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ABSTRACT

Empirical neural tangent kernels (eNTKs) can provide a good understanding of
a given network’s representation: they are often far less expensive to compute
and applicable more broadly than infinite-width NTKs. For networks with O
output units (e.g. an O-class classifier), however, the eNTK on N inputs is of
size NO ×NO, taking O

(
(NO)2

)
memory and up to O

(
(NO)3

)
computation.

Most existing applications have therefore used one of a handful of approximations
yielding N ×N kernel matrices, saving orders of magnitude of computation, but
with limited to no justification. We prove that one such approximation, which we
call “sum of logits,” converges to the true eNTK at initialization. Our experiments
demonstrate the quality of this approximation for various uses across a range of
settings.

1 INTRODUCTION

The pursuit of a theoretical foundation for deep learning has lead researches to uncover interesting
connections between neural networks (NNs) and kernel methods. It has long been known that
randomly initialized NNs in the infinite width limit are Gaussian processes with what is termed the
Neural Network Gaussian Process (NNGP) kernel, and training the last layer with gradient flow under
squared loss corresponds to the posterior mean (Neal, 1996; Williams, 1996; Hazan & Jaakkola, 2015;
Lee et al., 2017; Matthews et al., 2018; Novak et al., 2018; Yang, 2019). More recently, Jacot et al.
(2018) (building off a line of closely related prior work) showed that the same is true if we train all
the parameters of the network, but using a different kernel called the Neural Tangent Kernel (NTK).
Yang (2020); Yang & Littwin (2021) later showed that this connection is architecturally universal,
extending the domain from fully-connected NNs to most of the currently-used networks in practice,
such as ResNets and Transformers. Lee et al. (2019) also showed that the dynamics of training
wide but finite-width NNs with gradient descent can be approximated by a linear model obtained
from the first-order Taylor expansion of that network around its initialization. Furthermore, they
experimentally showed that this approximation approximation excellently holds even for networks
that are not so wide.

In addition to theoretical insights from the results themselves, NTKs have had significant impact in
diverse practical settings. Arora et al. (2019b) show very strong performance of NTK-based models
on a variety of low-data classification and regression tasks. The condition number of an NN’s NTK
has been shown correlation directly with the trainability and generalization capabilities of the NN
(Xiao et al., 2018; 2020); thus, Park et al. (2020); Chen et al. (2021) have used this to develop practical
algorithms for neural architecture search. Wei et al. (2022); Bachmann et al. (2022) estimate the
generalization ability of a specific network, randomly initialized or pre-trained on a different dataset,
with efficient cross-validation. Zhou et al. (2021) use NTK regression for efficient meta-learning, and
Wang et al. (2021); Holzmüller et al. (2022); Mohamadi et al. (2022) use NTKs for active learning.

There has also been significant theoretical insight gained from empirical studies of networks’ NTKs.
Here are a few examples: Fort et al. (2020) use NTKs to study how the loss geometry the NN
evolves under gradient descent. Franceschi et al. (2021) employ NTKs to analyze the behaviour
of Generative Adverserial Networks (GANs). Nguyen et al. (2020; 2021) used NTKs for dataset
distillation. He et al. (2020); Adlam et al. (2020) used NTKs to predict and analyze the uncertainty of
a NN’s predictions. Tancik et al. (2020) use NTKs to analyze the behaviour of MLPs in learning high
frequency functions, leading to new insights into our understanding of neural radiance fields.
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Figure 1: Comparison of wall-clock time of evaluating the eNTK and pNTK of a pair of input
datapoints over various datasets and ResNet depths.

We thus believe NTKs will continue to be used in both theoretical and empirical deep learning.

Unfortunately, however, computing the NTK for practical networks is extremely challenging, and
most of the time not even computationally feasible. The NTK of a NN is defined as the outer product
of the Jacobians of the output of the NN with respect to its parameters:

eNTK := Θθ(x1, x2) = [Jθ (fθ(x1))] [Jθ (fθ(x2))]
⊤
, (1)

where Jθ (fθ(x)) denotes the Jacobian of the function f at a point x with respect to the flattened
vector of all its parameters, θ ∈ RP . Assuming f : RD → RO, where D is the input dimension and
O the number of outputs, we have Jθ (fθ(x)) ∈ RO×P and Θθ(x1, x2) ∈ RO×O. Thus, computing
the NTK between a set of N1 data points and a set of N2 data points yields N1N2 matrices each of
shape O ×O, which we usually reshape into an N1O ×N2O matrix.

When computing an eNTK on tasks involving large datasets and with multiple output neurons, e.g. in
a classification model with O classes, the eNTK quickly becomes impractical regardless of how fast
each entry is computed due to its NO ×NO size. For instance, the full eNTK of a classification
model even on the relatively mild CIFAR-10 dataset (Krizhevsky, 2009), stored in double precision,
takes over 1.8 terabytes in memory. For practical usage, we need to do something better.

In this work, we present a simple trick for a strong approximation of the eNTK that removes the
O2 from the size of the kernel matrix, resulting in a factor of O2 improvement in the memory and
up to O3 in computation. Since for typical classification datasets O is at least 10 (e.g. CIFAR-10)
and potentially 1 000 or more (e.g. ImageNet, Deng et al., 2009), this provides multiple orders of
magnitude savings over the original eNTK (1). We prove that under appropriate initialization of the
NN this approximation converges to the original eNTK at a rate of O(n−1/2) for a network of depth
L and width n in each layer, and the predictions of kernel regression with the approximate kernel do
the same. Finally, we present diverse experimental investigations supporting our theoretical results
across a range of different architectures and settings. We hope this approximation further enables
researches to employ NTKs towards theoretical and empirical advances in wide networks.

Infinite NTKs In the infinite-width limit of properly initialized NNs, Θθ converges almost surely at
initialization to a particular kernel, and remains constant over the course of training. Algorithms are
available to compute this expectation exactly, but they tend to be substantially more expensive than
computing (1) directly for all but extremely wide networks. The convergence to this infinite-width
regime is also slow in practice, and moreover it eliminates some of the interest of the framework:
neural architecture search, predicting generalization of a pre-trained representation, and meta-learning
are all considerably less interesting when we only consider infinite-width networks that do essentially
no feature learning. Thus, in this paper, we focus only on the “empirical” eNTK (1).

2 RELATED WORK

Among the numerous recent works that have used eNTKs either to gain insights about various phe-
nomenons in deep learning or to propose new algorithms, not many have publicized the computational
costs and implementation details of computing eNTKs. Nevertheless, all are in agreement about the
expense of such computations (Park et al., 2020; Holzmüller et al., 2022; Fort et al., 2020).

Several recent works have, mostly “quietly,” employed various techniques to avoid dealing with the
full eNTK matrix; however, to the best of our knowledge, none provide any rigorous justifications.
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Wei et al. (2022, Section 2.3) point out that if the final layer of a NN is randomly initialized, the
expected eNTK can be written as K0⊗IO for some kernel K0, where IO is the O×O identity matrix
and ⊗ is the Kronecker product. Thus, they use the approximation in which they only compute the
eNTK with respect to one of the logits of the NN. Although their approach to approximating the
eNTK is similar to ours, they don’t provide any rigorous bounds or empirical study of how closely the
actual eNTK is approximated by its expectation in this regard. Wang et al. (2021) employs the same
“single-logit” strategy, though they only mention the infinite-width limit as a motivation supporting
their trick. Despite of these claims, we will see in our experiments that the eNTK is generally not
diagonal. We will, however, prove upper bounds on distance of our approximation to the eNTK, and
provide experimental support that this approximation captures the behaviour of the eNTK even when
the NN’s weights are not at initialization. Park et al. (2020); Chen et al. (2021) also seem to use a
form of “single-logit” approximation to eNTK, without explicitly mentioning it. Lee et al. (2019), by
contrast, do use the full eNTK, and hence never compute the kernel on more than 256 datapoints.

More recently, Novak et al. (2021) performed an in-depth analysis of computational and memory
complexity required for computing the eNTK, and proposed two new approaches to reduce the time
complexity of computing the eNTK in special cases (depending on the architecture of the NN) over
explictly implementing (1). We remark that as our approaches are complementary, as we propose an
approximation to the eNTK and Novak et al. (2021) proposes an algorithm for computation of the
eNTK, which also applies when to computing our approximation – in fact, we use their “structured
derivatives” method in our experiments. Moreover, their approach does not reduce the memory
complexity of computing the eNTK, typically the largest burden in practical applications.

3 PSEUDO-NTK

We define the pseudo-NTK (pNTK) of the network fθ as

pNTK := Θ̂θ(x1, x2) =

[
∇θ

(
1√
O

O∑
i=1

f
(i)
θ (x1)

)]
︸ ︷︷ ︸

1×P

[
∇θ

(
1√
O

O∑
i=1

f
(i)
θ (x2)

)]⊤
︸ ︷︷ ︸

P×1

, (2)

where f
(i)
θ (x) denotes the ith output of fθ on the input x. Unlike eNTK, which is a matrix-valued

kernel for each pair of inputs, pNTK is a traditional scalar-valued kernel.

Some recent work (Arora et al., 2019a; Yang, 2020; Wei et al., 2022; Wang et al., 2021) has pointed
out that in the infinite width limit the NTK limn→∞Θ(x1, x2) becomes a diagonal matrix. Thus, one
can avoid computing the off-diagonal entries of the infinite-width NTK of each pair through using
Θθ(x1, x2) = Θ̂θ(x1, x2)⊗ IO, resulting in a drastic O(O2) time and memory complexity decrease.

Practitioners have accordingly used the same approach in computing the corresponding eNTK of a
finite width network, but with little to no further justification. We see in our experiments that for finite
width networks, the NTK is not diagonal. In fact, we show that for most practical networks, it is very
far from being diagonal, casting doubts on the validity of arguments justifying the approximation
with asymptotic diagonality. We justify this category of approximation with theoretical bounds on
the difference of the true NTK from the approximation (2), which we also call “sum of logits.”

Before turning to the formal results and experimental evaluation, we give some intuition. First,
suppose that f (i)

θ (x) = ϕ(x) · vi, so that vi ∈ RnL−1 is the ith row of a linear read-out layer; then
1√
O

∑O
i=1 f

(i)
θ (x) = ϕ(x) ·

[
1√
O

∑O
i=1 vi

]
. If the vectors vi ∼ N (0, σ2InL−1

) are independent, then
1√
O

∑O
i=1 vi ∼ N (0, σ2InL−1

) has the same distribution as any individual entry, say v1. Thus, at
initialization, our sum of logits approximation agrees in distribution with the first-logit approximation.
Our proof uses the sum-of-logits form, however, and we believe it may be more sensible for networks
that are not at random initialization (like a pretrained network with randomized read-out layer).

Calling this vector (whether the first logit or sum of logits) v, we can think of (2) as the NTK of
a model with a single scalar output as a function of ϕ, whose last layer has weights v. When we
linearize a network with that kernel for an O-class classification problem, getting the formula (6)
discussed in Section 4.3, we end up effectively using a one-vs-rest classifier scheme. Thus, we can
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think of the pseudo-NTK as approximating the process of training O one-vs-rest classifiers, rather
than a single O-way classifier.

4 APPROXIMATION QUALITY OF PSEUDO-NTK

We will now study various aspects of the approximation of (2) to (1), both in theory and empirically.
To experimentally evaluate our claims, we present various experiments that compare the targeted
characteristic of pNTK vs eNTK both at initialization and throughout training. We present our
experiments on four widely-used architectures, namely, fully-connected networks (FCN) of depth
3 (as in Lee et al., 2019; 2020), fully-convolutional networks (ConvNet) of depth 8 (as in Arora
et al., 2019a;b; Lee et al., 2020), ResNet18 (He et al., 2016) and WideResNet-16-k (Zagoruyko &
Komodakis, 2016). We evaluate each architecture at different widths, as mentioned in the plot legends:
we show exact widths for FCN, while for others we show a widening factor (details in Appendix A).
For consistency with most other recent papers studying NTKs and properties of NNs in general, we
chose CIFAR-10 (Krizhevsky, 2009) as the dataset to evaluate our experiments on. Each experiment
is repeated using three seeds, and the corresponding error bars are plotted. However, in some figures
the error bars are not plotted. In those cases, it is because they interfered with clear interpretation of
the plots, as the error bars were too large and not informative. We used Stochastic Gradient Descent
(SGD) as the optimizer of choice for training our networks. Details on the configurations used in
optimization of each network can be found in the Appendix.

Each network on each experiment is trained for 200 epochs using mini-batch stochastic gradient
descent (SGD), run on NVIDIA V100 GPUs with 32GB of memory. Details on the batch sizes
and learning rates used for each NN can be found in Appendix A. The measured statistic for each
experiment has been reported after 0, 50, 100, 150, and 200 epochs.

4.1 PSEUDO-NTK CONVERGES TO ENTK AS THE NETWORK’S WIDTH GROWS

The first crucial thing to verify is whether the pNTK kernel matrix approximates the true eNTK as a
whole. We study this first in terms of Frobenius norm.

Theorem 1 (Informal). Let fθ : RD → RO be a fully-connected network with layers of width n
whose parameters initialized according to He et al. (2015) initialization, and ReLU-type activations.
Let Θ̂θ(x1, x2) be the corresponding pNTK of fθ as in (2) and Θθ(x1, x2) the corresponding eNTK
as in (1) for a fixed pair of inputs x1, x2. With high probability over the initialization,

∥Θ̂θ(x1, x2)⊗ IO −Θθ(x1, x2)∥F
∥Θθ(x1, x2)∥F

∈ O(n− 1
2 ). (3)

Remark 2. All of the results in the paper can be straightforwardly extended to networks with different
widths, as long as the consecutive layers’ widths satisfy nl+1 = Θ(nl). Moreover, the results can be
made architecturally universal with the techniques of Yang (2020); Yang & Littwin (2021).

Theorem 1 provides the first upper bound on the convergence rate of pNTK towards eNTK. A formal
statement for Theorem 1 and its proof are in Appendix B.2.

Remark 3. Based on the provided proof, it’s straightforward that the ratio of information between
off-diagonal and on-diagonal elements of the eNTK matrix converges to zero with a rate of O(n− 1

2 )
with high probability over random initialization, as depicted in Figure 2.

Experimental results in Figure 2 support the fact that as width grows, the ratio between off-diagonal
and diagonal elements of Θθ(x1, x2) converges to zero. Furthermore, Figure 13 provides experimental
support that as width grows, Θ̂θ ⊗ IO converges to Θθ in terms of relative Frobenius norm. Note that
the result of Theorem 1 only applies to epoch zero of the depicted figures, as the theorem applies
only to the networks whose weights are at initialization (in the NTK parameterization).

However, as can be seen in the figures, these results don’t necessarily apply to the NNs whose readout
layers are not at initialization (i.e., after a few epochs of training). This naturally gives rise to the
question: Can the pNTK be used to analyze and represent NNs whose parameters are far from
initialization? We will now take various experimental approaches towards studying this question.
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4.2 PSEUDO-NTK’S SPECTRUM CONVERGES TO ENTK’S AS WIDTH GROWS

As discussed before, the conditioning of a network’s eNTK has been shown to be closely related
to generalization properties of the network, such as trainability and generalization risk (Xiao et al.,
2018; 2020; Wei et al., 2022). Thus, we would like to know how well the pNTK’s eigenspectrum
approximates that of the eNTK. The following theorem gives a bound on the rate of convergence
between the maximum eigenvalues of the two kernels.
Theorem 4 (Informal). Let fθ : RD → RO be a fully-connected network with layers of width n
whose parameters initialized according to He et al. (2015) initialization, and ReLU-type activations.
Let Θ̂θ(x1, x2) be the corresponding pNTK of fθ as in (2) and Θθ(x1, x2) the corresponding eNTK
as in (1) for a fixed pair of inputs x1, x2. With high probability over the initialization,

λmax

(
Θ̂θ(x1, x2)⊗ IO

)
− λmax (Θθ (x1, x2))

λmax (Θθ (x1, x2))
∈ O(n− 1

2 ). (4)

Theorem 4 provides an upper bound on the difference between the maximum eigenvalue of pNTK ver-
sus the maximum eigenvalue of eNTK based on the NN’s width. A formal statement for Theorem 4
and its proof are given in Appendix B.3. Experimental results in Figure 4 support the fact that as width
grows, the max eigenvalue of Θθ converge to the max eigenvalue of Θ̂θ. Figure 5 provides similar
experimental support regarding the minimum eigenvalues of Θ̂θ and Θθ in terms of relative difference.
Together, these two results intuitively imply that the condition number κ(K) = λmax(K)/λmin(K)
should become similar as width grows; this is also supported by results in Figure 6. Again, it shall
be noted that Theorem 4 only applies to the NNs whose widths are at initialization and as in the
previous subsection, these results don’t necessarily apply to the NNs not at initialization (i.e., after a
few epochs of training).

Interestingly, the rate of increase/decrease in the difference between maximum and minimum eigen-
values and the condition numbers between pNTK and eNTK do not have necessarily have a monotonic
behaviour as the training goes on. Observing the exact values of λmin, λmax, and κ for different
architectures, widths at initialization and throughout training reveals that in ConvNet, WideResNet
and ResNet18 architectures, λmin is close to zero at initialization, but grows during training; the
inverse phenomenon is observed with FCNs. Further investigations of these statistics might reveal
interesting insights about the behaviour of NNs trained with SGD and the connections between eNTK
and trainibility of the architecture.

4.3 KERNEL REGRESSION USING PNTK VS KERNEL REGRESSION USING ENTK

Lee et al. (2019) proved that as a finite NN’s width grows, its training dynamics can be well approxi-
mated using the first-order Taylor expansion of that NN around its initialization (a linearized neural
network). Informally, they showed that when f is wide enough, its predictions after being trained
using gradient descent with suitably small learning rate on the training set D can be approximated by
those of the linearized network f lin:

f lin(x)︸ ︷︷ ︸
O×1

= f0(x)︸ ︷︷ ︸
O×1

+Θ0(x,D)︸ ︷︷ ︸
O×NO

Θ0(D,D)
−1︸ ︷︷ ︸

NO×NO

(YD − f0(D))︸ ︷︷ ︸
NO×1

, (5)
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Figure 2: Comparing the magnitude of sum of on-diagonal and off-diagonal elements of Θθ at
initialization and throughout training, based on 1000 points from CIFAR-10. The reported numbers
are the average of 1000× 1000 kernels each having a shape of 10× 10. The same subset has then
been used to train the NN using SGD. As the NN’s width grows, the eNTK converges to being
diagonal at initialization among all different architectures.
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Figure 3: Evaluating the relative difference of Frobenius norm of Θθ(D,D) and Θ̂θ(D,D)⊗ IO
at initialization and throughout training, based on 1000 points from CIFAR-10. As the NN’s width
grows, the relative difference in ∥Θθ∥F and ∥Θ̂θ ⊗ IO∥F decreases at initialization.

where YD is the matrix of one-hot labels for the training points D, and Θ0 is the eNTK of f at
initialization f0. This is simply kernel regression on the training data D using the kernel Θ0 and prior
mean f0. Wei et al. (2022) use the same kernel in a generalized cross-validation estimator (Craven &
Wahba, 1978) to predict the generalization risk of the NN. As discussed before, using the eNTK in
these applications is practically infeasible, due to huge time and memory complexity of the kernel,
but we show the pNTK approximates f lin(x) with much improved time and memory complexity.
Theorem 5 (Informal). Let fθ : RD → RO be a fully-connected network with layers of width n
whose parameters initialized according to He et al. (2015) initialization, and ReLU-type activations.
Let Θ̂θ(x1, x2) be the corresponding pNTK of fθ as in (2) and Θθ(x1, x2) the corresponding eNTK
as in (1) for a fixed pair of inputs x1, x2. Define

f̂ lin(x)︸ ︷︷ ︸
1×O

:= f0(x)︸ ︷︷ ︸
1×O

+Θ̂θ(x,D)︸ ︷︷ ︸
1×N

Θ̂θ(D,D)
−1︸ ︷︷ ︸

N×N

(YD − f0(D))︸ ︷︷ ︸
N×O

. (6)

With proper reshaping, with high probability over random initialization,

∥f̂ lin(x)− f lin(x)∥F ∈ O(n− 1
2 ). (7)

Theorem 5 provides an upper bound on the norm difference of f̂ lin from (6) and f lin from Equa-
tion (5) based on the NN’s last layer’s width. A formal statement is given and proved in Appendix B.4.

Experimental results in Figure 7 show that as width grows, the predictions of kernel regression using
Θ̂θ converge to the prediction of those obtained from using Θθ, while requiring orders of magnitude
of less memory and time to compute. Figure 8 shows similar results for the difference in prediction
accuracies achieved using kernel regression through Θ̂θ and Θθ kernels. Appendix B.4 also shows
further analysis of how well the linearized network predicts the final accuracy of the trained model
for each architecture and width pair. Although ∥f̂ lin(x) − f lin(x)∥F decreases with width of the
network in Figure 7 at initialization, this does not necessarily translate to a monotonic behaviour in
prediction accuracies, a non-smooth function of the vector of predictions; we do see that the expected
pattern more or less holds, however.

A surprising outcome depicted in Figures 7 and 8 is that while training the model’s parameters,
predictions of f̂ lin and f lin converge very quickly. This is particularly intriguing as it’s in contrast
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Figure 4: Evaluating the relative difference of λmax of Θθ(D,D) and Θ̂θ(D,D) at initialization
and throughout training, based on kernels on a subset (|D| = 1000) of points from CIFAR-10. As the
NN’s width grows, the relative difference in λmax(Θθ(D,D)) and λmax(Θ̂θ(D,D)) decreases.
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Figure 5: Evaluating the relative difference of λmin of Θθ(D,D) and Θ̂θ(D,D) at initialization and
throughout training. The kernels have been evaluated using a subset (|D| = 1000) of points from
CIFAR-10. As the NN’s width grows, the relative difference in λmin(Θθ(D,D)) and λmin(Θ̂θ(D,D))
decreases. Note the extremely large values reported for ConvNet. As observed previously in Lee
et al. (2020) and Xiao et al. (2020), CNN-GAP is ill-conditioned and λmin(Θθ(D,D)) → 0, while
λmin(Θ̂θ(D,D)) > 0.001, causing the huge discrepancy. More details in Appendix B.3.
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Figure 6: Evaluating the relative difference of condition number of eNTK and pNTK at ini-
tialization and throughout training. Condition number is defined as κ(K) = λmax(K)/λmin(K).
The kernels have been evaluated using a subset (|D| = 1000) of points from CIFAR-10. As the
NN’s width grows, the relative difference in λmin(Θθ(D,D)) and λmin(Θ̂θ(D,D)) decreases. The
bizarre values found in the ConvNet plot can be addressed as discussed in Figure 5; more details in
Appendix B.3.
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Figure 7: Evaluating the relative norm difference of kernel regression outputs using eNTK and
pNTK as in Equation (5) and Equation (6) at initialization and throughout training. The kernel
regression has been done on |D| = 1000 training points and |X | = 500 test points randomly selected
from CIFAR-10’s train and test sets. As the NN’s width grows, the relative difference in f̂ lin(X )
and f lin(X ) decreases at initialization. Surprisingly, the difference between these two continues to
quickly vanish throughout Sthe training process using SGD.

with the experimental results depicted in Figures 2, 4, 6 and 13. In other words, although the kernels
Θθ and Θ̂θ⊗ IO seem to be diverging in Frobenius norm, eigenspectrum, and so on, kernel regression
using those two kernels converges quickly, so that after 50 epochs the difference in predictions almost
totally vanishes. We believe further investigation of why this phenomenon is observed could lead to
new interesting insights about the training dynamics of NNs.

5 KERNEL REGRESSION USING PNTK ON FULL CIFAR-10 DATASET

Thanks to the reduction in time and memory complexity of pNTK over eNTK, motivated by Theorem 5
and experimental findings in Figure 8, we finally evaluate the corresponding pNTKs of the four
architectures that we have used in our experimental evaluations in different widths using full CIFAR-
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Figure 8: Evaluating the accuracy difference of kernel regression outputs using eNTK and
pNTK as in Equation (5) and Equation (6) at initialization and throughout training. Kernel regres-
sion using pNTK always achieves a higher test accuracy in comparison to kernel regression
using eNTK. The kernel regression has been done on |D| = 1000 training points and |X | = 500
test points randomly selected from CIFAR-10’s train and test sets. As the NN’s width grows, the
prediction accuracy of in f̂ lin and f lin decreases at initialization. Again, the difference between
these two continues to vanish throughout the training process using SGD.
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Figure 9: Evaluating the test accuracy of kernel regression predictions using pNTK as in Equa-
tion (6) on the full CIFAR-10 dataset at initialization and throughout training. As the NN’s width
grows, the test accuracy of f̂ lin is also improved, but eventually saturates with the growing width.
Using trained weights in computation of pNTK results in improved test accuracy of f̂ lin.

0 50 100 150 200
Epoch

10

20

30

40

50

60

f 
Te

st
 A

cc
ur

ac
y 

(%
)

FCN

WD 256
WD 512
WD 1024

WD 2048
WD 4096
WD 8192

0 50 100 150 200
Epoch

10

20

30

40

50

60

70

80

ConvNet

WF 4
WF 8

WF 16
WF 32

0 50 100 150 200
Epoch

10

20

30

40

50

60

70

80
ResNet18

WF1
WF2

WF 4
WF 8

0 50 100 150 200
Epoch

10

20

30

40

50

60

70

80

WideResNet

WF2
WF 4

WF 8
WF 16

Figure 10: Evaluating the test accuracy of model f throughout SGD training on the full CIFAR-
10 dataset. In contrast to f̂ lin, the test accuracy of f does not significantly improve with growing
width.
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Figure 11: Evaluating the difference in test accuracy of kernel regression using pNTK as in (6)
vs the current model f throughout SGD training on the full CIFAR-10 dataset: how much does a
linearized predictor with the current representation improve prediction accuracy over SGD?

10 data, at initialization and throughout training the models under SGD. As mentioned previously,
running kernel regression with eNTK on all of CIFAR-10 would require evaluating 25 × 1010

Jacobian-vector products and more than ≈ 1.8 terabytes of memory; using pNTK, this can be done
with a far more reasonable 25× 108 Jacobian-vector products and ≈ 18 gigabytes of memory. This is
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still a heavy load compared to, say, direct SGD training, but is within the reach of standard compute
nodes.

Figure 9 shows the test accuracy of f̂ lin on the full train and test sets of CIFAR-10. In the infinite-
width limit, the test accuracy of f̂ lin at initialization (and later, because the kernel stays constant
in this regime) should match the final test accuracy of f : that is, the epoch 0 points in Figure 9
would agree with roughly the epoch 200 points in Figure 10. This comparison is plotted directly in
Appendix C. Furthermore, the test accuracies of predictions of kernel regression using the pNTK
are lower than those achieved by the NTKs of infinite-width counterparts for fully-connected and
fully-convolution networks. This is consistent with results on eNTK by Arora et al. (2019a); Lee
et al. (2020), although Arora et al. (2019a) studied only a “CIFAR-2” version.

It is worth noting from Figures 9 and 11 that, in contrast to the findings of Fort et al. (2020), we
observe that the corresponding pNTK of the NN f continues to change even after epoch 50 of SGD
training. Although for fully-connected networks and some versions of ResNet18 this change is not
significant, in fully-convolutional networks and WideResNets the pNTK continues to exhibit changes
until epoch 150, where the training error has vanished. We remark that Fort et al. (2020) analyzed
eNTKs based on only 500 random samples from CIFAR-10, while the pNTK approximation has
enabled us to run our analysis on the 100-times larger full dataset.

Lastly, to help the community better analyze the properties of NNs and their training dynamics and
avoid wasting computation by redoing this work, we plan to share computed pNTKs for all the
mentioned architectures and widths, as well as pNTKs of ResNets with 34, 50, 101 and 152 layers on
CIFAR-10 and CIFAR-100 (Xiao et al., 2017) datasets, both at initialization and using pretrained
ImageNet (Deng et al., 2009) weights. We hope that our contribution will enable further analyses and
breakthroughs towards a stronger theoretical understanding of the training dynamics of deep neural
networks.

6 DISCUSSION

Our pseudo-NTK approach to approximating the empirical Neural Tangent Kernel has provable
bounds, good empirical performance, and multiple orders of magnitude improvement in runtime
speed and memory requirements over the direct empirical NTK. We evaluate our claims and the
quality of the approximation under diverse settings, giving new insights into the behaviour of the
empirical NTK with trained representations. We help justify the correctness of recent approximation
schemes, and hope that our rigorous results and thorough experimentation will help researchers
develop a deeper understanding of the training dynamics of finite networks, and develop new practical
applications of the NTK theory.

One major remaining question is to theoretically analyze what happens to the pNTK or eNTK during
SGD training of the network. In particular, the fast convergence of f̂ lin and f lin when training the
network, as seen in Figures 7 and 8, runs counter to our expectations based on the approximation
worsening in Frobenius norm (Figure 7), maximum eigenvalue (Figure 4), and condition number
(Figure 6). This seems likely to be very important to practical use of the pNTK.

Perhaps relatedly, it is also unclear why pNTK consistently results in higher prediction accuracies than
when kernel regression is done using eNTK, given that our motivation for pNTK is entirely in terms
of approximating the eNTK (Figure 8). Intuitively, this may be related to a regularization-type effect:
the pNTK corresponds to a particularly limited choice of a “separable” operator-valued kernel (e.g.
Álvarez et al., 2012). Separable kernels are a common choice in that literature for both computational
and regularization reasons; by enforcing this particularly simple form, we remove many degrees of
freedom relating to the interaction between “tasks” (different classes) that may be unnecessary or
hard to estimate accurately with the eNTK. This might, in some sense, correspond to a one-vs-one
rather than one-vs-rest framework in the intuitive sense discussed in Section 3. Understanding this
question in more detail might require a more detailed understanding of the structure of the eNTK
at finite width, and/or a much more detailed understanding of the interaction between classes in the
dataset with learning in the NTK regime.
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Finally, even the pNTK is still rather expensive compared to running SGD on neural networks. It
might make for a better starting point than the full eNTK for other speedup methods, however, like
kernel approximation schemes or advanced linear algebra solvers (e.g. Rudi et al., 2017).
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A DETAILS OF EXPERIMENTAL SETUP

In this section, we present the details on the experimental setup used for the plots depicted in the main
body of the paper. As mentioned, the exact width for FCNs have been reported. For WideResNet-16-k
we use two block layers, and the initial convolution in the network has a width of 16WF where WF is
the reported WF. For instance, WF = 16 means that the first block layer has a width of 256 and the
second block layer has a width of 512. For ResNet18, we also used the same approach, multiplying
WF by 16. Thus, when WF = 4, the constructed network will have the exact architecture as the
classical ResNet18 architecture reported. A WF of 16 means a ResNet18 with each layer being 4
times wider than the original width.

When training the neural networks using SGD, a constant batch size of 128 was used across all
different networks and different dataset sizes used for training. The learning rate for all networks
was also fixed to 0.1. However, not all networks were trainable with this fixed learning rate, as the
gradients would sometimes blow up and give NaN training loss, typically for the largest width of each
mentioned architecture. In those cases, we decreased the learning rate to 0.01 to train the networks.

Note that to be consistent with the literature on NTKs, techniques like data augmentation have been
turned off, but a weight decay of 0.0001 along with a momentum of 0.9 for SGD is used. Data
augmentation here plays an important role in the attained test accuracies of the fully trained networks.

B FURTHER RESULTS ON THE APPROXIMATION QUALITY

In this section we’ll lay out the proofs of the theorems provided in the main text, mainly Theorems 1, 4
and 5. Towards this, we first define some notation and show a simple recursive formula for computing
the tangent kernel that we take advantage of to prove the theorems. Consider a NN f : RD → RO. We
assume the final read-out layer of the NN f is a dense layer with width w. Assuming the NN f has L
layers, we define θl to be the corresponding parameters of layer l ∈ {1, 2, . . . , L}. Furthermore, let’s
define g : RD → Rw as the output of the immediate last layer of the NN f , such that f(x) = θLg(x)
for some θL ∈ RO×w.

As shown by Lee et al. (2019); Yang (2020), the NTK can be reformulated as the layer-wise sum
of gradients (when the parameters of each layer θl are assumed to be vectorized) of the output with
respect to θl. Accordingly, we denote eNTK of a NN f as

Θf (x1, x2) =

L∑
l=1

∇θlf(x1)∇θlf(x2)
⊤
. (8)

Now, noting that as the final layer of f is a dense layer, we can use the chain rule to write ∇θlf(x) as
∂f

∂g(x)
∂g(x)
∂θl

where ∂f(x)
∂g(x) = θL. Thus, we can rewrite (8) as

Θf (x1, x2) =

L−1∑
l=1

θL∇θlg(x1)∇θlg(x2)
⊤
θL

⊤ +∇θLf(x1)∇θLf(x2)
⊤

= θL

(
L∑

l=1

∇θlg(x1)∇θlg(x2)
⊤

)
θL

⊤ + g(x1)
⊤
g(x2) IO

= θL Θg(x1, x2) θL
⊤ + g(x1)

⊤
g(x2) IO.

(9)

Applying Equation (9), we can already see that the pNTK of a network f simply calculates a weighted
summation of all elements of eNTK into a scalar, since it can be seen as adding a new final dense
layer to the network f with the fixed weight vector 1√

O
1O where 1O is the O-dimensional vector

consisting of all 1s. Note that, however, this 1O vector is not trainable in this context and is a fixed
vector.

Before moving on with the approximation proofs, we would like to mention that the proofs in this
section rely heavily on concentration inequalities of sub-exponential random variables. Thus, we start
by providing some background about sub-exponential random variables and the related concentration
inequalities that we will use later on.
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B.1 BACKGROUND ON SUB-EXPONENTIAL RANDOM VARIABLES

A real-valued random variable X with mean µ is called sub-exponential (Wainwright, 2019) if there
are non-negative parameters (ν, α) such that

E[eλ(X−µ)] ≤ e
ν2λ2

2 for all |λ| < 1

α
.

We use X ∼ SE(ν, α) to denote that X is a sub-exponential random variable with parameters (ν, α),
but note that this is not a particular distribution.

A famous sub-exponential random variable is the product of two standard normal distributions,
zi ∼ N (0, 1), such that the two factors are independent (X1 = |z1||z2| ∼ SE(νp, αp) with mean
2/π) or the same (X2 = z2 ∼ SE(2, 4) with mean 1). We now present a few lemmas regarding
sub-exponential random variables that will come in handy in the later subsections of the appendix.
Lemma 6. If a random variable X is sub-exponential with parameters (ν, α), then the random
variable sX where s ∈ R+ is also sub-exponential with parameters (sν, sα).

Proof. Consider X ∼ SE(ν, α) and X ′ = sX with E[X ′] = sE[X], then according to the definition
of a sub-exponential random variable

E [exp (λ(X − µ))] ≤ exp(
ν2λ2

2
) for all |λ| < 1

α

=⇒ E
[
exp

(
λ

s
(sX − sµ)

)]
≤ exp(

ν2s2 λ2

s2 2

2
) for all |λ

s
| < 1

sα

λ′=λ
s====⇒ E [exp (λ′(X ′ − µ′))] ≤ exp(

ν2s
2
λ′2

2
) for all |λ′| < 1

sα

(10)

Defining α′ = sα and ν′ = sν we recover that X ′ ∼ SE(sν, sα).

Proposition 7. If the random variables Xi for i ∈ [1 − N ] for N ∈ N+ are all sub-exponential

with parameters (νi, αi) and independent, then
∑N

i=1 Xi ∈ SE(
√∑N

i=1 ν
2
i ,maxi αi), and

1
N

∑N
i=1 Xi ∼ SE

(
1√
N

√
1
N

∑N
i=1 ν

2
i ,

1
N maxi αi

)
.

Proof. This is a simplification of the discussion prior to equation 2.18 in Wainwright (2019).

Proposition 8. For a random variable X ∼ SE(ν, α), the following concentration inequality holds:

Pr (|X − µ| ≥ t) ≤ 2 exp

(
−min

(
t2

2ν2
,
t

2α

))
.

Proof. The proof directly follows from applying a scalar multiplication to the result derived in
Equation 2.18 in Wainwright (2019).

Corollary 9. For a random variable X ∼ SE(ν, α), the following inequality holds with probability
at least 1− δ:

|X − µ| < max

(
ν

√
2 log

2

δ
, 2α log

2

δ

)
.

B.2 PSEUDO-NTK RELATIVELY CONVERGES TO ENTK AS WIDTH GROWS

Let’s denote a neural network with L dense hidden layers whose width is n as:

f0(x) = x

f l+1(x) = ϕ(W (l+1)f l(x))

f(x) = fL(x) = W (L)fL−1(x)

(11)

such that ϕ is a differentiable coordinate-wise activation function.
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Setting A (ReLU-MLP). We assume the following assumptions hold in our setting:

• We assume W (l) ∈ Rnl×nl−1 for l ∈ 1, . . . , L is initialized according to the He et al. (2015)
initialization, meaning that each scalar parameter is distributed according to N (0, 1/nl−1).

• We assume the width of all hidden layers are identical (and equal to n). The proof extends
naturally to the case of non-equal widths as long as nl+1/nl → cl ∈ (0,∞) for each
consecutive pair of layers.

• We assume ϕ is the ReLU activation. This can be generalized to 1-Lipschitz, ReLU-like
functions such as GeLU, PReLU, and so on, as discussed in Appendix B.5.

• We assume the training data X is finite and contained in a compact set and there are no
overlapping datapoints.

A Note On Parameterization Although we assume a Gaussian distribution for each scalar variable,
the proofs in this section apply to any other distribution used for scalar parameters as long as:

• The variance of the parameters is set according to He et al. (2015), and the mean is zero.
• Each scalar parameter is initialized independently of all other ones.
• The distribution used is a sub-Gaussian.

This applies to all bounded initialization methods, like truncated normal or uniform on an interval.
In what follows, we generally assume each wl+1

ij ∈ SG(1/nl) with mean zero. In general, the
product of two sub-Gaussian distributions has a sub-exponential distribution. For the product of two
independent weights, wl+1

ij wl+1
ab with i ̸= a and/or j ̸= b, we denote the parameters as 1

nl
SE(νp, αp).

For (wl+1
ij )2, we use the parameters 1

nl
SE(νs, αs), whose mean is µs ̸= 0.

Note that we can recursively define the eNTK of f l+1 using the eNTK of f l as

Θ(l+1)(x1, x2) =

l∑
i=1

∂f l+1(x1)

∂W (i)

∂f l+1(x2)

∂W (i)

⊤

+

Kl+1
D (x1,x2)︷ ︸︸ ︷

∂f l+1(x1)

∂W l+1

∂f l+1(x2)

∂W l+1

⊤

=

l∑
i=1

∂ϕ(W (l+1)f l(x1))

∂W (i)

∂ϕ(W (l+1)f l(x2))

∂W (i)

⊤

+Kl+1
D (x1, x2)

=

l∑
i=1

∂ϕ(W (l+1)f l(x1))

∂f l(x1)

∂f l(x1)

∂W (i)

∂f l(x2)

∂W (i)

⊤
∂ϕ(W (l+1)f l(x2))

∂f l(x2)

⊤

+Kl+1
D (x1, x2)

=
∂ϕ(W (l+1)f l(x1))

∂f l(x1)

[
l∑

i=1

∂f l(x1)

∂W (i)

∂f l(x2)

∂W (i)

⊤]
∂ϕ(W (l+1)f l(x2))

∂f l(x2)

⊤

+Kl+1
D (x1, x2)

=
∂ϕ(W (l+1)f l(x1))

∂f l(x1)
Θ(l)(x1, x2)

∂ϕ(W (l+1)f l(x2))

∂f l(x2)

⊤

+Kl+1
D (x1, x2)

(12)

where

∂ϕ(W (l+1)f l(x))

∂f l(x)
= W (l+1) ⊙

[
ϕ̇(W (l+1)f l(x))

]
1×n

(13)

and Kl+1
D (x1, x2) = f l(x1)

⊤f l(x2)In is a diagonal matrix. We can think of the last layer as
following the same equations with ϕ the identity function, so that ϕ′(x) = 1. Furthermore, note that
using the same approach we can show that pNTK of the layer l can be derived as

Θ̂(l+1)(x1, x2) =
1n√
n
Θ(l+1)(x1, x2)

1⊤
n√
n

(14)

where 1n is the vector of 1s with size n.
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We now sketch the proof idea first and then move onto rigorously proving each part of the sketch.
First, note that using Equation (12) we can recursively calculate the eNTK of a general MLP. We
take advantage of this recursive definition and derive bounds for the magnitude of the elements of the
eNTK on a layer-to-layer basis recursively. To do so, we first show that the eNTK of the first layer
of the NN, Θ(1)(x1, x2), is in general a diagonal matrix. Then, we present a series of Lemmas that
bound the elements of the eNTK of layer l + 1 based on the magnitude (bounds) of the eNTK of
layer l. Finally, based on the derived bounds on the magnitude of elements of the eNTK of a NN with
l layers and Equation (14), we prove that the Frobenius norm of the pNTK relatively converges to the
Frobenius norm of the corresponding eNTK with high probability over random initialization.

Before moving on, it’s useful to first show a simple inequality on the elements of a tangent kernel
based on the Lipschitz-ness of the activation function; this will help us further in deriving the
aforementioned bounds. Define V (l)(x) = W (l) ⊙

[
ϕ̇(W (l)f l−1(x))

]
1×n

. We can write each entry

of Θ(l+1)(x1, x2) as

Θ(l+1)(x1, x2)ij =

n∑
a=1

n∑
b=1

V (l+1)(x1)iaV
(l+1)(x2)jbΘ

(l)(x1, x2)ab + f l(x1)
⊤
f l(x2) I(i = j)

|Θ(l+1)(x1, x2)ij | ≤ |
n∑

a=1

n∑
b=1

W (l)
iaW

(l)
jbΘ

(l)(x1, x2)ab|+ |f l(x1)
⊤
f l(x2)| I(i = j)

≤ |
n∑

a=1

n∑
b=1

SEiajb(νp, αp)Θ
(l)(x1, x2)ab|+ |f l(x1)

⊤
f l(x2)| I(i = j) (15)

where I denotes the 0-1 indicator function, the first inequality follows from the activation function ϕ
being 1-Lipschitz and the second inequality follows from the product of two sub-gaussian distributions
being distributed as a sub-exponential variable. Note that we use SEiajb(νp, αp) for the sake of
generality but in the case i = j ∧ a = b it actually refers to SEia(νs, αs).

Lemma 10 (Diagonality of the first layer’s tangent kernel). For a NN under Setting A, the correspond-
ing eNTK of the first layer Θ(1)(x1, x2) is diagonal. Moreover, there is a corresponding constant
C(1) > 0 such that for all diagonal elements Θ(1)(x1, x2)ii, we have that

|Θ(1)(x1, x2)ii| ≤ C(1).

Proof. Consider the one layer NN f1(x) = ϕ(W (1)x). For this case, we have:

Θ(1)(x1, x2)ij =


D∑

a=1

x1aϕ̇(Wix1)x2aϕ̇(Wix2) if i = j

0 if i ̸= j

(16)

and thus, since the activation function ϕ is 1-Lipschitz we can conclude that for all i, j

|Θ(1)(x1, x2)ij | ≤
{
|x⊤

1 x2| if i = j

0 if i ̸= j
. (17)

Thus, the tangent kernel of the first layer is a diagonal matrix whose entries are independent of
the width of the first layer (n), and can be bounded by a positive constant, given by C(1) =
max(x1,x2)∈X×X |x⊤

1 x2|.

Next, we present a series of lemmas that will help us derive the bounds on the elements of the tangent
kernel of layer l+1 based on the bounds of the tangent kernel of layer l. The next lemma specifically
bounds the values of the tangent kernel of the second layer, based on the diagonality of the first
layer’s tangent kernel and (15).

Lemma 11. Consider a NN under Setting A with depth ≥ l+ 1. Assume there is a constant C(l) > 0
such that |Θ(l)(x1, x2)ii| < C(l) for all i ∈ [nl] and every non-diagonal element of Θ(l)(x1, x2) is
zero. Then for any small δ > 0 there are corresponding constants C(l+1)

1 = polylog(n/δ), C
(l+1)
2 =

16
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polylog(n/δ), nl+1 > 0 such that for any n > nl+1, it holds with probability at least 1 − δ that,
simultaneously for all i, j,

|Θ(l+1)(x1, x2)ij | ≤

{
C

(l+1)
1 n if i = j

C
(l+1)
2 /

√
n if i ̸= j .

(18)

Proof. Recall that

Θ(l+1)(x1, x2)ij =

n∑
a=1

n∑
b=1

V (l+1)(x1)iaV
(l+1)(x2)jbΘ

(l)(x1, x2)ab + f l(x1)
⊤
f l(x2) I(i = j),

where

V (l+1)(x1)ia = W (l+1)
iaϕ̇

(
n∑

c=1

W
(l+1)
ic f l(x)c

)
.

The weight W (l+1)
ia is sub-Gaussian, and the ϕ̇ term has absolute value at most one, so their

product is also sub-Gaussian with the same variance proxy parameter (as can be easily seen e.g.
from the moment-based characterization of sub-Gaussianity). As noted before, when the indices
match we replace V (l+1)(x1)iaV

(l+1)(x2)ia by 1
nl
SEia(νs, αs) (which has mean µs ̸= 0). In the

case when the indices are not the same, the two are independent but do not necessarily have mean
zero. However, mean of each decays with 1

nl
at least. In what follows, we show this for Gaussian

initialization (extension to other sub-Gaussian distributions is straightforward). To show that the
mean of each V

(l+1)
ia (x) decays with 1

nl
, we introduce an event

E :

|W (l+1)
ia f l(x)a| > |

n∑
c=1,c̸=a

W
(l+1)
ic f l(x)c| ∧ W

(l+1)
ia f l(x)a > 0 ∧

n∑
c=1,c̸=a

W
(l+1)
ic f l(x)c < 0


and compute the conditional mean on E happening or not, as in

E
[
V (l+1)(x)ia

]
= E

[
V (l+1)(x)ia

∣∣∣E]Pr[E] + E
[
V (l+1)(x)ia

∣∣∣¬E]Pr[¬E]

where E
[
V (l+1)(x)ia(x)

∣∣∣¬E] = 0 and Pr[E] < 1. Here, E corresponds to the event where the

weight scalar W (l+1)
ia is correlated with the argument in ϕ̇ and ϕ̇(·) = 1. Without loss of generality,

we can condition E
[
V (l+1)(x)ia

∣∣∣E] on f l(x)a > 0 and
∑n

c=1,c ̸=a W
(l+1)
ic f l(x)c < 0 (as it indeed

follows a zero mean normal distribution, hence introducing a factor of 2 which we omit for simplicity)
and calculate

E
[
V (l+1)(x)ia

∣∣∣E] = E

W (l+1)
ia

∣∣∣W (l+1)
ia > − 1

f l(x)a

n∑
c=1,c̸=a

W
(l+1)
ic f l(x)c


= E

b∼N+(0,σ2)

[
W

(l+1)
ia

∣∣∣W (l+1)
ia > b

]
=

1

nl
E

b∼N+(0,σ2)

[
ϕ(b)

1− Φ(b)

] (19)

where σ2 =
∥f l(x)∥2−f l(x)

2

a

f l(x)2an
, ϕ is the standard normal PDF and Φ is the standard normal CDF. Note

that ϕ(b)
1−Φ(b) < |b|+ 1. Hence, assuming σ2 = O(1), E

[
V (l+1)(x)ia

∣∣∣E] decays with a rate of 1
nl

,

and so does E
[
V (l+1)(x)ia

]
. Accordingly, for the rest of the proof, we use the term µp

n2
l

to represent

the mean of sub-exponential variable SEiajb(νp, αp) which stems from product of V (l+1)(x1)ia and
V (l+1)(x2)jb where the indices ia and jb don’t match.

17
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Based on Equation (15) we can expand the elements of Θ(l+1)(x1, x2) as

|Θ(l+1)(x1, x2)ij | ≤


|

n∑
a=1

n∑
b=1

W (l+1)
iaW

(l+1)
ib Θ

(l)(x1, x2)ab|+ |f l(x1)
⊤
f l(x2)| if i = j

|
n∑

a=1

n∑
b=1

W (l+1)
iaW

(l+1)
jb Θ

(l)(x1, x2)ab| if i ̸= j

=



n∑
a=1

1

n
SEia(νs, αs)|Θ(l)(x1, x2)aa|+ |f l(x1)

⊤
f l(x2)| if i = j

|
n∑

a=1

1

n
SEiaja(νp, αp)Θ

(l)(x1, x2)aa| if i ̸= j .

(20)

We’ve assumed an upper bound on the diagonal elements of Θ(l)(x1, x2) of C(l).We have then that
n∑

a=1

1

n
SE(νs, αs) |Θ(l)(x1, x2)aa| ≤

C(l)

n

n∑
a=1

SEia(νs, αs) ∼ SE

(
νsC

(l)

√
n

,
αsC

(l)

n

)
,

since each item in the last sum is independent of all others. Noting this term has mean C(l)µs, we get
a high-probability upper bound via Corollary 9. Since there are n independent such terms, one for
each i ∈ [n], we’ll want an upper bound that holds over all of them: with probability at least 1− δ1
we have

n∑
a=1

SEia(νs, αs) |Θ(l)(x1, x2)aa| ≤ C(l)µs +max

(
2C(l)

√
2

n
log

2n

δ
,
8C(l)

n
log

2n

δ1

)

≤ C(l)

[
µs + 2

√
2

n
log

2n

δ1

]
for n large enough that 2

√
2 > 8

√
1
n log 2n

δ1
, which will be the case for n = Ω

(
polylog 1

δ1

)
.

Likewise, Lemma 17 shows a high-probability upper bound on |f l(x1)
⊤f l(x2)| for all n > nm with

probability at least 1− δg . Combining the two with a union bound, we have with probability at least
1− δ1 − δg that

max
i

|Θ(l+1)(x1, x2)ii| ≤ C(l)

(
µs +

√
8

n
log

2n

δ1

)
+G(l)n.

This inequality is dominated by the G(l)n term. Thus we can find an upper bound (G(l) + ε)n, where

for n ≥ max (nm,Ω(polylog(1/δ1))), we have that ε = O
(

1
n + 1

n3/2

√
log 2n

δ1

)
= O

(√
log 1

δ1

)
can be chosen to be independent of n.

For the off-diagonal terms, we have

|Θ(l+1)(x1, x2)ij | ≤
C(l)

n
|

n∑
a=1

SEiaja(νp, αp)|.

Again applying Corollary 9 for each i, j and taking a union bound gives that with probability at least
1− δ2,

max
i,j

|Θ(l+1)(x1, x2)ij | ≤ C(l)

µp

n2
+

√
2

n
νp log

n(n− 1)

δ2


as long as n is large enough that νp > αp

√
2
n log n(n−1)

δ2
, again true as long as n = Ω

(
polylog 1

δ2

)
.

Hence, based on this bound and also the bound provided for the diagonal entries, we can achieve the
desired result by setting n > nl+1 with probability at least 1− (δ1 + δ2 + δg).
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Lemma 12. Consider a NN under Setting A with depth ≥ l + 1. Assume there are constants
C

(l)
1 = polylog(n/δp), C

(l)
2 = polylog(n/δp) such that we have |Θ(l)(x1, x2)ii| < C

(l)
1 n and

|Θ(l)(x1, x2)ij | < C
(l)
2

√
n with probability at least 1− δp and any width n > np simultaneously for

all i, j. Then for any arbitrary small δ > 0 there are constants C(l+1)
1 = polylog(n/δ), C

(l+1)
2 =

polylog(n/δ), nl+1 > 0 such that for any n > nl+1 and i, j

|Θ(l+1)(x1, x2)ij | ≤

{
C

(l+1)
1 n if i = j

C
(l+1)
2

√
n if i ̸= j

(21)

with probability at least 1− δ. In other words, the magnitude of elements of the tangent kernel in the
recursive definition will not grow.

Proof. Using the same expansion that we utilized in the proof for the previous Lemma, for the
diagonal elements of Θ(l+1)(x1, x2) we have:

|Θ(l+1)(x1, x2)ii| ≤ |
n∑

a=1

n∑
b=1

W (l+1)
iaW

(l+1)
ibΘ

(l)(x1, x2)ab|+G(l)n

=
1

n

n∑
a=1

SEia(νs, αs)|Θ(l)(x1, x2)aa|︸ ︷︷ ︸
Θ

(l+1)
1 (x1,x2)ii

+
1

n
|

n∑
a=1

n∑
b=1,b̸=a

SEiaib(νp, αp)Θ
(l)(x1, x2)ab|︸ ︷︷ ︸

Θ
(l+1)
2 (x1,x2)ii

+G(l)n

(22)

where

|Θ(l+1)
1 (x1, x2)ii| ≤

C
(l)
1 n

n

n∑
a=1

SEia(νs, αs) ∼ C
(l)
1

√
nSE

(
νs,

αs
√
n

n

)
(23)

with probability at least (1− δp) and

|Θ(l+1)
2 (x1, x2)ii| ≤

C
(l)
2

n
√
n
|

n∑
a=1

n∑
b=1,b̸=a

SEiaib(νp, αp)|

∼ C
(l)
2

n
√
n
|
n2∑
a=1

SE (νp, αp)| =
C

(l)
2√
n
|SE

(
νp,

αp

n

)
|

(24)

with probability at least (1 − δp) . As shown before, both of these terms are dominated by the
G(l)n term in the inequality for diagonal elements and thus, similar to the previous Lemma, we can
show that there is an nl+1 = max(nm, np,polylog(1/δ1))) (where accordingly nm is the minimum
width coming from Lemma 17) such that for all n > nl+1; |Θ(l+1)(x1, x2)ii| < (G(l)+ε)n with
probability at least 1− (δ1 + δp + δg) where δ1 comes from bounding the sub-exponential variables
above and ε can be replaced with a positive constant (which can decay with O(n− 1

2 )). Again, just
like the previous Lemma, the same high probability bound (albeit with very slight modifications)
holds for all diagonal elements.

For the non-diagonal elements of Θ(l+1)(x1, x2) we have:

|Θ(l+1)(x1, x2)ij | = |
n∑

a=1

n∑
b=1

W (l+1)
iaW

(l+1)
jbΘ

(l)(x1, x2)ab|

≤ 1

n
|

n∑
a=1

SEiaja(νp, αp)Θ
(l)(x1, x2)aa|︸ ︷︷ ︸

Θ
(l+1)
1 (x1,x2)ij

+
1

n
|

n∑
a=1

n∑
b=1,b̸=a

SEiajb(νp, αp)Θ
(l)(x1, x2)ab|︸ ︷︷ ︸

Θ
(l+1)
2 (x1,x2)ij

(25)
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where

|Θ(l+1)
1 (x1, x2)ij | ≤

C
(l)
1 n

n

n∑
a=1

|SEiaja(νp, αp)| ∼ C
(l)
1

√
n|SE

(
νp,

αp
√
n

n

)
| (26)

and

|Θ(l+1)
2 (x1, x2)ij | ≤

C
(l)
2

√
n

n
|

n∑
a=1

n∑
b=1,b ̸=a

SEiajb(νp, αp)|

∼ C
(l)
2

√
n

n
|
n2∑
a=1

SE (νp, αp)| = C
(l)
2

√
n|SE

(
νp,

αp

n

)
|

(27)

each with probability at least 1− δin. Thus, we can claim that according to Corollary 9 that for all
n > np

|Θ(l+1)(x1, x2)ij | ≤ C(l)

(
µp

n2
+

√
n

√
2νp log

2

δ2

)
(28)

with probability at least 1− 2δ2 conditioned on the entries of previous layer’s tangent kernel being
bounded as mention in the Lemma assumption (Note that we can take advantage of this assumption
here as we will include the failure case on the diagonal elements and then have a union bound on
diagonal and non-diagonal elements). Here δ2 comes from applying the Bernstein inequality on the
two sub-exponential variables. Applying a union bound on the bounds derived for each entry of the
tangent kernel we can see that

|Θ(l+1)(x1, x2)ij | ≤ C(l)
√
n

(
µp

n2
√
n
+

√
2νp

(
log

4

δ′2
+ 2 log n

))
(29)

for all i ̸= j with probability at least 1− δ′2.

Thus, the Lemma’s claim holds with probability at least 1− (δ1 + δ′2 + δp + δg) and n > nl+1 as
desired.

An alert reader already can notice that connecting the previous three Lemmas would result in an
upper bound for the diagonal and non-diagonal elements of the eNTK of the NN f at initialization.
Lemma 13. Consider a NN f under Setting A. For every arbitrary small δ > 0, there are constants
C1 = polylog(n/δ), C2 = polylog(n/δ), n0 > 0 such that with probability at least 1− δ over the
random initialization, it holds simultaneously for all i, j that if n > n0, the corresponding eNTK of f
on the arbitrary datapoints x1 and x2 satisfies

|Θ(x1, x2)ij | ≤

{
C1n if i = j

C2

√
n if i ̸= j .

(30)

Proof. Starting with Lemma 10, we have a bound for the entries of the first layer’s tangent kernel.
Plugging this bound into Lemma 11 we get a bound on the elements of the second layer. Next,
we can recursively apply Lemma 12. Note that, however, this recursion will induce a new factor
in our bound that depends on the depth of our NN, and thus, would enforce the minimum width
to also depend on depth. Assume we have applied the first three lemmas and we want to consider
the next L − 3 recursions of application of Lemma 12 for an NN with L > 3 layers. As our
assumption, for any arbitrary small δ > 0 there are constants C

(3)
1 = O(polylog(n/δ)), C

(3)
2 =

O(polylog(n/δ)), n(3) > 0 such that for any n > n(3) and i, j

|Θ(3)(x1, x2)ij | ≤

{
C

(3)
1 n if i = j

C
(3)
2

√
n if i ̸= j

. (31)
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Now, through recursively applying Lemma 12 we can see that for the layer L > 3 for any δ > 0

and n > n(L) there are constants C
(L)
1 = O(polylog(n(L − 3)/δ)), C

(L)
2 = O(polylog(n(L −

3)/δ)), n(L) > 0 such that

|Θ(L)(x1, x2)ij | ≤

{
C

(L)
1 n if i = j

C
(L)
2

√
n if i ̸= j

(32)

with probability at least 1−δ. The change in n(L) is also trackable as presented in Lemma 12 through
max(nl

m, n(3),Ω(polylog((L− 3)/δ))) for each layer 3 ≤ l ≤ L.

Lemma 14. Consider a NN f under Setting A. For every arbitrary small δ > 0 and the arbitrary
datapoints x1 and x2, it holds that

∥Θ(x1, x2)− Θ̂(x1, x2)∥F ≤ O(
√
n log n) (33)

with probability at least 1− δ over random initialization for any n > n0 where n0 = polylog(L/δ).
In other words, the Frobenius norm of the difference between eNTK and pNTK evaluated on two
datapoints are bounded by O(

√
n).

Proof. We note by D(x1, x2) = Θ(L)(x1, x2)− Θ̂(L)(x1, x2)⊗ IO. Using the expansion provided
in Equation (14) we can write the

|D(x1, x2)ij | ≤
1

n


|

n∑
a=1

n∑
b=1

SEiaib(νp, αp)Θ
(L−1)(x1, x2)ab −

1

O

O∑
c=1

O∑
d=1

n∑
a=1

n∑
b=1

SEcadb(νp, αp)Θ
(L−1)(x1, x2)ab|

|
w∑

a=1

w∑
b=1

SEiajb(νp, αp)Θ
(L−1)(x1, x2)ab|

(34)

where first option is for diagonal elements i = j and second is for non-diagonal ones.

Applying Lemma 13 we can assume there are constants C
(L−1)
1 = polylog(n/δp), C

(L−1)
2 =

polylog(n/δp) such that |Θ(L−1)(x1, x2)aa| < C
(L−1)
1 n and |Θ(L−1)(x1, x2)ab| < C

(L−1)
2

√
n

with probability at least 1− δp simultaneously for all a, b. Thus we can write the diagonal elements
of D(x1, x2) as

|D(x1, x2)ii| ≤ C
(L−1)
1 |

n∑
a=1

(
SEia(νs, αs)−

1

O

O∑
c=1

SEca(νs, αs)

)
|︸ ︷︷ ︸

D1(x1,x2)ii

+
C

(L−1)
1

O
|
O∑

c=1

O∑
d=1,d ̸=c

SEcada(νp, αp)|︸ ︷︷ ︸
D2(x1,x2)ii

+
C

(L−1)
2√
n

|
n∑

a=1

n∑
b=1,b̸=a

SEiaib(νp, αp)|︸ ︷︷ ︸
D3(x1,x2)ii

+
C

(L−1)
2

O
√
n

|
n∑

a=1

n∑
b=1,b ̸=a

O∑
c=1

O∑
d=1

SEcadb(νp, αp)|︸ ︷︷ ︸
D4(x1,x2)ii

.
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We would like to bound each of Dk(x1, x2)ii for k ∈ {1, 2, 3, 4} and then find a bound for the
diagonal elements using the combination of them. Starting with D1(x1, x2)ii:

|D1(x1, x2)ii| ≤ C
(L−1)
1

n∑
a=1

(
SEia(νs, αs)−

1

O

O∑
c=1

SEca(νs, αs)

)

= C
(L−1)
1

n∑
a=1

SEia(νs, αs)−
1

O
SEia(νs, αs)−

1

O

O∑
c=1,c ̸=i

SEca(νs, αs)


∼ C

(L−1)
1

n∑
a=1

(
SE

(
νs(O − 1)

O
,
αs(O − 1)

O

)
− SE

(√
(O − 1)ν2s

O2
,
αs

O

))

= C
(L−1)
1

n∑
a=1

SE

(√
ν2s (O − 1)2

O2
+

ν2s (O − 1)

O2
,max

(
αs(O − 1)

O
,
αs

O

))

= C
(L−1)
1

√
nSE

(
νs

√
1− 1

O
,
αs√
n

(
1− 1

O

))
(35)

Thus, using Corollary 9, we can claim

|D1(x1, x2)ii| < C
(L−1)
1

√
n

(√
νs

(
1− 1

O

)
log

8

δ
+ µs

√
1− 1

O

)
(36)

with probability at least 1− δ/4.

For the other terms, we can simply the analysis through noting that they are all a form of weighted
summation of independent sub-exponential random variables of the same distribution. For such a
summation with a weight of a and b summation terms, we have

X = a|
b∑

i=1

ziz
′
i| ∼ a|

b∑
i=1

SE (νp, αp)| = a|SE
(
νp
√
b, αp

)
|. (37)

Thus, applying Corollary 9, we get that

|X| < 2a

(
max

(
νp

√
b log

8

δ
, αp log

8

δ

)
+ |E[X]|

)
(38)

with probability at least 1− δ/4. Accordingly we can claim

|D2(x1, x2)ii| < 2C
(L−1)
1

(
max

(
νp

√(
1− 1

O2

)
log

8

δ
, αp log

8

δ

)
+

µp

n2

)
, (39)

|D3(x1, x2)ii| < 2C
(L−1)
2

√
n

(
max

(
νp

√(
1− 1

n2

)
log

8

δ
, αp log

8

δ

)
+

µp

n2
√
n

)
, (40)

|D4(x1, x2)ii| < 2C
(L−1)
2

√
n

(
max

(
νp

√(
1− 1

O2
− 1

n2
+

1

O2n2

)
log

8

δ
, αp log

8

δ

)
+

µp

n2
√
n

)
,

(41)

all independently and with probability at least 1 − δ/4. Moreover, one can easily apply the same
technique and see that D(x1, x2)ij for i ̸= j follows a similar bound to the one of Equation (40).
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Thus, loosening the off-diagonal terms for simplicity, applying a union bound on the previous three
inequalities yields

|D(x1, x2)ij | < 8
(
C

(L−1)
1 + C

(L−1)
2

)√
n

(
max

(
νp

√
log

8

δ
, αp log

8

δ

))
(42)

with probability at least 1− (δ + δp).

Finally, as ∥D(x1, x2)∥F =
√∑

i,j D(x1, x2)2ij , if each entry’s absolute value is less than t > 0

then the Frobenius norm is less than tO. Thus we can combine a bound on each of the O2 entries to
see that

Pr

(
∥D(x1, x2)∥F ≤ 8O

(
C

(L−1)
1 + C

(L−1)
2 + µs

)√
nmax

(
2

√
log

8O2

δ
, 4 log

8O2

δ

))
≥ 1−(δ+δp)

(43)

as desired.

Lemma 15. Consider a NN f under Setting A. For every arbitrary small δ > 0 and the arbitrary
datapoints x1 and x2, it holds that

∥Θ(x1, x2)∥F ≥ Ω(n log n) (44)

with probability at least 1− δ over random initialization. In other words, the Frobenius norm of the
eNTK evaluated on two datapoints is lower bounded by Ω(n log n).

Proof. Considering that the dot product of post-activations appear in the diagonal elements of the
eNTK in conjunction with Lemma 17, this is straightforward. Note that this bound also applies to the
maximum eigenvalue of the eNTK matrix since the maximum eigenvalue is bigger (or equal to) than
the sum of elements of the matrix divided by the number of columns.

We are finally ready to present the proof of Theorem 1.
Theorem 16. Consider a NN f under Setting A. For every arbitrary small δ > 0 and the arbitrary
datapoints x1 and x2, there exists n0 such that

∥Θ(L)(x1, x2)− Θ̂(L)(x1, x2)⊗ IO∥F
∥Θ(L)(x1, x2)∥F

= O
(

1√
n

)
(45)

with probability at least 1− δ for n > n0.

Proof. The proof is straightforward from applying Lemma 14 and Lemma 15.

Lemma 17. Consider a NN under Setting A with L ≥ 2 and ReLU activation function. The dot
product of two post-activations |f (l)(x1)

⊤
f (l)(x2)| grows linearly with the width of the network with

high probability over random initialization.

Proof. We begin by showing that the dot product of the post-activations of the first layer of the NN
under setting Setting A grow linearly using a simple Hoeffding bound. Next, we apply Thorem 1
from Arpit & Bengio (2019) to show that the magnitude of this dot product is preserved in the next
layers. First, note that as we assume the data lies in a compact set and as the post-activations are all
positive, one can easily see that for each x1, x2 ∈ X and for all l ∈ [1− L] we have that:

min
x∈X

∥f (l)(x)∥
2
≤ f (l)(x1)

⊤
f (l)(x2) ≤ max

x∈X
∥f (l)(x)∥

2
. (46)

To simplify the proofs in this Lemma, we use this fact and instead work with the norm of the post-
activations and we note that the final result on the norms can be accordingly applied to dot products
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of post-activations of different inputs. For the first layer, we have that f (1)(x) = σ(W (1)x) where
W

(l+1)
ij ∼ N (0, 1

nl
) and x ∈ Rn0 . Hence, each f (1)(x)i is i.i.d and distributed as NR(0, ∥x∥2

n0
)

where NR is the Rectified Normal Distribution. Hence, using the properties of the Rectified Normal
distribution we get that:

E[∥f (1)(x)∥2] = n∥x∥2

n0
(47)

Next, as the Rectified Normal is a sub-gaussian distribution, we can apply the Hoeffding bound to
see that

|∥f (1)(x)∥2 − nµ1| < σ

√
2 log

2

δ
(48)

with probability at least 1− δ where µ = ∥x∥2

n0
and σ is the standard deviation of ∥f (1)(x)∥2 over

random initialization of the weights of the first layer. Hence, combining this and Equation (46) we can
come up with constants G1

1 and G1
2 such that for any δ > 0, x1, x2, G(1)

1 n ≤ f (1)(x1)
⊤
f (1)(x2) <

G
(1)
2 n with probability at least 1− δ. Next, we can adapt Theorem 1 from Arpit & Bengio (2019) to

see that for post activations of layer l ∈ [2− L]

Pr
[
(1− ε)l−1∥f (1)(x)∥2 ≤ ∥f (l)(x)∥2 ≤ (1 + ε)l−1∥f (1)(x)∥2

]
≥ 1− δ′ (49)

where δ′ =
∑l

l′=2 2N exp
(
−n
(

ε
4 + log 2

1+
√
1+ε

))
, N is the size of our dataset and ε is any

positive small constant. Combining this with the result from the first layer’s post-activations we can
see that

(1− ε1)
l−1(nµ− ε2) ≤ ∥f (l)(x)∥2 ≤ (1 + ε1)

l−1(nµ+ ε2) (50)

with probability at least (1− δ)(1− δ′). Hence, for any n > nm, δ > 0 and (x1, x2) ∈ X × X one
can come up with constants G(l)

1 = polylog(n/δ), G
(l)
2 = polylog(n/δ) for post activations of layer

l such that
G

(l)
1 n ≤ f (l)(x1)

⊤
f (l)(x2) < G

(l)
2 n (51)

with probability at least 1− δ, where nm depends on l and δ.

B.3 PSEUDO-NTK’S MAXIMUM EIGENVALUE CONVERGES TO ENTK’S MAXIMUM
EIGENVALUE AS WIDTH GROWS

In this subsection, we present a formal proof for Theorem 4.

Proof. Note that, as both pNTK and eNTK are symmetric PSD matrices, their maximum eigenvalues
are equal to their spectral norm. Furthermore, the spectral norm of a matrix is upper-bounded by its
Frobenius norm. Now, note that according to the triangle inequality, we have

∥Θ(x1, x2)∥ = ∥Θ̂(x1, x2)⊗ IO +
(
Θ(x1, x2)− Θ̂(x1, x2)⊗ IO

)
∥

≤ ∥Θ̂(x1, x2)⊗ IO∥+ ∥Θ(x1, x2)− Θ̂(x1, x2)⊗ IO∥
(52)

Thus

∥Θ(x1, x2)∥ − ∥Θ̂(x1, x2)⊗ IO∥ ≤ ∥Θ(x1, x2)− Θ̂(x1, x2)⊗ IO∥. (53)

which according to (43) together with the fact that for any matrix A, λmax(A ⊗ I) = λmax(A)
implies that with probability at least 1− δ,∣∣∣λmax (Θ(x1, x2))− λmax

(
Θ̂(x1, x2)

)∣∣∣ ≤
8O
(
C

(L−1)
1 + C

(L−1)
2

)√
nmax

(√
log

8O2

δ
,
√
2 log

8O2

δ

)
.

(54)
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Moreover, as mentioned in the proof of Lemma 15, combining the previous inequality with the fact
that λmax (Θ(x1, x2)) ≥ Ω(n) with high probability shows that there exists δ′ and n0 such that∣∣∣∣∣∣

λmax (Θ(x1, x2))− λmax

(
Θ̂(x1, x2)

)
λmax (Θ(x1, x2))

∣∣∣∣∣∣ ≤ O(1/
√
n) (55)

with probability 1− δ′ over random initialization for n > n0 as desired.

B.4 KERNEL REGRESSION USING PNTK VS KERNEL REGRESSION USING ENTK

In this subsection we provide a formal proof for Theorem 5.

Proof. We start by proving a simpler version of a theorem, and then show a correspondence that
expands the result of the simpler proof to the original Theorem. Assuming |X | = |Y| = N (training
data), we define

h(x) = Θ(x1,X )Θ(X ,X )
−1Y and ĥ(x) =

(
Θ̂(x1,X )⊗ IO

)(
Θ̂(X ,X )⊗ IO

)−1

Y. (56)

Note that as the result of kernel regression (without any regularization) does not change with scaling
the kernel with a fixed scalar, we can use a weighted version of the kernels mentioned in the previous
equation without loss of generality. Accordingly, we define

α =

(
1

n
Θ(X ,X )

)−1

Y and α̂ =

(
1

n
Θ̂(X ,X )⊗ IO

)−1

Y. (57)

Using the fact that M̂−1 −M−1 = −M̂−1(M̂ −M)M−1 and (A⊗ I)−1 = A−1 ⊗ I we can show
that

α̂− α = −Θ̂(X ,X )
−1

⊗ IO

(
1

n
Θ̂(X ,X )⊗ IO − 1

n
Θ(X ,X )

)−1

Θ(x1, x2)Y (58)

Assume λ = min
(
λmin(Θ(X ,X )), λmin(Θ̂(X ,X ))

)
. Then

∥α̂− α∥ ≤ 1

λ2
∥ 1
n
Θ̂(X ,X )⊗ IO − 1

n
Θ(X ,X )∥∥Y∥ (59)

Plugging into the formula for kernel regression, we get that

ĥ(x)− h(x) =

(
1

n
Θ̂(x,X )⊗ IO

)
α̂− 1

n
Θ(x,X )α

=

(
1

n
Θ̂(x,X )⊗ IO − 1

n
Θ(x,X )

)
α̂+

1

n
Θ(x,X )(α̂− α)

(60)

Thus

∥ĥ(x)− h(x)∥ ≤ ∥ 1
n
Θ̂(x,X )⊗ IO − 1

n
Θf (x,X )∥∥α̂∥+ ∥ 1

n
Θ(x,X )∥∥α̂− α∥

≤ 1

λ
∥ 1
n
Θ̂(x,X )⊗ IO − 1

n
Θ(x,X )∥∥Y∥

+
1

λ2
∥ 1
n
Θ(x,X )∥∥ 1

n
Θ̂(X ,X )⊗ IO − 1

n
Θ(X ,X )∥∥Y∥.

(61)
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Figure 12: Comparing the magnitude of sum of on-diagonal and off-diagonal elements of Θθ at
initialization and throughout training, based on 1000 points from CIFAR-10. The reported numbers
are the average of 1000× 1000 kernels each having a shape of 10× 10. The same subset has then
been used to train the NN using SGD.
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Figure 13: Evaluating the relative difference of Frobenius norm of Θθ(D,D) and Θ̂θ(D,D)⊗ IO
at initialization and throughout training, based on 1000 points from CIFAR-10.

Now, note that as for a block matrix A of Aij blocks we have that ∥A∥ ≤
∑

i,j∥Aij∥ it follows that
for any matrix valued kernel K

∥K(X ,X )∥ ≤
∑

x1,x2∈X
∥K(x1, x2)∥. (62)

Using this fact, we can rewrite the bound as

∥ĥ(x)− h(x)∥ ≤ N

λ
∥ 1
n
Θ̂(x, x∗

1)⊗ IO − 1

n
Θ(x, x∗

1)∥∥Y∥

+
N2

λ2
∥ 1
n
Θ(x,X )∥∥ 1

n
Θ̂(x∗

2, x
∗
3)⊗ IO − 1

n
Θ(x∗

2, x
∗
3)∥∥Y∥

(63)

for some particular x∗
1, x

∗
2, x

∗
3 ∈ X . Using (43), we can see with probability at least 1− δ that∥∥∥ĥ(x)− h(x)

∥∥∥ ≤ 8NOα

λ
√
n

max

(√
log

8O2

δ
,
√
2 log

8O2

δ

)
∥Y∥

(
1 +

N

λ
∥ 1
n
Θ(x,X )∥

)
. (64)

To show the correspondence between ĥ(x) and f̂ lin(x), as in (6), note that

ĥ(x) =
(
Θ̂(x,X )⊗ IO

)(
Θ̂(X ,X )

−1
⊗ IO

)
Y

=
(
Θ̂(x,X )Θ̂(X ,X )

−1
⊗ IO

)
Y

= vec
(
IOYvΘ̂(x,X )Θ̂(X ,X )

−1
) (65)

where Yv = vec−1(Y) is the result of inverse of the vectorization operation, converting the NO × 1

vector to a O × N matrix. Thus, ĥ(x) = Θ̂(x,X )Θ̂(X ,X )
−1

Y ′ where Y ′ is the N × O matrix
derived from reshaping the NO × 1 vector Y . The proof is complete.

B.5 EXTENDING THE PROOFS TO OTHER ARCHITECTURES

In this subsection we elaborate on how one can extend the current proofs to different architectures.
We start by providing a sketch on how the dense weight vectors can be replaced by other layers
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Figure 14: Evaluating the relative difference of λmax of Θθ(D,D) and Θ̂θ(D,D) at initialization
and throughout training, based on kernels on a subset (|D| = 1000) of points from CIFAR-10.
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Figure 15: Evaluating the relative norm difference of kernel regression outputs using eNTK and
pNTK as in Equation (5) and Equation (6) at initialization and throughout training. The kernel
regression has been done on |D| = 1000 training points and |X | = 500 test points randomly selected
from CIFAR-10’s train and test sets.

of choice like convolutions. First, note how the linear weights are used in Equation (12). As
mentioned in Section 6 of Yang (2020), we can accordingly write the same expansion for other
forward computational graphs and derive the corresponding canonincal decomposition for them. In
subsection 6.2.1, Yang (2020) provides a concrete example on how one can derive this expansion for
a general RNN-like architecture. As the proofs provided in this section depend on the MLP structure
only by means of the canonical decomposition, one can extend them to a general architecture by
deriving the corresponding canonical decomposition of that architecture.

Non-Gaussian Weights: According to the strategy used in the proofs, we need the individual weights
to be distributed such that the product of two independent scalar weights (as in Equation (12)) remain
sub-exponential. Hence, any sub-gaussian initialization method, such as any bounded initialization
(e.g. truncated normal or uniform on an interval) can be used, and the same proof structure would
support the same convergence rate, albeit with different constants in convergence (independent of n).

Non-ReLU activations: In general, the proofs rely on the ReLU activation through Lemma 17,
which gives a concentration bound on the absolute value of the dot product of post-activations of
each layer of the NN. To use other nonlinearities, we would only need an analagous result for that
nonlinearity; the other proofs follow without requiring any other significant change.

Experimental Evaluation: To provide further experimental support for this argument, we have
conducted an ablation study on the FCN architecture with different nonlinearities and with truncated
Gaussian initialization (Figures 12, 13, 14 and 15). As seen in the provided figures, the impact of
nonlinearity and initialization method as long as they follow the provided setting in Setting A, is
marginal.

C MORE DETAILS ON KERNEL REGRESSION USING PNTK ON FULL
CIFAR-10 DATASET

In this section we provide another figure comparing the accuracy of f̂ lin(x) with parameters derived
at epoch E ∈ {0, 50, 100, 150, 200} of training the NN with SGD. On the y-axis, the reported
number is f lin(x) − f∗(x) where f∗ denotes the final model obtained after training f for 200
epochs. As seen in Figure 16 the architecture of the model has a significant impact on how good the
linearization predicts the final accuracy of the fully-trained model. However, as proven in Theorem 1
in conjunction with the linearization approximations provided in Lee et al. (2019), as width grows,
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Figure 16: Evaluating the difference in test accuracy of kernel regression using pNTK as in (6) vs
the final model f throughout SGD training on the full CIFAR-10 dataset. How much worse would it
be to “give up” on SGD at this point and train f̂ lin with the current representation?

this approximation becomes more accurate. One unexplored fact regarding this experiment is that
fact that lineraization with trained parameters significantly outperforms linearization at initialization,
which is intuitive but not rigorously investigated yet.
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