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Abstract

Mutual information (MI) is a general measure of statistical dependence with
widespread application across the sciences. However, estimating MI between multi-
dimensional variables is challenging because the number of samples necessary
to converge to an accurate estimate scales unfavorably with dimensionality. In
practice, existing techniques can reliably estimate MI in up to tens of dimensions,
but fail in higher dimensions, where sufficient sample sizes are infeasible. Here,
we explore the idea that underlying low-dimensional structure in high-dimensional
data can be exploited to faithfully approximate MI in high-dimensional settings
with realistic sample sizes. We develop a method that we call latent MI (LMI)
approximation, which applies a nonparametric MI estimator to low-dimensional
representations learned by a simple, theoretically-motivated model architecture.
Using several benchmarks, we show that unlike existing techniques, LMI can
approximate MI well for variables with > 103 dimensions if their dependence
structure is captured by low-dimensional representations. Finally, we showcase
LMI on two open problems in biology. First, we approximate MI between protein
language model (pLM) representations of interacting proteins, and find that pLMs
encode non-trivial information about protein-protein interactions. Second, we
quantify cell fate information contained in single-cell RNA-seq (scRNA-seq) mea-
surements of hematopoietic stem cells, and find a sharp transition during neutrophil
differentiation when fate information captured by scRNA-seq increases dramati-
cally. An implementation of LMI is available at latentmi.readthedocs.io.

1 Introduction

Mutual information is a universal dependence measure which has been used to describe relationships
between variables in a wide variety of complex systems: developing embryos [1], artificial neural
networks [2], flocks of birds [3], and more. Its widespread use can be attributed to at least two of its
appealing properties: equitability and interpretability.

Many dependence measures are inequitable, meaning that they are biased toward relationships of
specific forms [4]. For example, Pearson correlations quantify the strength of linear relationships,
and Spearman correlations quantify the strength of monotonic relationships. Inequitability can be
particularly problematic for complex systems, where relationships can be nonlinear, non-monotonic,
or involve higher-order interactions between multidimensional variables [5]. Mutual information
(MI) stands out as an equitable measure that can capture relationships of any form, and generalizes
across continuous, discrete, and multidimensional variables [6]. And when scaled consistently, MI
provides a universal currency in interpretable units – which can be understood as the number of ‘bits’
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of information shared between variables [7]. MI can also be interpreted through decomposition into
pointwise mutual information (pMI) [8, 9], which attributes dependence to specific pairs of values.

MI can be defined as the Kullback-Leibler divergence, DKL, of a joint distribution from the product
of its marginals. For absolutely continuous random variables X,Y defined over X ,Y , with joint
distribution PXY and marginal distributions PX , PY

I(X;Y ) = DKL(PXY ||PX ⊗ PY ) =

∫
X

∫
Y
PXY (x, y) log

PXY (x, y)

PX(x)PY (y)
dydx (1)

In practice, PXY is often unknown, and I(X;Y ) must be estimated from observations {(xi, yi)}
that sparsely sample PXY . While nonparametric MI estimators have been remarkably successful
for variables with a single dimension [10, 11, 12, 13], MI estimation for high-dimensional variables
remains a significant challenge. Nonparametric MI estimation suffers from the curse of dimensionality
– accurate estimation requires a number of samples that scales exponentially with the dimensionality
of the variables [14].

An exciting recent approach to scaling MI estimates to high dimension is the use of variational bounds
on KL divergence to reduce the MI estimation problem to a gradient descent optimization problem
[15, 16]. MI estimators based on variational bounds indeed empirically perform well for data with
ones to tens of dimensions [12], but still suffer from the curse of dimensionality [14], and can exhibit
high variance [16, 17]. To our knowledge, no techniques have been shown to reliably estimate MI in
practice for variables with hundreds or thousands of dimensions – a regime relevant to many fields,
including genomics, neuroscience, ecology, and machine learning [18, 19, 5, 20].

More generally, it has been shown that no technique can accurately estimate MI from finite samples
without making strong assumptions about the distribution from which samples are drawn [21],
resulting in a fundamental tension between the theoretical appeal of MI and the practical difficulty
of its estimation. One way to resolve this tension is to develop alternative measures of statistical
dependence [14, 22], which retain desirable properties of MI, but are tractable to estimate. Sliced
MI, which is the average of MI estimates on random low-dimensional linear projections (“slices”)
of high-dimensional data, is a notable example of such an approach [14, 23]. While sliced MI is
useful for many problems [24, 25], it does not retain the interpretability (in bits) of classical MI, and
is inequitable, as it quantifies information that can be extracted through linear projections [14].

Here, we take a complementary approach to sliced measures. Rather than considering alternatives to
classical MI, we ask if it is possible to make strong, yet reasonable, assumptions about data which
enable tractable MI estimation. In this work, we consider the empirically supported assumption that
complex systems have underlying low-dimensional structure [5]. The usefulness of this assumption
relies on our ability to identify low-dimensional structure in data. We will explore methods for
learning low-dimensional representations which are useful for MI estimation and highlight examples
where the methods can still fail.

Specifically, we propose latent mutual information (LMI) approximation, which applies a non-
parametric MI estimator to mutually informative compressed representations of high-dimensional
variables. To learn such representations, we design a simple neural network architecture motivated
by information-theoretic principles. We demonstrate, using synthetic multivariate Gaussian data,
that LMI approximation can be stable for variables reaching thousands of dimensions, provided
their dependence has low-dimensional structure. We then introduce an approach for resampling real
data to generate benchmark datasets of two high-dimensional variables where ground truth mutual
information is known. Using this approach, we evaluate the ability of LMI to capture statistical
dependence in two types of real data: images and protein sequence embeddings. Finally, we apply
LMI to two open problems in biology: quantifying interaction information in protein language model
embeddings, and quantifying cell fate information in the gene expression of stem cells.

2 Approach

Our goal is to approximate MI from high-dimensional data using low-dimensional representations
which capture dependence structure. Our specific approach is to use neural networks to map variables
X,Y to low-dimensional representations Zx, Zy. Then, we use the well-established nonparametric
MI estimator introduced in [10] to estimate Î(Zx;Zy).
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Figure 1: Workflow of latent MI approximation a) Embed high-dimensional data in low-
dimensional space such that mutually informative structure is preserved. b) The KSG estimator [10]
is used to estimate MI by averaging over pointwise MI (pMI) contributions.

The central challenge here is to learn Zx, Zy such that Î(Zx;Zy) ≈ I(X;Y ). One sensible approach
would be to use autoencoders [26] or other popular nonlinear dimensionality reduction techniques [27,
28] to compress each variable separately. While such an approach could yield a good approximation
if compression is perfectly lossless, it can result in a poor approximation if compression is lossy. An
illustrative example is two variables each with thousands of independent dimensions but a single pair
of strongly dependent dimensions – two separate lossy compressions are unlikely to preserve the rare
dependent components.

We can make this intuition precise using properties of entropy and MI [7]. For simplicity, let us
consider an approximation using only one compressed variable, Zy = f(Y ). By rewriting MI in
terms of differential entropy, denoted h, we see that for absolutely continuous X,Y with finite
differential entropy,

I(X;Y )− I(X;Zy) = h(X)− h(X|Y )− h(X) + h(X|Zy) = h(X|Zy)− h(X|Y ) (2)

In the case of lossless compression, h(X|Zy) = h(X|Y ), so

I(X;Y )− I(X;Zy) = h(X|Zy)− h(X|Y ) = 0 (3)

However, if compression does not perfectly preserve information, it is possible that h(X|Zy) ≫
h(X|Y ). Since h(X|Y ) is intrinsic to the data and independent of learned representations, minimiz-
ing h(X|Zy) is equivalent to minimizing I(X;Y )− I(X;Zy). This points to an approach to learn
representations suitable for approximating I(X;Y ): regularizing a pair of autoencoders to learn
compressed representations Zx = f(X) and Zy = g(Y ) while minimizing h(X|Zy) and h(Y |Zx).

Because directly minimizing conditional entropies is intractable, we instead minimize a convenient
proxy, which is the mean-squared error (MSE) loss of networks that predict one variable from another.
The connection between conditional entropy and reconstruction loss has long been appreciated as a
way to interpret autoencoders through an information-theoretic lens [29, 30]. Here, we observe that
this connection can be applied to learn representations which lend themselves to MI estimation. We
explicitly show that minimizing cross-prediction loss from Zx to Y is equivalent to minimizing an
upper bound on the conditional entropy h(Y |Zx) in Appendix A.1.1, Theorem 1.

Applying cross-predictive regularization to a pair of autoencoders results in a network architecture
(Fig. 1) with one encoder for each variable and four decoders which reconstruct each variable from
each latent code. We train the networks by minimizing the sum of the MSE reconstruction loss for
each decoder. More precisely, for variables X,Y with dimensionality dX , dY , we optimize encoders
EX , EY , and decoders DXX , DXY , DY Y , DY X to minimize LAEC = LAE + LC , where

LAE =
1

dX
E[||X −DXX(EX(X))||22] +

1

dY
E[||Y −DY Y (EY (Y ))||22] (4)

LC =
1

dX
E[||X −DY X(EY (Y ))||22] +

1

dY
E[||Y −DXY (EX(X))||22] (5)
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This is not the only way one could regularize autoencoders to preserve mutually informative structure.
We design and empirically characterize some alternatives in Appendix A.2. We find that multiple
regularization approaches can be effective, but cross-prediction comes with unique benefits. For
example cross-predictive networks can be dissected to attribute high-dimensional MI estimates to
specific dimensions, as demonstrated in Appendix A.2.3.

While the specific architecture of encoders and decoders could be carefully chosen for each estima-
tion problem (e.g. convolutional layers for image data), here we use multilayer perceptrons with
a priori determined hidden layer sizes for all problems. This is intentional: a useful MI estimator
should not need extensive parameter selection. Every LMI estimate shown in this paper (exclud-
ing Appendix and Section 3.3) uses the default parameters of our library, equivalent to running
lmi.estimate(X_samples,Y_samples).

To ensure that optimizing based on cross-reconstruction does not introduce spurious dependence due
to overfitting, we learn representations and estimate MI on different subsets of the data. That is, for
N joint samples, we train the network using a subset of N/2 samples, then estimate MI by applying
the estimator of [10] to latent representations of the remaining N/2 samples. A high-level overview
of an MI estimate using LMI approximation is given in Algorithm 1.

We also state and prove some basic properties of LMI approximation in Appendix 1.3, Theorems 2
and 3, namely that I(Zx;Zy) ≤ I(X;Y ), and that I(Zx;Zy) = 0 if I(X;Y ) = 0.

Algorithm 1 Estimating MI using LMI Approximation

Require: N joint samples {(xi, yi)}Ni=1 of random variables X,Y
Require: Encoders EX , EY , decoders DXX , . . . , DY Y parameterized by θ1, . . . , θ6

randomly split into two subsets of N/2 samples, Dtrain,Dest
optimize θ1, . . . , θ6 to minimize LAEC on Dtrain

encode Dest using E1, E2, θ1, θ2, yielding {(Zx
i , Z

y
i )}

N/2
i=1

return ÎKSG({(Zx
i , Z

y
i )}

N/2
i=1 )

3 Empirical evaluation

Next, we empirically study the effectiveness of LMI approximation with 16 dimensional latent space
(8 dimensions per variable), in comparison with three popular estimators: the nonparametric estimator
from [10], referred to as KSG, and the variational bound estimators from [15, 31] referred to as MINE
and InfoNCE, respectively (implementation details in Appendix A4).

3.1 Evaluating mutual information estimators on synthetic data

We first consider the problem of MI estimation between multivariate Gaussian distributions, because
ground truth MI can be analytically computed, and dimensionality can be easily tuned. We consider
the scalability of MI estimators with increasing dimensionality of two kinds: the ambient dimension-
ality of the data, denoted d, and the intrinsic dimensionality of the dependence structure, denoted
k. We benchmark the performance of estimators in the regime of high ambient dimensionality and
low intrinsic dimensionality. Specifically, we consider variables with d = 10 to d = 5 · 103 ambient
dimensions and k = 1 to k = 9 dimensional dependence structure.

To generate samples from two d-dimensional random variables X,Y with k-dimensional dependence
structure, we sample multivariate Gaussians with a covariance matrix of a prescribed from. In
particular, we enforce pairwise correlation ρ between k components of each variable, with redundant
duplicate components as well as independent components constituting the remain d− k dimensions.
I(X;Y ) can then be easily computed analytically from the covariance matrix. The exact sampling
procedure we use for these experiments is given in Appendix A.3.1, Algorithm 4.

Results of benchmarking MI estimators using these synthetic datasets are given in Fig. 2. For
estimates from N = 2 · 103 samples, we find that, as expected, the performance of existing estimators
degrades with d, with near complete failure for d > 100 (Fig. 2a-c, 2f-h.). In contrast, applying
LMI approximation results in stable estimates up to d = 5 · 103 ambient dimensions (Fig. 2d,
2i). The faithfulness of LMI approximation instead degrades with increasing k. Nonetheless, LMI
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Figure 2: MI estimator performance scaling with increasing dimensionality. a) - d) Absolute
accuracy measured by mean-squared error over 10 estimates per setting, with ground truth MI between
0 and 2 bits, and 2 · 103 samples per estimate (1:1 training split for neural network-based estimators).
e) Estimator with highest absolute accuracy in each setting. Ties broken randomly. f) - i) Relative
accuracy measured by Kendall τ rank correlation of estimates with ground truth. j) Estimator with
highest relative accuracy in each setting. Ties broken randomly.

approximation gives more absolutely and relatively accurate MI estimates than alternatives for 83%
and 87% of tested settings respectively (Fig. 2e, 2j). We also find that these benchmarking results
remain qualitatively similar for multivariate Gaussian data after various MI-preserving transformations
(Appendix A.3.4), similar to the benchmarking approach of [12].

3.1.1 Empirically quantifying convergence rates of MI estimators on synthetic data

The principle enabling the scalability of LMI approximation is that the number of samples it requires
to converge is limited by k rather than d when k ≪ d. We empirically demonstrate this by quantifying
the convergence rates of MI estimators on the synthetic Gaussian datasets described above. We
generate datasets with sample numbers inN ∈ [102, 104], and ambient dimensionalities in d ∈ [1, 50],
each with a single correlated dimension between variables (k = 1), and 1 bit MI. For each estimator
and each ambient dimensionality d, we empirically determine the number of samples required to
achieve |I(X,Y )− Î(X,Y )| < ϵ bits, with linear interpolation between tested sample numbers.

As expected, methods that do not explicitly learn low-dimensional representations (InfoNCE, MINE,
KSG) require increasing numbers of samples to estimate MI with error below ϵ = 0.1 (Fig. 3a). KSG
fails to estimate MI for d ≥ 13 for any N , while MINE and InfoNCE scale slightly better, failing for
d ≥ 25 and d ≥ 37 respectively. In contrast, the sample requirements of LMI remain qualitatively
stable – no more than 4 · 103 samples are necessary for an accurate estimate.

While the convergence behavior of LMI is mostly unaffected by varying d, it is sensitive to varying
k. When the same experiment is performed with increasing numbers of correlated dimensions at
the limit where k = d, the convergence behavior of LMI is no longer favored over other estimators
(Fig. 3c). The performance of all estimators dramatically decreases with k, such that a larger error
tolerance must be chosen for informative convergence estimates. The dependence of variational
bound estimator convergence on k is, to our knowledge, not explained by existing theory [16, 32]. In
the intermediate case of k = ⌊0.1 · d⌋ (Fig. 3b), we find that LMI convergence is fast with low k, but
becomes slow as k grows, nonetheless remaining favorable compared to other estimators.

3.2 Evaluating mutual information estimators on resampled real-world data

While the empirical results on multivariate Gaussians are reassuring, they are not representative of
performance on real data, where low intrinsic dimensionality is not known a priori, and distributions
can be non-Gaussian. To better understand the behavior of LMI in more realistic settings, we
introduce a technique for creating benchmark datasets by resampling real-world data. Briefly, we
use correspondences between discrete labels and complex data (i.e. digit labels and digit images in
MNIST) to transform simple discrete distributions into realistic high-dimensional distributions. A
similar approach is explored in a concurrent benchmarking study [33].

Specifically, we draw samples from a bivariate Bernoulli vector, L = [Lx, Ly] ∈ {0, 1}2 with
prescribed pairwise correlation Cor(Lx, Ly) = ρ, where each value corresponds to a discrete label
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Figure 3: Number of samples required to achieve |I(X,Y )− Î(X,Y )| < ϵ. a) Data with low-rank
dependence structure, with ϵ = 0.1. b) Moderate-rank dependence structure, with ϵ = 0.2. c)
Full-rank dependence structure, with ϵ = 0.4. “+” marker indicates that N > 104 samples are
required for accurate estimates for all larger d. Ground truth MI is 1 bit in all cases.

of a set of samples in a high-dimensional dataset (e.g. 0 and 1 correspond to images of 0s and 1s in
MNIST). For each sample of L, we replace each component with a random (without replacement)
high-dimensional sample matching the label. For the example of MNIST, this transforms samples
from L into pairs of images of 0s and 1s, represented as samples of random vectors X,Y ∈ R784.

Under the assumption that discrete labels can be uniquely identified by high-dimensional vectors, high-
dimensional MI is identical to the discrete label MI. That is, assuming H(Lx|X) = H(Ly|Y ) = 0
then I(X;Y ) = I(Lx;Ly) (shown in Appendix A.3.2, Theorem 4). And using our knowledge of ρ,
I(Lx;Ly) can be analytically computed.

We resample two different source datasets: (1) “binary” subset of MNIST, containing only images
of 0s and 1s, with 5000 samples and 784 dimensions and (2) embeddings of a subset of protein
sequences from E. coli and A. thaliana proteins, with 4402 samples and 1024 dimensions. For both
source datasets, we validate the I(Lx;Ly) ≈ I(X;Y ) approximation in Appendix A.3.3.

For each source dataset, we generate 200 benchmark datasets with true MI ranging from 0 to 1 bits.
We estimate MI on each dataset with each estimator (Fig. 4a, 4b), and quantify absolute accuracy
(MSE), relative accuracy (rank correlation with ground truth), and runtime for each estimator (Fig.
4c). For both types of source data, we find that variational bound estimators have high variance, in
line with previous observations [16]. On protein embedding datasets, variational estimators nearly
always fail to estimate nonzero values – resulting in a rank correlation below 0 for InfoNCE. The
KSG estimator, while achieving high relative accuracy, systematically underestimates MI, resulting
in low absolute accuracy. Furthermore, the amount by which it underestimates true MI is different
between the two datasets – indicating inequitability. In contrast, LMI approximation yields estimates
consistently close to the ground truth, with high relative and absolute accuracy.

3.3 Constructing and studying problems where LMI fails

While LMI performs well on a diverse set of benchmarks, it is not infallible. LMI can fail when (1)
its representations do not capture dependence structure, or (2) when KSG fails to accurately estimate
MI in latent space. Because the limitations of KSG are well-studied [34], here we focus on failure
mode (1) and identify problems where LMI learns representations which result in poor MI estimates.

LMI trivially fails to learn useful representations when the dimensionality of the latent space is too
small to capture the dependence structure of the variables (e.g. in Fig. 3c). This limitation can
be partially overcome by evaluating LMI with a latent space large enough to capture dependence
structure, however a priori knowledge of the appropriate embedding dimension is rarely possible.
One heuristic approach (Appendix A.5.2) is to make estimates with several latent space sizes, and
choose the size which maximizes the estimate.

LMI accuracy can also degrade when MSE cross-prediction loss fails to constrain latent represen-
tations, reducing the LMI model to a pair of independent autoencoders. This can happen when
certain symmetries are present in the data, such as variables X,Y for which E[X|Y ] = E[X] and
I(X;Y ) ≥ 0, two examples of which are shown in Fig. 5a. For such variables, the MSE-minimizing
predictor of X becomes independent of Y , and cross-prediction loss no longer has a useful regu-
larization effect. In these cases, if independent autoencoders are insufficient to capture dependence
structure, LMI will fail to accurately estimate MI.
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Figure 4: Performance of MI estimators on resampled real datasets. a) Estimates on resampled
pairs of MNIST digits, with 5 · 103 samples and 784 dimensions. b) Estimates on resampled pairs
of ProtTrans5 sequence embeddings, with 4.4 · 103 samples and 1024 dimensions. c) Statistics of
estimator accuracy and runtime (in seconds), for each dataset type.

Figure 5: Constructing problems where LMI fails. a) Examples of symmetric distributions where
E[X|Y ] = E[X]. b) MI estimates from 103 samples of symmetric variables as exclusive (independent
normal) dimensions are added. Ideal estimators are invariant. LMI latent space is 1D per variable.

We construct a benchmark to illustrate this limitation and understand if other estimators suffer from
the same limitation in practice. In brief, we generate samples from variables with a single pair of
symmetric dimensions and increasing numbers of independently normally distributed dimensions.
The exact sampling procedure is given in Appendix A.3.5. An ideal estimator should not vary with the
number of independent dimensions as true MI is invariant. In the case with no independent dimensions,
we expect LMI to be accurate up to the limitations of KSG because independent autoencoders are
sufficient to learn mutually informative representations. As the number of independent dimensions
increases, LMI estimates should quickly degrade.

As anticipated, LMI estimates implemented with an MSE cross-prediction regularization decay
quickly (Fig. 5b). However, this behavior is not unique to LMI: all studied estimators decay to near 0
with fewer than 10 dimensions. In this dimensionality, MINE and InfoNCE typically perform well
[12], so their failure is not due merely to the dimensionality of the problem but also due to the nature
of the distributions. The estimators do not agree even in the 1D case without independent dimensions,
suggesting that symmetric distributions may be generally problematic for MI estimation, similar to
long-tailed distributions [12].

Because this failure of LMI specifically arises from an artifact of the MSE loss, one might conclude
avoiding MSE cross-prediction regularization may be sufficient to improve LMI estimation. We
explore this possibility in Appendix A.2.4.

4 Applications

4.1 Quantifying interaction information in protein language model embeddings

Pretrained protein language models (pLMs) have recently seen widespread use, largely due to their
convenient representations of protein sequences (vectors in RN , typically with N ≈ 103) which
can be used for transfer learning on downstream tasks [35, 36, 37]. While it is known that pLM
sequence embeddings contain significant information about protein structure [38], it is not clear how
well existing pLMs encode functional information. Recent work has shown that pLMs fail to capture
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Figure 6: Quantifying dependence between participants of protein interactions. a) - b) MI
estimates between interaction partners, compared to randomly permuted data. c) - d) ROC curves
of density ratio classifier distinguishing annotated interacting pairs from unannotated “negative”
samples, for all pairs of 170 held-out proteins. Averages over 20 random hold-out splits.

some important functional properties, such as thermostability [39]. It remains unclear the extent to
which pLM embeddings contain information about protein-protein interactions, which are essential to
protein function. Here, we use an information-theoretic approach to quantify interaction information
contained in 1024-dimensional sequence embeddings from the ProtTrans5 model [36].

We study two types of protein-protein interactions: kinase-target and ligand-receptor interactions. For
both, the OmniPath database [40] contains lists of thousands of annotated pairs of interacting proteins.
We consider each annotated pair to be a sample from a joint “interaction” distribution over pairs of
sequence embeddings. For example, for kinase-target interactions, we consider kinase and target
sequence embeddings as random variables K ∈ R1024, T ∈ R1024, with joint distribution PKT (k, t).
Then, using joint samples {(k1, t1), . . . , (kN , tN )} we estimate mutual information between interac-
tion partners, I(K;T ). We analogously estimate I(L;R) for ligand-receptor interactions.

If pLM embeddings capture interaction information, MI between interaction partners should be
significantly above 0 bits. Applying LMI approximation, we estimate I(L;R) ≈ 2.8 bits and
I(K;T ) ≈ 0.8 bits. To test the significance of these values, we estimated MI from shuffled data,
and found Ishuff(K;T ) ≈ Ishuff(L;R) ≈ 0 (both mean and standard deviation < 0.05), across
20 random shuffles. These results indicate that pLM embeddings contain information about both
types of interactions, and contain more information about ligand-receptor interactions than kinase-
target interactions. In contrast, existing estimators yield far lower estimates, with MINE estimates
indicating independence for both types of interactions (Fig. 6a, 6b). To validate the LMI estimates of
dependence, we next operationally verify the presence of interaction information.

If protein-protein interactions can be predicted for a set of held-out proteins based on sequence
embeddings, then sequence embeddings must contain interaction information. To see if this is the
case, we extend LMI to predict protein interactions from sequence embeddings. For ligand-receptor
prediction, our goal is to predict whether a held-out pair of sequence embeddings (l, r) is an annotated
ligand-receptor pair. One way to do this is estimating the log density ratio log PLR(l,r)

PL(l)·PR(r) , and setting
a threshold above which sequence pairs are predicted to be annotated interactions.

We make a simple modification to the KSG estimator to yield the desired density ratio estimates
(given in Algorithm 2), and use these estimates (with latent approximation) to predict interaction
annotations. For 20 different random splits of 170 held out proteins, we use density ratio estimates
to classify all 2.89 · 104 pairs of held out proteins as interacting or non-interacting. The receiver
operating characteristic (ROC) curves for predictions of both interaction types are shown in Fig. 6c,
6d, with mean AUC-ROC scores of 0.87 and 0.74 for ligand-receptor and kinase-target interactions
respectively. These results demonstrate that protein interactions can be predicted better than random
chance using ProtTrans5 embeddings, suggesting that pLM embeddings capture information about
kinase-target and ligand-receptor interactions. And in line with the LMI estimates, ligand-receptor
interactions are better predicted than kinase-target interactions.

8



Algorithm 2 k-nearest neighbor log density ratio estimator

Require: joint samples {(xi, yi)}Ni=1
Require: query point (qx, qy)

let (rx, ry)← k-th nearest neighbor sample of (qx, qy) in joint space (default k = 3)
\\ compute Chebyshev distance
let d← ||(qx, qy)− (rx, ry)||∞
let nx ← 0, ny ← 0
\\ count neighbors within d in marginal spaces
for each (xi, yi) do

if ||qx − xi||∞ < d then
nx += 1

end if
if ||qy − yi||∞ < d then

ny += 1
end if

end for
\\ return estimate of log p(qx,qy)

p(qx)p(qy)

return ψ(k) + ψ(N)− ψ(nx)− ψ(ny), where ψ is Digamma function

4.2 Identifying cell fate information in hematopoietic stem cells

Single cell RNA sequencing (scRNA-seq) measures the expression of g ≈ 104 genes in single cells,
which can be thought of samples of a gene expression state variable X ∈ Rg. These samples can
be used to infer a probability distribution over gene expression states, PX . To study the dynamics
of gene expression, one approach is to make measurements at multiple timepoints t1, ...tN , which
can be thought of as samples of random variables Xi ∈ Rg. Lineage tracing is a technique where
clonally related cells can be labelled with barcodes, allowing sampled cells from different timepoints
to be matched with their “twins” from another. When combined with scRNA-seq, lineage tracing can
be thought to provide samples from the joint distribution PX1,...,XN

[41].

One fundamental question about cellular dynamics is whether the time evolution of gene expression
state is dependent entirely on the current gene expression state. That is, if the “fate” of a cell can be
formally modeled as a Markov chain Xi → Xi+1. In some cases, cell behavior may be a function of
hidden variables resulting in non-Markovian dynamics. Using the data processing inequality (DPI)
[7], we know that if gene expression dynamics are Markovian, I(Xi;Xi+1) ≥ I(Xi;Xi+2), and if
the DPI does not hold, then gene expression states are non-Markovian. This can, in principle, be tested
using samples from the joint distribution PX1,..,XN

. Due to the difficulty of high-dimensional MI
estimation, previous work has used heuristic alternatives to indirectly test the Markovian assumption
for lineage-traced scRNA-seq (LT-seq) data [42]. Here, we will use LMI to explicitly estimate
high-dimensional MI from LT-seq data, and test the Markovian assumption for gene expression states.

We study a previously published LT-seq data set of in vitro differentiating mouse hematopoietic stem
cells [42]. The dataset includes sister cells which are separated at day 2 of the experiment and allowed
to differentiate in separate wells until day 6, with cell states sampled on both days 2 and 6. Under
the Markovian assumption, this can be modeled as X2 → X6, X2 → X6′ , where X6′ is the state of
the cells on day 6 in the second well. By the DPI we should have I(X2;X6) ≥ I(X6;X6′). Using
LMI, we estimate that I(X2;X6) ≈ 0.31± 0.02 bits and I(X6;X6′) ≈ 0.98± 0.01 bits (mean ±
SEM), over 20 random pairings of clonally related cells. This indicates that gene expression states
are non-Markovian, in line with prior findings [42, 43].

Cell fate information manifests in transcriptomes sometime between days 2 and 6. By decomposing
LMI estimates into pointwise contributions (Appendix A.4.3, Algorithm 5), we can determine
precisely when this hidden information emerges. Generally, we see that pMI increases along
differentiation trajectories (Fig. 7b). Along the neutrophil trajectory, we quantatively compare cell
fate information with neutrophil pseudotime computed by graph smoothing [42], and find that pMI
begins to rapidly increase around pseudotime value of 35 · 103, which is roughly aligned with the
transition from granulocyte-myeloid progenitor to promyelocyte, as defined in [42].
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Figure 7: Quantifying cell fate information in single cell transcriptomes. a) 2D SPRING embed-
ding [44] of lineage-traced single cell RNA-sequencing data from [42]. b) Pointwise decomposition
of MI between sister cells across timepoints, as estimated using LMI. Hue applied to early timepoint
cells, late timepoint and unbarcoded cells in grey. Star indicates neutrophil pseudotime value 35 · 103.
c) Smoothed pMI (rolling average over 100 cells) across neutrophil differentiation trajectory. Vertical
line denotes neutrophil pseudotime value 35 · 103.

5 Discussion

In this paper, we tested the hypothesis that low-dimensional structure can enable scalable estimation
of MI from high-dimensional data. We introduced LMI approximation, which applies a nonparametric
MI estimator to low-dimensional representations learned by neural networks. We quantified the
effectiveness of LMI approximation, using multiple approaches spanning over 3000 benchmark
datasets. Our results suggest that, unlike existing techniques, LMI approximation is generally
effective for high-dimensional data with low-dimensional structure, even if the number of available
samples remains relatively low – a regime where many real datasets reside [5].

We used LMI to study two open problems in biology. We show one example where LMI enables
the use of information-theoretic ideas to study the dynamics of gene expression. In the original
study [44], the authors had indeed wished to estimate MI but were unable to do so and resorted to
heuristic approaches. LMI may similarly help identify dependence in cellular dynamics in other
systems [43, 45, 46]. In a different subfield of biology, we showed an example of using LMI to
quantify functional information learned by pLMs. Our results suggest that nontrivial protein-protein
interaction information is learned by ProtTrans5, motivating the development of interaction prediction
tools based on pLMs. As the number of large pLMs grows [35, 37, 47, 36], information-theoretic
approaches using LMI could help benchmark models.

Limitations The most prominent limitation of LMI follows directly from its motivating assumption:
it will fail to quantify dependence not captured by the learned representations. As a result, it is
easy to design synthetic datasets on which LMI will fail (see Fig. 3c). However, it is likely that
many real datasets (beyond those explored in this paper) will be amenable to LMI approximation, as
there is strong evidence that complex systems generally have low intrinsic dimensionality [5]. Our
implementation of LMI approximation also inherits some limitations of the KSG estimator, notably
that it fails for strongly dependent (near deterministically related) variables [32, 34]. To overcome
this, it may be possible to apply previously developed corrections [34]. Finally, despite reassuring
empirical results, few theoretical properties of LMI have been derived. This is an important line of
future work, which could help precisely identify settings where LMI approximation is effective.

Broader impacts MI estimators have been used to quantify moral and legal fairness [25, 48, 49].
LMI approximation is not universally faithful, and more generally no MI estimator can be universally
accurate [32]. MI estimates must be interpreted with great care when applied to human lives. The
experiments (and pilot iterations) in this paper were performed on a single NVIDIA RTX 3090, and
resulted in estimated 45.36 kg CO2eq. Estimates made using [50].

Code availability The code necessary to reproduce all results from this paper are available at
https://github.com/ggdna/latent-mutual-information. The lmi Python package can be
found at https://github.com/ggdna/latentmi, and its documentation is hosted at https:
//latentmi.readthedocs.io.
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A Appendix / supplemental material

In this appendix, we first elaborate on the theory and implementation details of the LMI approximation.
Then, we will discuss some alternative approaches one could use to implement the LMI approximation.
Then, in Appendix A.3., we describe the details, assumptions, and motivations of our empirical
evaluation benchmarks. In Appendix A.4., we provide details relevant to reproducibility – specifically,
our implementations of existing estimators and data preprocessing methods (all of which are also
included in our code supplement). Finally, we discuss the problem of choosing an appropriate latent
space size for LMI models.

A.1 Theory and implementation of LMI

A.1.1 Theoretically motivating the cross-predictive representation learning architecture

The core theoretical underpinning of the network architecture used in the LMI approximation is that
cross-predictive mean-squared loss is a proxy of conditional entropy. Here, we explicitly show this.

Theorem 1. Let X = [X1, . . . , Xd] and Z = [Z1, . . . , Zk] be absolutely continuous random vectors
in Rd and Rk respectively with finite differential entropy. Let fθ : Rk → Rd be a function (a neural
network parameterized by θ) to estimate X̂ = fθ(Z). For any θ,

h(X|Z) ≤ α+
1

2
logMSE(X̂,X) (6)

where α is a positive constant and MSE(X̂,X) = 1
d

∑
i E[(Xi − X̂i)

2]

Proof. From the chain rule for differential entropy, we can bound

h(X|Z) ≤
∑
i

h(Xi|Z) (7)

Because the maximum entropy distribution with fixed variance is Gaussian [7], we can bound

∑
i

h(Xi|Z) ≤
∑
i

1

2
log(2πe Var(Xi|Z)) (8)

=
∑
i

1

2
log(2πe E

[
(Xi − E[Xi|Z])2

]
) (9)

Because the expectation of a random variable is its best estimator, [7]

∑
i

1

2
log(2πe E

[
(Xi − E[Xi|Z])2

]
) ≤

∑
i

1

2
log(2πe E

[
(Xi − X̂i

)2
]) (10)

So with positive constant α,

h(X|Z) ≤ α+
1

2
logMSE(X̂,X) (11)

In LMI, Z corresponds to the latent representation of one input variable (Y ), and f corresponds to
the decoder which aims to reconstruct the other variable X from the latent code Z.This result is very
similar to some used in information-theoretic interpretations of autoencoders [29, 30], and can be
thought of as a continuous analog of Fano’s inequality [7]. The d = k = 1 case of this bound is given
as a Corollary to Theorem 8.6.6 in [7].

15



A.1.2 Implementation of the representation learning architecture

There are many ways one could implement the high-level network architecture suggested by Theorem
1, with different encoder and decoder architectures, and choices of hyperparameters. Here, we will
describe our design choices. Our motivating philosophy was that the implementation details should
not need to be tuned for specific estimation problems.

All LMI estimates presented in the main text use programatically determined parameters, requiring no
user input beyond joint samples. By default, all latent representations have 16 dimensions (8 for each
variable). Each encoder and decoder is a multilayer perceptron (MLP) with three hidden layers, whose
sizes are determined as a function of the dimensionality of the input variable. For a variable with
dimensionality d, the encoder has hidden layer sizes L,L/2, L/4 with L = max(2⌊log2(d)⌋, 1024).
Decoders have the same structure inverted, with hidden layer sizes L/4, L/2, L.

All MLP activations used are Leaky ReLUs, with negative slope 0.2, except the last layers of decoders,
which have no activation. Cross-decoders are trained with 50% dropout after each activation layer.
All weights are initialized using Xavier uniform initialization [51], and optimized using Adam, with
hyperparameters listed in Table 1. They are trained with batch size of 512, with 1 : 1 train-validation
splits, and a maximum of 300 epochs using early stopping procedure provided in Algorithm 3.

All models are implemented in Pytorch [52]. All experiments in this paper were done using a single
NVIDIA RTX 3090.

Parameter Value
Learning rate (α) 10−4

β1 0.9
β2 0.999

Epsilon (ϵ) 10−7

Table 1: Adam optimizer parameters used in LMI.

Algorithm 3 Early Stopping

procedure EARLYSTOPPING(model, validation_losses, patience = 30)
best_loss←∞
patience_counter← 0
best_model← None
while patience_counter < patience do

current_loss← validation_loss(model)
if current_loss < best_loss then

best_loss← current_loss
patience_counter← 0
best_model← model

else
patience_counter← patience_counter + 1

end if
end while
return best_loss, best_model

end procedure

A.1.3 Theoretical properties of LMI approximation

The error of MI estimates using LMI approximation can be broadly attributed to two sources: error
due to the representation approximation (i.e. |I(X;Y )− I(Zx;Zy)|), and classical MI estimation
error (i.e. |ÎKSG(Zx;Zy) − I(Zx;Zy)|). Here, we will explore the first source by deriving some
basic properties of the representation approximation I(Zx;Zy).

Theorem 2. LetX,Y be random vectors in Rd and Zx = fθ(X), Zy = gϕ(Y ) where f, g are neural
networks parameterized by θ, ϕ. For any θ, ϕ,
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I(Zx;Zy) ≤ I(X;Y ) (12)

Proof. Because Zy = fθ(Y ), we have that X → Y → Zy form a Markov chain. From the data
processing inequality, [7]

I(X;Y ) ≥ I(X;Zy) (13)

Similarly, we have Zy → X → Zx, and

I(X;Y ) ≥ I(X;Zy) ≥ I(Zx;Zy) (14)

Theorem 3. Let X,Y be independent random vectors in Rd, such that I(X;Y ) = 0. Let Zx =
fθ(X), Zy = gϕ(Y ) where f, g are neural networks parameterized by θ, ϕ. For any θ, ϕ,

I(Zx;Zy) = 0 (15)

Proof. Due to the nonnegativity of mutual information, we know

I(Zx;Zy) ≥ 0 (16)

From Theorem 2, we have

I(Zx;Zy) ≤ I(X;Y ) = 0 (17)

So,

0 ≤ I(Zx;Zy) ≤ 0 (18)

I(Zx;Zy) = 0 (19)
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(a) Absolute error, measured by MSE. (b) Relative error, measured by Kendall τ .

Figure 8: Experiment from Figure 2, with alternate regularization approaches.

A.2 Alternate approaches to latent MI approximation

The broad goal of LMI, to estimate I(X;Y ) using I(Zy;Zx) where Zx, Zy are low-dimensional
representations, is quite general and could be approached in many ways beyond cross-predictive regu-
larization. Next, we will discuss some alternative approaches, empirically explore their performance,
and finally, show one unique advantage of the cross-predictive representation learning architectures.

A.2.1 Alternate methods of regularizing autoencoders for MI estimation

Another approach to learn Zx, Zy such that Î(Zx;Zy) ≈ I(X;Y ) is to regularize autoencoders to
maximize I(Zx;Zy). This approach is sensible because the data processing inequality ensures that
I(Zx;Zy) ≤ I(X;Y ). So maximizing I(Zx;Zy) is equivalent to minimizing the approximation
error I(X;Y )− I(Zx;Zy).

While maximizing directly I(Zx;Zy) is intractable, we can build on the variational bounds explored
in [15, 31]. We can add loss term LMINE(Zx;Zy) or LInfoNCE(Zx;Zy) to our autoencoder loss
functions to regularize latent codes to preserve mutually informative structure.

We implement both of these approaches, and benchmark them using the approach described in Figure
2 and Section 3.1. We find that the estimates from these regularization approaches perform similarly,
but slightly more poorly, than the cross-predictive regularization.

A.2.2 Comparing latent nonparametric and latent variational MI estimation

After learning low-dimensional representations, there are multiple estimators that could be used for
latent MI approximation. This appendix evaluates two methods: the KSG nonparametric estimator
or the InfoNCE variational estimator. Nonparametric nearest-neighbor estimators have several
advantages in low-dimensional settings: they generally require far fewer samples for accurate
estimation [12], and yield pointwise mutual information decompositions (see Algorithm 5).

18



Figure 9: Convergence of multiple latent estimation approaches during training. Bold lines indicate
averages over 100 trials. Ground truth is 1 bit MI.

Figure 10: Pixel-wise reconstruction error of cross-decoders in paired binary MNIST dataset where
Lx = Ly .

For completeness, we empirically compare both options here on one particular estimate. For a
Gaussian dataset generated by Algorithm 4 with d = 100, k = 1, N = 5 · 103 and 1 bit MI, we train
autoencoders regularized by InfoNCE loss to maximize I(Zx;Zy). After each training epoch, we
measure LMI as estimated using latent KSG, and using latent InfoNCE. Both are plotted for 100 trials
in Fig. 9. The latent KSG estimation converges quickly to the true value, while the latent InfoNCE
estimate converges somewhat slowly to a value below the ground truth.

A.2.3 Interpreting decoders with element-wise reconstruction error

Beyond performance differences, one benefit of using cross-predictive networks to regularize latent
representations is that the cross-decoders themselves are useful. For example, by inspecting the
dimension-wise reconstruction error of decoders, we can attribute an MI estimate to the predictability
of certain dimensions. For a network trained on the “binary” MNIST dataset with Lx = Ly,
visualizing the dimension-wise reconstruction error of a cross-predictive decoder reveals the pixels
that contain information about digit identity (Fig. 10).

Pixels with low reconstruction error are likely to be “well-explained” by the other high-dimensional
variable, while pixels with high reconstruction error are poorly explained. However, this reasoning is
not universally applicable. Dimensions with no variation do not contribute to MI, but have very low
reconstruction error. In Fig. 10, the outermost pixels are examples of this.

A.2.4 Effect of regularization on failure for symmetric and exclusive variables

Because the failure to preserve MI specifically arises from distributions with symmetry under MSE
loss, one might conclude avoiding cross-prediction loss may be sufficient to improve LMI estimation.
Indeed, we demonstrate this for two models, LMI-MINE and LMI-InfoNCE, described in Appendix
A.2.1, which are regularized by maximizing a variational lower bound on I(Zx;Zy) rather than
cross-prediction. In our Gaussian benchmark, we found these regularizations to be less effective than
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Figure 11: a) Examples of symmetric distributions where E[X|Y ] = E[X]. b) MI estimates from
103 samples of symmetric variables as exclusive dimensions are added (increasing non-mutual
information). Ideal estimators are invariant. All LMI latent spaces are 1 dimension per variable.
LMI-MINE and LMI-InfoNCE denote alternately regularized LMI models.

cross-prediction: performance decayed more quickly with increasing intrinsic dimensions (Fig. 11).
Here, however, these alternate models perform better than LMI, although ultimately they still fail
with 8 exclusive dimensions. Many practical data sets may not suffer from the symmetries considered
here, but these failure modes are nonetheless instructive in clarifying how choices made in learning
latent representations may drive loss of MI. In practice, if one suspects that their data may have
structure not captured by MSE cross-prediction loss (e.g. symmetries), the benchmarking results
suggest that it may be advisable to use one of the alternate regularization methods. In our software
library, this is simple to do, e.g. lmi(X, Y, regularizer="models.AEMINE").

20



A.3 Details of experimental evaluation benchmarks

In this section, we will describe the details of our experimental evaluation benchmarks from Section
3. First, we will describe how we generate multivariate Gaussian datasets. Then, we will provide
theoretical and empirical validation for the cluster-based benchmarking approach.

A.3.1 Generating multivariate Gaussian datasets with low-dimensional dependence structure

The algorithm used to sample multivariate Gaussians in Figure 2 is given in Algorithm 4. Briefly, we
generate samples of k correlated dimensions by sampling k bivariate Gaussians. We then complete
the remaining d−k ambient dimensions using half “redundant” dimensions (copies of the k correlated
dimensions) and half “nuisance” dimensions (independent univariate Gaussians).

Algorithm 4 Generating multivariate Gaussian datasets with low-dimensional dependence structure

Require: ambient dimensionality d
Require: dependence structure dimensionality k
Require: number of nuisance dimensions n (default (d− k)/2)
Require: number of samples N
Require: ground truth MI b

\\ Compute cov matrix to yield dependence b
let ρ←

√
6 ∗ 3.5 ∗

√
1− 2−2b/k

let Σ← [[6, ρ], [ρ, 3/5]]
\\ Sample bivariate Gaussians for k dependent dimensions
for i in 1..k do

let Xi, Yi ← N samples from N (0,Σ)
end for
\\ Duplicate random dimensions for redundant dimensions
for i in 1..(d− (k + n)) do

let r ← unif([1..k])
let Xi+k, Yi+k ← Xr, Yr

end for
\\ Sample univariate Gaussians for nuisance dimensions
for i in 0..(n− 1) do let Xd−i ← N samples from N (0, 1) let Yd−i ← N samples from N (0, 1)
end for
return [X1,...Xd], [Y1,...Yd]

A.3.2 Theoretical justification for label MI approximation of high-dimensional MI

For the benchmarking setup described in Section 3.2, we have Ly → Lx → X and Lx → Ly → Y .
We will show that I(X;Y ) = I(Lx;Ly) under the condition that H(Lx|X) = H(Ly|Y ) = 0.

Theorem 4. Let Lx, Ly be Bernoulli random variables. Let X,Y be absolutely continuous random
vectors in RN such that I(Lx;Y |Ly) = I(Ly;X|Lx) = 0 and H(Lx|X) = H(Ly|Y ) = 0. Then,

I(X;Y ) = I(Lx;Ly) (20)

Proof. Due to conditional independence,

I(Lx;Ly) = I(Lx;Ly) + I(Lx;Y |Ly) (21)

Using the chain rule for mutual information [7],

I(Lx;Ly) = I(Lx;Ly) + I(Lx;Y |Ly) = I(Lx;Y ) + I(Lx;Ly|Y ) (22)

Applying the chain rule again,

I(Lx;Ly) = I(Lx;Y ) + I(Lx;Ly|Y ) = I(X;Y ) + I(Lx;Y |X) + I(Lx;Ly|Y ) (23)
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(a) UMAP of binary MNIST subset. (b) UMAP of proteome subsets.

Figure 12: Validating assumptions of cluster-based benchmarking, by visualizing separation of
clusters.

Due to the non-negativity of mutual information we have

I(Lx;Ly) ≥ I(X;Y ) (24)

Because Lx, Ly are discrete, we can bound

I(Lx;Ly) ≤ I(X;Y ) +H(Lx|X) +H(Ly|Y ) (25)

So if H(Lx|X) = H(Ly|Y ) = 0, we have

I(Lx;Ly) ≤ I(X;Y ) (26)

Combining this with (24), we have

I(X;Y ) = I(Lx;Ly) (27)

A.3.3 Validating the assumptions of cluster-based benchmarking setups

The effectiveness of the benchmarking setup in Section 3.2 relies on the assumption that H(Lx|X) ≈
H(Ly|Y ) ≈ 0. We provide evidence that this is the case for MNIST 0s and 1s, and sequence
embeddings of E. Coli and A. Thaliana proteins. First, we provide qualitative evidence by showing
that label clusters (digits and species respectively) are well separated on UMAP visualizations of
each dataset (Fig. 12). This indicates that the label of a sample can be reliably determined from its
high-dimensional representation (such that H(Lx|X) ≈ 0). We make this notion more quantitatively
precise by showing that logistic regression can predict the labels of held-out samples with high
accuracy. Over 100 random 1 : 1 train-test splits, logistic regression achieves mean validation
accuracy > 0.98 with standard error of mean < 10−3 for both datasets. Logistic regression classifiers
are trained with L2 penalty and λ = 1.

A.3.4 Synthetic multivariate Gaussian benchmarking with nonlinear transformations

It is known that benchmarking MI estimators on Gaussian synthetic data has many shortcomings
[12]. In addition to addressing this with the resampling-based benchmarking approch in Section 3.2,
we also perform a subset of the multivariate Gaussian benchmarks after data has been nonlinearly
transformed.
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Figure 13: Performance (measured as MSE) on subset of multivariate Gaussian benchmark after non-
linear transformations (defined in [12]). All estimation problems are with 1000 ambient dimensions.

Rather than using the exact tasks from [12], we have developed complementary high-dimensional
benchmarks by applying some of the transforms proposed in [12] to our multivariate Gaussians from
Fig. 2. This allows us to create versions of the existing Fig. 2 with “half-cube”, “asinh”, and “uniform
marginal” distributions (as defined in [12]). We explore only the most challenging settings from Fig.
2: those with 1000 ambient dimensions and 1-9 intrinsic dimensions. We find that LMI performance
is qualitatively similar, though not identical, for untransformed data and all three transformations
(Fig. 13).

A.3.5 Sampling procedure for symmetric and exclusive variables

To sample from symmetric and exclusive variables (section 3.3, Fig. 5), we concatenate independent
normally distributed dimensions to symmetric variables. Below, we give the procedure for sampling
from symmetric variables.

Noisy circle For each sample, an angle θ is drawn uniformly from the interval [0, 2π]. For each
angle, the corresponding x- and y-coordinates of each sample are x = cos(θ)+ϵx and y = sin(θ)+ϵy ,
where ϵx and ϵy are independently sampled from a uniform distribution in the range [−0.25, 0.25].
This results in points approximately lying on the circumference of a unit circle, with random noise.

Gaussian mixture We sample from a two component Gaussian mixture, with each component

having equal weight and covariance matrices
[
1 0.9
0.9 1

]
, and

[
1 −0.9
−0.9 1

]
and both with mean

µ = 0.
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Figure 14: Variational bound estimators with increasing critic complexity, evaluated on multivariate
Gaussians with 1-dimensional dependence structure. Each estimation problem has 5 · 103 samples
and ground truth MI of 1 bit.

A.4 Experimental reproducibility details

Here, we will briefly summarize key details necessary for the reproduction of experiments in this
paper. All of this information, and more details, can be found (albeit in a less easily readable form) in
our code supplement.

A.4.1 Preprocessing ProtTrans5 embeddings

We downloaded ProtTrans5 embeddings of all H. sapiens, A. thaliana, and E. coli proteins directly
from the UniProt database. Embeddings are from prottrans_t5_xl_u50 [36]. All proteins longer
than 12 · 103 residues are excluded. These embeddings are then unit variance normalized, and values
are clipped at 10 and -10.

A.4.2 Preprocessing hematopoiesis lineage tracing scRNA-seq data

We first downloaded all data from Experiment 1 of the data repository from [42]. Then, we prepro-
cessed using the Scanpy best practices [53], normalizing total reads per cell to 104, log transforming,
filtering for the 103 most highly variable genes, and finally unit variance normalizing and clipping
values at 10 and -10. We used the inferred diffusion pseudotime and SPRING embeddings computed
in [42]. For pseudotime analysis, we omit cells with pseudotime value below 104, because many
are Lymphoid-fated rather than Neutrophil-fated. To generate joint samples of clones between two
conditions, we identified all clonal barcodes that appeared in both conditions, and randomly sampled
a single cell with each barcode from each condition. Because there are often several cells with the
same clonal barcode in the same sample, there are many possible random pairings of clonally related
cells.

A.4.3 MINE and InfoNCE implementation details

We use the implementations of MINE and InfoNCE from [12], with their default parameter choices.
To summarize, architectures have two hidden layers with sizes (16, 8) and are optimized using Adam.

Choosing critic architectures Because the benchmark tasks of [12] are dramatically different
from those considered in this work (tens of dimensions as opposed to thousands), we consider the
possibility that the parameters of MINE and InfoNCE used in [12] are not suitable for our use case.

To determine if other critic architectures could be more suitable, we first tested two layer architectures
with layer sizes (L,L/2) for various L from 16 to 1024 on multivariate Gaussian data sets. We
considered variables with dimensions 10, 100, and 1000, with 1 bit MI, 1-dimensional dependence
structure, and 5 · 103 samples. We find that increasing L does not improve estimation quality, and the
architecture used by [12] indeed is optimal for all three tested settings (Fig. 14). We suspect that this
is because increasing model complexity does not help when sample size remains small.

On the MNIST benchmarking setup, we verify that the effectiveness of LMI estimation over MINE
and InfoNCE are not merely from model complexity, by using critics with the same complexity as
the LMI encoders. In line with the hypothesis that large critic architectures are not suitable for the
small sample size regime, we find that with high complexity critics, MINE and InfoNCE fail entirely
on the MNIST benchmark (Fig. 15).
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Figure 15: MNIST benchmarking for neural estimators with critic complexity equivalent to LMI
encoders, over 20 datasets with true MI between 0 and 1.

A.4.4 KSG implementation details for pointwise decompositions

We implement KSG with k = 3 nearest neighbors. For protein interaction data, due to large sample
numbers resulting in high computational cost, we obtain KSG estimates by averaging over estimates
on batches of data containing 103 samples.

We slightly adjust the KSG estimator to yield pointwise mutual information estimates. While the
original KSG estimator [10] takes a sample expectation over computed pointwise mutual information
values, we simply return an array of pointwise estimates rather than the average. For completeness,
the algorithm is given in Algorithm 5.

Algorithm 5 KSG estimator for pointwise estimates

Require: joint samples {(xi, yi)}Ni=1
Require: parameter k (default k = 3)

let pmis← [ ]
for each (xi, yi) do

find k-th nearest neighbor in joint space (xk, yk)
compute Chebyshev distance d = ||(xk, yk)− (xi, yi)||∞
let nx ← 0, ny ← 0
for each (xj , yj) do

if ||xj − xi||∞ < d then
nx += 1

end if
if ||yj − yi||∞ < d then

ny += 1
end if

end for
pmis.append( ψ(k) + ψ(N)− ψ(nx)− ψ(ny) )

end for
return pmis
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A.5 Choosing appropriate latent space size

All estimates in the main text of this paper is made with 8 latent dimensions per variable. Without
optimizing this parameter, we find that LMI performs reasonably well compared to other estimators
on diverse benchmarks and real-world problems. However, the choice of 8 latent dimensions per
variable is somewhat arbitrary, and certainly not optimal for most estimation problems. Here, we
outline some principles for how one might choose a more optimal number of latent dimensions.

A.5.1 General principles for choosing latent space size

Intuitively, there is a tradeoff which arises when changing latent space size. As the latent space
gets larger, the capacity of the compressed representation increases, and we might expect that
representation quality increases (with the caveat that representation quality can be limited by sample
sparsity). However, as the latent space gets larger, MI estimation in latent space becomes more
difficult, due to the curse of dimensionality for nonparametric MI estimators [14]. As such, the
ideal choice is the smallest possible latent space size which captures the dependence structure of the
variables. In practice, this size can be difficult to determine in a rigorous way. Instead, we suggest a
heuristic approach.

A.5.2 Heuristic approach to choosing latent space size

From Theorem 2, a simple extension of the data processing inequality, we know that I(Zx;Zy) ≤
I(X;Y ). With the caveat that the inequality is not guaranteed to hold for the estimated Î(Zx;Zy),
we can reason that the parameter choices that maximize Î(Zx;Zy) are likely ideal. As such, one
sensible way to choose a latent space size is to try several, and use that which yields the largest
estimate.

As an example, let us consider multivariate Gaussian data with 4-dimensional dependence structure,
in 1000D ambient space, with ground truth MI of 1 bit, and 5 · 103 samples (generated analogously to
Figure 2). The most accurate estimate comes from LMI with optimal choice of 4 latent dimensions,
but all tested choices (including the 2D latent space which cannot fully capture dependence) improve
over MINE and InfoNCE. If we use the heuristic approach, we would choose the optimal latent space
size. If we had arbitrarily chosen 8, we would be within 5% of the “optimal” 4 latent dimension
estimate.

LMI-2 LMI-4 LMI-6 LMI-8 MINE InfoNCE
Estimate 0.295732 0.719762 0.670632 0.686974 -0.000001 -0.001417

Table 2: LMI estimates with varying latent space size, with k dimensions per variable denoted
as LMI-k. Data is multivariate Gaussian, generated as in Figure 2, with d = 103, k = 4, and
N = 5 · 103.

26



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The results stated in the abstract and introduction are summaries of the
experimental results shown in Sections 3 and 4 (figures 2-6).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: There is a subsection of the Discussion dedicated to limitations of the LMI
approach. These limitations are considered throughout the paper. For instance, in the
abstract, we highlight the necessity of low dimensional intrinsic dependence structure.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Assumptions about distributions (such as absolute continuity, finite entropies)
are specified in theoretical analysis (Theorems 1-4).
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Key details necessary to reproduce the experimental results are given in the
appendix. All experiments can be reproduced using the supplementary code. It is carefully
annotated to match each result in the paper to a specific Jupyter notebook.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: As stated before, all experiments can be reproduced using the supplementary
code. It is carefully annotated to match each result in the paper to a specific Jupyter notebook.
The code reproducibility “best practices” were followed.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All training and test details are provided in the Appendix sections on imple-
mentation, and can be found in the supplementary code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report SEMs and standard deviations in the text when relevant and feasible.
No plots contain error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the hardware used for all experiments, and the projected overall
environmental impact of all experiments (failed and pilot) reported in the paper. We
do not provide further granularity because the experiments have rather modest compute
requirements – the entirety of the experiments in this paper can be reproduced using a
commercial NVIDIA GPU (RTX 3090) in about one day (by running every Jupyter notebook
in the code supplement).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed and adhered to the guidelines. We mention potential social
and environmental impacts in the Discussion section.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: We discuss the potential social impact of MI estimators.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release data or models with high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the library used to implement the LMI approximation (PyTorch).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code developed for latent MI approximation (the lmi library provided in
the supplement) is well documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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