ(ξ̂αt ;ϑ) marked in blue in t-th iteration. Under certain conditions in Theorem (1), the distributionally
robust meta learning objective φ(ξα;ϑ) marked in pink can be decreased monotonically until it reaches the
convergence in the H-th iteration.

4.3 Heuristic Algorithms for Optimization

Unfortunately, most existing meta learning models’ risk functions (Finn et al., 2017; Garnelo et al.,
2018a; Santoro et al., 2016; Li et al., 2017; Duan et al., 2016), ℓ(DT

τ ,D
C
τ ;ϑ) are non-convex w.r.t. ϑ,

bringing difficulties in optimization of Eq.s (5)/(6).

To this end, we propose a simple yet effective optimization strategy, where the sampled task batch is
used to approximate the VaRα and the integral in Eq. (5) for deriving Eq. (6). In detail, two stages
are involved in iterations: (i) approximate VaRα[ℓ(T , ϑ)] ≈ ξ̂α with the meta batch values, which can
be achieved via either a quantile estimator (Dong and Nakayama, 2018) or other density estimators;
(ii) optimize ϑ in Eq. (6) via stochastic updates after replacing ξα by the estimated ξ̂α.

Proposition 2 Suppose there exists δ ∈ R+ such that |ξα(ϑ)− ξ̂α(ϑ)| < δ with ξ̂α(ϑ) an estimate
of ξα(ϑ). Then there exists a constant κα = max{ 2−α

1−α ,
α

1−α} such that

φα(ξ̂α(ϑ);ϑ)− καδ < Eα(ϑ) ≤ φα(ξ̂α(ϑ);ϑ).

The performance gap resulting from VaRα approximation error is estimated in Proposition (2). For
ease of implementation, we adopt crude Monte Carlo methods (Kroese and Rubinstein, 2012) to
obtain a consistent estimator of ξα.

Theorem 1 (Improvement Guarantee) Under assumptions (1)/(2)/(3), suppose that the estimate
error with the crude Monte Carlo holds: |ξ̂αt

− ξαt
| ≤ λ

βℓ(1−α)2 ,∀t ∈ N+, with the subscript t the
iteration number, λ the learning rate in stochastic gradient descent, βℓ the Lipschitz constant of
the risk cumulative distribution function, and α the confidence level. Then the proposed heuristic
algorithm with the crude Monte Carlo can produce at least a local optimum for distributionally
robust fast adaptation.

Note that Theorem (1) indicates that under certain conditions, using the above heuristic algorithm has
the performance improvement guarantee, which corresponds to Fig. (2). The error resulting from the
approximate algorithm is further estimated in Appendix Theorem (2).

4.4 Instantiations & Implementations

Our proposed optimization strategy applies to all meta learning methods and has the improvement
guarantee in Theorem (1). Here we take two representative meta learning methods, MAML (Finn
et al., 2017) and CNP (Garnelo et al., 2018a), as examples and show how to robustify them through
the lens of risk distributions. Note that the forms of ℓ(DT

τ ,D
C
τ ;ϑ) sometimes differ in these methods.

Also, the detailed implementation of the strategy relies on specific meta learning algorithms and
models.

Example 1 (DR-MAML) With the task distribution p(τ) and model agnostic meta learning (Finn
et al., 2017), the distributionally robust MAML treats the meta learning problem as a bi-level
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optimization with a VaRα relevant constraint.

min
ϑ∈Θ
ξ∈R

ξ +
1

1− α
Ep(τ)

[[
ℓ(DT

τ ;ϑ− λ∇ϑℓ(D
C
τ ;ϑ))− ξ

]+]
(7)

The gradient operation ∇ϑℓ(D
C
τ ;ϑ) corresponds to the inner loop with the learning rate λ.

Meta Learning

Fast Adaptation

Figure 3: Diagram of Distributionally Ro-
bust Fast Adaptation for Model Agnostic
Meta Learning (Finn et al., 2017). For ex-
ample, with the size of the meta batch 5 and
α = 40%, 5 ∗ (1 − α) tasks in gray with
the worst fast adaptation performance are
screened for updating meta initialization.

The resulting distributionally robust MAML (DR-MAML)
is still a optimization-based method, where a fixed per-
centage of tasks are screened for the outer loop. As shown
in Fig. (3) and Eq. (7), the objective is to obtain a robust
meta initialization of the model parameter ϑ.

Example 2 (DR-CNP) With the task distribution p(τ)
and the conditional neural process (Garnelo et al., 2018a),
the distributionally robust conditional neural process
learns the functional representations with a CVaRα con-
straint.

min
ϑ∈Θ
ξ∈R

ξ +
1

1− α
Ep(τ)

[[
ℓ(DT

τ ; z, θ2))− ξ
]+]

s.t. z = hθ1(D
C
τ ) with ϑ = {θ1, θ2}

(8)

Here hθ1 is a set encoder network with θ2 the parameter of the decoder network.

The resulting distributionally robust CNP (DR-CNP) is to find a robust functional embedding to
induce underlying stochastic processes. Still, in Eq. (8), a proportion of tasks with the worst functional
representation performance are used in meta training.

Moreover, we convey the pipelines of optimizing these developed distributionally robust models in
Appendix Algorithms (1)/(2).

5 Experimental Results and Analysis

This section presents experimental results and examines fast adaptation performance in a distributional
sense. Without loss of generality, we take DR-MAML in Example (1) to run experiments.

Benchmarks. The same as work in (Collins et al., 2020), we use two commonly-seen downstream
tasks for meta learning experiments: few-shot regression and image classification. Besides, ablation
studies are included to assess other factors’ influence or the proposed strategy’s scalability.

Baselines & Evaluations. Since the primary investigation is regarding risk minimization principles,
we consider the previously mentioned expected risk minimization, worst-case minimization, and
expected tail risk minimization for meta learning. Hence, MAML (empirical risk), TR-MAML
(worst-case risk), and DR-MAML (expected tail risk) serve as examined methods. We evaluate these
methods’ performance based on the Average, Worst-case, and CVaRα metrics. For the confidence
level to meta train DR-MAML, we empirically set α = 0.7 for few-shot regression tasks and α = 0.5
image classification tasks without external configurations.

5.1 Sinusoid Regression

Table 1: Test average mean square errors (MSEs) with reported standard
deviations for sinusoid regression (5 runs). We respectively consider 5-shot
and 10-shot cases with α = 0.7. The results are evaluated across the 490
meta-test tasks, as in (Collins et al., 2020). The best results are in bold.

5-shot 10-shot
Method Average Worst CVaRα Average Worst CVaRα

MAML (Finn et al., 2017) 1.02±0.10 3.89±0.83 2.25±0.15 0.66±0.16 2.57±0.70 1.15±0.19

TR-MAML (Collins et al., 2020) 1.09±0.08 2.28±0.35 1.79±0.06 0.77±0.11 1.68±0.43 1.27±0.28

DR-MAML (Ours) 0.89±0.04 2.91±0.46 1.76±0.02 0.54±0.01 1.70±0.17 0.96±0.01

Following (Finn et al.,
2017; Collins et al., 2020),
we conduct experiments in
sinusoid regression tasks.
The mission is to approxi-
mate the function f(x) =
a sin(x − b) with K-shot
randomly sampled function
points, where the task is de-
fined by a and b. In the sine function family, the target range, amplitude range, and phase range are
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respectively [−5.0, 5.0] ⊂ R, a ∈ [0.1, 5.0] and b ∈ [0, 2π]. In the setup of meta training and testing
datasets, a distributional shift exists: numerous easy tasks and several difficult tasks are generated to
formulate the training dataset with all tasks in the space as the testing one. Please refer to Appendix
(J) for a detailed partition of meta-training, testing tasks, and neural architectures.

Result Analysis. We list meta-testing MSEs in sinusoid regression in Table (1). As expected, the
tail risk minimization principle in DR-MAML can lead to an intermediate performance in the worst-
case. In both cases, the comparison between MAML and DR-MAML in MSEs indicates that such
probabilistic-constrained optimization in the task space even has the potential to advance average fast
adaptation performance. In contrast, TR-MAML has to sacrifice more average performance for the
worst-case improvement.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Mean Squared Error (MSE)

0

20

40

60

80

100

120

MAML

DR-MAML(Ours)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Mean Squared Error (MSE)

0

20

40

60

80

100

120

MAML

TR-MAML

0.0 0.5 1.0 1.5 2.0 2.5

Mean Squared Error (MSE)

0

20

40

60

80

100

120

140

MAML

DR-MAML(Ours)

0.0 0.5 1.0 1.5 2.0 2.5

Mean Squared Error (MSE)

0

20

40

60

80

100

120

140

MAML

TR-MAML

MSEs of Meta-Test Tasks on Sinusoid 5-shot MSEs of Meta-Test Tasks on Sinusoid 10-shot

Figure 4: Histograms of Meta-Testing Performance in Sinusoid Regression Problems. With α = 0.7, we
respectively visualize the comparison results, DR-MAML-vs-MAML and TR-MAML-vs-MAML in 5-shot
(Two Sub-figures Left Side) and 10-shot (Two Sub-figures Right Side) cases, for a sample trial.

More intuitively, Fig. (4) illustrates MSE statistics on the testing task distribution and further verifies
the effect of the CVaRα principle in decreasing the proportional worst-case errors. In 5-shot
cases, the difference in MSE statistics is more significant: the worst-case method tends to increase
the skewness in risk distributions with many task risk values gathered in regions of intermediate
performance, which is unfavored in general cases. As for why DR-MAML surpasses MAML in terms
of average performance, we attribute it to the benefits of external robustness in several scenarios, e.g.,
the drift of training/testing task distributions.
Table 2: Average N-way K-shot classification accuracies in Omniglot with reported standard deviations
(3 runs). With α = 0.5, the best results are in bold.

Meta-Training Alphabets Meta-Testing Alphabets
5-way 1-shot 20-way 1-shot 5-way 1-shot 20-way 1-shot

Method Average Worst CVaRα Average Worst CVaRα Average Worst CVaRα Average Worst CVaRα

MAML (Finn et al., 2017) 98.4±0.2 82.4±1.1 96.9±0.5 99.2±0.1 33.9±3.0 80.9±0.7 93.5±0.2 82.5±0.2 91.6±0.6 67.6±2.0 49.7±3.5 60.4±1.7

TR-MAML (Collins et al., 2020) 97.4±0.6 95.0±0.3 96.5±0.4 92.2±0.8 82.4±2.1 87.2±0.9 93.1±1.1 85.3±1.9 91.3±0.9 74.3±1.4 58.4±1.8 68.5±1.2

DR-MAML (Ours) 97.1±0.3 84.0±0.4 95.1±0.3 99.6±0.6 57.9±2.4 84.8±0.7 93.7±0.4 84.1±0.8 92.1±0.5 74.6±1.2 51.0±2.3 66.4±1.4

5.2 Few-Shot Image Classification

Table 3: Average 5-way 1-shot classification accuracies in mini-
ImageNet with reported standard deviations (3 runs). With α = 0.5,
the best results are in bold.

Eight Meta-Training Tasks Four Meta-Testing Tasks
Method Average Worst CVaRα Average Worst CVaRα

MAML (Finn et al., 2017) 70.1±2.2 48.0±4.5 63.2±2.6 46.6±0.4 44.7±0.7 44.6±0.7

TR-MAML (Collins et al., 2020) 63.2±1.3 60.7±1.6 62.1±1.2 48.5±0.6 45.9±0.8 46.6±0.5

DR-MAML (Ours) 70.2±0.2 63.4±0.2 67.2±0.1 49.4±0.1 47.1±0.1 47.5±0.1

Here we do investigations in few-
shot image classification. Each
task is an N-way K-shot clas-
sification with N the number of
classes and K the number of la-
beled examples in one class. The
Omniglot (Lake et al., 2015) and
mini-ImageNet (Vinyals et al.,
2016) datasets work as benchmarks for examination. We retain the setup of datasets in work
(Collins et al., 2020).

Result Analysis. The classification accuracies in Omniglot are illustrated in Table (2): In 5-way
1-shot cases, DR-MAML obtains the best average and CVaRα in meta-testing datasets, while TR-
MAML achieves the best worst-case performance with a slight degradation of average performance
compared to MAML in both training/testing datasets. In 20-way 1-shot cases, for training/testing
datasets, we surprisingly notice that the expected tail risk is not well optimized with DR-MAML, but
there is an average performance gain; while TR-MAML works best in worst-case/CVaRα metrics.

When it comes to mini-ImageNet, findings are distinguished a lot from the above one: in Table (3),
DR-MAML yields the best result in all evaluation metrics and cases, even regarding the worst-case.
TR-MAML can also improve all metrics in meta-testing cases. Overall, challenging meta-learning
tasks can reveal more advantages of DR-MAML over others.
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5.3 Ablation Studies

This part mainly checks the influence of the confidence level α, meta batch size, and other optimization
strategies towards the distribution of fast adapted risk values. Apart from examining these factors of
interest, additional experiments are also conducted in this paper; please refer to Appendix (K).
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Figure 5: Meta Testing MSEs of Meta-Trained DR-MAML with Various Confidence Levels α. MAML and
TR-MAML are irrelevant with the variation of α in meta-training. The plots report testing MSEs with standard
error bars in shadow regions.
Sensitivity to Confidence Levels α. To deepen understanding of the confidence level α’s effect in
fast adaptation performance, we vary α to train DR-MAML and evaluate models under previously
mentioned metrics. Taking the sinusoid 5-shot regression as an example, we calculate MSEs and
visualize the fluctuations with additional α-values in Fig. (5). The results in the worst-case exhibit
higher deviations. The trend in Average/CVaRα metrics shows that with increasing α, DR-MAML
gradually approaches TR-MAML in average and CVaRα MSEs. With α ≤ 0.8, ours is less sensitive
to the confidence level and mostly beats MAML/TR-MAML in average performance. Though ours
aims at optimizing CVaRα, it cannot always ensure such a metric to surpass TR-MAML in all
confidence levels due to rigorous assumptions in Theorem (1).
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Figure 6: Meta Testing Average Performance of Meta-Trained DR-MAML with Various Sizes of the Meta
Batch. The plots report average results with standard error bars in shadow regions.

Influence of the Task Batch Size. Note that our optimization strategy relies on the estimate of
VaRα, and the improvement guarantee relates to the estimation error. Theoretically, the meta batch in
training can directly influence the optimization result. Here we vary the meta batch size in training,
and evaluated results are visualized in Fig. (6). In regression scenarios, the average MSEs can
decrease to a certain level with an increase of meta batch, and then performance degrades. We
attribute the performance gain with a batch increase to more accurate VaRα estimates; however, a
meta batch larger than some threshold can worsen the first-order meta learning algorithms’ efficiency,
similarly observed in (Nichol et al., 2018). As for classification scenarios, there appears no clear
trend since the meta batch is smaller enough.

Comparison with Other Optimization Strategies. Note that instantiations of distributionally robust
meta learning methods, such as DR-MAML and DR-CNPs in Examples (1)/(2) are regardless of
optimization strategies and can be optimized via any heuristic algorithms for CVaRα objectives.

Additionally, we use DR-MAML as the example and perform the comparison between our two-stage
algorithm and the risk reweighted algorithm (Sagawa et al., 2020). The intuition of the risk reweighted
algorithm is to relax the weights of tasks and assign more weights to the gradient of worst cases. The
normalization of risk weights is achieved via the softmax operator. Though there is an improvement
guarantee w.r.t. the probabilistic worst group of tasks, the algorithm is not specially designed for
meta learning or CVaRα objective.

min
ϑ∈Θ
Eα(ϑ) := Ep(τ ;ϑ)

[pα(τ ;ϑ)
p(τ ;ϑ)

ℓ(DT
τ ,D

C
τ ;ϑ)

]
≈ 1

B
B∑

b=1

ωb(τb;ϑ)ℓ(D
T
τb
,DC

τb
;ϑ) (9)
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Table 4: Test average mean square errors (MSEs) with reported standard deviations for sinusoid regression
(5 runs). We mainly compare DR-MAML with different optimization algorithms. 5-shot and 10-shot
cases are respectively considered here. The results are evaluated across the 490 meta-test tasks, which is the
same as in (Collins et al., 2020). With α = 0.7 for meta training, the best testing results are in bold.

5-shot 10-shot
Method Average Worst CVaRα Average Worst CVaRα

DR-MAML (Group DRO, (Sagawa et al., 2020)) 0.91±0.06 3.57±0.56 1.83±0.03 0.61±0.02 1.90±0.11 1.13±0.02

DR-MAML (Two-Stage, Ours) 0.89±0.04 2.91±0.46 1.76±0.02 0.54±0.01 1.70±0.17 0.96±0.01

Table 5: Average 5-way 1-shot classification accuracies in mini-ImageNet with reported standard devia-
tions (3 runs). We mainly compare DR-MAML with different optimization algorithms. With α = 0.5 for
meta training, the best testing results are in bold.

Eight Meta-Training Tasks Four Meta-Testing Tasks
Method Average Worst CVaRα Average Worst CVaRα

DR-MAML (Group DRO, (Sagawa et al., 2020)) 67.0±0.2 56.6±0.4 61.6±0.2 49.1±0.2 46.6±0.1 47.2±0.2

DR-MAML (Two-Stage, Ours) 70.2±0.2 63.4±0.2 67.2±0.1 49.4±0.1 47.1±0.1 47.5±0.1

Meanwhile, the weight of task gradients after normalization is a biased estimator w.r.t. the constrained
probability pα(τ ;ϑ) in the task space. In other words, the risk reweighted method can be viewed
as approximation w.r.t. the importance weighted method in Eq. (9). In the importance weighted
method, for tasks out of the region of (1− α)-proportional worst, the probability of sampling such
tasks τb is zero, indicating ωb(τb;ϑ) = 0. While in risk reweighted methods, the approximate weight

is assumed to satisfy ωb(τb;ϑ) ∝ exp
(

ℓ(DT
τb

,DC
τb

;ϑ̂)

τ

)
, where ϑ̂ means last time updated meta model

parameters and the risk function value is evaluated after fast adaptation.

In implementations, we keep the setup the same as Group DRO methods in (Sagawa et al., 2020) for
meta-training. As illustrated in Table (4)/(5), DR-MAML with the two-stage optimization strategies
consistently outperform that with the Group DRO ones in both 5-shot and 10-shot sinusoid cases
regarding all metrics. The performance advantage of using the two-stage ones is not significant in mini-
ImageNet scenarios. We can hypothesize that the estimate of VaRα in continuous task domains, e.g.,
sinusoid regression, is more accurate, and this probabilistically ensures the improvement guarantee
with two-stage strategies. Both the VaRα estimate in two-stage strategies and the importance weight
estimate in the Group DRO ones may have a lot of biases in few-shot image classification, which
lead to comparable performance.

6 Conclusion and Limitations

Technical Discussions. This work contributes more insights into robustifying fast adaptation in meta
learning. Our utilized expected tail risk trades off the expected risk minimization and worst-case risk
minimization, and the two-stage strategy works as the heuristic to approximately solve the problem
with an improvement guarantee. Our strategy can empirically alleviate the worst-case fast adaptation
and sometimes even improve average performance.

Existing Limitations. Though our robustification strategy is simple yet effective in implementations,
empirical selection of the optimal meta batch size is challenging, especially for first-order optimization
methods. Meanwhile, the theoretical analysis only applies to a fraction of meta learning tasks when
risk function values are in a compact continuous domain.

Future Extensions. Designing a heuristic algorithm with an improvement guarantee is non-trivial
and relies on the properties of risk functions. This research direction has practical meaning in the era
of large models and deserves more investigations in terms of optimization methods. Also, establishing
connections between the optimal meta batch size and specific stochastic optimization algorithms can
be a promising theoretical research issue in this domain.
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A Frequently Asked Question

Here we collected technical questions and suggestions from researchers who helped check out the
manuscript. We thank these researchers for precious questions and provide more details.

Novelty & primary findings of this work. Here we mainly summarize two points of novelty in this
work:

• Meta Learning Robustification Framework. Though the concept of the expected tail risk
has emerged for several decades and has been widely employed in financial domains, the
application to fast adaptation or robustification of meta learning remains limited in literature
as far as we know.

• Optimization Strategy & Theoretical Analysis. We theoretically analyze two-stage opti-
mization strategies as the heuristic algorithm in optimizing the distributionally robust meta
learning models and demonstrate the improvement guarantee under certain conditions.

As verified in experimental results in the main paper, placing a probabilistic constraint in the task space
is meaningful. It circumvents the effect of over-pessimistic consideration (worst-case optimization),
increases robustness in proportional cases, and mostly retains or even improves average performance.

Apart from the novelty in the framework and algorithm parts, we have several findings which bring
crucial insights into meta learning: (i) Not all tasks are necessary to perform fast adaptation. (ii)
Additional focus on the tail risk has the potential to enhance models’ generalization capability. (iii)
The tail risk instead of extreme worst-case risk can better advance robustness in challenging datasets.

Meta risk function values as random variables. In some few-shot learning related work, the context
and the target dataset are equivalently called the support and query datasets. The definition of a task
in meta learning is up to application scenarios and specific meta learning algorithms or models. The
commonly-used sinusoid regression using model-agnostic meta learning (Finn et al., 2017) considers
the fixed number of context points to induce tasks. In contrast, conditional neural processes (Garnelo
et al., 2018a) for few-shot regression vary the number of context points to induce tasks. Once the
context and the target are partitioned and the model parameter is specified, we can obtain a meta risk
function value. However, the meta risk function values are not in a compact Euclidean subspace in
several cases.

The continuity of the meta risk probability density function. This relates to the task distribution
and meta learning problems. Throughout the few-shot regression task, the meta risk function value
can be approximately viewed as a continuous random variable. However, when it comes to the
few-shot image classification mission, the meta risk function value is impossible to cover the entire
continuous interval. In these scenarios, the probable values of accuracies are finite. This makes
the theoretical analysis, e.g. Theorem (1), no longer holds. For example, Assumption (2) will be
unrealistic when there exists a constant gap between two accuracy values. Hence, we leave this part a
future research direction in theoretical analysis. Regarding the meta risk function, ours shares the
same setup as that in (Fallah et al., 2021). Admittedly, precisely modeling risk distributions can be
crucial, and more techniques, e.g., deep kernel estimators (Puchert et al., 2021) can be adopted to
improve this point.

The selection of baselines in robust meta learning. A large body of prior work considers the
robustness of meta learning in scenarios when the input of a data point, the model parameter, and the
number of context points are trembled or modified. Robustness in presence of tasks distributions is
seldom investigated except for the worst-case optimization in (Collins et al., 2020). Hence, we retain
most of the setups in (Collins et al., 2020) for a fair comparison.

Influence of risk minimization principles. This paper is primarily devoted to studying the influence
of the risk minimization principle on meta learning. The empirical risk minimization principle
corresponds to reducing the Monte Carlo estimate of Average-case Meta Learning in this work.
In comparison to TR-MAML (Collins et al., 2020), our approach has a couple of advantages as
follows: (i) easier implementations. Note that min-max optimization is numerically unstable and
requires a relaxation method for computationally intensive convex optimization, e.g., robust stochastic
mirror-prox algorithm used in TR-MAML (Collins et al., 2020). (ii) more flexible in terms of
robustness concept. Theoretically, the worst-case meta learning corresponds to the extreme case
of the distributionally robust risk minimization principle. (iii) empirically better performance in
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most cases. The expected tail risk minimization preserves a particular property that minimizing
proportional worst-case fast adaptation seldom sacrifices the average performance. These advantages
are also why we call our approach simple yet effective.

Comparison with Other Heuristic Optimization Strategies. To sum up the proposed optimization
strategy, we empirically highlight the following points regarding the adopted heuristic strategies.
There exist a couple of approximate algorithms for CVaRα optimization. In comparison, the crude
Monte Carlo one is the simplest for VaRα estimates. It has an improvement guarantee under certain
conditions, leaving it easier to analyze. Besides, we also compare ours to the risk reweighted method
(Sagawa et al., 2020) in previously used benchmarks, and please take a closer look at that in Section
(K).

B Pseudo Algorithms of DR-MAML & DR-CNPs

Algorithm 1: DR-MAML
Input :Task distribution p(τ); Confidence level α; Task batch size B; Learning rates: λ1 and

λ2.
Output :Meta-trained model parameter ϑ.
Randomly initialize the model parameter ϑ;
while not converged do

Sample a batch of tasks {τi}Bi=1 ∼ p(τ);
// inner loop via gradient descent
for i = 1 to B do

Evaluate the gradient: ∇ϑℓ(D
C
τi ;ϑ) in Eq. (7);

Perform task-specific gradient updates:
ϑi ← ϑ− λ1∇ϑℓ(D

C
τi ;ϑ);

end
// estimate VaRα[ℓ(T , ϑ)] ≈ ξ̂α
Evaluate performance LB = {ℓ(DT

τi ;ϑi)}Bi=1;
Estimate VaRα[ℓ(T , ϑ)] and set ξ = ξ̂α in Eq. (7) with either percentile rank or density

estimators;
// outer loop via gradient descent
Screen the subset LB̂ = {ℓ(DT

τ̂i
;ϑi)}Ki=1 with ξ̂α for meta initialization updates;

ϑ← ϑ− λ2∇ϑ

∑K
i=1 ℓ(D

T
τ̂i
;ϑi) in Eq. (7);

end

Algorithm 2: DR-CNP
Input :Task distribution p(τ); Confidence level α; Task batch size B; Learning rate λ.
Output :Meta-trained model parameter ϑ.
Randomly initialize the model parameter ϑ;
while not converged do

Sample a batch of tasks {τi}Bi=1 ∼ p(τ);
// estimate VaRα[ℓ(T , ϑ)]
Evaluate performance LB = {ℓ(DT

τi ; z, ϑi)}Bi=1;
Estimate VaRα[ℓ(T , ϑ)] ≈ ξ̂α with either percentile rank or density estimators;
// execute gradient descent
Screen the subset LB̂ = {ℓ(DT

τ̂i
; z, ϑ)}Ki=1 with ξ̂α for meta initialization updates;

ϑ← ϑ− λ∇ϑ

∑K
i=1 ℓ(D

T
τ̂i
; z, ϑ) in Eq. (8);

end
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C Properties of Risk Minimization Principles

C.1 Stochastic Optimization in the Constrained Form

In the section above, meta learning optimization objectives are discussed within three different
principles, respectively the average-case in Eq. (1), the worst-case in Eq. (2) and CVaRα worst-case
in Eq. (5). This subsection continues this topic and introduces the relaxation variable ξ in the
optimization objective. In this way, the robust fast adaptation can be reframed in the case of stochastic
optimization with the probabilistic constraint.

We can equivalently express the minimization of the worst-case problem (Shalev-Shwartz and Wexler,
2016) within the following constrained stochastic optimization framework as follows.

min
ϑ∈Θ,ξ∈R+

ξ

s.t. ℓ(DT
τ ,D

C
τ ;ϑ) ≤ ξ with τ ∈ T

(10)

C.2 SGD Intractability of Meta Learning CVaRα Optimization Objective

This subsection shows that directly stochastic gradient descent is intractable for meta learning to
optimize CVaRα. Note that the normalized density distribution function pα(τ ;ϑ) implicitly depends
on ϑ and α, so we cannot access the exact form of such a distribution.

∇ϑEα(ϑ) =
∫

pα(τ ;ϑ)
[
ℓ(DT

τ ,D
C
τ ;ϑ)∇ϑ ln pα(τ ;ϑ) +∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)

]
dτ (11a)

≈ 1

K

K∑
k=1

ℓ(DT
τk
,DC

τk
;ϑ)∇ϑ ln pα(τk;ϑ)︸ ︷︷ ︸

Score Function

+∇ϑℓ(D
T
τk
,DC

τk
;ϑ)

 (11b)

As illustrated in Eq. (11), the stochastic gradient estimate is not plausible since pα(τ ;ϑ) has no
closed form. Hence, heuristic or convex programming algorithms for specific cases are mostly used
as this domain’s optimization strategy. However, designing optimization strategies for non-convex
cases is non-trivial in this domain and requires more consideration of theoretical guarantees.

C.3 Risk-Sensitive Applications & Optimization Strategies

Related Applications. There are a number of applications concerning robust optimization with
probabilistic constraints. Most of them are for the sake of safety. The risk principle CVaRα firstly
occurs in the financial domain as a coherent principle (Rockafellar et al., 2000). It enjoys much
popularity in portfolio optimization (Quaranta and Zaffaroni, 2008). Gagne and Dayan (2021) adopt
CVaRα principles to improve the distributional reinforcement learning performance. To robustify
robotic control, Pinto et al. (2017) varies hyper-parameters of Markov decision processes and
optimizes proportional worst-case trajectories in policy optimization within the principle of CVaRα.
In work (Wilder, 2018), a CVaRα related strategy is devised to solve submodular optimization
problems. Such a risk measure is also included in producing robust options (Hiraoka et al., 2019).
Regarding probabilistic robust meta learning within CVaRα principles, there exists scarce related
work until now.

Optimization Strategies. Concerning the constrained stochastic optimization problem, we partic-
ularly overview related work in this subsection. In the past few decades, there emerge substantial
optimization strategies together with theoretical analysis for convex risk functions in CVaRα op-
timization (Nemirovski et al., 2009; Fan et al., 2017; Meng et al., 2020; Levy et al., 2020; Duchi
and Namkoong, 2021; Wang et al., 2022). As for the min-max risk minimization principle, which
focuses on the worst case instead of a propositional worst cases, some researchers have designed
relaxation or other heuristic algorithms to handle convex or non-convex risk functions (Chen et al.,
2017; Collins et al., 2020; Jiang et al., 2021; Hsieh et al., 2021). Nevertheless, it remains challenging
to design algorithms with convergence guarantees for non-convex risk function cases. One of the
latest CVaRα work on non-convex risk functions is (Sagawa et al., 2020), where a risk reweighted
algorithm for robust neural networks is proposed to handle distributional shifts. Moreover, most
CVaRα optimization in non-convex risk functions follows this type of risk reweighted strategies in
applications.
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Remarks on Literature Work: Risk functions for robust fast adaptation cases are mostly non-convex,
and it is non-trivial to design optimization strategies with a convergence guarantee. Meanwhile,
we also conduct comparison experiments between work in (Sagawa et al., 2020) and ours in meta
learning downstream tasks. We refer the reader to Appendix (K) for more details and analysis.

D Computational Complexity

The primary difference between distributionally robust meta learning and expected risk based meta
learning lies in that a fixed probabilistic portion of task gradients are considered in meta updates. Such
an operation drives the optimization procedure to focus more on proportional vulnerable scenarios,
increasing the robustness in worst cases.

However, the iteration of the surrogate function φ(ξ̂αt
;ϑ) involves the screening of proportional

worst cases since our strategies require extra evaluation of fast adaptation. This brings additional
computational cost with complexity O

(
B log(B)

)
, where B is the number of tasks in each batch. On

the other hand, the proposed strategy performs sub-gradient updates instead of complete gradient
updates. This helps reduce computational cost with complexity O

(
αB|M|

)
in each iteration, where

|M| corresponds to the scale of parameters of meta learning models and α is the confidence level in
CVaRα optimization.

Universally analyzing the computational complexity in meta learning is intractable since various
meta learning methods exist. Some are gradient-based ones, while some are non-parametric ones.
The exact number of iterations for convergence heavily relies on specific methods. In summary, given
the same number of iterations and a fixed confidence level, the computational complexity difference
for CVaRα optimization in meta learning scenarios is O

(
B(α|M| − log(B))

)
.

To deepen understanding of our method, we explain more via specific examples. The main idea is to
execute the sub-gradient operation over the batch of task gradients. Here we take the DR-MAML in
Example (1) to show the operation and how the distributionally robust meta initialization is obtained:

ϑmeta
t+1 ← ϑmeta

t − λ1

[ B∑
i=1

∇ϑ[δ(τi) · ℓ(DT
τi ;ϑ

τi
t )]

]
,

with ϑτi
t = ϑmeta

t − λ2∇ϑℓ(D
C
τi ;ϑ), τi ∼ p(τ),

(12)

where λ1 is the outer loop learning rate, λ2 is the inner loop learning rate, and δ(τi) is the indicator
variable. Here δ(τi) = 1 in the case when the ℓ(DT

τi ;ϑ
τi
t ) falls into the (1 − α)-probabilistic

worst-case region otherwise δ(τi) = 0.

As for the optimal rate for convergence or the generalization bound, it is up to specific meta learning
methods and risk minimization principles. For worst-case risk minimization for meta learning,
there already exists theoretical analysis in previous work, e.g., optimization-based meta learning
(Collins et al., 2020) when fast adaptation functions hold the convexity property. When it comes to
more universal cases, considering diverse meta learning methods and optimization strategies, it is
still challenging to estimate the optimal rate for convergence. Also, our considered scenarios exist
distributional drift between meta training and meta testing task distributions, which makes it tough to
derive the generalization bound.

Finally, note that our developed optimization strategies for meta learning are regardless of meta
learning methods, and DR-MAMLs and DR-CNPs are merely two examples. For the sake of
convenience, we only implement DR-MAML to compare with TR-MAML in this work.

E Proof of Remark (2)

Remark (2). If ℓ(DT
τ ,D

C
τ ;ϑ) is convex w.r.t. ϑ, then Eq.s (5)/(6) are also convex functions. In

this case, the optimization objective Eq. (6) of our interest can be resolved with the help of convex
programming algorithms (Fan et al., 2017; Meng et al., 2020; Levy et al., 2020).
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Proof: We at first show that
[
ℓ(DT

τ ,D
C
τ ;ϑ)− ξ

]+
:= max{ℓ(DT

τ ,D
C
τ ;ϑ)− ξ, 0} is convex w.r.t ϑ

if ℓ(DT
τ ,D

C
τ ;ϑ) is convex w.r.t. ϑ: For ease of derivation, let us redenote two functions f1(ξ;ϑ) :=

ℓ(DT
τ ,D

C
τ ;ϑ)− ξ and f2(ξ;ϑ) := 0.

With any constant λ ∈ [0, 1] and any two parameters ϑ1 ∈ Θ and ϑ2 ∈ Θ, we can have:

[
ℓ(DT

τ ,D
C
τ ;λϑ1 + (1− λ)ϑ2)− ξ

]+
= fi(ξ;λϑ1 + (1− λ)ϑ2) [for some i ∈ {1, 2}] (13a)

≤ λfi(ξ;ϑ1) + (1− λ)fi(ξ;ϑ2) (13b)
≤ λmax{fi(ξ;ϑ1)}i=1,2 + (1− λ)max{fi(ξ;ϑ2)}i=1,2 (13c)

≤ λ
[
ℓ(DT

τ ,D
C
τ ;ϑ1)− ξ

]+
+ (1− λ)

[
ℓ(DT

τ ,D
C
τ ;ϑ2)− ξ

]+
, (13d)

which shows that the risk function with slack variables is convex w.r.t. ϑ.

As φα(ξ;ϑ) = ξ + 1
1−αEp(τ)

[[
ℓ(DT

τ ,D
C
τ ;ϑ)− ξ

]+]
is the convex combination of the above

mentioned convex function, the resulting φα(ξ;ϑ) is naturally convex w.r.t. ϑ.

F Proof of Proposition (1)

Assumption (1): The meta risk function ℓ(DT
τ ,D

C
τ ;ϑ) is βτ -Lipschitz continuous w.r.t. ϑ, which

suggests: there exists a positive constant βτ such that ∀{ϑ, ϑ′} ∈ Θ:

|ℓ(DT
τ ,D

C
τ ;ϑ)− ℓ(DT

τ ,D
C
τ ;ϑ

′)| ≤ βτ ||ϑ− ϑ′||.

Assumption (2): For meta risk function values, the risk cumulative distribution function Fℓ(l;ϑ) is
βℓ-Lipschitz continuous w.r.t. l, and the implicit normalized probability density function of tasks
pα(τ ;ϑ) is βθ-Lipschitz continuous w.r.t. ϑ.

Assumption (3): For any valid ϑ ∈ Θ and corresponding implicit normalized probability density
function of tasks pα(τ ;ϑ), the meta risk function value can be bounded by a positive constant Lmax:

sup
τ∈Ωα

τ

ℓ(DT
τi ,D

C
τi ;ϑ) ≤ Lmax.

Proposition (1): Under Assumptions (1)/(2)/(3), the meta learning optimization objective Eα(ϑ) in
Eq. (3) is continuous w.r.t. ϑ.

Proof: Suppose that ∀{ϑ, ϑ′} ∈ Θ and ||ϑ− ϑ′|| < δ, we can have the following inequality based on
Assumption (2): ∣∣∣pα(τ ;ϑ)− pα(τ ;ϑ

′)
∣∣∣ ≤ βθ||ϑ− ϑ′||.

Meanwhile, we can have the following inequality based on Assumption (1):∣∣∣ℓ(DT
τ ,D

C
τ ;ϑ)− ℓ(DT

τ ,D
C
τ ;ϑ

′)
∣∣∣ ≤ βτ ||ϑ− ϑ′||.

Together with the boundness Assumption (3) of meta risk function value:

sup
τ∈Ωα

τ

ℓ(DT
τi ,D

C
τi ;ϑ) ≤ Lmax,
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we can roughly estimate the probabilistic constrained expected meta risk function values as follows:∣∣∣Eα(ϑ)− Eα(ϑ′)
∣∣∣ = ∣∣∣Epα(τ ;ϑ)

[
ℓ(DT

τ ,D
C
τ ;ϑ)

]
− Epα(τ ;ϑ′)

[
ℓ(DT

τ ,D
C
τ ;ϑ

′)
]∣∣∣
(14a)

=
∣∣∣Epα(τ ;ϑ)

[
ℓ(DT

τ ,D
C
τ ;ϑ)

]
− Epα(τ ;ϑ′)

[
ℓ(DT

τ ,D
C
τ ;ϑ)

]
(14b)

+Epα(τ ;ϑ′)

[
ℓ(DT

τ ,D
C
τ ;ϑ)− ℓ(DT

τ ,D
C
τ ;ϑ

′)
]∣∣∣
(14c)

≤
∫ ∣∣∣pα(τ ;ϑ)− pα(τ ;ϑ

′)
∣∣∣ℓ(DT

τ ,D
C
τ ;ϑ)dτ + Epα(τ ;ϑ′)

[∣∣∣ℓ(DT
τ ,D

C
τ ;ϑ)− ℓ(DT

τ ,D
C
τ ;ϑ

′)
∣∣∣]
(14d)

≤ βθ||ϑ− ϑ′|| sup
τ∈Ωα

τ

{ℓ(DT
τ ,D

C
τ ;ϑ)}+ sup

τ∈Ωα
τ

{βτ}||ϑ− ϑ′||

(14e)

=
(
βθLmax + βmax

)
||ϑ− ϑ′||.

(14f)

From the above inequality, we can see that Eα(ϑ) − Eα(ϑ′) is a (βθLmax + βmax)–Lipschitz
continuous w.r.t. ϑ. As a result, we demonstrate Proposition (1).

G Proof of Proposition (2)

Proposition (2): Suppose there exists δ ∈ R+ such that |ξα(ϑ)− ξ̂α(ϑ)| < δ with ξ̂α(ϑ) an estimate
of ξα(ϑ). Then there exists a constant κα = max{ 2−α

1−α ,
α

1−α} such that

φα(ξ̂α(ϑ);ϑ)− καδ < Eα(ϑ) ≤ φα(ξ̂α(ϑ);ϑ).

Proof: Based on the direct deduction in work (Rockafellar et al., 2000), we know that for any ϑ ∈ Θ,
the inequality holds: φα(ξα;ϑ) ≤ φα(ξ̂α;ϑ).

In the case when ξ̂α = ξα + δ with δ ∈ R+, the probability space of the task Ωτ can be respectively
partitioned into three disjoint probability space:

P−(τ) = P
(
{M−1

ϑ (ℓ)|ℓ(DT
τ ,D

C
τ ;ϑ) ≤ ξα, τ ∈ Ωτ}

)
(15a)

P+(τ) = P
(
{M−1

ϑ (ℓ)|ξα < ℓ(DT
τ ,D

C
τ ;ϑ) ≤ ξα + δ, τ ∈ Ωτ}

)
(15b)

P++(τ) = P
(
{M−1

ϑ (ℓ)|ℓ(DT
τ ,D

C
τ ;ϑ) > ξα + δ, τ ∈ Ωτ}

)
. (15c)

As a result, we can estimate the difference between the two terms as follows:

φα(ξ̂α;ϑ)− φα(ξα;ϑ) = ξ̂α − ξα (16a)

+
1

1− α
Eτ∼P+(τ)

[
ℓ(DT

τ ,D
C
τ ;ϑ)− ξα

]
+

1

1− α
Eτ∼P++(τ)

[
ξα − ξ̂α

]
(16b)

≤ δ +
1

1− α
Eτ∼P+(τ)

[
δ
]
− 1

1− α
Eτ∼P++(τ)

[
δ
]
≤ δ +

1

1− α
δ =

2− α

1− α
δ. (16c)
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Similarly, in the case when ξ̂α = ξα − δ with δ ∈ R+, the probability space of the task Ωτ can be
partitioned into three disjoint space with the probability respectively:

P−−(τ) = P
(
{M−1

ϑ (ℓ)|ℓ(DT
τ ,D

C
τ ;ϑ) ≤ ξα − δ, τ ∈ Ωτ}

)
(17a)

P−(τ) = P
(
{M−1

ϑ (ℓ)| − δ < ℓ(DT
τ ,D

C
τ ;ϑ)− ξα < 0, τ ∈ Ωτ}

)
(17b)

P+(τ) = P
(
{M−1

ϑ (ℓ)|ℓ(DT
τ ,D

C
τ ;ϑ) ≥ ξα, τ ∈ Ωτ}

)
. (17c)

As a result, we can estimate the difference between the two terms as follows:

φα(ξ̂α;ϑ)− φα(ξα;ϑ) = ξ̂α − ξα (18a)

+
1

1− α
Eτ∼P−(τ)

[
ℓ(DT

τ ,D
C
τ ;ϑ)− ξ̂α

]
+

1

1− α
Eτ∼P+(τ)

[
ξα − ξ̂α

]
(18b)

≤ −δ + 1

1− α
Eτ∼P−(τ)

[
δ
]
+

1

1− α
Eτ∼P+(τ)

[
δ
]
≤ −δ + 1

1− α
δ =

α

1− α
δ. (18c)

Based on the inequalities (16)/(18), we can have κα = max{ 2−α
1−α ,

α
1−α} such that the proposition is

verified as φα(ξ̂α;ϑ)− καδ < φα(ξα;ϑ).

H Proof of Improvement Guarantee in Theorem (1)

Theorem (1): Under assumptions (1)/(2)/(3), suppose that the estimate error with the crude Monte
Carlo holds: |ξ̂αt

− ξαt
| ≤ λ

βℓ(1−α)2 ,∀t ∈ N+, with the subscript t the iteration number, λ
the learning rate in stochastic gradient descent, βℓ the Lipschitz constant of the risk cumulative
distribution function, and α the confidence level. Then the proposed heuristic algorithm with the
crude Monte Carlo can produce at least a local optimum for distributionally robust fast adaptation.

Proof: In the main paper, Fig. (2) provides the outline of the improvement guarantee proof. Note
that ξ̂αt is an estimate of ξαt with the help of Monte Carlo samples, and this depends on the model
parameters ϑt in optimization. Performing the gradient updates w.r.t. the surrogate function φα(ξ̂α;ϑ),
we can have the following equation with a small step-size learning rate λ:

Gradient Descent : ϑt+1 = ϑt − λ∇ϑφα(ξ̂α;ϑ)

⇒ Monotonic Sequence : φα(ξ̂αt ;ϑt+1) ≤ φα(ξ̂αt ;ϑt).
(19)

To verify the improvement guarantee, we need to show that with the meta model parameters derived
from the surrogate function:

φα(ξαt+1 ;ϑt+1) ≤ φα(ξαt ;ϑt). (20)

With the previous deduction φα(ξαt+1 ;ϑt+1) ≤ φα(ξαt ;ϑt+1) from the property of CVaRα, the
demonstration is equivalently reduced to show that:

φα(ξαt ;ϑt+1) ≤ φα(ξαt ;ϑt). (21)

We can perform the one order Taylor expansion with Peano’s form of remainders w.r.t. φα(ξαt
;ϑ)

around the point ϑt:

φα(ξαt
;ϑt+1) = φα(ξαt

;ϑt)− λ
[
∇ϑφα(ξ̂αt

;ϑ)|Tϑ=ϑt
· ∇ϑφα(ξαt

;ϑ)|ϑ=ϑt

]
+O(|ϑt+1 − ϑt|) ≤ φα(ξαt

;ϑt).
(22)

In the case when ξ̂α = ξα + δ with δ ∈ R+, we use the partitioned task probability space in Eq. (15)
and can derive the gradient estimate:

∇ϑφα(ξ̂αt
;ϑ)|Tϑ=ϑt

=
1

1− α

[
Eτ∼P+(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]]
+

1

1− α

[
Eτ∼P++(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]]
.

(23)
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With |Fℓ(ξ̂α;ϑ)− Fℓ(ξα;ϑ)| ≤ βℓδ in the Assumption (2),

−Eτ∼P+(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]T
· Eτ∼P++(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]
(24a)
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[
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T
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C
τ ;ϑ)|ϑ=ϑt

]
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[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]
||

(24b)

≤ Eτ∼P+(τ)

[
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τ∈Ωτ

||∇ϑℓ(D
T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

||
]
· Eτ∼P++(τ)

[
sup
τ∈Ωτ

||∇ϑℓ(D
T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

||
]

(24c)

≤ βℓδ(1− α)

(
sup
τ∈Ωτ

||∇ϑℓ(D
T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

||
)2

= βℓδ(1− α)µ2,

(24d)

where µ defines the supτ∈Ωτ
||∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

||.
Then we can derive the following inequality with the deduction from Eq. (24):

φα(ξαt
;ϑt+1) = φα(ξαt

;ϑt) (25a)

−λ
[
∇ϑφα(ξ̂αt

;ϑ)|Tϑ=ϑt
· ∇ϑφα(ξαt

;ϑ)|ϑ=ϑt

]
+O(|ϑt+1 − ϑt|) (25b)

= φα(ξαt
;ϑt) (25c)

− λ

(1− α)2

[
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[
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τ ,D

C
τ ;ϑ)|ϑ=ϑt

]T
· Eτ∼P++(τ)

[
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τ ,D
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]]
(25d)

− λ
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[
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[
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C
τ ;ϑ)|ϑ=ϑt

]T
· Eτ∼P++(τ)

[
∇ϑℓ(D

T
τ ,D

C
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]]
(25e)

+O(|ϑt+1 − ϑt|) (25f)

≤ φα(ξαt ;ϑt)−
λ||ν1||22
(1− α)2

+ βℓδ(1− α)µ2 +O(|ϑt+1 − ϑt|), (25g)

where ν1 = Eτ∼P++(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]
.

To ensure the existence of improvement guarantee, we need that the following inequality holds:

φα(ξαt
;ϑt)−

λ||ν1||22
(1− α)2

+ βℓδ(1− α)µ2 +O(|ϑt+1 − ϑt|) ≤ φα(ξαt
;ϑt). (26)

Similarly, in the case when ξ̂α = ξα − δ with δ ∈ R+, we use the probability space of partitioned
tasks in Eq. (17) and can derive the gradient estimate:

∇ϑφα(ξ̂αt
;ϑ)|Tϑ=ϑt

=
1

1− α

[
Eτ∼P−(τ)

[
∇ϑℓ(D

T
τ ,D

C
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]
+Eτ∼P+(τ)

[
∇ϑℓ(D

T
τ ,D

C
τ ;ϑ)|ϑ=ϑt

]]
.

(27)
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With |Fℓ(ξ̂α;ϑ) − Fℓ(ξα;ϑ)| ≤ βℓδ in the Assumption (2), the following formula can be easily
verified:

−Eτ∼P−(τ)

[
∇ϑℓ(D
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τ ,D
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τ ;ϑ)|ϑ=ϑt

]T
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]
(28a)
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T
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C
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||
)2

= βℓδ(1− α)µ2.

(28d)

Once again, we can derive the following inequality with the deduction from Eq. (28):

φα(ξαt
;ϑt+1) = φα(ξαt

;ϑt)− λ
[
∇ϑφα(ξ̂αt

;ϑ)|Tϑ=ϑt
· ∇ϑφα(ξαt

;ϑ)|ϑ=ϑt

]
+O(|ϑt+1 − ϑt|)

(29a)
= φα(ξαt
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(29b)
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+ βℓδ(1− α)µ2 +O(|ϑt+1 − ϑt|),
(29f)

where ν2 = Eτ∼P+(τ)

[
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C
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]
.

To ensure the existence of improvement guarantee, we need that the following holds:

φα(ξαt ;ϑt)−
λ||ν2||22
(1− α)2

+ βℓδ(1− α)µ2 +O(|ϑt+1 − ϑt|) ≤ φα(ξαt ;ϑt). (30)

Considering the above two cases and estimated bounds Eq. (26)/(30), we can roughly estimate the
upper bound of the required δ to guarantee performance improvement using our developed strategy
in optimization:

δ ≤ λ||νm||22
βℓ(1− α)3µ2

, (31)

where λ is the formerly mentioned learning rate, ||νm||22 is max{||ν1||22, ||ν2||22}, and µ is supermum
of the meta risk function derivatives in the task domain supτ∈Ωτ

||∇ϑℓ(D
T
τ ,D

C
τ ;ϑ)|ϑ=ϑt ||.

With the help of Jensen inequality, ||νi||22 can be roughly bounded as:
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(32)
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With Eq.s (31)/(32), we can finally obtain the necessary condition for improvement guarantee:

δ ≤ λ

βℓ(1− α)2
. (33)

I Proof of Approximation Error in Theorem (2)

This section is to build up connections between the number of Monte Carlo samples in estimating
VaRα and the gap of solutions between the approximately derived one and the theoretical one.

Theorem 2 (Gaps of Optimized Solutions) Suppose Fℓ(l;ϑ) ∈ C2 in l-domain. With meta trained
ϑ∗, the crude Monte Carlo estimate of ξ̂α, the constant κα in Proposition (2), and the sufficiently
large number of the task batch B, andRB = O(B−3/4 lnB), we have the expected error between the
exact optimum and the approximate optimum:

Eα(ϑ∗) ≤ φα(ξ̂α;ϑ∗) + κα

[
α− F̂ℓ(ξ̂α;B, ϑ∗)

dFℓ(ξ;ϑ)
dξ |ξ=ξα

+RB

]
.

Proof: As noted in (Bahadur, 1966), with assumptions that the cumulative distribution function
Fℓ(l;ϑ)’s second order derivative is continuous in l-domain, namely Fℓ(l;ϑ) ∈ C2, and dFℓ(ξ;ϑ)

dξ |ξ=ξα ,
the quantile estimate with crude Monte Carlo can be asymptotically written in the form with the help
of central limit theory (Rosenblatt, 1956):

ξ̂α − ξα =
α− F̂ℓ(ξ̂α;B, ϑ∗)

dFℓ(ξ;ϑ∗)
dξ |ξ=ξα

+RB, withRB = O(B−3/4 lnB) when B → ∞, (34)

where the empirical cumulative distribution function is computed as follows.

With the sampled meta risk function values LB = {ℓ(DT
τi ,D

C
τi ;ϑ)}Bi=1, we rank them by values as

L̂B = {ℓ(DT
τ̂i
,DC

τ̂i
;ϑ)}Bi=1, which means ℓ(DT

τ̂i−1
,DC

τ̂i−1
;ϑ) ≤ ℓ(DT

τ̂i
,DC

τ̂i
;ϑ). Then the empirical

cumulative distribution function with these order statistics (Barabás, 1987) can be written as:

F̂ℓ(ξ;B, ϑ) =


0, if ξ ≤ ℓ(DT

τ̂1
,DC

τ̂1
;ϑ)

k
B , if ℓ(DT

τ̂k
,DC

τ̂k
;ϑ) < ξ ≤ ℓ(DT

τ̂k+1
,DC

τ̂k+1
;ϑ) (k = 1, 2, . . . ,B)

1, if ℓ(DT
τ̂B
,DC

τ̂B
;ϑ) < ξ.

(35)

Based on Proposition (2) and κα = max{ 2−α
1−α ,

α
1−α}, we know the inequality holds:

φα(ξ̂α(ϑ);ϑ)− Eα(ϑ) < καδ. (36)

With Eq. (34)/(36), the following inequality naturally holds when B is large enough:

φα(ξ̂α;ϑ∗) ≤ Eα(ϑ∗) + κα

[
α− F̂ℓ(ξα;B, ϑ∗)

dFℓ(ξ;ϑ)
dξ |ξ=ξα

+RB

]
.

J Experimental Set-up & Implementation Details

This section is to provide experimental details in this paper. For the implementation of few-shot
sinusoid regression and few-shot image classification, we respectively refer the reader to TR-MAML’s
codes (https://github.com/lgcollins/tr-maml) in (Collins et al., 2020) and vanilla MAML’s
codes (https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch) in (Antoniou
et al., 2019). And ours is built on top of the above codes except for simple modification of loss
functions. The learning rates for the inner loop and the outer loop of all methods are the same as the
above ones.

To facilitate the use of our heuristic optimization strategy, we leave the pytorch version of loss
functions within the expected tail risk minimization. The example is provided in the case of mean
square errors after MAML’s inner loop, which is simple to implement yet effective in robustifying fast
adaptation, as follows:
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1 import torch
2 from torch.nn import MSELoss
3

4 def cvar_mse(y_pred ,y_true ,conf_level =0.5):
5

6 batch_MSE=MSELoss(reduction='none')
7 batch_loss=batch_MSE(y_pred ,y_true)
8

9 # average risk values over non -task dimensions
10 batch_avg_loss=torch.mean(batch_loss ,dim=-1)
11

12 # crude Monte Carlo to estimate VaR and sub -tasks
13 topk_mse ,topk_idxs=torch.topk(batch_avg_loss ,int((1- conf_level)*

y_true.size()[0]))
14

15 return torch.mean(topk_mse)

Listing 1: Loss Functions in Two-Stage Heuristic Algorithm with Crude Monte Carlo

J.1 Meta Learning Datasets & Tasks

Sinusoid Regression. MAML (Finn et al., 2017), TR-MAML (Collins et al., 2020), and DR-MAML
are considered in this experiment. We retain the setup in task generation and partition in (Collins
et al., 2020). More specifically, there exists a distribution drift between the meta-training and the
meta-testing function families {fm(x) = am sin(x− bm)}Mm=1.

Numerous easy tasks and a small proportion of difficult tasks are available in meta-training, while
all tasks in the space are used in the evaluation. The range of the phase parameter is b ∈ [0, π],
and the amplitude range of the parameter is a ∈ [0.1, 1.05] for easy tasks and a ∈ [4.95, 5.0] for
difficult tasks. It is noted that the sinusoid task is more challenging to fit with larger amplitudes as the
resulting function is less smooth. The loss function corresponds to the mean-squared error between
the predicted value f(x) and the ground truth value. The number of task batches is 50 for 5-shot and
25 for 10-shot. The optimal selection of the confidence level α is difficult since we need to trade off
the worst and average performance. Our setup is to minimize CVaRα, which already considers the
worst-case at some degree, so we watch the average performance in meta training results and set
α = 0.7 for all few-shot regression tasks. There is no external configuration for this hyper-parameter.
The maximum number of iterations in meta-training is 70000.

Few-shot Image Classification. MAML (Finn et al., 2017), TR-MAML (Collins et al., 2020), and
DR-MAML are considered in this experiment. The N-way K-shot classification corresponds to an
N-classification problem with K-labeled examples available to the meta learner.

The Omniglot dataset consists of 1623 handwritten characters from 50 alphabets, with each 20
examples. The task distribution is uniform for all task instances consisting of characters from one
specific alphabet. The dataset split follows procedures in (Triantafillou et al., 2019). Finally, 25
alphabets are used for meta-training, with 20 alphabets for meta-testing. The number of task batches
is 16. The confidence level α = 0.5 is selected with the same criteria as that in few-shot regression
tasks. The maximum number of iterations is 60000 in meta-training. As the construction of the
Omniglot meta dataset is related to specific alphabets and the scale of combination for tasks is huge,
this indicates randomly sampled meta-training tasks in the evaluation of the main paper Tables may
not be used in meta-training.

The mini-ImageNet dataset is pre-processed according to (Larochelle, 2017). In detail, 64 classes
are used for meta-training, with the remaining 36 classes for meta-testing. Tasks are generated as
follows: 64 meta-training classes are randomly grouped into 8 meta-train tasks with the class numbers
{6, 7, 7, 8, 8, 9, 9, 10}, and the 36 meta-testing classes are processed in the same way. Finally, each
task is built by sampling 1 image from 5 different classes within one task, resulting in a 5-way
1-shot problem. The number of task batches is 4. The maximum number of iterations is 60000 in
meta-training.
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J.2 Neural Architectures & Optimization

Sinusoid Regression. MAML (Finn et al., 2017), TR-MAML (Collins et al., 2020), and DR-MAML
are considered in this experiment. We retain the neural architecture for regression problems in (Finn
et al., 2017; Collins et al., 2020). That is, we deploy a fully-connected neural network with two
hidden layers of 40 ReLU nonlinear activation units. All methods use one stochastic gradient descent
step as the inner loop.

Few-shot Image Classification. We retain the neural architecture for few-shot image classification
problems in (Finn et al., 2017; Collins et al., 2020). In detail, a four-layer convolutional neural
network is used for both Omniglot and mini-ImageNet datasets. All methods use one stochastic
gradient descent step as the inner loop.

K Additional Experimental Results

More Quantitative Analysis. Due to the page limit in the main paper, we include the α’s sensitivity
experimental result in sinusoid 10-shot regression. As illustrated in Fig. (7), the trend is similar to
that in sinusoid 5-shot regression. Worst-case optimization degrades the average performance of TR-
MAML. DR-MAML is entangled with MAML in the average performance, while the performance
gap between them is significant in the worst-case.
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Figure 7: Meta Testing Performance of Meta-Trained DR-MAML with Various Confidence Levels α.
MAML and TR-MAML are irrelevant with the variation of α in meta-training. The plots report testing MSEs
with standard error bars in shadow regions.

Regarding few-shot image classification in the mini-ImageNet dataset, we can observe that in Fig.
(8), the standard error is relatively smaller than in previous regression cases. When the confidence
level is over a particular value, e.g. α > 0.5, there occurs a significant decline of performance in all
metrics. Note that when α→ 1.0, the optimization objective approaches the worst-case optimization
objective. Here we attach two possible reasons for the performance degradation phenomenon: (i) The
adopted base optimization technique matters in nearly worst-case optimization. The stochastic mirror
descent-ascent (Juditsky et al., 2011) is utilized in TR-MAML, which is more stable in deriving the
optimal solution. In comparison, the stochastic gradient descent with sub-gradient operations works
as the optimization method, and this method can be unstable when the scale of worst-case examples
is small in the update. (ii) For few-shot image classification, estimates of VaRα can be less precise
with limited batch sizes and higher α values since the meta risk function value is discontinuous.
Consequently, we can also attribute the severe degradation of fast adaptation performance in higher α
value cases to the approximation errors of quantile estimates.

More Visualization Results. Further, we explore the influence of the expected tail risk minimization
principle in meta learning. Here the landscape of meta risk values, namely fast adaptation losses, is
presented in the sinusoid regression problem.

As exhibited in Fig. (9), the evaluated meta risk values from one random trial are associated with
hyper-parameters of tasks. The final optimized results can discover some tasks difficult in fast
adaptations. Meta learning methods are difficult to adapt in task regions with higher amplitudes.
MAML exhibits higher MSEs in regions with the amplitude a > 2, while DR-MAML minimizes
a proportion of risks in these regions. In contrast, TR-MAML reduces the risk around task regions
with a > 2 to a certain extent; however, it shows relatively higher risk values in easy regions. Such
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Figure 8: Meta Testing Classification Accuracies of Meta-Trained DR-MAML with Various Confidence
Levels α. MAML and TR-MAML are irrelevant with the variation of α in meta-training. The plots report testing
accuracies with standard error bars in shadow regions.
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Figure 9: The Fast Adaptation Risk Landscape of Meta-Trained DR-MAML, TR-MAML and MAML.
Shown is an example of sinusoid 5-shot regression, which corresponds to the function space f(x) = a sin(x−
b). The X-axis denotes the amplitude parameter a, and the Y -axis is the phase parameter b. The confidence
level is α = 0.7 in meta-training. The plots report testing MSEs in the Z-axis with a random trial of generating
tasks.

evidence reflects the interpretability in optimization within the expected tail risk minimization, and
the landscape of meta risk values is relatively flat and smooth than others.

Experimental Results with DR-CNPs. The implementation is the same as CNP (Garnelo et al.,
2018a) and official Github files (https://github.com/deepmind/neural-processes/blob/
master/conditional_neural_process.ipynb); the Gaussian Process curve generator works
as the benchmark, and we retain the neural architecture and optimization pipelines in Github files.
Please check implementation details, e.g., neural architectures, optimizers, epochs, batch sizes, etc.,
from the mentioned GitHub repository.

Also, note that this is more challenging than sinusoid as there is more randomness in generating
curves. Similar to few shot image classifications, we set α = 0.5 in meta training DR-CNPs. In
meta-testing processes, we randomly sample 64 curves per run with random context points in GitHub
files and examine the performance of CNP, TR-CNP (worst-case), and DR-CNP (distributionally
robust). The log-likelihoods in 5 runs are reported as follows (the higher, the better).

From Table (6), we observe that the DR-CNP retains the average performance the same as the CNP
and simultaneously achieves the highest worst and CVaRα log-likelihoods. In contrast, the TR-CNP
sacrifices the average performance a lot and obtains the mediate worst result. Here we attribute

Table 6: Meta-testing point-wise log-likelihood results of Gaussian processes in 5 runs.
Method Average Worst CVaRα

CNP (Garnelo et al., 2018a) -0.22±0.04 -1.35±0.38 -0.50±0.11

TR-CNP -0.80±0.01 -1.08±0.02 -0.87±0.01

DR-MAML -0.21±0.02 -0.74±0.08 -0.37±0.03
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Figure 10: Curve Fitting Result Visualization in 5 Random Trials. From Up to Down are respectively
DR-CNPs (Ours), CNPs, and TR-CNPs. Shadow regions are three standard deviations.

the failure of achieving the best worst performance using TR-CNPs to the sensitivity of min-max
optimizers as mentioned in TR-MAML.

Particularly, some randomly sampled fitted curves in difficult scenarios, e.g., setting the number of
context points as 5, are visualized in Fig. (10). Observations are consistent with Table (6), where TR-
CNPs exhibit over estimated uncertainty and cannot well reveal the trend of curves. In comparison,
DR-CNPs can well handle challenging cases, capturing more convincing uncertainty.

Experimental Results in Meta Reinforcement Learning. We also performed additional experiments
in 2-D point robot navigation tasks. This is a meta reinforcement learning benchmark. All setups of
the point robot are the same as MAML, and please refer to pytorch-maml-rl and cavia Github for
details of the navigation environments. The neural network of policies is a two-hidden layer MLP
with 64 hidden units and tanh activations. The fast learning rate is 0.1, and the number of batches is
500. Other details, e.g., optimizers, step-wise rewards, horizons and etc., can be found in MAML.
The one-step gradient is performed for fast adaptation, and the trust region policy optimization works
as the policy gradient algorithm. Similar to few shot image classifications, we set α = 0.5 in meta
training point robots. In meta-testing processes, we randomly sample 100 navigation goals as tasks
and examine the performance of MAML, TR-MAML, and DR-MAML. The histogram comparison
is visualized in Fig. (11).

(a) (b)
Figure 11: Histograms of Meta-Testing Performance in Point Robot Navigation Problems. We report the
negative average step-wise rewards in x-axis.

Unlike few-shot supervised learning, worst-case optimization is pretty challenging in RL, and the
result of TR-MAML is unstable and cannot achieve the goal of worst-case optimality in Table (7).
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Table 7: Meta-testing step-wise rewards in 4 runs in point robot navigation tasks.
Method Average Worst CVaRα

CNP (Garnelo et al., 2018a) -16.6±0.19 -46.9±4.22 -24.2±0.49

TR-CNP -36.8±0.12 -81.3±4.35 -52.1±0.89

DR-MAML -15.3±0.49 -46.7±3.24 -21.6±0.79

This is due to the nature of large performance deviations when deploying policies in various tasks.
Seeking optimizers for stable worst-case optimization is non-trivial. Also, stably generalization
across skills in reinforcement learning is indeed difficult with a few interactions. Overall, DR-MAML
can well control the proportional worst case performance.

L Platforms & Computational Tools

In this research project, we use NVIDIA 1080-Ti GPUs in computation. Pytorch (Paszke et al.,
2019) works as the deep learning toolkit in implementing few-shot image classification experiments.
Meanwhile, Tensorflow is the deep learning toolkit for implementing sinusoid few-shot regression
experiments.
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