
Published as a conference paper at ICLR 2025

VL-CACHE: SPARSITY AND MODALITY-AWARE
KV CACHE COMPRESSION FOR VISION-LANGUAGE
MODEL INFERENCE ACCELERATION

Dezhan Tu ∗

Department of Electrical and Computer Engineering
University of California, Los Angeles
Los Angeles, CA, USA
dztu@g.ucla.edu

Danylo Vashchilenko
AWS AI
Amazon
New York, NY, USA
vdanylo@amazon.com

Yuzhe Lu
AWS AI
Amazon
Santa Clara, CA, USA
yuzhelu@amazon.com

Panpan Xu
AWS AI
Amazon
Santa Clara, CA, USA
xupanpan@amazon.com

ABSTRACT

Vision-Language Models (VLMs) have demonstrated impressive performance
across a versatile set of tasks. A key challenge in accelerating VLMs is storing and
accessing the large Key-Value (KV) cache that encodes long visual contexts, such
as images or videos. While existing KV cache compression methods are effec-
tive for Large Language Models (LLMs), directly migrating them to VLMs yields
suboptimal accuracy and speedup. To bridge the gap, we propose VL-Cache, a
novel KV cache compression recipe tailored for accelerating VLM inference. In
this paper, we first investigate the unique sparsity pattern of VLM attention by dis-
tinguishing visual and text tokens in prefill and decoding phases. Based on these
observations, we introduce a layer-adaptive sparsity-aware cache budget alloca-
tion method that effectively distributes the limited cache budget across different
layers, further reducing KV cache size without compromising accuracy. Addi-
tionally, we develop a modality-aware token scoring policy to better evaluate the
token importance. Empirical results on multiple benchmark datasets demonstrate
that retaining only 10% of KV cache achieves accuracy comparable to that with
full cache. In a speed benchmark, our method accelerates end-to-end latency of
generating 100 tokens by up to 2.33x and speeds up decoding by up to 7.08x,
while reducing the memory footprint of KV cache in GPU by 90%.

1 INTRODUCTION

Vision-Language Models (VLMs) have recently emerged as powerful tools for a broad range of
multi-modal tasks (Liu et al., 2023b; Chen et al., 2023; Bai et al., 2023). As these models improve
at processing long visual context – such as high-resolution images, multiple images and multi-frame
videos (Li et al., 2024a) – the number of visual tokens increase rapidly. Consequently, deploying
VLMs demands substantial GPU memory capacity, bandwidth, and computational resources, lead-
ing to high inference latency and cost.

Similarly to Large Language Models (LLMs) (Chang et al., 2024), VLMs decode tokens sequen-
tially in an auto-regressive loop. The key and value pairs of the input prompt and of the generated
output tokens are stored in GPU memory (where they are known as the KV cache) and reused at
each decoding step to avoid recomputation. As the context length grows, KV cache not only occu-
pies a larger amount of GPU memory, but also increases inference latency due to data movement
between GPU’s high-bandwidth memory (HBM) and its on-chip memory (SRAM) in each decoding

∗Work done during internship at Amazon AWS AI

1

Published as a conference paper at ICLR 2025

step (Dao, 2023; Hong et al., 2024). This is a significant challenge for scaling VLMs, because large
KV cache is required to hold the input images and video frames. For example, with a batch size
of four prompts, five images in each prompt, and each image using 2K visual tokens, serving the
LLaVA-1.6-34B model requires 110 GB of HBM capacity just for the KV cache of visual tokens.

(a) LLMs Attention Score Matrix (b) VLMs Attention Score Matrix

Figure 1: Attention Score Matrix from LLaVA v1.6 Mistral 7B with (a) language-only context,
and (b) language and vision context. A deeper red color indicates a higher attention score. Both
matrices indicate that critical tokens used in the decoding phase are primarily consistent with those
in the prefill context. The key difference is that, in (b) VLMs attention, a clear modality boundary
emerges along the query dimension.

KV cache sparsification is a promising method of reducing GPU memory requirements and inference
latency for LLMs (Zhang et al., 2024b;a; Yang et al., 2024a; He et al., 2024; Li et al., 2024b). Prior
methods leveraged sparsity in the attention scores matrix of LLMs to evict insignificant tokens from
KV cache, while preserving important contextual information needed for output token generation.
Besides reducing the GPU memory footprint, this method also reduces the token generation latency
by minimizing data movements and floating-point operations (FLOPs) in the attention layer.

We discover that VLMs and LLMs exhibit significantly different attention sparsity patterns, as il-
lustrated in Figure 1. In VLMs, a clear modality boundary exists between visual tokens and the
subsequent language tokens. Specifically, the attention patterns from the output language tokens
is much closer aligned with the language tokens that follow the visual tokens in the prompt (the
post-vision attention) rather than the visual tokens themselves. Formally, we define post-vision
attention as the sub attention score matrix that’s sliced along the query dimension to only include
language prompt tokens after vision tokens, as illustrated in Figure 1(b). Previous KV compression
methods are modality-unaware and incorrectly conflate these two sources of attention scores. Un-
surprisingly, our experiment in Figure 9 shows that KV cache compression methods designed for
LLMs have suboptimal results when applied to VLMs.

Next, we measure that attention sparsity ratios vary in 70% to 99% range across transformer lay-
ers. Our observations in Section 3.1 show that previous KV compression methods suboptimally
distribute the cache budget between layers, which leads to either under- or over-compression of in-
formation in KV cache. Finally, we observe that sparsity ratios differ between visual and language
tokens as well, so an optimal cache budget allocation between layers can not be done before sparsity
is measured in a particular prompt.

To address these gaps, we propose VL-Cache, a novel KV cache compression method for acceler-
ating Vision-Language Model inference. Our method fully utilizes cross-modality and layer-wise
attention sparsity patterns in VLMs to dynamically prune KV cache with minimal loss of task-level
accuracy. To the best of our knowledge, this is the first work that investigates attention sparsity in
VLMs and the first work that specifically optimizes KV cache compression for VLMs. In partic-
ular, we propose (1) sparsity-aware KV cache budget allocation between the transformer layers at
inference time, and (2) modality-aware scoring policy for token eviction.

2

Published as a conference paper at ICLR 2025

Experimental results in Section 5.1 show that our method retains 98% of the original task-level
accuracy while using only 10% of KV cache for the majority of vision-language tasks from several
datasets. In a speed benchmark, our method reduces end-to-end latency of generating 100 tokens
by up to 2.33x and speeds up decoding in particular by up to 7.08x, while allocating 90% less GPU
memory for KV cache. In inference scenarios where KV cache size is the limiting factor to higher
concurrency, VL-Cache enables up to 10x higher concurrency after KV cache compression.

Overall, our contributions in this paper are summarized as follows:

• VLMs Attention Sparsity Profile. We uncovered unique attention sparsity patterns in the prefill
and decoding phases of VLM inference on a variety of multi-modal tasks, which is drastically
different from those of LLMs.

• Layer-Adaptive Sparsity-Aware Cache Budget Allocation. We proposed to allocate each
layer’s KV cache budget with consideration of that layer’s attention sparsity at inference time.
Even with 10% KV cache budget, we retained high accuracy on popular benchmark tasks.

• Modality-aware Token Scoring Policy. We observed that language-to-vision attention robustly
includes information about the importance of visual tokens. We treat visual and language atten-
tion scores differently to better retain important tokens.

2 BACKGROUND

In this section, we detail the inference procedure of the widely adopted VLM architecture with vision
& language input and text output, where image tokens are projected as soft prompts (Li et al., 2024a;
Team et al., 2023; Islam & Moushi, 2024; Bai et al., 2023; Anthropic, 2023). We also introduce the
formulation of KV cache compression and the approach of existing works (Zhang et al., 2024b;a;
Liu et al., 2024a; Ge et al., 2023; Tang et al., 2024; Li et al., 2024b; Lee et al., 2024; Yu et al., 2024).

2.1 VLM INFERENCE

Prefill phase. The input to VLMs includes both images and language, where images are processed
by the visual encoder to generate visual tokens. Subsequently, a projection layer, such as a simple
multi-layer perceptron, maps these visual tokens to a unified embedding space. Meanwhile the
language prompt is fed to a tokenizer and embedding layer to create the initial hidden state for
language tokens. For notation simplicity, we denote a sequence of m prompt tokens, including both
visual and language ones, as {x1, ..., xm}. These tokens are processed by the language model in
parallel to calculate the probability of the first decoded token Pθ(xm+1|x1, ..., xm). Simultaneously,
the key vectors {k(l)1 , ..., k

(l)
m } and value vectors {v(l)1 , ..., v

(l)
m } at each transformer layer l are cached

in GPU memory to avoid recomputation in the next decoding step.

Decoding phase. Once decoding starts, the language model in VLMs takes effect and generates
one token per step in an auto-regressive loop. At step i, the model receives the token xm+i as input
and calculates the probability Pθ(xm+i+1|x1, ..., xm+i). Each decoding step involves generating
new key vectors k(l)m+i and value vectors v(l)m+i, which are appended to the previously cached key-

value pairs for each layer, resulting in {k(l)1 , ..., k
(l)
m+i} and {v(l)1 , ..., v

(l)
m+i}. In case of long contexts,

such as multiple or high resolution images, the key-value cache can grow significantly larger than
the model parameters and other intermediate tensors, making memory capacity and bandwidth major
performance bottlenecks.

2.2 KV CACHE COMPRESSION

To address the bottleneck of storing and accessing the large KV cache during decoding, many re-
searchers have focused on KV cache compression to maintain only a subset of the full KV cache for
more efficient decoding while minimizing the accuracy loss. There are two main design dimensions
to such algorithms: how many cache tokens should be kept at each layer, and which tokens to evict
during compression.

Budget Allocation. Since the transformer architecture consists of multiple identical layers, a
straightforward strategy is to allocate an equal budget of KV cache slots to each layer (Xiao et al.,

3

Published as a conference paper at ICLR 2025

2023b; Zhang et al., 2024b; He et al., 2024). More recently, inspired by the observation that re-
moving cache tokens at different layers results in varying degrees of performance loss, PyramidKV
(Zhang et al., 2024a) and PyramidInfer (Yang et al., 2024a) proposed a decay schedule to assign
more cache budget to shallower layers and observed improved accuracy results relative to the base-
line with equal budget per layer.

Token Scoring Policy. For a given cache token budget, a token scoring policy ψ is required to rank
the importance of KV cache tokens and decide which tokens to keep. Let n be the count of cache
tokens at layer l, and S = {0, 1, ..., n} be the indices of these cache tokens. We define ψ : S → Rn,
with the output being the scores for current cache tokens. Given these scores, indices with top-k
scores, Sψ := {i1, i2, ..., ik : ψ(S)ij ≥ ψ(S)x∈[n]\{i1,i2,...,ik}}, where k ∈ [1, n), are selected.
Recent works have shown that attention scores serve as an effective source to design such policies.
StreamingLLM (Xiao et al., 2023b) found that high attention scores are frequently assigned to initial
tokens and achieved length generalization by keeping only the initial and most recent cache tokens
while removing intermediate ones. H2O (Zhang et al., 2024b) uses accumulated attention scores to
identify crucial tokens to retain.

We make the observation that, fundamentally, KV cache compression methods only work because
inference with a transformer layer is a sparse process. Therefore, in this work, we leverage attention
sparsity as the unified guidance to design both the cache budget allocation mechanism and the token
eviction policy for KV cache compression in VLMs.

3 PRELIMINARY EXPERIMENT

The attention mechanism for visual and language tokens is a key aspect of VLMs. Therefore, further
optimization of the KV cache compression methods for VLMs requires careful investigation of the
attention patterns with relevant input prompts. Motivated by this need, we conducted preliminary
experiments to explore the VLM attention. We randomly sampled data from three multi-modal
datasets — DocVQA (Mathew et al., 2021), MathVista (Lu et al., 2023), and Coco-Caption (Chen
et al., 2015). These datasets cover of a wide range of visual tasks, including OCR, visual diagram
reasoning, and world knowledge. We selected one of the state-of-the-art VLMs, LLaVA-Mistral-7B
(Liu et al., 2023b), and recorded the attention score matrix until the generation process completes.
We will leverage insights from these analyses to motivate our algorithm design in Section4.

3.1 MEASURING ATTENTION SPARSITY

In this section, we measure the sparsity of the attention score matrix in different transformer layers
during the prefill and decoding phases. First, we apply a filter with a relative threshold p to the
attention score matrix A:

ThresholdFilter(A, p)ij =

{
Aij if Aij ≥ p ·maxj(Aij)

0 otherwise
(1)

where threshold p ∈ (0, 1) controls the strength of induced sparsification, following Zhang et al.
(2024b). We also heuristically set p = 1%, such that the filtered-out scores have little impact on the
output of the transformer layer. After filtration, we calculate sparsity γ(l) ∈ [0, 1] of layer l as count
of zero entries, normalized by the size of the lower triangular portion of the attention scores matrix:

γ(l) :=

∑
i≥j 1[ThresholdFilter(A(l), p)ij = 0]

|{A(l)
ij : i ≥ j}|

(2)

We calculated the average sparsity over a sample from the evaluation datasets, and then plotted the
range of each layer’s sparsity with different attention heads in Figure 2. We observe that in the
prefill phase (Figure 2a), the first two layers exhibit significantly lower sparsity and higher density
compared to other layers. Additionally, some layers in the middle also demonstrate higher density
than their neighboring layers. During the decoding phase (Figure 2b), a similar trend is observed.
Based on these observations, we expect that the aggregate attention sparsity during prefill could
effectively predict the required KV cache size for robust decoding.

4

Published as a conference paper at ICLR 2025

(a) Prefill Sparsity (b) Decoding Sparsity

Figure 2: Layer-wise attention sparsity in prefill and decoding
phases. Different layers exhibit varying degrees of sparsity; The
layer-wise sparsity trend in the decoding phase is similar to that in
the prefill phase.

Figure 3: Average Cache Hit
Rate. The accumulated post-
vision attention (ours) demon-
strates a higher cache hit rate
compared to the other two to-
ken scoring policies.

We note that previous methods, such as H2O (Zhang et al., 2024b) and Keyformer (Adnan et al.,
2024), allocate the same cache size across all layers, leading to insufficient allocation for high-
information layers and wasteful allocation for low-information layers. More recent work including
PyramidKV (Zhang et al., 2024a) and PyramidInfer (Yang et al., 2024a) monotonically decrease the
KV cache size with depth of each layer, which we find to be suboptimal as well. Our observations
reveal a more nuanced sparsity pattern, where different layers demand non-monotonically varying
cache sizes to retain context information during decoding.

3.2 MEASURING CACHE HIT RATE

In Figure 1b of Section 1, we previously noted a distinct boundary in VLM attention between vi-
sion and language tokens in the prompt. Based on these observations, we further hypothesize that
retaining tokens based on post-vision prefill attention instead of the full-prompt prefill attention
would preserve important cache tokens with higher recall. To validate this hypothesis, we define
CacheHitRate to measure the fraction of important tokens that are preserved after eviction when
different scoring policies are applied. Letm be the number of prompt tokens,Q:m,K:m ∈ Rm×d be
the corresponding query and key matrices, and Qm+1 ∈ Rd be the query vector of the first decoding
token. Also recall from Section 2.2 that S denotes the indices of prompt cache tokens, and ψ denotes
a scoring policy that maps each token index to a real number as their importance.

Definition 3.1 (CacheHitRate), given Am+1 := softmax(Qm+1K:m
T

√
d

) ∈ Rm, we define:

• ψ∗ : S → Am+1 as the optimal scoring function since Am+1 is true attention scores in decoding;
• Sψ∗,k as the top-k tokens selected per ψ∗’s ranking, which we treat as the ground-truth for all k;

• CacheHitRate as |Sψ,k∩Sψ∗,k|
|Sψ∗,k|

, the percentage of true top-k tokens Sψ∗,k that is also preserved
by Sψ,k, which are top-k tokens kept by any policy ψ.

We note that during inference, Am+1 is not available because we aim to compress KV cache before
the decoding pass to lift the memory bottleneck and boost decoding throughput. Thus, multiple ψs
have been proposed to approximate ψ∗ in recent works. In the following paragraphs, we use ψ(S)
to indicate the token scores assigned to S with an arbitrary policy ψ. For brevity, we assume the
softmax outputs below are applied necessary causal masks to serve as attention scores.

Accumulated Attention (prior work) uses the cumulative attention score along the query dimension,
ψ(S) :=

∑
i softmax(

Q:mK:m
T

√
d

)i to rank the importance of cache tokens.

Normalized Attention (prior work) instead computes the average attention scores along the query
dimension based on the observation that accumulated scores disproportionately favors earlier tokens.
The policy can be written as ψ(S) := 1

n ⊙
∑
i softmax(

Q:mK:m
T

√
d

)i, where vector n denotes the
number of unmasked elements in each column and ⊙ indicates element-wise multiplication.

Sliding Window Attention (prior work) also computes accumulated attention scores along the
query dimension but only over a recent window. This policy is defined as ψ(S) :=

5

Published as a conference paper at ICLR 2025

∑
i softmax(

Qm−w:mKm−w:m
T

√
d

)i, where w is a fixed window size. Since w is fixed, whether the
score is normalized does not change the ranking of cache tokens for evicting purposes.

Post-vision Attention (ours) is based on the observation of the similarity between attention from
post-vision prompt tokens and from decoding tokens as shown in Figure 1b. We adopt the term
post-vision to distinguish language tokens that follow visual tokens from instructions that precede
the images in the prompt. Formally, we use the portion of the attention scores Qm−τ :m, where τ
is the count of language tokens that follow the vision tokens in the prompt. Our policy is defined
by ψ(S) :=

∑
i softmax(

Qm−τ:mKm−τ:m
T

√
d

)i. During prefill, one can interpret our policy as a
dynamic prompt-dependent sliding window with window size set to the length of the post-vision
language prompt instead of a static prompt-independent value. From Figure 3, we find our scoring
policy based on post-vision attention leads to consistently higher cache hit rate across layers than
other policies.

4 VL-CACHE METHOD

Motivated by observations from preliminary experiments, we introduce our method VL-Cache,
which strategically combines sparsity-aware cache budget allocation and modality-aware token scor-
ing policy to improve VLM’s performance under limited KV cache budget, in terms of both accuracy
and efficiency.

Specifically, we use Post-vision Attention to compute both inter-layer sparsity and intra-layer token
importance. The former guides how many cache tokens should be allocated at each layer, while
the latter dictates which k tokens within a layer should be kept due to their importance. A high-
level description of our method is visualized in Figure 4. For brevity, we will use A′ to denote the
Post-vision Attention matrix in this section.

Post-Vision Attention

VLM

Please carefully observe the image
and provide a brief description.

Compute
Layer-wise
Budget

Rank
Tokens

Value

Key

Value

Value

Key

Layer 0

Layer 1

Key

Layer N

…

…
Layers

Budget via
Sparsity

1

2

A chat between a curious human and an
AI assistant. The assistant gives helpful,
detailed, and polite answers to the
human's questions.

…

Evict Tokens
based on 1 2

LLM KV

Vision Tokens

Text Tokens

Decode
with Reduced
KV Cache

The image shows a
vast, empty beach
at sunset or sunrise.
The clouds are in
warm, golden hues.
Someone appears
to be paragliding…

Embed Prompts Prefill

Post-Vision Attention

VLM

Please carefully observe the image
and provide a brief description.

Compute
Layer-wise
Budget

Rank
Tokens

Value

Key

Value

Value

Key

Layer 0

Layer 1

Key

Layer N

…

…
Layers

Budget via
Sparsity

1

2

A chat between a curious human and an
AI assistant. The assistant gives helpful,
detailed, and polite answers to the
human's questions.

…

Evict Tokens
based on 1 2

LLM KV

Vision Tokens

Text Tokens

Decode
with Reduced
KV Cache

The image shows a
vast, empty beach
at sunset or sunrise.
The clouds are in
warm, golden hues.
Someone appears
to be paragliding…

Embed Prompts Prefill

Figure 4: VL-Cache Overview. During prefill, post-vision attention matrices are utilized to compute
sparsity-driven layer-wise budgets and rank the importance of cache tokens. Unimportant tokens are
then evicted, allowing lower memory usage and accelerated decoding with reduced KV cache.

We argue that using Post-vision Attention has two important advantages. Firstly, computing layer-
wise sparsity using Post-vision Attention results in much lower memory and latency O(τm) com-
pared to using the full attention matrix O(m2) as in (Zhang et al., 2024b) and (He et al., 2024),
since the visual tokens dominate the prompt length, τ ≪ m for current vision-language tasks. Sec-
ond, with a fixed cache budget, using Post-vision Attention leads to better preservation of important
tokens, as measured by high CacheHitRate in Figure 3. In this section, we will detail how we
perform sparsity-aware KV cache budget allocation and cache token eviction guided by Post-vision
Attention before reviewing the strong performance of VL-Cache in Section 5.

4.1 SPARSITY-AWARE KV CACHE BUDGET ALLOCATION

Before determining the exact tokens to evict, we need to allocate the KV cache budget, which is
the percentage of the KV cache to retain at each layer. Based on our observations from Section
3.1, we implement a sparsity-aware layer-wise KV cache allocation approach with two steps during
the prefill phase, detailed in Algorithm 1 below. First, we apply ThresholdFilter pruning (with
p = 1%) to the Post-vision Attention scores and calculate the layer-wise sparsity (line 4-8 and 13-
18). Second, given a target KV cache budget for the whole model, we distribute this budget across

6

Published as a conference paper at ICLR 2025

layers based on each layer’s sparsity ratio (line 9-12). This method optimizes the use of limited
memory to store an appropriate amount of context information in each layer. Since the allocation
occurs only once right after prefill, the latency overhead is amortized across multiple decoding steps.

Algorithm 1 Sparsity-Aware Cache Budget Allocation

1: Input: query and key Q,K ∈ RL×H×m×d, number of layers L, number of heads H , length of
post-vision prompt τ , overall cache budget α.

2: procedure SKEWEDCACHEBUDGETALLOCATION(Q,K,α, L,H)
3: ▷ main method to compute layer-wise cache budget. ◁
4: Γ[L][H]← 0 ▷ Γ stores layer and head-wise sparsity
5: for l = 1→ L do
6: for h = 1→ H do
7: Γ

(l)
h ← ComputePostVisionSparsity(Q(l)

h ,K
(l)
h) ▷ invoke helper method below

8: γ ← Γ.mean(1) ▷ γ is head-averaged sparsity for each layer
9: Z ←

∑
l 1− γ(l) ▷ Z is the sum of non-sparse ratios across layers as the normalizer

10: β[L]← 0 ▷ β stores cache token budget for each layer
11: for l = 1→ L do
12: β(l) ← clip(1.0−γ

(l)

Z αL, 0.01, 1) ▷ allocate budget by normalized non-sparse ratio
13: procedure COMPUTEPOSTVISIONSPARSITY(Q,K)
14: ▷ helper method to compute post-vision attention head sparsity. ◁
15: Q′ ← Qm−τ :m ▷ Q’ is post-vision query
16: A′ ← softmax(Q

′KT

√
d

) ▷ A’ is post-vision attention

17: γ′ ←
∑
i+m−τ≥j

1[ThresholdFilter(A′,p)ij=0]
|{A′

ij :i+m−τ≥j}| ▷ γ′ is ratio of zeros in unmasked entries

18: return γ′
19: Output: layer-wise budget β

In Algorithm 1, we present our KV cache budget allocation algorithm, where α is a hyper-parameter
that encodes the desired KV cache budget for the whole model. When the accuracy is not satisfac-
tory, a higher α can be used to keep more KV cache. Finally, we would like to point out the key
difference between our algorithm and PyramidKV (Zhang et al., 2024a): our allocation budget is
customized for each prompt based on its sparsity pattern, instead of using a fixed layer-wise budget
for all prompts, thus granting additional flexibility.

4.2 MODALITY-AWARE TOKEN SCORING POLICY

After we decide the cache budget for layer l, we choose a subset of k(l) cache tokens from the full
cache. Prior works (that were targeting KV cache compression for LLMs) have explored several
scoring policies, such as Accumulated Attention in H2O (Zhang et al., 2024b), Normalized Attention
in ZipCache He et al. (2024) and Sliding Window Attention in Li et al. (2024b); Zhang et al. (2024a);
Yang et al. (2024a), as we discussed earlier in Section 3.2. In this section, we will explain in-depth
why Post-vision Attention provides a better scoring policy than prior policies for VLMs.

While Accumulated Attention serves as a simple yet effective baseline, one critical issue is that sum-
mation over the full query dimension unavoidably assigns high scores to earlier tokens. Observing
this length bias, Sliding Window Attention only sums attention scores over a recent window. We con-
firm that this indeed leads to higher CacheHitRate, as shown in Figure 3. However, as we can
see in Figure 1a and 1b, VLMs have a significantly different attention pattern than LLMs. Along the
query dimension, we observe a clear modality boundary: visual tokens attend to other visual tokens
rather uniformly while language tokens only pay attention to a few visual tokens with high concen-
tration. If we were to apply Accumulated or Normalized Attention as the scoring policy, the signal
for critical cache tokens will be buried as we sum or average scores from all the preceding visual
tokens. Using a recent window helps, but a fixed window size can easily be too large or too small as
the length of the post-vision prompt varies from case to case. Therefore, we introduce Post-vision
Attention as an optimized scoring policy for VLMs by implementing a dynamic, prompt-specific
window size. The advantage of our scoring policy is evident by its high CacheHitRate in Figure
3, and will be further demonstrated through accuracy comparisons in Section 5.

7

Published as a conference paper at ICLR 2025

5 EXPERIMENTS

In our experiments, we evaluate VL-Cache across representative VLMs that can handle image,
videos, and language inputs. We use the state-of-the-art open-source LLaVA family, including
LLaVA-Mistral-7B (Liu et al., 2023b) and LLaVA-1.6-34B (Liu et al., 2023a). They all share the
same visual model (openai/clip-vit-large-patch14-336 (Radford et al., 2021)) but are fine-tuned
from different language backbones (e.g., Mistral (Jiang et al., 2023), Nous-Hermes-2-Yi-34B
(Research, 2023)). Also, the former model uses Grouped Query Attention (GQA) (Ainslie et al.,
2023), while the latter model uses Multi-Head Attention (MHA) (Vaswani et al., 2017).

Implementation Details. We use an AWS EC2 P4 instance equipped with 8 A100 40GB GPUs
for evaluation. First, we sample three tasks from lmms-eval (Bo Li* & Liu, 2024), including
Coco-Caption (Chen et al., 2015), DocVQA (Mathew et al., 2021), and MathVista (Lu et al.,
2023). These tasks are representative, and cover OCR, reasoning, and world knowledge domains.
Second, we compare accuracy of our approach against full-cache baselines and previous KV cache
sparsification methods including StreamingLLM (Xiao et al., 2023a), H2O (Zhang et al., 2024b),
ZipCache (He et al., 2024) and PyramidKV (Zhang et al., 2024a). In appendix A.3, we show
more comprehensive experimental results with additional datasets (TextVQA (Singh et al., 2019),
ChartQA (Masry et al., 2022)) and methods that do not focus on KV cache compression but are still
relevant (FastV (Chen et al., 2025) and HiRED (Arif et al., 2024). We apply KV cache sparsification
in line with these baselines by retaining the most recent tokens and selecting the Top-K tokens
according to their corresponding scoring policies. All baselines are configured with their default
settings, except that the KV cache budget is scaled proportionally to the prompt length, and the
recent token window size is fixed at 10% of this budget to enable a fair comparison. Finally, we
benchmark latency with varying context lengths and batch sizes.

5.1 ACCURACY EVALUATION

The accuracy evaluation results are shown in Figure 9 and Table 3. We report the average accuracy
score with KV cache budget varying from 1% to 100% of prompt length. Overall, VL-Cache outper-
forms other baselines across a range of KV cache budgets and different language model backbones.

(a) LLaVA-V1.6-Mistral-7B (b) LLaVA-V1.6-Mistral-7B (c) LLaVA-V1.6-Mistral-7B

(d) LLaVA-V1.6-34B (e) LLaVA-V1.6-34B (f) LLaVA-V1.6-34B

Figure 5: Evaluation results on different datasets with varied cache budgets. VL-Cache achieves
comparable accuracy against full-cache and outperforms multiple baselines with limited KV cache
budget. Interestingly, we found that VLMs occasionally perform slightly better with a partial KV
cache. We attribute it to the regularization effect of KV cache compression.

8

Published as a conference paper at ICLR 2025

For the Coco-Caption dataset (Figure 9 (a), (c) and Table 3), all baselines maintain high accuracy
when the KV cache budget exceeds 40% for VLMs. However, as the KV cache budget is further
reduced, accuracy significantly declines. It is worth noting that even with only 5% to 10% KV
cache budget, VL-Cache can achieve accuracy that is comparable to the full KV cache. H2O and
StreamingLLM allocate the same cache budget across all layers, causing denser layers to miss im-
portant tokens in the context, while sparser layers contain redundant tokens. PyramidKV statically
allocates KV cache in a monotonically decreasing manner, which is ineffective for all input queries.
For the DocVQA dataset (Figure 9 (b), (d) and Table 3), PyramidKV demonstrates strong perfor-
mance; however, VL-Cache consistently outperforms all other baselines. H2O and StreamingLLM
lack robustness, with performance significantly declining as the KV cache is further compressed.
For the MathVista dataset (Figure 9 (c), (f) and Table 3), our method again outperforms other meth-
ods in most cases. Meanwhile, multiple methods achieve near full-cache performance with 1% KV
cache. It’s likely due to the fact that 54% of the dataset are multiple-choice questions, which are less
challenging than free-form questions.

Dataset Model Method 1% 5% 10% 20% 40% 60% 80% 100%

Coco-Caption
(Metric: CIDEr)

LLaVA-Mistral-7B

VL-Cache 2.64 82.53 100.36 102.06 99.93 101.07 100.08 100.68
H2O 7.87 64.45 90.36 104.04 102.64 101.21 102.86 100.68
PyramidKV 4.01 23.21 66.41 80.76 97.76 100.75 101.38 100.68
StreamingLLM 0.05 11.82 33.98 91.87 101.47 101.07 101.6 100.68
ZipCache 4.4 53.00 66.41 92.36 99.51 100.71 102.86 100.68

LLaVA-1.6-34B

VL-Cache 0 120.11 137.35 139.42 138.58 139.19 138.01 135.07
H2O 0 20.87 58.14 126.8 136.27 140.89 140.30 135.07
PyramidKV 0 93.47 116.91 129.59 138.53 138.17 140.15 135.07
StreamingLLM 0 5.69 8.23 21.57 131.51 134.26 139.65 135.07
ZipCache 0 12.92 131.61 134.98 140.59 140.63 137.90 135.07

DocVQA
(Metric: ANLS)

LLaVA-Mistral-7B

VL-Cache 43 59 62 64 67 67 67 68
H2O 37 40 56 59 66 66 67 68
PyramidKV 42 58 60 61 66 64 68 68
StreamingLLM 20 32 47 45 52 60 60 68
ZipCache 41 40 60 45 65 68 67 68

LLaVA-1.6-34B

VL-Cache 40 82 84 85 85 85 85 85
H2O 28 41 75 82 82 84 85 85
PyramidKV 43 79 83 85 85 86 85 85
StreamingLLM 0 16 34 48 76 80 82 85
ZipCache 0 55 74 81 85 85 85 85

MathVista
(Metric: ACC)

LLaVA-Mistral-7B

VL-Cache 38 36 39 40 40 42 42 41
H2O 32 35 36 38 38 40 39 41
PyramidKV 37 36 38 40 40 41 40 41
StreamingLLM 30 35 33 34 40 39 38 41
ZipCache 35 35 39 34 40 42 40 41

LLaVA-1.6-34B

VL-Cache 41 42 42 44 45 45 42 43
H2O 37 40 40 39 42 44 44 43
PyramidKV 39 41 42 44 46 41 44 43
StreamingLLM 29 35 34 28 38 42 42 43
ZipCache 28 35 41 41 42 43 43 43

Table 1: With 10% KV cache, VL-Cache achieves close to 100% of full cache performance on most
datasets and models and significantly outperformed other methods. Since all KV cache compression
methods will converge to full cache performance as the more cache budget is granted, strong perfor-
mances at low cache budgets attest to VL-Cache’s effectiveness in retaining important KV tokens.

5.2 SPEED BENCHMARK

In order to show the speed advantage of VL-Cache, we measure the GPU kernel latencies of prefill
and decoding forward passes with synthetic prompts, following the method in Kwon et al. (2023).
We vary the size of the prompt from 1K tokens to 128K tokens to scale our method to a very long
context. Batch sizes vary from 1 to 64 and are static, meaning that all requests get prefilled and
decoded concurrently. We assume that the prompt template format remains similar to our accuracy
benchmarks, so we use the last 50 tokens of the prompt to determine which tokens to evict from
the KV cache. For both prefill and decoding in the baseline, we used default settings from the Hug-
gingFace implementation 1, including CUDA-based FlashAttention-v2. To optimize performance
in our VL-Cache, we applied our Triton-based solution for self-attention forward pass, layer-wise

1https://huggingface.co/docs/transformers/main/en/perf infer gpu one

9

Published as a conference paper at ICLR 2025

sparsity evaluation, and modality-aware token scoring, as detailed in appendix A.5. The speedup is
calculated as Baseline latency

VLCache latency .

In Table 2, we observe that with 50 query tokens for calculating attention statistics, the overhead of
our method is just 1-4% of the prefill latency. See Appendix A.6 for detailed measurements of the
overhead and a discussion on how to reduce the overhead of statistics calculation for a large number
of query tokens. During decoding, we run 99 forward passes for a total of 100 output tokens. We
observe up to 7x decoding speedups that are attributed to the reduced size of the KV cache, which
we compressed to 10% for this benchmark.

Overall, we see that the end-to-end speedup is bounded by the prefill latency, which is mostly un-
changed by VL-Cache. For example, with prompt length of 128K and batch size of 1, the decoding
speedup of 7.08x is diluted by prefill taking 53% of end-to-end latency, which results in 1.66x
end-to-end speedup. End-to-end speedup will monotonically approach the decoding speedup as the
count of output tokens increases. This highlights that KV cache sparsity will give the best speed
advantage in tasks with long outputs, such as image captions, video descriptions, chain-of-thought
multi-modal reasoning, etc.

Batch
Size

Prompt
Length

Prefill
Speedup

Decoding
Speedup

End-to-End
Speedup

1 2k 0.96 1.19 1.16
1 8k 0.97 1.70 1.49
1 32k 0.99 3.32 1.85
1 128k 0.99 7.08 1.66

4 2k 0.98 1.68 1.50
4 8k 0.98 3.16 1.95
4 32k 0.99 6.07 2.06

16 2k 0.98 3.03 1.99
16 8k 0.99 5.61 2.27

64 2k 0.98 5.23 2.33

Table 2: Performance metrics by batch size and prompt
length for 100 output tokens.

Figure 6: Server-level throughput v.s.
request-level latency curve (prompt
length = 2K). Labeled points indicate
batch size.

In our implementation of both the baseline and VL-Cache, maximum batch size is limited by peak
memory usage during prefill instead of KV cache size, so compression of KV cache does not lead
to higher batch size. In future work, continuous batching and chunked prefill could be used to
eliminate the prefill memory bottleneck, which would expose our method’s advantage in raising
maximum batch size when the size of KV cache is the bottleneck to higher batch size. Finally, we
summarize the trade-off between request-level latency and server-level throughput in Figure 6. We
note that VL-Cache offers both higher peak throughput and lower latency for any desired server-level
throughput.

6 CONCLUSION & FUTURE WORK

In this paper, we propose VL-Cache, a novel KV cache compression optimized for VLMs. We
discovered the unique sparsity patterns of visual and language tokens throughout the prefill and
decoding phases. With these observations, we introduce a modality-aware token scoring policy and
sparsity-aware cache budget allocation to reduce KV cache size without accuracy loss. Empirical
results on multiple benchmark datasets demonstrate that when maintaining only 10% of the KV
cache, our method achieves accuracy comparable to the full KV cache and outperforms all existing
methods. In a speed benchmark, our method accelerates end-to-end latency of generating 100 tokens
by up to 2.33x relative to the full KV cache. As for future work, we identify two opportunities.
Firstly, our method only focused on compressing prefill KV cache due to the high prompt to output
token ratio (median 320x) of current vision-language tasks. Periodical compression of decoded
tokens can be developed for long output tasks while striking a balance between latency overhead
and memory savings. Secondly, it would be interesting to extend our method for video models since
video inputs will impose even more memory pressure due to KV cache.

10

Published as a conference paper at ICLR 2025

REFERENCES

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. Proceedings of Machine Learning and Systems, 6:114–127, 2024.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Anthropic. Introducing the next generation of claude, 2023. URL https://www.anthropic.
com/news/claude-3-family.

Kazi Hasan Ibn Arif, JinYi Yoon, Dimitrios S Nikolopoulos, Hans Vandierendonck, Deepu John,
and Bo Ji. Hired: Attention-guided token dropping for efficient inference of high-resolution
vision-language models in resource-constrained environments. arXiv preprint arXiv:2408.10945,
2024.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
ization, text reading, and beyond. 2023.

Kaichen Zhang* Fanyi Pu* Xinrun Du Yuhao Dong Haotian Liu Yuanhan Zhang Ge Zhang
Chunyuan Li Bo Li*, Peiyuan Zhang* and Ziwei Liu. Lmms-eval: Accelerating the
development of large multimoal models, March 2024. URL https://github.com/
EvolvingLMMs-Lab/lmms-eval.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
language models. In European Conference on Computer Vision, pp. 19–35. Springer, 2025.

Xi Chen, Xiao Wang, Lucas Beyer, Alexander Kolesnikov, Jialin Wu, Paul Voigtlaender, Basil
Mustafa, Sebastian Goodman, Ibrahim Alabdulmohsin, Piotr Padlewski, et al. Pali-3 vision lan-
guage models: Smaller, faster, stronger. arXiv preprint arXiv:2310.09199, 2023.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv
preprint arXiv:1504.00325, 2015.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801,
2023.

Yefei He, Luoming Zhang, Weijia Wu, Jing Liu, Hong Zhou, and Bohan Zhuang. Zipcache:
Accurate and efficient kv cache quantization with salient token identification. arXiv preprint
arXiv:2405.14256, 2024.

Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Yuhan Dong, Yu Wang,
et al. Flashdecoding++: Faster large language model inference with asynchronization, flat gemm
optimization, and heuristics. Proceedings of Machine Learning and Systems, 6:148–161, 2024.

Raisa Islam and Owana Marzia Moushi. Gpt-4o: The cutting-edge advancement in multimodal llm.
Authorea Preprints, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

11

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://github.com/EvolvingLMMs-Lab/lmms-eval
https://github.com/EvolvingLMMs-Lab/lmms-eval

Published as a conference paper at ICLR 2025

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. {InfiniGen}: Efficient generative
inference of large language models with dynamic {KV} cache management. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24), pp. 155–172, 2024.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer, August 2024a. URL
https://llava-vl.github.io/blog/2024-08-05-llava-onevision/.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024b.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2023a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
2023b.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024a.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
mark for question answering about charts with visual and logical reasoning. In Findings of the
Association for Computational Linguistics: ACL 2022, pp. 2263–2279, 2022.

Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
images. In Proceedings of the IEEE/CVF winter conference on applications of computer vision,
pp. 2200–2209, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Nous Research. Nous hermes 2 on yi 34b, 2023. URL https://huggingface.co/
NousResearch/Nous-Hermes-2-Yi-34B.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 8317–8326, 2019.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

12

https://llava-vl.github.io/blog/2024-08-05-llava-onevision/
https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B
https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B

Published as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 9 2023b.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm inference. arXiv preprint arXiv:2405.12532,
2024a.

June Yong Yang, Byeongwook Kim, Jeongin Bae, Beomseok Kwon, Gunho Park, Eunho Yang,
Se Jung Kwon, and Dongsoo Lee. No token left behind: Reliable kv cache compression via
importance-aware mixed precision quantization. arXiv preprint arXiv:2402.18096, 2024b.

Hao Yu, Zelan Yang, Shen Li, Yong Li, and Jianxin Wu. Effectively compress kv heads for llm.
arXiv preprint arXiv:2406.07056, 2024.

Yichi Zhang, Bofei Gao, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao Chang, Junjie
Hu, Wen Xiao, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal information
funneling. arXiv preprint arXiv:2406.02069, 2024a.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024b.

13

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 VISION-LANGUAGE PROMPT TEMPLATE CONSTRUCTION

Constructing prompt templates in image-based conversations is a common practice for VLMs (Li
et al., 2024a; Team et al., 2023; Islam & Moushi, 2024; Bai et al., 2023; Anthropic, 2023), as it
instructs language models to generate more accurate responses. For example, as illustrated in Figure
7, the input image is processed through a visual encoder and a projection layer to generate an image
embedding, represented by the <image>. For language input, beyond user input, a prompt template
is employed. With the appropriate prompt template design, regardless of the original image order
from user input (whether before or after language inputs), there will always be a language-based
instruction or question in the post-vision position, providing a strong signal for our VL-Cache to
evict insignificant visual tokens.

Figure 7: Vision-Language Prompt Template Example.

A.2 ABLATION STUDIES ON THRESHOLD p.

In VL-Cache, we utilized ThresholdFilter in eq.1 to sparsify the attention matrix. It uses a
relative threshold p that we heuristically set to 0.01 in our experiments. To understand the robustness
of our method to this hyperparameter, we conducted an ablation study using LLaVA-V1.6-Mistral-
7B and Coco-Caption. We vary p from 0.0001 to 0.1 and show the corresponding performance in the
following plot. We observe that 1) overall, VL-Cache is robust to the choice of p as it has relatively
small performance variations, 2) higher token budgets seem to be even more robust to p, and 3) there
isn’t a single threshold p that works consistently better across all cache budgets, but p = 0.01 does
seem to be a decent choice.

Figure 8: LLaVA-V1.6-Mistral-7B performance on Coco-Caption under various cache budgets and
threshold values with VL-Cache.

14

Published as a conference paper at ICLR 2025

A.3 FULL EXPERIMENTAL RESULTS

Dataset Model Method 1% 5% 10% 20% 40% 60% 80% 100%

Coco-Caption
(Metric: CIDEr)

LLaVA-Mistral-7B

VL-Cache 2.64 82.53 100.36 102.06 99.93 101.07 100.08 100.68
H2O 7.87 64.45 90.36 104.04 102.64 101.21 102.86 100.68
PyramidKV 4.01 23.21 66.41 80.76 97.76 100.75 101.38 100.68
StreamingLLM 0.05 11.82 33.98 91.87 101.47 101.07 101.6 100.68
ZipCache 4.4 53.00 66.41 92.36 99.51 100.71 102.86 100.68
FastV 9.98 41.17 88.82 97.47 105.40 110.60 106.90 100.68
HiRED 13.87 70.90 115.37 109.91 115.09 115.09 105.93 100.68

LLaVA-1.6-34B

VL-Cache 0 120.11 137.35 139.42 138.58 139.19 138.01 135.07
H2O 0 20.87 58.14 126.8 136.27 140.89 140.30 135.07
PyramidKV 0 93.47 116.91 129.59 138.53 138.17 140.15 135.07
StreamingLLM 0 5.69 8.23 21.57 131.51 134.26 139.65 135.07
ZipCache 0 12.92 131.61 134.98 140.59 140.63 137.90 135.07
FastV 3.10 15.86 32.55 80.04 112.39 116.53 120.70 135.07
HiRED 39.04 114.09 136.31 134.85 142.37 135.14 134.79 135.07

DocVQA
(Metric: ANLS)

LLaVA-Mistral-7B

VL-Cache 43 59 62 64 67 67 67 68
H2O 37 40 56 59 66 66 67 68
PyramidKV 42 58 60 61 66 64 68 68
StreamingLLM 20 32 47 45 52 60 60 68
ZipCache 41 40 60 45 65 68 67 68
FastV 18 26 38 49 63 64 67 68
HiRED 18 38 51 53 63 63 65 68

LLaVA-1.6-34B

VL-Cache 40 82 84 85 85 85 85 85
H2O 28 41 75 82 82 84 85 85
PyramidKV 43 79 83 85 85 86 85 85
StreamingLLM 0 16 34 48 76 80 82 85
ZipCache 0 55 74 81 85 85 85 85
FastV 2 1 3 9 28 42 47 85
HiRED 25 44 52 71 76 81 84 85

MathVista
(Metric: Acc)

LLaVA-Mistral-7B

VL-Cache 38 36 39 40 40 42 42 41
H2O 32 35 36 38 38 40 39 41
PyramidKV 37 36 38 40 40 41 40 41
StreamingLLM 30 35 33 34 40 39 38 41
ZipCache 35 35 39 34 40 42 40 41
FastV 25 29 37 38 39 40 41 41
HiRED 32 35 35 36 40 40 40 41

LLaVA-1.6-34B

VL-Cache 41 42 42 44 45 45 42 43
H2O 37 40 40 39 42 44 44 43
PyramidKV 39 41 42 44 46 41 44 43
StreamingLLM 29 35 34 28 38 42 42 43
ZipCache 28 35 41 41 42 43 43 43
FastV 27 27 32 37 37 35 37 43
HiRED 32 41 42 42 39 39 42 43

ChartQA
(Metric: Acc)

LLaVA-Mistral-7B

VL-Cache 20 33 41 38 40 40 41 41
H2O 23 26 32 39 41 40 41 41
PyramidKV 27 29 39 39 38 40 41 41
StreamingLLM 11 17 17 30 39 37 40 41
ZipCache 23 33 40 42 40 40 41 41
FastV 13 17 24 33 41 42 42 41
HiRED 13 21 33 37 47 44 41 41

LLaVA-1.6-34B

VL-Cache 9 51 56 55 54 55 55 54
H2O 28 42 50 54 54 53 54 54
PyramidKV 31 52 54 56 54 54 55 54
StreamingLLM 5 7 11 14 43 51 52 54
ZipCache 0 43 55 52 54 54 54 54
FastV 6 8 10 12 25 41 40 54
HiRED 11 20 27 44 49 56 54 54

TextVQA
(Metric: Acc)

LLaVA-Mistral-7B

VL-Cache 34.7 59.1 64.4 65.4 65.4 65.4 65.4 65.4
H2O 43.0 56.5 63.4 63.4 62.4 65.4 65.4 65.4
PyramidKV 35.0 50.1 60.1 62.8 65.4 65.4 65.4 65.4
StreamingLLM 19.5 31.4 43.2 53.6 59.8 59.9 61.8 65.4
ZipCache 35.6 51.2 59.4 63.4 65.4 65.0 65.4 65.4
FastV 11.1 38.5 48.2 61.1 63.4 61.7 62.7 65.4
HiRED 23.6 54.6 55.4 64.8 64.0 62.4 63.7 65.4

LLaVA-1.6-34B

VL-Cache 12.9 70.7 71.4 73.4 72.4 73.6 72.7 72.7
H2O 18.3 47.0 63.2 69.5 71.5 74.4 72.7 72.7
PyramidKV 30.1 66.4 70.6 72.5 73.4 74.3 72.7 72.7
StreamingLLM 0.0 9.6 19.5 34.7 70.4 70.4 71.4 72.7
ZipCache 0.0 47.1 64.3 70.5 73.5 73.7 72.7 72.7
FastV 5.6 6.3 11.9 18.7 42.6 60.2 64.4 72.7
HiRED 27.1 62.1 66.3 72.9 69.9 71.2 71.7 72.7

Table 3: Performance of VLMs with different compression methods and datasets. With 10% KV
cache, VL-Cache approaches 100% of full cache performance on most datasets and models and
significantly outperformed other methods.

15

Published as a conference paper at ICLR 2025

(a) LLaVA-V1.6-Mistral-7B (b) LLaVA-V1.6-34B

(c) LLaVA-V1.6-Mistral-7B (d) LLaVA-V1.6-34B

(e) LLaVA-V1.6-Mistral-7B (f) LLaVA-V1.6-34B

Figure 9: Evaluation results on different datasets with varied cache budgets. VL-Cache achieves
comparable accuracy against full-cache and outperforms multiple baselines with limited KV cache
budget
A.4 EXTENDED RELATED WORKS

The KV cache, while essential for transformer-based LLM and VLM family, demands significant
computational resources and memory, limiting inference speed. To address these challenges, re-
searchers have explored various KV cache compression techniques, such as KV cache sparsification,
quantization, or a combination of both.

KV cache sparsification. Heavy-Hitters (H2O) (Zhang et al., 2024b) employs cumulative attention
scores to greedily evict unimportant tokens. However, this method tends to accumulate more atten-
tion on the initial tokens, introducing bias and negatively impacting the identification of key tokens

16

Published as a conference paper at ICLR 2025

(g) LLaVA-V1.6-Mistral-7B (h) LLaVA-V1.6-34B

(i) LLaVA-V1.6-Mistral-7B (j) LLaVA-V1.6-34B

Figure 9: Additional evaluation results on different datasets with varied cache budgets, demonstrat-
ing VL-Cache’s consistent performance on a wide range of settings.

during decoding. ZipCache (He et al., 2024) further normalizes the cumulative attention scores,
leading to more precise prediction. Keyformer (Adnan et al., 2024) proposes a novel score function
to predict the importance of each token and only window tokens and dynamic key tokens are kept in
the KV cache. PyramidKV (Yang et al., 2024a) allocates progressively smaller KV cache sizes as
layers get deeper. This approach can achieve an absolute accuracy improvement of nearly 20.5 on
specific tasks.

KV cache quantization. This method reduces the size of the KV cache by utilizing lower-bit
representations of the key and value pairs. In particular, FP8 and INT8 quantization of KV caches
are commonly used for LLM inference. Further compression of KV cache into lower-bits is also
being explored, e.g. KIVI (Liu et al., 2024b) compresses KV cache into 2-bit representations.

Combination of quantization and sparsification. Quantization and sparsification (Yang et al.,
2024b) technically could have orthogonal implementations that can be enabled together to obtain
further. However, since both are lossy methods that can impact the accuracy of downstream tasks,
careful accuracy evaluation of the quality of the output need to be conducted.

Visual Token Reduction. In the domain of VLMs, most works focus on pruning embedded image
features either before they enter the LLMs or within the hidden states of the LLMs. HiRED (Arif
et al., 2024) leverages sparse attention patterns in vision transformers (e.g., CLIP-ViT) to discard
visual tokens, effectively extracting key objects from images and reducing computational resources
required during subsequent LLMs generation. However, it disregards textual prompts, potentially
dropping essential tokens unexpectedly. FastV (Chen et al., 2025), on the other hand, prunes hidden
states at a specific layer within LLMs, significantly accelerating computation in later layers. How-

17

Published as a conference paper at ICLR 2025

ever, it applies a uniform token budget across all subsequent layers, resulting in suboptimal accuracy
when the token budget is highly constrained.

The KV cache compression methods mentioned above primarily target LLMs, while in VLMs, most
approaches focus on reducing visual tokens in the input image or the hidden states. And there has
been limited exploration of KV cache sparsification specifically for VLMs. VL-Cache proposed in
this paper analyzes and utilizes the unique sparsity pattern in VLMs, which results in better accuracy
for VLM inference.

A.5 EFFICIENT IMPLEMENTATION

In order to discard tokens that received low attention during prefill, we need to calculate 2 statistics
from the attention score matrix during the prefill stage: (1) the average attention score for each token
in key dimension; and (2) the count of attention scores that are smaller than p% of the maximum
within the query Q dimension. The ThresholdFilter we adopted in our algorithm is asymptoti-
cally faster than alternative methods of truncating a distribution (such as top-p and top-k), since it
does not require the attention scores to be sorted.

Regular attention kernels, such as FlashAttention (Dao, 2023) and PagedAttention (Kwon et al.,
2023), do not materialize the attention scores in HBM, so we need a new memory-efficient kernel to
calculate the attention statistics. Overall, we aim to schedule these operations to ensure that: (1) The
attention mask is not written to HBM; (2) the QK product is not written to HBM; (3) the attention
scores are not written to HBM; (4) similarly-parallelized operations (e.g. div and add) are fused to
avoid intermediate tensors in HBM.

In the initial attempt, we used TorchCompiler with the Triton backend, which addressed require-
ments (1), (3), and (4), but not (2). An efficient fusion of the matmul operation with softmax is
described in the FlashAttention paper and can be implemented in Triton, but TorchCompiler was
not able to apply this optimization. We will now describe the optimal algorithm that satisfies all
performance requirements.

The key to efficient fusion of matmul and softmax is to partition the work along theQ dimension and
then hold a single tile of Q tensor in SRAM, while continuously loading tiles of the other tensor and
computing the reductions without writing the QK product back to HBM. The 2 reductions required
by softmax (pre-exponentiation max, and post-exponentiation sum) are both along theK dimension,
so partitioning along theQ dimension is required for these operations. The online softmax algorithm
can be used to update the partially computed sum.

For average attention score in the KV context, we need to reduce the attention scores over the Q
dimension, which is not aligned with the previous computation. Instead, we need a second kernel
which partitions the work over the K dimension, so that a compute block can reduce over the Q
dimension. However, since we do not want to materialize the attention scores, the second kernel
needs to recompute softmax again. In order do that, we re-use the max and sum over Q dimension
from the first kernel, and these 2 tensors (both O(Q) space) are the only intermediate tensors that
are stored in HBM.

For sparsity ratio, counting the scores below the threshold is not possible until the maximum along
the K dimension is known. We can use the intermediate maximum tensor that was produced by the
first kernel to count the sparse scores in the second kernel. Since each thread block will output its
own count, we need the 3rd kernel to sum up the partial counts.

In summary, the optimized computation consists of 3 kernels executed serially:

1. Softmax + row-wise stats (reductions over K dimension). Reads: Q and K from HBM.
Computes and writes to HBM:

(a) pre-exp max over K dimension (used in softmax for numerical stability)
(b) post-exp sum over K dimension (used in softmax as the normalization factor)

2. Softmax + column-wise stats (reductions over Q dimension). Reads: Q, K, pre-exp max,
and post-exp sum from HBM. Computes and writes to HBM:

(a) the post-softmax sum over the Q dimension
(b) count of attention scores below threshold over the Q dimension

18

Published as a conference paper at ICLR 2025

3. Sum reduction of the partial count of attention scores below threshold

We implemented these 2 kernels in Triton and observed that each had roughly the same latency as the
FlashAttention kernel, implying that this partioning is optimal. However, even with this approach,
we would want to use only a few dozen tokens for querying statistics during prefill.

A.6 SPEED BENCHMARK RESULTS

In this section, we present detailed metrics from the speed benchmark results, including exact times
for both the prefill and decoding stages. We also provide an overview of the benchmarking method-
ology. Using Torch Profiler, we measured GPU kernel latencies and aggregated them to compute
the total latency for each operation.

Batch
Size

Prompt
Length

Prefill Latency (ms) Decoding Latency (ms) Speedup

Full Cache
(Baseline)

VL-Cache
(10%, Ours)

Full Cache
(Baseline)

VL-Cache
(10%, Ours)

Prefill
Speedup

Decoding
Speedup

End-to-End
Speedup

1 2k 330.7 345.8 3821.8 3222.3 0.96 1.19 1.16
1 8k 1396.1 1434.9 5877.1 3459.1 0.97 1.70 1.49
1 32k 7257.2 7354.9 14247.2 4294.0 0.99 3.32 1.85
1 128k 59740.9 60063.9 52547.0 7423.0 0.99 7.08 1.66

4 2k 1287.0 1315.4 6156.0 3661.0 0.98 1.68 1.50
4 8k 5486.5 5604.0 14229.1 4499.6 0.98 3.16 1.95
4 32k 28908.7 29206.7 47321.1 7795.3 0.99 6.07 2.06

16 2k 5038.3 5144.3 15078.8 4978.7 0.98 3.03 1.99
16 8k 21843.6 22168.4 47688.7 8494.8 0.99 5.61 2.27

64 2k 20113.2 20448.2 49666.6 9499.4 0.98 5.23 2.33

Table 4: Detailed performance metrics by batch size and prompt length for 100 output tokens

This breakdown of latency by GPU kernels enabled us to 1) avoid measuring CPU latency that does
not relate to our method, 2) group the latency into different buckets for reporting. Empty cells mean
that the inference server crashed due to insufficient GPU memory during prefill.

The following table presents the cumulative latency of all GPU kernels that are related to computing
attention statistics from 50 query tokens, eviction scores for all prompt tokens, and copying the KV
cache tensor after eviction of 90% of the KV cache into contiguous memory. This prefill overhead
is stated in milliseconds:

batch size 1000 2000 4000 8000 16000 32000 64000 128000

1 5.20 7.20 10.10 17.30 28.30 49.70 100.20 189.60
2 6.40 9.50 15.80 29.00 51.80 92.50 188.50
4 8.50 15.20 27.40 52.50 93.30 175.80
8 13.70 26.80 50.90 96.60 178.40

16 25.20 51.30 95.60 183.50
32 48.50 97.10 182.60
64 91.60 186.70

We define the prefill latency as the latency of generating 1 output token – starting with input token
IDs and ending with output logits, not including tokenization and sampling. The following table
presents the prefill speedup (prefill+overhead

prefill). We observe that the overhead is never more than 6%
and becomes smaller as the prompt gets longer:

batch size 1000 2000 4000 8000 16000 32000 64000 128000

1 0.94 0.96 0.97 0.97 0.99 0.99 0.99 0.99
2 0.96 0.97 0.97 0.98 0.98 0.99 0.99
4 0.97 0.98 0.98 0.98 0.98 0.99
8 0.98 0.98 0.98 0.99 0.99

16 0.98 0.98 0.99 0.99
32 0.98 0.98 0.98
64 0.99 0.98

19

Published as a conference paper at ICLR 2025

We calculated decoding latency as the difference between end-to-end latency and the prefill la-
tency. Since we use static batching with a constant number of output tokens, it’s easy to de-
compose the end-to-end latency into its components without concerns for queue waiting, sched-
uler stalling, sequence termination, etc. The following table presents the decoding speedup
(decoding latency with full KV cache

decoding latency with 10% of KV cache):

batch size 1000 2000 4000 8000 16000 32000 64000 128000

1 1.10 1.19 1.37 1.70 2.31 3.32 5.17 7.08
2 1.18 1.36 1.68 2.27 3.16 4.56 6.78
4 1.36 1.68 2.26 3.16 4.39 6.07
8 1.73 2.29 3.13 4.37 5.87

16 2.19 3.03 4.18 5.61
32 2.94 4.12 5.53
64 3.83 5.23

The end-to-end speedup is calculated as Baseline latency
VLCache latency . VLCache latency includes prefill latency,

VLCache overhead, and 99 decoding passes to generate a total of 100 output tokens:

batch size 1000 2000 4000 8000 16000 32000 64000 128000

1 1.09 1.16 1.30 1.49 1.71 1.85 1.89 1.66
2 1.16 1.30 1.49 1.73 1.89 1.97 1.94
4 1.30 1.50 1.74 1.95 2.06 2.06
8 1.54 1.79 2.00 2.17 2.23

16 1.75 1.99 2.17 2.27
32 1.98 2.19 2.32
64 2.18 2.33

A.7 MEASURING ATTENTION TO VISUAL AND LANGUAGE TOKENS

As we have established in the Section 3.1, the attention sparsity during decoding can be predicted
from attention scores in prefill phase. To further understand the importance of visual tokens and
language tokens in the prompt, we examine the division of attention from decoding tokens to these
two modalities of prompt tokens.

We propose Contribution for quantitative analysis and visualization of the layer-wise modality-
specific attention patterns. Let T be the current sequence length, t be the index of the first decoded
token, and A(l) ∈ RT×T be the attention matrix at layer l for one specific head.

Contribution
(l)
mod :=

1

T − t+ 1

∑
i≥t

∑
j∈Jmod ThresholdFilter(A(l), p)ij∑
j∈Jall ThresholdFilter(A(l), p)ij

(3)

Here, we use Jmod and Jall to denote KV cache indices of one selected modality (language or
vision) and all modalities respectively in the input prompt. As shown in Figure 10, VLMs allocate
primary attention to visual tokens in the first layer, while in the second layer, the contributions of
visual and language tokens are comparable. From the third layer onward, language tokens dominate,
with a slight increase in visual token contribution in the middle layers. Additionally, we also propose
Coverage to analyze the ratio of the number of tokens from a specific modality, defined as follows:

Coverage
(l)
mod :=

1

T − t+ 1

∑
i≥t

∑
j∈Jmod TopK(A(l), k)ij∑
j∈Jall TopK(A(l), k)ij

(4)

Specifically,

TopK(A, k)ij = 1[Aij ∈ {A(r−k+1)
i , A

(r−k+2)
i , ..., A

(r)
i }] (5)

20

Published as a conference paper at ICLR 2025

Here, we define k as ⌊α ·T ⌋, r as the number of columns of matrix A, and overload notations to use
A

(n)
i as the n-th order statistic of the row vector. Additionally, α ∈ (0, 1) denotes the token budget

threshold (e.g. α = 10% means only the 10% of sequence length of KV cache is retained). After
KV cache compression with TopK selection, we assess the ratio of visual attention to language
attention among the remaining tokens. In Figure 11, with α = 10% applied, a similar trend in
coverage is observed compared to Figure 10. Notably, in the middle layer, visual tokens constitute a
larger proportion than their contribution, indicating that the contribution per token is smaller.

Furthermore, since contribution of language and visual tokens differ by layer, the optimal budget for
each layer may depend on the ratio of visual to language tokens in the prompt. In contrast, previous
pyramid-style cache allocation methods do not adapt to the input prompts at inference time.

Figure 10: Contribution Figure 11: Coverage

21

	Introduction
	Background
	VLM inference
	KV Cache Compression

	Preliminary Experiment
	Measuring Attention Sparsity
	Measuring Cache Hit Rate

	VL-Cache Method
	Sparsity-aware KV Cache Budget Allocation
	Modality-Aware Token Scoring Policy

	Experiments
	Accuracy Evaluation
	Speed Benchmark

	Conclusion & Future Work
	Appendix
	Vision-Language Prompt Template Construction
	Ablation Studies on Threshold p.
	Full Experimental Results
	Extended Related Works
	Efficient Implementation
	Speed Benchmark Results
	Measuring attention to Visual and Language Tokens

