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Abstract

Autoregressive generative models can estimate
complex continuous data distributions, like tra-
jectory rollouts in an RL environment, image in-
tensities, and audio. Most state-of-the-art models
discretize continuous data into several bins and
use categorical distributions over the bins to ap-
proximate the continuous data distribution. The
advantage is that the categorical distribution can
easily express multiple modes and are straightfor-
ward to optimize. However, such approximation
cannot express sharp changes in density without
using significantly more bins, making it param-
eter inefficient. We propose an efficient, expres-
sive, multimodal parameterization called Adaptive
Categorical Discretization (ADACAT). ADACAT
discretizes each dimension of an autoregressive
model adaptively, which allows the model to allo-
cate density to fine intervals of interest, improving
parameter efficiency. ADACAT generalizes both
categoricals and quantile-based regression. ADA-
CAT is a simple add-on to any discretization-based
distribution estimator. In experiments, ADACAT
improves density estimation for real-world tabular
data, images, audio, and trajectories, and improves
planning in model-based offline RL.

1 INTRODUCTION

Deep generative models estimate complex, high-
dimensional distributions from samples. Autoregressive
models like NADE [Larochelle and Murray, 2011,
Uria et al., 2016], PixelRNN [Van Oord et al., 2016]
and GPT [Radford et al., 2018] express a joint distri-
bution by decomposing it into a product of simpler
one-dimensional conditionals. Each of these conditionals
p(xt|x1, x2 . . . xt−1) is parameterized by a neural network
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Figure 1: In the 2-D two-spirals dataset, an autoregressive
model parameterizes p(x1), the marginal distribution over
the first dimension, and p(x2|x1) a conditional distribution
over the second. Uniform discretization (middle) divides
their 1-D support into 16 equal-sized intervals and param-
eterizes each conditional with a categorical. However, it
poorly fits the continuous samples. In contrast, parameter-
izing p(xt|x<t) with ADACAT closely approximates the
target distribution with the same number of bins.

mapping from a subset of observed variables to logits over
the next dimension. For discrete data like language tokens,
the conditional takes the form of a categorical distribution.
Categorical distributions are relatively easy to optimize,
flexible and can easily express multimodal distributions as
each bin’s logit is independently predicted.

Ordinal and continuous data such as image intensities rang-
ing from 0 to 1 have a natural ordering between possible
values of each dimension xt. The categorical does not ex-
ploit this ordering, instead separately predicting each bin.
Categorical distributions also scale poorly when encoding
highly precise data like agent trajectories, tabular datasets
and audio [Oord et al., 2016]. Auditory quality degrades
if the waveform is quantized to less than 8-16 bits (256-
65k intensity levels). Control applications often need high
precision as well. Unfortunately, categorical likelihood de-
grades rapidly at high quantization levels. The uniformly
discretized model in Figure 1 has a negative log-likelihood
−0.85 with 16 bins, while our adaptively discretized ap-
proach achieves NLL −1.02 with the same architecture and
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Figure 2: ADACAT learns how to discretize the support
of continuous distributions for expressive, parameter effi-
cient density estimation, and generalizes other discretization
strategies like categoricals with equal bin widths (top). The
flexibility afforded by adaptive discretization allows closer
approximations of target densities, such a mixture of two
Gaussians with different scales (bottom).

number of bins (lower is better). We note that the negative
log-likelihood can be negative as it is computed on the con-
tinuous density by treating the discretized distribution as
a mixture of uniform distributions. Halving the width of a
particular bin in the categorical distribution would require
double the parameters in the final layer of the network.

Past work tries to improve the efficiency of categoricals with
hierarchical softmax [Morin and Bengio, 2005] or quantile-
based discretization [Janner et al., 2021]. Heuristic, hand-
engineered discretizations like the µ-law [Oord et al., 2016]
reduce quantization error and improve perceptual quality.
As an alternative, a single Gaussian, Gaussian mixtures
[Bishop, 1994] or logistic mixtures [Salimans et al., 2017]
are frequently used for parameter efficient conditionals, but
can be hard to optimize, especially as the number of mixture
components increases.

In this work, we propose a parameterization of 1-D con-
ditionals that is parameter efficient, expressive and mul-
timodal. We propose Adaptive Categorical Discretization
(ADACAT). Based on the observation that high precision is
often only required in a small subset of a distribution’s sup-
port, ADACAT is a distribution parameterized by a vector of
interval masses and interval widths. ADACAT is depicted in
Figure 2. In contrast to categoricals with equal bin widths,
variable bin widths allow the network to localize mass pre-
cisely without increasing precision elsewhere. Compared to
non-uniform but fixed discretizations like quantiles, ADA-
CAT parameters are adaptive: they are predicted by a neural
network conditioned on prior dimensions, which is impor-

tant as the best discretization for a particular conditional
differs from the best for the marginal.

We also propose an analytic target smoothing strategy to
ease optimization, and draw connections between target
smoothing and dequantization [Uria et al., 2016] and score
matching [Vincent, 2011]. In experiments, ADACAT with
target smoothing scales better to few parameters or is com-
petitive with strong baselines on image density estimation,
offline reinforcement learning, tabular data and audio.1

2 ADAPTIVE CATEGORICAL
DISCRETIZATION

2.1 ADACAT DISTRIBUTION

The ADACAT distribution is a particular subfamily of mix-
tures of uniform distributions where each mixture compo-
nent has non-overlapping support. A standard ADACAT
distribution ADACATk(w, h) has k components with a sup-
port over [0, 1). It is parameterized by two vectors in the
k-dimensional simplex: w, h ∈ ∆k−1. Thus, w and h are
normalized. w is additionally constrained to be non-zero in
all of its elements. The probability density function (PDF)
of an ADACAT distribution is defined as,

fw,h,k(x) =

k∑
i=1

{
I[ci≤x<ci+wi]

hi
wi

}
(1)

where ci =
∑i−1

j=1 wj is the prefix sum of the dimensions of
parameter w and I[·] is the indicator function.

Intuitively, wi captures the size of each discretized bin (sup-
port of each mixture component), hi captures the probability
mass assigned to each bin, and hi

wi
is the density contributed

by each bin.

2.2 RELATIONSHIP WITH UNIFORM AND
QUANTILE DISCRETIZATION

Connection to Uniform Discretization Generative mod-
els over ordinal data like PixelRNNs [Van Oord et al., 2016]
commonly divide the support of 1-D distributions into equal-
width bins, and share the same bins across all dimensions
of the data. This allows neural networks to parameterize the
distribution with a simple classification head that predicts a
categorical distribution over bins. ADACAT generalizes 1-D
categorical distributions with uniformly discretized support.
If w is set to be wi =

1
k ,∀i, the distribution is reduced to a

categorical distribution over {0, 1k ,
2
k , · · · ,

k−1
k } augmented

with a uniform noise of magnitude 1
k . Figure 2 shows how

1The code for reproducing the experiments in this paper is
available at github.com/ColinQiyangLi/AdaCat. Web-
site: colinqiyangli.github.io/adacat.
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ADACAT is more expressive than a uniformly discretized
categorical, allowing bin widths to vary and more closely
approximating the modes of a mixture of two Gaussians.

Connection to Quantile-based Discretization ADACAT
also generalizes quantile-based discretization, which dis-
cretizes a distribution’s support by binning data into groups
with equal numbers of observed data points. If h is set to
be hi = 1

k ,∀i, i.e. the same mass in every bin, the vector w
can be interpreted as the k-quantile of the distribution. This
strategy is employed by generative models like the Trajec-
tory Transformer [Janner et al., 2021], which pre-computes
and fixes the bin widths w separately for each dimension to
achieve equal mass 1

k per bin of the marginal distributions of
the training set, then predicts mass h with a neural network
based on observed dimensions.

2.3 AUTOREGRESSIVE PARAMETERIZATION

In problems with dimension greater than 1, we use deep
autoregressive models to factorize the joint density f(x)
into multiple 1-D conditional ADACAT distributions:

pθ(x) =

m∏
t=1

pθ(x
t|x<t) =

m∏
t=1

fwt,ht,k(x
t)

For each dimension, conditioned on observed or gener-
ated values of prior dimensions, the neural net gθ outputs
two unconstrained parameters {ϕt, ψt} = gθ(x

<t), where
ϕt, ψt ∈ Rk. The predicted ϕ and ψ represent the unnor-
malized log values for h and w for each dimension. These
parameters are normalized independently using a softmax
to satisfy the normalization and positivity constraints:

wt
i =

exp(ψt
i)∑k

j=1

[
exp(ψt

j)
] , hti =

exp(ϕti)∑k
j=1

[
exp(ϕtj)

] (2)

where ϕt = ϕθ(x
<t), ψt = ψθ(x

<t).

Unlike uniform, quantile-based, or heuristic discretization
strategies, our autoregressive model can adaptively choose
how to discretize each dimension’s conditional distribution
based on observations. Adaptivity improves expressiveness,
since density can be precisely localized in regions of inter-
est, and the discretization can vary across data dimensions.
This is especially important for problems where the opti-
mal discretization is not known a priori. In the 2-D dataset
shown in Figure 1, fixed discretizations poorly express the
inherent multimodality in the data, while ADACAT’s adap-
tivity allows the network to shift modes of pθ(x2|x1) for
different values of the first dimension, x1.

Figure 3: 1-D Toy Density Modeling: ADACAT optimized
with the non-smoothed objective (red) suffers from bin
collapse. The non-smoothed objective shrinks the size of
most bins until they are degenerate with small support in
order to increase density at the modes. In contrast, with the
smoothed objective (blue), ADACAT closely approximates
the target. The transparent curves show an evolution of the
learned density at different optimization iterations, with
more transparent ones being earlier in the optimization. The
code for reproducing this figure and an animated version are
available in the supplement.

3 OPTIMIZING WITH ANALYTIC
TARGET SMOOTHING

Autoregressive models with ADACAT conditionals can
be estimated by minimizing the Kullback–Leibler (KL)-
divergence between the target distribution and the learned
density DKL(pdata(x) ∥ pθ(x)). The KL reduces to the em-
pirical log-likelihood objective below, where x1, · · · , xn
are sampled from the data distribution pdata:

L̂ll =
1

n

n∑
d=1

m∑
t=1

log pθ(x
t
d|x<t

d ) (3)

However, due to the discontinuous nature of the ADACAT
density function, we observed that naïvely maximizing
the empirical log-likelihood encourages the model to get
trapped in poor local optima. This phenomenon is best illus-
trated in 1-D, as in Figure 3. The density in red is estimated
with maximum likelihood L̂ll (3), but the bin widths shrink
over the course of optimization and reach small values. Den-
sity is overestimated in between modes and underestimated
in regions where a single uniform mixture component needs
to cover a large interval.

We provide one possible explanation for bin collapse.
Rewriting the log-likelihood with ADACAT’s PDF (1) based



on a summation over bins i = 1 to k,

L̂ll =
1

n

n∑
d=1

m∑
t=1

log

k∑
i=1

{
I[cti≤x<cti+wt

i ]
hti
wt

i

}
︸ ︷︷ ︸

fwt,ht,k(x
t)

(4)

Due to the constraint that mixture components are non-
overlapping, only a single term of the inner summation is
non-zero in (4). The loss separates into terms for h and w,

L̂ll =
1

n

n∑
d=1

m∑
t=1

k∑
i=1

I[cti≤x<cti+wt
i ]
{
log hti − logwt

i

}
(5)

Maximizing the loss for data point xd pushes for higher
density ht

i

wt
i

when xtd lies in for bin i of the conditional

pθ(·|x<t
d ). This density is increased by either increasing log

mass log hti or decreasing log bin width logwi. For uniform
and heuristic discretizers, logwt

i is fixed. However, updating
the bin width wt

i with finite step sizes can make the data
point xtd move out of the current bin discontinuously, which
can result in biased gradient estimates (see the supplement
C.1).

The gradient d
dwt

i
L̂ll is also constant for any value of a sam-

ple within bin i as the density is piece-wise constant, so the
gradient encouraging bin collapse does not attenuate as the
sample approaches a bin boundary. Once a bin is updated
to exclude a particular data point, only the normalization
of wt encourages the bin to grow to include the data point
again, but we empirically find that this is not enough to
prevent collapse. Instead, optimization could shrink the new
bin wt

i+1 or wt
i−1, repeating until a majority of the mix-

ture components collapse to support a small fraction of the
overall interval.

Luckily, this issue can be largely alleviated by using a
smoothed objective:

L̂s =
1

n

n∑
d=1

m∑
t=1

Eζ(x̃|xt
d)

[
log pθ(x̃|x<t

d )
]

(6)

=
1

n

n∑
d=1

m∑
t=1

[∫
x̃

ζ(x̃|xtd) log pθ(x̃|x<t
d )dx̃

]
(7)

where ζ(x̃|x) is any smoothing density function that is cen-
tered around x. This smoothed objective can be interpreted
as the NLL objective under a smoothed data distribution
(by applying the smoothing function on top of the data).
We discuss this in more details in the supplement (Sec-
tion A). In practice, we find that both Uniform and Gaus-
sian distributions with mean x effectively prevent the bins
from collapsing, and use ζ(·|x) = Unif[x − λ

2 , x + λ
2 ) or

ζ(·|x) = N (x, λ2) in all experiments, truncating on the
boundaries of the support of x ∈ [0, 1). By optimizing L̂s

with uniform target smoothing, the density in blue in Figure
3 converges to a close approximation of the target density.

The smoothed objective might seem intractable with an
integral in the inner summation. Fortunately, the form of the
conditional log pθ(x̃|x<t

i ) with ADACAT’s simple density
function allows us to evaluate the integral analytically as
long as the smoothing density has an analytic cumulative
density function (CDF). If F (·) is the CDF of ζ, then the
integral can be analytically computed as:∫

x

ζ(x) log fw,h,k(x)dx

=

k∑
j=1

[(F (cj + pj)− F (cj))(log hj − logwj)]

(8)

where we recall that c is the prefix sum of w as defined
previously. Only the bins that intersect with the support of
the smoothing density function contribute to this objective.

3.1 RELATIONSHIP WITH DENOISING SCORE
MATCHING

Energy based models and denoising autoencoders trained by
denoising score matching (DSM, Vincent [2011]) minimize
a reconstruction objective:

LDSM(x) = Eζ(x̃|x) ∥x− x̂θ(x̃)∥22

Assuming the observation model pθ(·|x̃) = N (x̂θ(x̃), I) is
a standard Gaussian,

LDSM(x) = −Eζ(x̃|x) [log pθ(x|x̃)]

resembling (6). However, our target smoothed loss is de-
signed to regularize the output conditional distribution, so
perturbations are employed on the output space, not the
input space, and our generative model is conditioned on
clean, unperturbed observations. Recent works introduce
multi-scale perturbations [Song and Ermon, 2019], and de-
noising diffusion probabilistic models reweight a related
variational bound for this class of models to improve sample
quality [Ho et al., 2020].

3.2 RELATIONSHIP WITH DEQUANTIZATION

Other continuous density estimators like normalizing flows
trained on discrete data suffer from degenerate solutions if
trained naïvely via maximum likelihood (Ho et al. [2019],
Sec. 3.1). Flows suffer from a different failure case than
non-smoothed ADACAT. Continuous estimators, e.g., a mix-
ture of Dirac δ functions, can arbitrarily increase density
on discrete training data as the empirical distribution is sup-
ported on a set with measure zero. Dequantization avoids
the problem by adding continuous noise to observed discrete
samples [Theis et al., 2015, Hoogeboom et al., 2021]. As an



example, the following dequantized objective gives a lower
bound of the log-likelihood of discrete data sample x:

log pDQ
θ (x) = Eζ(x̃|x) log pθ(x̃) (9)

=

∫ x+λ

x

ζ(x̃|x) log pθ(x̃)dx̃

≤ log

∫ x+λ

x

ζ(x̃|x)pθ(x̃)dx̃ = logPθ(x),

where λ is chosen such that [x, x + λ) with different dis-
crete sample x do not overlap with each other. While (9)
closely resembles (7), it differs subtly in that dequantiza-
tion perturbs all dimensions of the data x, not just the 1-D
target, and that the integral is done via a stochastic sample
from ζ rather than analytically. We observe bin collapse
even on continuous data like the mixtures in Figures 2, 3,
and find that single-sample estimates of the expectation do
not prevent collapse. These findings suggest that analytic
target smoothing helps with the discontinuity in the model
conditional rather than a property of the data.

4 EVALUATION

In experiments, we evaluate the performance of autoregres-
sive density estimators with adaptive categorical conditional
distributions for several data modalities. We evaluate on stan-
dard benchmarks for real-world tabular data (Section 4.1),
image generation (4.2), speech synthesis (4.3) and offline
reinforcement learning (4.4). ADACAT outperforms uni-
form discretization strategies in all settings, and is competi-
tive with hand-engineered conditional distributions. Beyond
density estimation, our results suggest that ADACAT can
improve downstream task performance, including speech
quality and control.

4.1 TABULAR DATA MODELING

We compare the performance of autoregressive models with
ADACAT and uniform parameterizations on real-world tab-
ular density estimation benchmarks, the UCI datasets of
Dua and Graff [2017]. The state-of-the-art performances
on these benchmarks are also included for reference. We
use a 4-layer feed-forward network to predict the ADACAT
parameters for each dimension of the data (e.g., we use 6
MLPs for the POWER dataset since it has 6-dimensional
data). Each network has 500 hidden units for all datasets
except for GAS, where we use 1000 hidden units.

We also use a Fourier encoding of the input inspired by
Tancik et al. [2020], Kingma et al. [2021] to allow a shal-
low model to capture high-frequency variations in the in-
put. Specifically, we augment each input element xt with b
pairs of additional features: {sin(2jxt), cos(2jxt)}b−1

j=0. We
choose the feature count b = 32 for GAS and POWER,
b = 8 for MINIBOONE, and b = 4 for HEPMASS.

Figure 4: Test bits per dimension (bpd) on MNIST image
generation task with different output parameter count. The
parameter count is in log scale. The MNIST data is discrete
with 28 = 256 possible values for the intensity at each pixel.

The uniform baseline uses the same architecture except the
widths of the bins are forced to be uniform. We search over
the number of bins in {100, 200, 300, 500, 1000} for both
the uniform baseline and ADACAT and select the best to
report in the table. All models are trained for 400 epochs
using Adam [Kingma and Ba, 2014] with a learning rate of
0.0003 and the learning rate halves every 100 epochs. We
use truncated Gaussian target smoothing for ADACAT with
λ = 0.00001 for POWER, and λ = 0.0001 for all other
datasets. See more details in the supplement (Section B).

Table 1 reports results. Overall, ADACAT consistently out-
performs the uniform baseline across all datasets, reducing
the NLL by 1.9, 4.8, 3.1 and 4.0 nats on POWER, GAS,
HEPMASS and MINIBOONE, respectively. Our approach
also obtains competitive performance with the state-of-the-
art normalizing flow models on GAS.

4.2 IMAGE DENSITY ESTIMATION

Table 2 compares the performance of ADACAT against exist-
ing parameterizations on the grayscale MNIST [LeCun and
Cortes, 2010] image generation task in terms of negative log-
likelihood measured in bits/dimension. The autoregressive
architecture we use for this task is a GPT-like Transformer
decoder Vaswani et al. [2017] with 4 layers and 4 heads.2

Since the image data is discrete, instead of dequantizing
and smoothing the target, we directly minimize the cross
entropy loss in the original discrete space. We compute the
log probability of the ith discrete target by analytically com-

2We use the implementation, training pipeline, and the de-
fault training hyperparameters from github.com/karpathy/
minGPT, and treat an image as a token sequence with a vocabu-
lary size of 256. We also use a smaller batch size of 20. See more
details in the supplement (Section C.2).

https://github.com/karpathy/minGPT
github.com/karpathy/minGPT
https://github.com/karpathy/minGPT
github.com/karpathy/minGPT


Method POWER (m=6) GAS (m=8) HEPMASS (m=21) MINIBOONE (m=43)

MADE [Germain et al., 2015] 3.08 −3.56 20.98 15.59
MAF [Papamakarios et al., 2017] −0.24 −10.08 17.70 11.75
NAF-DDSF [Huang et al., 2018] −0.62 −11.96 15.09 8.86
TAN [Oliva et al., 2018] −0.48 −11.19 15.12 11.01
FFJORD [Grathwohl et al., 2019] −0.46 −8.59 14.92 10.43
Block NAF [De Cao et al., 2020] −0.61 −12.06 14.71 8.95
DDEs [Bigdeli et al., 2020] −0.97 −9.73 11.3 6.94
nMDMA [Gilboa et al., 2021] −1.78 −8.43 18.0 18.6

Uniform Discretization 1.34 −6.29 21.37 16.93
ADACAT −0.56 −11.27 18.17 14.14

Table 1: (Tabular Data) Test negative log-likelihood for density estimation on UCI datasets [Dua and Graff, 2017]. We
followed the same data pre-processing pipeline as in Papamakarios et al. [2017]. ADACAT achieves competitive performance
on GAS and consistently outperforms the uniform baseline.

Parameters Uniform Adaptive
Quantile DMoL AdaCat

512 N/A × 0.761 0.561
256 0.561 × 0.698 0.573
216 0.838 × 0.704 0.615
180 1.061 × 0.684 0.629
152 1.299 × 0.776 0.612
128 1.490 × 0.700 0.608
64 2.453 × 0.720 0.695
32 3.392 1.276 0.715 0.793

Best 0.561 1.276 0.715 0.561

Table 2: (Image Generation) Test negative log-likelihood in
bits per dimension (bpd) on MNIST image generation task
with different output parameter count. ADACAToutperforms
other baselines on most parameter counts. The adaptive
quantile baseline diverges with a parameter count higher
than 32, indicated by ×.

puting the total probability mass assigned to
[

i
256 ,

i+1
256

]
in

our continuous distribution, i.e. density integrated over the
interval. This corresponds to mapping our continuous distri-
bution from [0, 1] to the 256 discrete values uniformly such
that the ith discrete value is mapped from

[
i

256 ,
i+1
256

]
.

The results are grouped according to the number of parame-
ters used to express the intensity distribution of each pixel,
allowing us to examine the parameter efficiency of each
approach. For the uniform baseline, we evenly divide the
[0, 1] intensity interval into k bins and use k parameters
to model the probability assigned to each bin (with unnor-
malized log probability). DMoL uses 3k parameters for a
k-component mixture model (e.g., a 256 parameter count
budget for DMoL corresponds to a 86-component mixture
model). ADACAT uses 2k parameters for a k-component
mixture model, using k bins of variable size. We examine
parameter counts ranging from 32 to 512.

Overall, ADACAT has better performance on most param-

eter counts. It only underperforms the uniform discretiza-
tion at 256 parameters. We note that the MNIST dataset
is discrete with 256 classes, which means that the uniform
discretization has the optimal bin division. Therefore, we
do not expect ADACAT to be able to outperform uniform
because ADACAT has effectively half of the bins available.
DMoL achieves the best performance when there are 32 pa-
rameters, but scales poorly with the number of components
and underperforms ADACAT for most settings with more
than 32 parameters.

We also experiment with an adaptive quantile baseline where
we keep the probability mass assigned to each bin to be the
same rather than the width. However, we found that the
adaptive quantile baseline is very unstable to train. We only
report its result on a parameter count of 32 because the
model at a higher parameter count often diverges early in
training which results in inconsistent performances across
runs. The adaptive quantile baseline outperforms uniform
with 32 parameters, yet is still much less expressive than
ADACAT.

4.3 AUDIO DENSITY ESTIMATION AND
VOCODING

Neural vocoders synthesize human-like speech expressed as
a waveform, conditioned on phonetic or frequency spectrum
based features. Speech waveforms are long sequences as
audio must be sampled at a high rate for fidelity, typically 16-
24 kHz. Thus, efficient generative models are essential for
practical applications, and the output layer of the network
can be a significant fraction of the compute. WaveNet [Oord
et al., 2016] is a popular autoregressive vocoder that synthe-
sizes waveforms conditioned on a Mel-spectrogram repre-
sentation of the amplitude of audio frequencies across mul-
tiple bands. Despite the conditioning information, vocoding
is challenging as WaveNet needs to reconstruct the phase
of the audio frequencies. This is done by estimating the
distribution of audio in a dataset via maximum likelihood.



Conditional dist. Transform Parameters NLL (raw) ↓ NLL (µ-law 256) ↓ MCD ↓

Gaussian – 2 −8.39 ± 0.11 −4.78 ± 0.08 3.08 ± 0.02

Uniform Categorical – 30 −3.78 ± 0.01 0.63 ± 0.01 –
Uniform Categorical µ-law 30 −7.71 ± 0.07 −3.32 ± 0.03 17.00 ± 0.49
DMoL, 10 components – 30 −8.45 ± 0.11 −4.84 ± 0.09 3.00 ± 0.01
Adaptive Cat. (ADACAT) – 30 −8.30 ± 0.16 −3.88 ± 0.10 4.87 ± 0.04

Uniform Categorical – 256 −6.28 ± 0.04 −0.85 ± 0.04 –
Uniform Categorical µ-law 256 −8.76 ± 0.10 −4.38 ± 0.07 3.25 ± 0.01

DMoL, 85 components – 255† −8.46 ± 0.11 −4.85 ± 0.09 3.01 ± 0.01
Adaptive Cat. (ADACAT) – 256 −8.37 ± 0.10 −3.99 ± 0.07 3.02 ± 0.03

Uniform Categorical – 512 −6.92 ± 0.05 −1.44 ± 0.05 –
Uniform Categorical µ-law 512 −8.12 ± 0.10 −3.73 ± 0.07 1.99 ± 0.01

DMoL, 171 components – 513† −8.46 ± 0.11 −4.85 ± 0.09 3.07 ± 0.01
Adaptive Cat. (ADACAT) – 512 −8.33 ± 0.11 −3.94 ± 0.08 2.29 ± 0.02

Table 3: (Audio vocoding) Continuous negative log-likelihood (NLL, in bits/dim) and waveform vocoding MCD error for
WaveNet with different parameterizations of conditional distributions on the LJSpeech dataset. †Discretized Mixture of
Logistics (DMoL) requires 3 parameters per mixture component (weight, mean and log scale), so output parameters are
approximately matched to baselines.

We train WaveNet with the standard dilated CNN architec-
ture on the open LJSpeech dataset [Ito and Johnson, 2017] of
wav files using an open-source implementation. A ground-
truth Mel-spectrogram is extracted and used for conditioning
WaveNet. For baselines, we use different parameterizations
of the conditional distribution: a uniformly discretized cat-
egorical, a categorical discretized by a hand-engineered
µ-law strategy that sets bin widths logarithmically with in-
tensity, and a discretized mixture of logistics. All models
use 24 convolutional layers and are optimized for 500k iter-
ations with Adam. The learning rate is initially 0.001 and is
decayed by half every 200k iterations, with batch size 8. An
exponential moving average of model parameters is used
for testing. Audio is sampled at 22,050 Hz and windowed
into blocks of 1024 samples.

We evaluate the continuous negative log-likelihood (NLL) of
test waveforms. NLL is measured in bits/dimension with the
waveform scaled to a [−1, 1] amplitude. We also measure
the NLL of µ-law transformed data with µ = 256, which is
also scaled to [−1, 1].

Following Chen et al. [2021], the Mel Cepstral Distance
(MCD) objectively quantifies the perceptual similarity of our
synthesized audio and reference audio based on an aligned
mean squared error metric [Kubichek, 1993]. Samples from
the uniformly discretized model led to numerical instabil-
ities in the open-source library used to compute the MCD
metric and have clear auditory artifacts, so the MCD metric
is omitted.

Table 3 shows results grouped by the number of parameters
output by WaveNet for each conditional. Note that ADA-
CAT has half the bins of categorical baselines at the same
parameter count due to using two parameter vectors, w and

h. Across all settings, ADACAT achieves significantly better
negative log-likelihood than uniform discretization: 4.52
bpd lower NLL with 30 output parameters, 2.09 bpd with
256 parameters, and 1.41 bpd with 512 parameters.

ADACAT is also competitive with hand-engineered quanti-
zation in the µ-law intensity space, despite not having prior
knowledge about humans’ logarithmic perception of sound
intensity, and without DMoL’s instabilities. Still, well-tuned
µ-law and DMoL strategies perform well, so the main ad-
vantage of ADACAT in the audio domain is capturing most
of their performance without human-provided inductive bias.
ADACAT and the µ-law transform are complementary, and
could be used in concert by learning an adaptive discretiza-
tion of the heuristically transformed interval.

4.4 MODEL-BASED OFFLINE REINFORCEMENT
LEARNING

ADACAT’s parameterization can also be adopted in the dy-
namics model of a model-based planner for reinforcement
learning tasks. We tested our parameterization with Tra-
jectory Transformer [Janner et al., 2021], a recent work
in model-based offline RL that uses a Transformer-based
architecture to learn the dynamics model of an environ-
ment from a dataset offline, and then uses the model to plan
online to produce actions for RL agents. The original Tra-
jectory Transformer architecture discretizes each dimension
of states and actions into tokens and uses a one-hot em-
bedding to encode them, similar to how a language model
handles vocabulary. Since our discretization is done adap-
tively with context dependency, continuous inputs are more
informative.



Dataset Uniform Quantile AdaCat

HalfCheetah-Medium 44.0 ±0.31 46.9 ±0.4 47.8 ±0.22

Hopper-Medium 67.4 ±2.9 61.1 ±3.6 69.2 ±4.5

Walker2d-Medium 81.3 ±2.1 79.0 ±2.8 79.3 ±0.8

Table 4: (Offline reinforcement learning) Normalized
scores on three D4RL locomotion (v2) tasks [Fu et al.,
2020] using Trajectory Transformer [Janner et al., 2021]
with three different discretization methods. ADACAT param-
eterization performs on par with or better than the uniform
and quantile methods used in the original paper. Both mean
and standard error over 15 random seeds (5 independently
trained Transformers and 3 trajectories per Transformer) are
reported, following the protocol in the original paper.

Thus, we minimally modify the architecture by replacing
the one-hot embedding layer with a linear layer that takes
in a scalar input and outputs its embedding. This modifica-
tion arguably loses some capacity since it has many fewer
parameters than the original architecture. Yet, as we show
in our experiments, the gain from the flexibility of our pa-
rameterization outweighs the potential capacity reduction.
We also reduce the number of bins by a factor of 2 to match
the parameter size of the output layer since ADACAT re-
quires 2× more parameters than uniform and non-adaptive
quantile-based discretization. We use uniform smoothing
with a smoothing coefficient of λ = 0.001 for the target
smoothing objective. We also keep the planning hyperpa-
rameters the same as the original work for a fair comparison
(except for one hyperparameter on action sampling). See
more details on other minor differences between our training
and planning procedure compared to the original training
and planning procedure in the supplement (Section C.3).

Table 4 shows the performance of the RL agent on three
D4RL datasets [Fu et al., 2020] under ADACAT’s parame-
terization and two discrete parameterizations used by Jan-
ner et al. [2021]. ADACAT performs better than or on par
with the uniform and quantile parameterizations used in
the original paper, improving return by 2.9% and 5.2% on
average, respectively. This demonstrates its effectiveness in
accurately modeling continuous data, and the downstream
benefits of more expressive discretization.

5 RELATED WORK

Adaptive Discretization The idea of adaptive discretiza-
tion has found tremendous applications in different fields
such as reinforcement learning [Chow and Tsitsiklis, 1991],
finite element analysis [Liszka and Orkisz, 1980] and com-
puter graphics [Jevans and Wyvill, 1988]. We bring this
powerful idea into density modeling by introducing ADA-
CAT. Unlike most existing works on discretization that rely
on heuristics and prior knowledge of the data domain [Tang

and Agrawal, 2020, Ghasemipour et al., 2021], ADACAT
can be jointly optimized with the rest of the network param-
eters and learns to adaptively discretize. Bhat et al. [2021]
(AdaBins) is closest to our work. Though the idea is similar,
AdaBins is different from ADACAT in several important as-
pects. AdaBins parameterizes the bin widths directly while
ADACAT parameterizes the unnormalized log bin widths.
AdaBins uses additional regularization loss that encourages
the bin centers to be close to the data while ADACAT does
not need any additional regularization. AdaBins is primarily
used in depth prediction in vision, whereas our work focuses
on generative modeling across multiple domains.

Efficient softmax Language models often have vocab-
ulary sizes of 10k-100k tokens. Computing the softmax
normalizer for such a large vocabulary can be expensive, mo-
tivating more efficient softmax variants, surveyed by Ruder
[2016]. Hierarchical softmax [Morin and Bengio, 2005] is
one variant that groups tokens in a tree structure, and does
not rely on data being ordinal. However, unlike ADACAT,
hierarchical softmax groups a fixed, discrete vocabulary,
rather than supporting continuous intervals.

Image density estimation Until recently [Kingma et al.,
2021], autoregressive models were the-state-of-the-art on
image density estimation benchmarks, and are still widely
used. Order agnostic models Uria et al. [2014] improve the
flexibility of autoregressive models in downstream tasks
like inpainting and outpainting [Jain et al., 2020], but do not
change the form of the conditional distribution.

Audio synthesis Likelihood-based models are popular
in text-to-speech. Efficiency is a key concern, motivating
parameter-efficient conditional distributions. Paine et al.
[2016] cache intermediate WaveNet activations for im-
proved speed, and Oord et al. [2018] distill WaveNet into a
parallel flow. Tacotron [Wang et al., 2017] performed end-
to-end speech synthesis from text with a WaveNet vocoder,
so our work can be applied to text-to-speech (TTS) sys-
tems. Other approaches include Flow-based models, diffu-
sion [Kong et al., 2021, Chen et al., 2021] and GANs [Ku-
mar et al., 2019].

6 LIMITATIONS

One fundamental limitation of ADACAT is that it can never
model more modes than the number of bins. One possible
solution is to add flow steps [Dinh et al., 2016, Rezende
and Mohamed, 2015] to transform the space and run the au-
toregressive model with ADACAT in the transformed space.
It is possible that using ADACAT in a transformed or la-
tent space can lead to a more parameter-efficient way of
modeling continuous distributions.

Another limitation of ADACAT is that the parameterization



is discontinuous, with more discontinuities as the number
of bins increases. We largely resolved the issue using target
smoothing. It is possible to use non-uniform density within
each bin like spline parameterizations [Durkan et al., 2019],
but our preliminary experiments suggested that these are
challenging to optimize in practice.

7 CONCLUSION

Likelihood-based autoregressive generative models can esti-
mate complex distributions of high-dimensional real-world
data, but often struggle with efficiency and can be difficult
to expressively parameterize on continuous data. In this pa-
per, we presented ADACAT, a flexible, efficient, multimodal
parameterization of 1-D conditionals with applications in
autoregressive models. We demonstrated the effectiveness
of ADACAT on a diverse set of tasks: image generation,
tabular density estimation, audio vocoding and model-based
planning. ADACAT improves density estimation and down-
stream task performance over uniform discretization, and is
competitive with other hand-engineered discretizers.
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