
[Re] Projection-based Algorithm for Updating the Truncated
SVD of Evolving Matrices

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Scope of Reproducibility2

Kalantzis et al. [11] present a method to update the rank-k truncated SVD of matrices where the matrices are subject3

to periodic additions of rows or columns. The main claim of the original paper states that the presented algorithms4

outperform other state-of-the-art approaches in terms of accuracy and speed. However, no results were given comparing5

the proposed methods to other state-of-the-art methods. Accordingly, we reproduce their results and compare it to the6

state-of-the-art FrequentDirections streaming algorithm [6].7

Methodology8

We re-implemented the algorithm in Python and evaluated the performance on five datasets. All experiments were run9

on a MacBook Pro and the code is available on GitHub1. The accuracy of the methods were evaluated using the same10

metrics as in the paper.11

Results12

We successfuly reproduced the task-agnostic experiments of the original paper, finding our results to strongly match13

with the original results. We also carried out a comparison with FrequentDirections but found the evaluation14

metrics of the original paper to be ill-suited to compare - setting up for further work on developing fair comparisons.15

What was easy16

The benchmark algorithm was fairly simple to implement. Furthermore, running the experiments did not place any17

computational resource burden as all experiments could be run on a laptop.18

What was difficult19

The most difficult part of the reproduction study was understanding the justification underlying the construction of20

the algorithm as it involved several complex proofs from numerical linear algebra to provide bounds on the accuracy.21

Demystifying the specifics of constructing the projection matrix for the main algorithm the author’s propose was also22

initially difficult until we gained access to their code.23

Communication with original authors24

We contacted one of the authors by email and received their data and MATLAB implementation of the algorithm and25

experiments.26

1https://anonymous.4open.science/r/truncatedSVD-0162/

Submitted to ML Reproducibility Challenge Fall 2021. Do not distribute.



1 Introduction27

The singular value decomposition (SVD) remains a fundamental dimensionality reduction technique in machine learning28

and continues to be used in a variety of applications. In a traditional formulation, the entirety of the matrix to be29

decomposed is available at the time of application of the SVD. However, certain applications, such as latent semantic30

indexing (LSI) and recommender systems, have matrices that are subject to the periodic addition of new rows and/or31

columns. A naïve solution is to recalculate the SVD each time the matrix is updated, but such an approach quickly32

becomes impractical when updates are frequent. For this reason, algorithms that exploit information on the previous33

SVD of the matrix to calculate the SVD of the updated matrix are crucial. Such schemes have been proposed for34

both the full SVD and rank-k SVD. The algorithm presented in [11], which is the focus of our study, is for the rank-k35

truncated SVD case.36

Following the notation introduced in [11], the problem of updating the rank-k truncated SVD of an updated matrix37

is as follows. Let B ∈ Cm×n be a matrix for which a rank-k SVD Bk = UkΣkV
H
k =

∑k
j=1 σju

(j)(v(j))H where38

Uk = [u(1), . . . , u(k)], Vk = [v(1), . . . , v(k)], and Σk = diag(σ1, . . . , σk) where σ1 ≥ σ2 ≥ · · · ≥ σk > 0 is known.39

The goal is to approximate the rank-k SVD Ak = ÛkΣ̂kV̂
H
k =

∑k
j=1 σ̂j û

(j)(v̂(j))H of the updated matrix40

A =

(
B
E

)
, or A = (B E)

where E ∈ Cs×n or E ∈ Cm×s is the matrix containing the newly added rows or columns, respectively. We focus on41

the row-update case in this study as is the case in [11].42

The remainder of this study is outlined as follows. In Section 2, we introduce the central claim of the original paper that43

we tested in our study. Following that, in Section 3, we introduce the necessary background prior to describing the44

proposed algorithm. In Section 4, we describe the experimental setup: our implementation of the algorithm, datasets45

used, and experiments run. We present the experimental results in Section 5 along with our interpretation of the results46

and thoughts on the overall study in Section 6.47

2 Scope of reproducibility48

In this study, we aimed to verify the central claim of the original paper, which stated that the proposed algorithm49

outperforms other state-of-the-art approaches at calculating the truncated SVD of evolving matrices. In particular,50

they claimed that the method had especially high accuracy for the singular triplets with the largest modulus singular51

values. We sought to verify this claim by evaluating two metrics using our implementation of the method as well as52

with FrequentDirections, a state-of-the-art matrix sketching and streaming algorithm [6]:53

1. Relative approximation error rel_err of leading k singular values of A (Equation 1) is smaller when using54

the proposed algorithm compared to previous methods.55

rel_err =

∣∣∣∣ σ̂i − σi

σi

∣∣∣∣ (1)

2. Scaled residual norm res_norm of leading k singular triplets {û(i), v̂(i), σ̂i} (Equation 2) is smaller when56

using the proposed algorithm compared to previous methods.57

res_norm =

∥∥Av̂(i) − σ̂iû
(i)
∥∥
2

σ̂i
(2)

Additionally, we also sought to verify the original paper’s claims about the runtime performance of the proposed58

algorithm.59

3 Projection-based update algorithm60

In the following sections, we first introduce the original zha-simon algorithm, then introduce the proposed projection-61

based update algorithm. Note that there are two implementations to the proposed algorithm: one which uses the same62

projection matrix as the zha-simon algorithm (Algorithm 2.1) and another that uses an enhanced projection matrix63

(Algorithm 2.2).64

2



3.1 Zha-Simon algorithm65

As motivated in the introduction, an update algorithm that uses prior knowledge regarding the SVD of the matrix66

is crucial for it to be useful in practice. The algorithm proposed in [11] is based on an algorithm proposed in [15],67

the latter of which we will refer to as the zha-simon algorithm (Algorithm 1). Using zha-simon in the row-update68

case A =

(
B
E

)
, the QR decomposition of the row space of E that is not captured by the range of the right singular69

vectors Vk can be expressed as (I − VkV
H
k )EH = QR. Using this result and the previously known rank-k SVD70

Bk = UkΣkV
H
k , the updated matrix A can be decomposed approximately as follows:71

A =

(
B
E

)
≈

(
UkΣkV

H
k

E

)
=

(
Uk

Is

)(
Σk

EVk RH

)(
V H
k

QH

)
(3)

If we let FΘGH be the compact SVD of
(

Σk

EVk RH

)
, then Equation 3 can be further decomposed as follows:72

A ≈
(
Uk

Is

)(
FΘGH

)(V H
k

QH

)
=

((
Uk

Is

)
F

)
Θ((Vk Q)G)

H (4)

The key here is to notice that the approximation of the rank-k truncated SVD of A using the zha-simon algorithm73

does not require access to the previous matrix B – only the rank-k SVD Bk = UkΣkV
H
k of the matrix from the74

previous iteration is needed. We can further simplify Equation 4 and see that it approximates the SVD of A as75

A ≈ (ZF )Θ(WG)H where Z =

(
Uk

Is

)
and WH = (Vk Q)

H are orthonormal matrices with ranges that76

approximately capture range(Ûk) and range(V̂ H
k ), respectively.77

Algorithm 1 zha-simon algorithm

Input: A,E,Uk,Σk, Vk, k

1: Z ←
(
Uk

Is

)
2: [Q,R]← qr(I − VkV

H
k )EH

3: W ← (Vk Q)
4: [Fk,Θk, Gk]← svd(ZHAW, k)
5: Uk ← ZFk

6: Σk ← Θk

7: V k ←WGk

Output: Uk ≈ Ûk,Σk ≈ Σ̂k, V k ≈ V̂k

Algorithm 2 Proposed row-update algorithm

Input: B,E, k
1: [Uk,Σk, Vk]← svd(B, k)
2: Construct projection matrix Z

3: [Fk,Θk]← svd(ZHA, k) where A =

(
B
E

)
4: Uk ← ZFk

5: Σk ← Θk

6: V k ← AHUkΣ
−1

k

Output: Uk ≈ Ûk,Σk ≈ Σ̂k, V k ≈ V̂k

78

3.2 Proposed row-update algorithm79

In practice, computing the rank-k truncated SVD of A using Algorithm 1 is expensive due to the QR (Step 2) and80

SVD (Step 4) steps and possibly inaccurate based on the structure of A [11]. The cost of the QR decomposition can be81

mitigated by setting W = In by observing that v̂(i) ⊆ range(In) for i = 1, . . . , n. Therefore, ZHAW in Step 4 can82

be replaced with ZHA and the QR decomposition in Step 2 can be eliminated. With these modifications, we have the83

new proposed row-update algorithm (Algorithm 2). Note that Step 2 has intentionally not been specified as the authors84

proposed two options for the construction of the projection matrix Z.85

The first option (Algorithm 2.1) uses the same Z matrix as in Algorithm. Although the construction of Z and ZHA are86

presented in two separate steps in Algorithm 2, ZHA for Step 3 is directly computed as 1. Below are the expressions87

for Z and ZHA for Algorithm 2.1.88

Z =

(
Uk

Is

)
(5a)

89

ZHA =

(
ΣkV

H
k

E

)
(5b)

3



In the case where the rank of B is larger than k and the singular values σk+1, . . . , σmin(m,n) are not small, the90

approximation returned by Algorithm 2.1 can be of poor accuracy. Algorithm 2.2 addresses this by using an enhanced91

version of the projection matrix by adding a term −B(λ)BEH in the Z matrix such that92

Z =

(
Uk −B(λ)BEH

Is

)
(6)

Setting X = −B(λ)BEH , the additional term is equal to the matrix X that satisfies the equation93

−(BBH − λIm)X = (Im − UkU
H
k )BEH , (7)

which can be computed using the block conjugate gradient (BCG) method [12]. To ensure that the matrix −(BBH −94

λIm) is positive definite for BCG, a lower bound of λ > σ2
1 is imposed. The leading singular value can be estimated95

using a few iterations of truncated SVD. However, to reduce the number of columns in X and keep Z manageable, the96

randomized rank-r SVD of X can be taken so that97

−B(λ)BEHR ≈ Xλ,rSλ,rY
H
λ,r (8)

where R is a matrix with at least r columns whose entries are i.i.d. Gaussian random variables with zero mean and unit98

variance. With Xλ,r, the Z and ZHA matrices can be calculated as99

Z =

(
Uk Xλ,r

Is

)
(9a)

100

ZHA =

ΣkV
H
k

XH
λ,rB
E

 (9b)

For more detailed explanations and derivations of the algorithms and their associated proofs, we refer readers to [11].101

4 Methodology102

Professor Vassilis Kalantzis, who we contacted via email, generously provided us with the relevant MATLAB code103

and data; however, we chose to re-implement the algorithm from scratch in Python with standard packages (NumPy104

[9], SciPy [14], and scikit-learn [13]) and used the MATLAB code to confirm our implementation. We compared105

the performance of Algorithms 2.1 and 2.2 with FrequentDirections [6], a state-of-the-art streaming algorithm.106

Experiments were conducted on a MacBook Pro with a 2.3 GHz Dual-Core Intel Core i5 processor with 16 GB of107

RAM, and the code is publicly available on GitHub2. All plots were generated using Matplotlib [10].108

4.1 Implementation109

We chose to implement the three truncated SVD update algorithms as methods of an EvolvingMatrix class, which110

we will refer to as EM from here on out. With each experiment, the EM class was initialized with various parameters111

(initial matrix, matrix to be appended, number of batches, etc.) and updates were carried out using one of the update112

methods. A simplified version of the experiment is shown in Listing 1. Algorithms 2.1 and 2.2 were written based113

on the pseudo-code presented in Algorithm 2, where the Z and ZHA matrices were calculated using their respective114

formulas.115

Algorithm 2.1 The Z and ZHA matrices were constructed as in Equations 5a and 5b, respectively.116

Algorithm 2.2 The main difficulty in implementing Algorithm 2.2 was in the calculation of Xλ,r. We chose to solve117

for X in Equation 7 using the block Conjugate Gradient method (BCG) [12] as recommended in [11]. Though [11]118

specified, at maximum, one iteration of BCG, we found that the MATLAB code set the limit to two iterations. As the119

additional iteration did not greatly increase the computational cost, we chose to run BCG a maximum of two iterations120

as well. Once X was calculated, we calculated Xλ,r as per Equation 8 using randomized SVD [7]. For this, we used121

the scikit-learn randomized_svd implementation [13]. Based on the description for calculating Xλ,r in [11], we set122

n_components= r, n_oversamples= 2r, and n_iter= 0. The Xλ,r returned was then used to calculate Z and123

ZHA as in Equations 9a and 9b, respectively.124

2https://anonymous.4open.science/r/truncatedSVD-0162/

4



1 # Initialize EM object with initial matrix , number of batches , and desired rank
2 model = EM(initial_matrix , n_batches , k_dim)
3

4 # Set entire matrix to be appended
5 model.set_append_matrix(E)
6

7 # Update over specified number of batches
8 for i in range(n_batches):
9 model.evolve () # append rows to matrix

10 model.update_svd () # update truncated SVD
11

12 # Calculate metrics for pre -selected updates
13 if model.phi in phis2plot:
14 model.calculate_true_svd ()
15 model.save_metrics ()

Listing 1: Simplified experiment structure

Frequent Directions A modified version of FrequentDirections3 was incorporated as an update method into125

the EM class. Since FrequentDirections is a line-by-line update method as opposed to a batch update method, the126

update method in the EM class was constructed to receive a matrix E containing the rows to be added and performs the127

FrequentDirections algorithms for each row of the E. Any form of error metric calculation or subsequent update is128

performed only after the entire matrix E has been processed using the line-by-line update method.129

Since the updated matrix B for the FrequentDirections method has constant dimensions throughout the update130

process, the residual norm error calculation is modified to measure the error between B and A′ where A′ is a truncated131

version of A that only holds the first 2l singular vectors and values of A and where 2l is the number of rows in B.132

4.2 Datasets133

In total, we conducted experiments on five datasets. MED, CRAN, CISI, and Reuters-21578 are term-document134

matrices from latent semantic indexing applications [1–5] and ML1M is a movie rating dataset from MovieLens [8].135

Table 1 lists the dimensions of the matrices as well as the average number of nonzero (nnz) entries per row and Figure 1136

shows the leading 100 singular values for each matrix. It should be noted that the matrices used for CISI, CRAN, and137

MED in [11] had slightly different dimensions compared to what was listed on [1]. We received these datasets along138

with the MATLAB code and chose to use their versions of the data for ease of comparison; as we were interested in the139

accuracy of singular value reconstruction we determined that somewhat corrupted data merely introduced a different set140

of singular values to reconstruct. Furthermore, as the Reuters and ML1M datasets were intact, we used them as controls141

against the corruption of the other sets.142

Figure 1: Leading 100 singular values for each
dataset.

Dataset Rows Columns nnz(A)/row

CISI [1] 5609 1460 12.17
CRAN [1] 4612 1398 18.06
MED [1] 5831 1033 8.92

ML1M [8] 6040 3952 165.60
Reuters-21578 [2–5] 18933 8293 20.57

Table 1: Number of rows, columns, and average non-zero elements in
each row for datasets.143

3https://github.com/edoliberty/frequent-directions

5



4.3 Experiments144

We conducted two sets of experiments: one to confirm the results of [11] in a series of reproducibility studies and145

another to further measure the performance of the algorithms using two additional metrics as well as observing the146

effect of the number of batches on the runtime and performance.147

Update method comparison As a first step, we sought to reproduce the results in Figures 3 and 4 of [11]. To148

do this, we conducted the sequence updates experiment. The initial matrix B ≡ A(0) was set equal to the first149

µ rows of A ∈ Cm×n and the remaining m − µ rows of A were appended to the initial matrix over a sequence150

of ϕ updates, each with τ = ⌊(m − µ)/ϕ⌋ rows. Following the notation of [11], the i-th update would yield151

A(i) =

(
B ≡ A(i−1)

E ≡ A(µ+ (i− 1)τ + 1 : µ+ iτ, :)

)
with the exception of the last update which is likely to have fewer152

rows in E. After each update, the rank-k truncated SVD was calculated by one of the three algorithms.153

The parameters used in [11], and thus in our experiments as well were µ = ⌈m/10⌉ rows, ϕ = 10 updates, and rank154

k = 50. The relative errors and residual norms were reported for the k = 50 leading singular triplets for ϕ = 1, 5, 10.155

For Algorithm 2.2, we set the coefficient λ = 1.01σ̂2
1 and r = 10.156

Algorithm 2.2 r parameter study Next, we varied the r parameter in Algorithm 2.2 to evaluate its effect on the157

accuracy as was presented in Table 4 by [11]. For this, we set µ = ⌈m/10⌉, ϕ = 10, and k = 50 for all three update158

methods as with the previous experiment and set r = 10, 20, 30, 40, 50 for Algorithm 2.2.159

Runtime comparison We compared the runtimes of the algorithms for the CRAN, CISI, and MED as a function of160

the rank k = 25, 25, 50, 75, 100, 125 and the total number of updates ϕ = 2, 4, 6, 8, 10 (Figure 2 left and middle plots161

in [11]).162

Varying number of batches and desired rank In addition to the experiments that we replicated based on [11], we163

also varied the number of batches ϕ = 2, 4, 6, 8, 10 and the desired rank k = 25, 50, 75, 100, 125 of the truncated SVD164

and evaluated the performance of each of the update methods to further observe the effects of each of these parameters165

on the methods’ performances.166

5 Results167

Relative error and residual norms of singular triplets The relative error and residual norm of the leading k = 50168

singular triplets for the CRAN dataset at ϕ = 1, 5, 10 using Algorithms 2.1, 2.2, and FrequentDirections are shown169

in Figure 2. Due to the large number of figures, the complete set of plots for the standard experiments are presented170

in Sections A to E in the Supplementary Materials. When comparing the relative error and residual norm plots for171

Algorithm 2.1 on CRAN, CISI, and MED, our results matched those of [11] exactly. For Algorithm 2.2, the plots172

did not match exactly, though the differences never exceeded half an order of magnitude and are attributable to the173

randomness inherent in Algorithm 2.2.174

Our comparison of the relative error and residual norm of the k = 50-th singular triplet for Algorithm 2.2 with various175

values of r revealed a similar result to [11] – across the three methods, Algorithm 2.2 had the lowest errors, and within176

variations of Algorithm 2.2, larger values of r yielded higher accuracy.177

Runtime For all three of the datasets which we measured runtimes on, we found Algorithm 2.2 to require a178

substantially longer amount of time to complete all of its updates. Algorithm 2.1 and FrequentDirections required179

a similar length of time, though Algorithm 2.1 was consistently faster than FrequentDirections by a small margin.180

The runtime plots for the standard experiments are shown in Section F of the Supplementary Materials.181

Number of batches and rank Due to space-related constraints, we chose to only include two examples from the182

array of plots generated (Figure 4). Despite the large variation in the parameters, we can see that the residual norm for183

overlapping update numbers and k share very similar values.184

6



(a) CRAN relative error (Alg. 2.1) (b) CRAN relative error (Alg. 2.2) (c) CRAN relative error (FD)

(d) CRAN residual norm (Alg. 2.1) (e) CRAN residual norm (Alg. 2.2) (f) CRAN residual norm (FD)

Figure 2: Relative errors and residual norms at ϕ = 1, 5, 10 for CRAN with Algorithm 2.1, Algorithm 2.2, and FD.

MED CRAN CISI
r err. res. err. res. err. res.

10 0.037 0.204 0.031 0.174 0.038 0.224
20 0.028 0.172 0.021 0.144 0.019 0.149
30 0.021 0.154 0.012 0.113 0.014 0.119
40 0.015 0.133 0.010 0.107 0.011 0.105

Z =

(
Uk Xλ,r

Is

)
50 0.013 0.121 0.008 0.097 0.009 0.096

Z =

(
Uk

Is

)
– 0.101 0.294 0.074 0.295 0.080 0.382

FrequentDirections – 0.212 1.031 0.216 1.045 0.205 1.032

Table 2: Relative error and residual norm of approximation of the singular triplet (û(50), v̂(50), σ̂50)

6 Discussion185

Ultimately, the reproduced results confirm the original results. Specifically, Table 2 verifies that Algorithm 2.2186

outperforms Algorithm 2.1 in terms of accuracy. Furthermore, Figure 3 clearly demonstrates that Algorithm 2.1 far187

outperforms Algorithm 2.2 with respects to wall clock speed. However, as there were no benchmarks, we viewed the188

comparison with FrequentDirections as a much stronger barometer. At first glance, Table 2 and Figures 2c and189

2f suggest that both Algorithm 2.1 and 2.2 outperform FrequentDirections in terms of accuracy. However, upon190

considering the steps involved in FrequentDirections (namely the step involving the thresholding of the singular191

values), we realize that the relative error and residual norm of singular triplets may not be an applicable metric for192

FrequentDirections. This is further demonstrated by the irregular profile of the residual norm as a function of193

the singular value index (Figure 2f)). Thus it cannot conclusively be said that FrequentDirections is significantly194

under-performing the paper’s proposed algorithms. Consequently, the overall conclusion becomes that while the results195

7



(a) Runtime vs. k (b) Runtime vs. number of batches

Figure 3: CRAN runtimes as a function of rank k (left) and number of batch splits (right).

(a) 6 batches, k = 50 (b) 10 batches, k = 100

Figure 4: Examples of residual norm for experimental parameters outside of what was investigated by [11].

presented in the paper are sound, there is still need for further benchmarking to determine where the proposed algorithms196

stand relative to the state-of-the-art in the field.197

6.1 Future Work198

We believe a weakness of the paper to be the lack of benchmarking - and as discussed above, our results do not199

conclusively resolve this. However, they do motivate the need for metrics that will allow for a fair comparison between200

the proposed algorithm and state-of-the-art algorithms such as FrequentDirections.201

6.2 What was easy202

Algorithm 1.1 was quite simple to understand and implement, and was exactly reproduced quite early on. Once we203

received code, implementation of Algorithm 2.2 and the evaluation metrics was simplified.204

6.3 What was difficult205

In addition to the challenges constructing Xλ,r for Algorithm 2.2, another challenging/time-consuming aspect was206

designing the experiments as sweeping through various combinations of the parameters required thorough planning for207

data management.208

8



References209

[1] Michael W. Berry and Susan T. Dumais. Latent Semantic Indexing Web Site. URL: http://web.eecs.utk.210

edu/research/lsi/.211

[2] D. Cai, X. He, and J. Han. “Document clustering using locality preserving indexing”. In: IEEE Transactions on212

Knowledge and Data Engineering 17.12 (Dec. 2005), pp. 1624–1637. ISSN: 1041-4347. DOI: 10.1109/TKDE.213

2005.198.214

[3] Deng Cai, Xuanhui Wang, and Xiaofei He. “Probabilistic dyadic data analysis with local and global consistency”.215

In: Proceedings of the 26th Annual International Conference on Machine Learning - ICML ’09. New York,216

New York, USA: ACM Press, 2009, pp. 1–8. ISBN: 9781605585161. DOI: 10.1145/1553374.1553388. URL:217

http://portal.acm.org/citation.cfm?doid=1553374.1553388.218

[4] Deng Cai et al. “Modeling hidden topics on document manifold”. In: Proceeding of the 17th ACM conference on219

Information and knowledge mining - CIKM ’08. New York, New York, USA: ACM Press, 2008, p. 911. ISBN:220

9781595939913. DOI: 10.1145/1458082.1458202.221

[5] Deng Cai et al. “Regularized locality preserving indexing via spectral regression”. In: Proceedings of the sixteenth222

ACM conference on Conference on information and knowledge management - CIKM ’07. New York, New York,223

USA: ACM Press, 2007, p. 741. ISBN: 9781595938039. DOI: 10.1145/1321440.1321544.224

[6] Mina Ghashami et al. “Frequent Directions: Simple and Deterministic Matrix Sketching”. In: SIAM Journal225

on Computing 45.5 (Jan. 2016), pp. 1762–1792. ISSN: 0097-5397. DOI: 10.1137/15M1009718. URL: http:226

//epubs.siam.org/doi/10.1137/15M1009718.227

[7] N. Halko, P. G. Martinsson, and J. A. Tropp. “Finding structure with randomness: Probabilistic algorithms for228

constructing approximate matrix decompositions”. In: SIAM Review 53.2 (2011), pp. 217–288. ISSN: 00361445.229

DOI: 10.1137/090771806.230

[8] F. Maxwell Harper and Joseph A. Konstan. “The movielens datasets: History and context”. In: ACM Transactions231

on Interactive Intelligent Systems 5.4 (Dec. 2015). ISSN: 21606463. DOI: 10.1145/2827872.232

[9] Charles R. Harris et al. Array programming with NumPy. Sept. 2020. DOI: 10.1038/s41586-020-2649-2.233

[10] John D Hunter. “Matplotlib: A 2D Graphics Environment”. In: Computing in Science Engineering 9.3 (2007),234

pp. 90–95. DOI: 10.1109/MCSE.2007.55.235

[11] Vassilis Kalantzis et al. “Projection techniques to update the truncated SVD of evolving matrices with appli-236

cations”. In: Proceedings of the 38th International Conference on Machine Learning. Ed. by Marina Meila237

and Tong Zhang. PMLR, July 2021, pp. 5236–5246. URL: https://proceedings.mlr.press/v139/238

kalantzis21a.html.239

[12] Dianne P. O’Leary. “The block conjugate gradient algorithm and related methods”. In: Linear Algebra and its240

Applications 29 (Feb. 1980), pp. 293–322. ISSN: 00243795. DOI: 10.1016/0024-3795(80)90247-5. URL:241

https://linkinghub.elsevier.com/retrieve/pii/0024379580902475.242

[13] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine Learning Research243

12.85 (Oct. 2011), pp. 2825–2830.244

[14] Pauli Virtanen et al. “SciPy 1.0: fundamental algorithms for scientific computing in Python”. In: Nature Methods245

17.3 (Mar. 2020), pp. 261–272. ISSN: 15487105. DOI: 10.1038/s41592-019-0686-2.246

[15] Hongyuan Zha and Horst D Simon. “Timely communication on updating problems in latent semantic indexing”.247

In: Society for Industrial and Applied Mathematics 21.2 (1999), pp. 782–791. URL: http://www.siam.org/248

journals/sisc/21-2/32926.html.249

9

http://web.eecs.utk.edu/research/lsi/
http://web.eecs.utk.edu/research/lsi/
http://web.eecs.utk.edu/research/lsi/
https://doi.org/10.1109/TKDE.2005.198
https://doi.org/10.1109/TKDE.2005.198
https://doi.org/10.1109/TKDE.2005.198
https://doi.org/10.1145/1553374.1553388
http://portal.acm.org/citation.cfm?doid=1553374.1553388
https://doi.org/10.1145/1458082.1458202
https://doi.org/10.1145/1321440.1321544
https://doi.org/10.1137/15M1009718
http://epubs.siam.org/doi/10.1137/15M1009718
http://epubs.siam.org/doi/10.1137/15M1009718
http://epubs.siam.org/doi/10.1137/15M1009718
https://doi.org/10.1137/090771806
https://doi.org/10.1145/2827872
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://proceedings.mlr.press/v139/kalantzis21a.html
https://proceedings.mlr.press/v139/kalantzis21a.html
https://proceedings.mlr.press/v139/kalantzis21a.html
https://doi.org/10.1016/0024-3795(80)90247-5
https://linkinghub.elsevier.com/retrieve/pii/0024379580902475
https://doi.org/10.1038/s41592-019-0686-2
http://www.siam.org/journals/sisc/21-2/32926.html
http://www.siam.org/journals/sisc/21-2/32926.html
http://www.siam.org/journals/sisc/21-2/32926.html

	Introduction
	Scope of reproducibility
	Projection-based update algorithm
	Zha-Simon algorithm
	Proposed row-update algorithm

	Methodology
	Implementation
	Datasets
	Experiments

	Results
	Discussion
	Future Work
	What was easy
	What was difficult


