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ABSTRACT

Enabling long-context understanding remains a key challenge in scaling existing
sequence models – a crucial component in developing generally intelligent models
that can process and operate over long temporal horizons that potentially consist of
millions of tokens. In this paper, we aim to address these challenges by providing
a comprehensive exploration of the full development process for producing 1M
context language models and video-language models, setting new benchmarks in
language retrieval and new capabilities in long video understanding. We detail our
long context data curation process, progressive context extension from 4K to 1M
tokens, and present an efficient open-source implementation for scalable training
on long sequences. Additionally, we open-source a family of 7B parameter models
capable of processing long text documents and videos exceeding 1M tokens.

1 INTRODUCTION

Enabling long-context understanding remains a key challenge in scaling existing sequence models—a
crucial step toward developing generally intelligent models that can process and operate over extended
temporal horizons, potentially involving millions of tokens. Current modeling approaches are
predominantly limited to processing short sequences, whether in the form of language, images, or
video clips (Brown et al., 2020; Touvron et al., 2023a;b; OpenAI, 2023; Brooks et al., 2024; Team
et al., 2023). As a result, these models fall short when tasked with understanding complex, long-form
language and visual contexts.

However, training models to process sequences that exceed millions of tokens is a significant challenge
due to the high memory and computational costs, as well as the lack of long-context data. In this work,
we address these challenges by leveraging Blockwise RingAttention (Liu et al., 2024; Liu and Abbeel,
2023), a technique that scales context size without approximations or overheads, enabling efficient
training on long sequences. We curate an extensive dataset of long-form videos and books from
public sources, covering a wide variety of activities and narrative structures. To address the scarcity of
long-form conversational datasets, we developed a model-based question-answering technique, where
a short-context model generates training data from books, significantly enhancing the model’s chat

Figure 1 Comparison of context size in state-of-the-art LLMs. Our model and concurrent work
Gemini 1.5 both achieve a 1M context size, significantly outperforming other LLMs.
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Figure 2 Retrieval comparisons against Gemini Pro and GPT-4. Needle retrieval comparisons
against Gemini Pro and GPT-4 for each respective max context length – 32K and 128K. Our model
performs competitively while being able to extend to 8x longer context length. Note that in order to
show fine-grained results, the x-axis is log-scale from 0-128K, and linear-scale from 128K-1M.

capabilities over long sequences. To mitigate computational costs, we gradually extended context
size from an initial 4K tokens to 1M tokens, achieving a cost-effective and scalable approach for
long-context modeling.

Following this, we further train our long-context language model to incorporate visual modalities,
such as image and video. Contrary to existing popular vision-language models (Liu et al., 2023a;
OpenAI, 2023; Chen et al., 2023a), we opt to additionally optimize next-token prediction losses
for image and video (generation) with a VQGAN (Esser et al., 2021) encoder. We encountered
various challenges training on mixed modalities (video, image, text). To balance their unique
characteristics - sequential information, visual detail, and linguistic content - we implement an
efficient masked sequence packing strategy, as well as introduce careful loss balancing to retain short
context accuracy. This approach handles varying sequence lengths more effectively than standard
methods. We also optimized the ratio of image, video, and text inputs in each batch, proposing an
empirically effective balance for cross-modality learning. Since our model aims to model both textual
and visual projections of the world through a large context window, drawing inspiration from prior
work on world models (Brooks et al., 2024; Ha and Schmidhuber, 2018), we name our work as Large
World Model (LWM).

Our contributions are threefold: (a) we train one of the largest context size transformers to date
on long text documents and videos and achieved competitive results on long video understanding
and long context fact retrieval. (b) We discover a range of challenges associated with training on
long sequences and propose solutions for them: masked sequence packing to effectively train with
different sequence lengths and synthetic model-generating question-answering for effective attention.
(c) We provide an open-source and optimized implementation for training with millions of tokens in
context, as well as a family of Llama-based 1M context models capable of processing long documents
(LWM-Text, LWM-Text-Chat) and videos (LWM, LWM-Chat) of 1M tokens.

2 METHOD OVERVIEW

We train a large autoregressive transformer model with a large context window of up to one million
tokens, building upon Llama2 7B (Touvron et al., 2023b). To achieve this goal, we implement
a two-stage training strategy. In Stage I (Section 3), we extend the context to 1M tokens using
book-length texts. This is followed by Stage II (Section 4), where we conduct joint training on diverse
long multimodal sequences, incorporating text-image data, text-video data, and book-length texts.
Our model architecture is the standard autoregressive transformer design, as illustrated in Figure
3. For a comprehensive overview of our training stages and the datasets employed, please refer to
Figure 4.

3 STAGE I: LEARNING LONG-CONTEXT LANGUAGE MODELS

This stage aims at first developing LWM-Text and LWM-Text-Chat, a set of long-context language
models learned by training on progressively increasing sequence length data, and modifying positional
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Figure 3 Model Architecture. The LWM model is an autoregressive transformer trained on
sequences of multimodal tokens. Each video frame is tokenized into 256 tokens using VQGAN,
while text is processed using a Byte-Pair Encoding (BPE) tokenizer. These tokens—both image and
text—are combined and input into the transformer to autoregressively predict the next token. The
model can handle various input-output modalities, including text, image, video, and text-video pairs.
To distinguish between images and text, special tokens <vision> and </vision> are used for
image and video frames, with <eof> and <eov> marking the end of these sequences. For simplicity,
delimiters are not shown in the figure.

encoding parameters to account for longer sequence lengths (see Section 3.1). In Section 3.2, we show
how to construct model-generated question-answering data for enabling long sequence conversations.

3.1 PROGRESSIVE TRAINING TOWARDS LONG CONTEXT

Learning long-range dependencies over sequences of millions of tokens requires (1) memory efficient
training to scale to such long sequences, as well as a need to (2) compute efficient training to extend
the context of our base language model. We outline our approach to these challenges, detailing our
methods for training on long sequences, designs for efficiency and stability, and experimental setup.

Training on long sequences has become prohibitively expensive due to memory constraints imposed
by the quadratic complexity of attention weight computations. To address these computational
limitations, we leverage recent advancements in scaling context window size, particularly Blockwise
RingAttention (Liu et al., 2024). This approach theoretically allows for an infinite context, bounded
only by available devices. We further enhance performance by fusing it with FlashAttention (Dao
et al., 2022) using Pallas (Bradbury et al., 2018) to optimize performance compared with using XLA
compiler. Notably, with enough tokens per device—already a given—the communication cost during
sequence parallelism is fully overlapped by computation, resulting in no additional overhead.

For better efficiency, we adopt a training approach inspired by prior research on extending context (Jin
et al., 2023a), where our model is trained on progressively longer sequence lengths, starting from
32K tokens and ending at 1M tokens in increasing powers of two. Intuitively, this allows the model
to save compute by first learning shorter-range dependencies before moving onto longer sequences.
For extending positional embeddings to longer contexts, we adopt a simple, scaled-up version of the
approach explored in Rozière et al. (2023), where the θ parameter for RoPE (Su et al., 2024) is scaled
in proportion to the context length. We found this approach to be stable for extending positional
embeddings with larger context lengths due to its simplicity, requiring the tuning of only a single
hyperparameter. Specifically, we scale the θ parameter for RoPE alongside increases in context
window sizes – the values are shown in Table 6. The progressive training of growing context sizes is
shown in Figure 4.

We initialize from LLaMA-2 7B (Touvron et al., 2023b) as base language model and progressively
increase the effective context length of the model across 5 stages: 32K, 128K, 256K, 512K, and 1M.
For each stage, we train on different filtered versions of the Books3 dataset from The Pile (Gao et al.,
2020). Table 6 details information about each training stage, such as the number of tokens, total
time, and the Books3 dataset filtering constraints. Each successive run is initialized from the prior
sequence length.

3.2 MODEL-GENERATED QUESTION-ANSWERING FOR EFFECTIVE CONTEXT

We construct a simple question-answering dataset to develop long-context chat capabilities. First, we
split documents from the Books3 dataset into fixed chunks of 1,000 tokens, feed each chunk into
our short-context language model, and prompt it to generate a question-answer pair based on the
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Figure 4 Curated dataset and training process with progressively increasing data length
and complexity. The diagram outlines a two-stage training process. Stage 1 extends text-based
understanding using books datasets of increasing document lengths and token counts. Stage 2
integrates vision-language training. Pie charts display token distribution, showing that images and
short-frame videos dominate visual data, while mid-length text examples lead in the text corpus.

content. To create longer examples (e.g., 32K tokens), we concatenate adjacent chunks and append
the relevant question-answer pairs toward the end of the sequence in a chat format. The key intuition
is that the model must learn to focus on any part of the context to answer the questions, as the relevant
information can appear anywhere within the sequence.

For chat fine-tuning, we train each model on a mix of the UltraChat conversation dataset (Ding
et al., 2023) and our custom question-answering dataset, using approximately a 7:3 ratio. We found
it crucial to pre-pack the UltraChat data to the training sequence length and keep these examples
separate from our question-answering data. This separation is necessary because UltraChat data
generally contains a much higher proportion of loss tokens (due to densely packed, short questions
in chat), whereas our question-answering data has long questions in chat thus a significantly lower
percentage of loss tokens per sequence (< 1%). This difference arises from the long documents in the
given context of our question-answering data, which are not included in loss calculations. Table 7
provides further training details for each run. Notably, we do not employ progressive training for any
of the chat models; instead, we initialize them from their respective pretrained models at the same
context length.
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Summary: Stage I progressively increase sequence lengths using our curated dataset: starting with
32K tokens and gradually scaling up to 1M tokens. Model-generated question-answering data aids in
learning effective long context.

3.3 LANGUAGE EVALUATION RESULTS

3.3.1 SHORT CONTEXT TASKS

Table 1 presents a comparative analysis between the Llama2-7B model with a 4K context and its
context-expanded counterparts, ranging from 32K to 1M. The evaluation spans various language tasks,
demonstrating that expanding the context size does not compromise performance on short-context
tasks. In fact, the results suggest that models with larger context capacities perform equally well, if
not better, across these tasks. This evidence indicates the absence of negative effects from context
expansion, highlighting the models’ capability to adapt to different task requirements without losing
efficiency in shorter contexts.

Table 1 Performance evaluation across language tasks, comparing Llama-2 7B (4K context window)
and context-expanded variants of LWM-Text (32K to 1M). The results demonstrate that increasing
context length does not significantly degrade performance on tasks with shorter contexts.

LWM-Text
Task / Metric Llama-2 7B 32k 128k 256k 512k 1M
arc_challenge/acc 0.40 0.43 0.45 0.44 0.44 0.43
arc_challenge/acc_norm 0.43 0.47 0.47 0.46 0.46 0.46
hellaswag/acc 0.57 0.57 0.57 0.57 0.56 0.57
hellaswag/acc_norm 0.77 0.76 0.76 0.76 0.75 0.75
mmlu 0.39 0.4 0.41 0.41 0.36 0.35
openbookqa/acc 0.32 0.33 0.31 0.32 0.33 0.30
openbookqa/acc_norm 0.44 0.44 0.44 0.43 0.41 0.41

3.3.2 RETRIEVAL TASK: SINGLE INFORMATION

We evaluate on the popular Needle In A Haystack task (gkamradt, 2023) – more specifically an
version (ArizeAI, 2023) that finds and retrieves random numbers assigned to randomized cities from
the context. Figure 2 shows that we can scale to far larger contexts compared to the current best
available LLMs. Figure 11 in Appendix shows nearly perfect retrieval accuracy over the entire context
of our 1M context model. Appendix C shows more single needle retrieval results for our other shorter
context length models.

3.3.3 RETRIEVAL TASK: MULTIPLE INFORMATION

We additionally examine the performance of our model on more complex variant of the needle
retrieval task by mixing in multiple needles, as well as trying to retrieve a specific subset of them.
Figure 5 shows multi-needle retrieval results under different settings. Our model generalizes well
when retrieving a single needle from multiple needles in context, with slight degradation when asked
to retrieve more than one needle. Table 2 shows multi-needle comparisons, where our model is able
to perform competitively or better than GPT-4 at retrieving one needle, or slightly lower performance
when retrieving more than one needle. Furthermore, our model is also able to perform well and
extend to longer context lengths of up to 1M tokens and far outperforms any recent shorter context
baselines applies to longer sequence lengths through positional extrapolation techniques.. However,
we note that we see degradation in accuracy while increasing the difficulty of the needle retrieval
task, suggesting that there is still more room to improve on the 1M context utilization of our model.
We believe that our released model will provide a foundation for future work on developing longer
context models, as well as encourage more challenging benchmarks that contain difficult long-range
tasks that require higher levels of synthesis, rather than pure fact retrieval.
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Table 2 Multi Needle in a Haystack. * denotes models after the completion of this paper.

Context Length Model N = 2, R = 2 N = 4, R = 1 N = 4, R = 2

32K
Gemini Pro (02/23) 0.34 0.44 0.6
GPT-4-1106 0.97 0.95 0.9
Llama-3.1-8B-Instruct* 0.87 0.95 0.93
Qwen2.5-7B-Instruct* 1.0 1.0 0.97
Mistral-7B-Instruct-v0.3* 0.98 0.85 0.83
LWM-Text-1M (Ours) 0.84 0.97 0.84

128K
Gemini Pro (02/23) - - -
GPT-4-1106 0.92 0.8 0.82
Llama-3.1-8B-Instruct* 0.98 0.91 0.87
Qwen2.5-7B-Instruct* 0.98 0.80 0.90
Mistral-7B-Instruct-v0.3* 0.85 0.75 0.68
LWM-Text-1M (Ours) 0.83 0.98 0.83

1M
Gemini Pro (02/23) - - -
GPT-4-1106 - - -
Llama-3.1-8B-Instruct* 0.27 0.32 0.18
Qwen2.5-7B-Instruct* 0.0 0.0 0.0
Mistral-7B-Instruct-v0.3* 0.05 0.13 0.10
LWM-Text-1M (Ours) 0.67 0.84 0.69

Figure 5 Multiple needles retrieval task with LWM-1M. N is the number of facts in the context,
and R is the number of given facts model is asked to retrieve.

3.3.4 EVALUATION ON LOFT

Table 3 Evaluations on some benchmarks in the LOFT dataset.

Setting: 512K Context LWM (512K) GPT-4o (128K) Claude 3 Opus (200K)

Quora 0.38 0.23 0.37
NQ 0.37 0.22 0.37
HotPotQA 0.72 0.21 0.32

We further evaluate our model on a coverage of the LOFT (Lee et al., 2024) dataset collection, we
provides a more natural set of benchmarks that examine capabilities for long-context models in the
context of document retrieval, and RAG. The benchmark includes tasks such as duplication detection
(Quora 1), document retrieval (HotpotQA (Yang et al., 2018)), and retrieval-based question-answering
(NQ). Each dataset contains a corpus of 1000s of documents, and the model is asked to retrieve a set
of document ids pertaining to its specific task (Quora, HotpotQA). For RAG (NQ dataset), the model
is asked to answer the question using the given context. Table 3 shows evaluations results on 512K
context length against various language model baselines.

Takeaway: Long context capability enables LWM to outperform state-of-the-art text models at
multiple benchmarks. This demonstrates the effectiveness of our methods for enabling long context.

4 STAGE II: EXTENDING TO LONG-CONTEXT VISION-LANGUAGE

Our second stage aims to effectively joint train on long video and language sequences. We will intro-
duce architecture modifications for LWM and LWM-Chat to incorporate vision input in Section 4.1.

1https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Training on varying sequence lengths is discussed in Section 4.2. The evaluation results are shown
in Section 4.3. In this phase, we enhance the capabilities of the previously developed 1M context
language model, by finetuning it on vision-language data of various lengths. The datasets used and
the steps involved in the training process are illustrated in Figure 4.

4.1 ARCHITECTURAL MODIFICATIONS FOR VISION

We use the pretrained VQGAN (Esser et al., 2021) from aMUSEd (Patil et al., 2024) that tokenizes
256× 256 input images to 16× 16 discrete tokens. Videos are tokenized by applying the VQGAN
per-frame, and concatenating the codes together. In order to distinguish between modalities when
generating, as well as knowing when to switch, we introduce mechanisms to mark the end of text
generation / beginning of vision generation, and vice-versa. For defining the end of vision generation,
we introduce new tokens, <eof> and <eov>, that represent end of frame (at the end of each
video frame that is not the last video frame in the sequence), and end of vision (at the end of each
single image, or at the end of the last frame in a video) boundaries respectively. For defining the
end of text generation, we wrap the vision tokens with <vision> and </vision> (as text) text
tokens. The model is trained with interleaved concatenations of vision and text tokens, and predicted
autoregressively (see Figure 3).

4.2 TRAINING STEPS

We initialize from our LWM-Text-1M text model, and perform a similar process of progressive
training on a large amount of combined text-image and text-video data, with the exception that we do
not additionally scale RoPE θ, as it already supports up to 1M context. Table 8 shows details for each
training stage, where the model is initialized from the prior shorter sequence length stage. For each
stage, we train on the following data:

• LWM-1K: We train on large set of text-image dataset comprising of a mix of LAION-2B-en (Schuh-
mann et al., 2022) and COYO-700M (Byeon et al., 2022). The datasets were filtered to only include
images with at least 256 resolution – in total roughly 1B text-image pairs. During training, we
concatenate the text-image pairs and randomly swap the order of the modalities to model both
text-image generation, unconditional image generation, and image captioning. We pack text-image
pairs to sequences of 1K tokens.

• LWM-8K: We train on a text-video dataset mix of WebVid10M (Bain et al., 2021) and 3M Intern-
Vid10M (Wang et al., 2023) examples. Similar to prior works (Ho et al., 2022a;b; Villegas et al.,
2022), we jointly train on both images and video with a 50-50 ratio of each modality. We pack
images to sequences of 8K tokens, and 30 frame videos at 4FPS. Similar to image training, we
randomly swap the order of modalities for each text-video pair.

• LWM-Chat-32K/128K/1M: For the final 3 stages, we train on a combined mix of chat data
for each downstream task: (1) text-image generation, (2) image understanding, (3) text-video
generation, and (4) video understanding. We construct a simple version of text-image and text-
video chat data by sampling random subsets of the pretraining data augmented with chat format.
For image understanding, we using the image chat instruct data from ShareGPT4V (Chen et al.,
2023a). Lastly, for the video understanding chat data, we use a combined mix of Valley-Instruct-
73K (Luo et al., 2023) and Video-ChatGPT-100K instruct data (Maaz et al., 2023). For all short
context data (image generation, image understanding, video generation), we pack sequences to the
training context length. During packing, we found it crucial to mask out the attention so that each
text-vision pair only attends to itself, as well as re-weighting losses to make computation identical
to training in a non-packed + padding training regime. For video understanding data, we uniformly
sample a max number of frames to fit the training context length of the model if the video is too
long. During training, We allocate 25% of each batch to each of the 4 downstream tasks.

For the first two stages of training (LWM-1K and LWM-8K), we additionally mix 16% of the batch
to be pure text data from OpenLLaMA (Geng and Liu, 2023), as we found it beneficial to preserve
language capabilities while training on vision data.
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00:00:00 01:01:51

User: What vehicle was the person dressed in the t-rex costume riding?

GPT-4V: I’m sorry, I can’t provide assistance with that request.

Gemini Pro Vision: A motorized scooter.

Video-LLaVA: The person dressed in a t-rex costume was riding a truck.

LWM (Ours): The person dressed in a t-rex costume was riding a motorcycle.

User: What color jacket was the girl on the trampoline wearing?

GPT-4V: The sequence provided does not include a definitive image of a girl on a trampoline; therefore, I cannot 
describe the color of the jacket.

Gemini Pro Vision: The girl on the trampoline was wearing a green jacket.

Video-LLaVA: The girl on the trampoline was wearing a black jacket.

LWM (Ours): The girl on the trampoline was wearing a blue jacket.

…
1 hour YouTube compilation with > 500 clips

Figure 6 LWM excels in answering questions about a 1-hour YouTube video. This figure
compares LWM-Chat-1M with proprietary models like Gemini Pro Vision and GPT-4V, along
with open-source models. The test involves answering questions based on an hour-long YouTube
compilation containing over 500 video clips. LWM demonstrates superior performance in providing
accurate answers requiring comprehension of extended video content.

Table 4 Long Video-MME Benchmark. * denotes models after the completion of this paper.

Method Parameters Frames Medium (4min-15min) Long (30min-60min)
Gemini 1.5 Pro* Unknown ≤ 1800 74.3 67.4
GPT-4o* Unknown 384 70.3 65.3
LLaVA-Video* 72B 64 68.9 61.5
VideoLLaMA 2* 72B 32 59.9 57.6
Long-LLaVA* 7B 64 51.4 45.4
Video-LLaVA 7B 8 38.1 36.2

LWM-1M 7B ≤ 1800 63.7 60.8

Summary: Stage II training incorporates image and video. Building on Stage I, it gradually increases
sequence lengths of vision and text input. Importantly, we found our masked sequence packing and
mixing synthetic and chat data crucial to retain short context performance during our progressive
training. Appendix B shows ablations when not using our training method on instruction-following
and text-image understanding benchmarks.

4.3 VISION-LANGUAGE EVALUATION RESULTS

4.3.1 LONG VIDEO UNDERSTANDING

Although vision-language model (Lin et al., 2023; OpenAI, 2023; Team et al., 2023) can ingest
long videos, this is commonly done by performing large temporal subsampling of video frames due
to limited context length. For example, Video-LLaVA (Lin et al., 2023) is restricted to uniformly
sampling 8 frames from a video, no matter how long the original video may be. As such, models may
lose more fine-grained temporal information that is important for accurately answering any questions
about the video. In contrast, our model is trained on long sequences of 1M tokens, and as a result, can
simultaneously attend thousands of frames of videos to retrieve fine-grained information over short
time intervals. Table 4 shows long video evaluations on the Video-MME (Fu et al., 2024) benchmark,
demonstrating our model as the best performing model among its size class. Figure 6 shows an
example of our model correctly answering questions about a long, 1-hour YouTube compilation
consisting of more than 500 individual clips. Our baseline methods, on the other hand, generally
have difficulty answering the questions due to a limited number of frames. More results are shown in
Figure 18 and Appendix F.
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A black dog An elephant 
under the sea

A cube made 
of denim

A glass of wine A yellow and black 
bus cruising through 

a rainforest

Fireworks exploding in the sky

Waves crashing against the shore

Figure 7 LWM’s ability to generate both static images and dynamic videos from text is shown. The
top row illustrates image, while the bottom rows show video.

4.3.2 IMAGE UNDERSTANDING AND SHORT VIDEO UNDERSTANDING

We evaluate LWM on standard benchmarks for image and short video understanding, with results
presented in Table 5. Our model performs comparably to baselines but falls short of state-of-the-art
(SOTA) models. This performance gap is not unexpected, given that SOTA models leverage vision
backbones that have undergone extensive CLIP training (Radford et al., 2021). In contrast, LWM
utilizes discrete tokens from an off-the-shelf model (Patil et al., 2024). Discrete tokens result in greater
information loss, particularly for OCR-like textual data, compared to continuous CLIP embeddings.
Moreover, our model learns text-image alignment from scratch, while CLIP-based models benefit
from large-scale pretraining. This work primarily focuses on long-context methodology, and we
defer additional training to future work due to computational constraints. A straightforward approach
to improving benchmark scores would be to incorporate CLIP embeddings as additional input.
Despite not achieving SOTA scores on these short video benchmarks, we believe LWM provides
valuable insights for future long-context language and video understanding and generation. The
model’s performance could be enhanced through additional training and minor modifications. We
include qualitative image understanding examples in Appendix E and qualitative video understanding
examples in Appendix F.

4.3.3 IMAGE AND VIDEO GENERATION

Thanks to a unified any-to-any architecture, our model can not only perform image/video captioning
and question-answering but also generate images and videos from text. Figure 7 demonstrates
examples of these capabilities. For autoregressive sampling, we employ classifier-free guidance (Ho
and Salimans, 2022) on the logits, similar to previous works (Yu et al., 2022; Gafni et al., 2022). In
the unconditional branch, we initialize each sequence with <bos><vision>. For additional image
and video generation examples, please refer to Appendices H and I, respectively.

Takeaway: LWM excels in long video understanding by processing significantly more frames than
previous state-of-the-arts, resulting in better understanding. Moreover, its long-context enabled unified
any-to-any architecture allows for versatile image and video and text understanding and generation.

Table 5 Image Understanding Benchmarks (left) and Video Understanding Benchmarks (right)

Method Visual Token VQAv2 GQA SQA

MiniGPT-4 CLIP - 30.8 25.4
Otter CLIP - 38.1 27.2
InstructBLIP CLIP - 49.2 60.5
LLaVA-1.5 CLIP 78.5 62.0 66.8

LWM (ours) VQGAN 55.8 44.8 47.7

Method MSVD MSRVTT TGIF

VideoChat 56.3 45 34.4
LLaMA-Adapte 54.9 43.8 -
Video-LLaMA 51.6 29.6 -
Video-ChatGPT 64.9 49.3 51.4

LWM (ours) 55.9 44.1 40.9
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5 RELATED WORKS

Our research builds upon existing efforts to extend the context windows of language models, enabling
them to process more tokens (Chen et al., 2023b; Tworkowski et al., 2023; Liu et al., 2023c).
These approaches often employ innovative extrapolation techniques to expand pretrained positional
encodings, followed by model finetuning on longer context data. In contrast, our model takes a
straightforward approach by incrementally increasing θ in RoPE positional encodings alongside
expanding the training context window sizes, which we found to be effective. Additionally, there
have been investigations into architectures that avoid modeling pairwise interactions, such as sparse
attention and sliding window techniques (Child et al., 2019; Beltagy et al., 2020). Prior research has
explored sequence parallelization (Li et al., 2021; Korthikanti et al., 2022, inter alia), though it is
not optimized for blockwise transformers or compatible with memory-efficient attention, both of
which are critical for large context training. Our work further leverages large context transformer
techniques (Liu et al., 2024; Liu and Abbeel, 2023) to capture exact pairwise interactions in extended
sequences for enhanced performance. Load-balancing strategies, such as skipping causal masked
computation (Brandon et al., 2023; Li et al., 2023) offer room for further optimization. Concurrent
developments like Gemini 1.5 (Reid et al., 2024) reach 1M tokens context size in language and video.

Additionally, our approach relates closely to advances in instruction tuning (Taori et al., 2023; Chiang
et al., 2023; Geng et al., 2023), which focus on finetuning models with conversational data to boost
their performance across diverse language tasks. We aim to extend these capabilities to the domain
of long-sequence understanding in both video and language tasks. To achieve this, we extend the
model’s context size by training on comprehensive datasets, including books and long videos, and
finetune on model-generated question-answering datasets to enhance its ability to handle extended
conversational sequences.

Furthermore, our research draws from work on integrating vision capabilities into language mod-
els (Liu et al., 2023b; Lin et al., 2023; Awadalla et al., 2023; Zhang et al., 2023; Jin et al., 2023b;
Aiello et al., 2023). These efforts frequently utilize continuous embeddings (Radford et al., 2021; Li
et al., 2022) to encode visual information into embeddings for inputting into language models. While
these approaches benefit from CLIP’s cross-modal understanding to encode textual information from
images, their ability to predict text from visual input is limited, as is their capacity to learn from
diverse visual-language formats. In contrast, our autoregressive model, which processes "tokens in,
tokens out," allows greater flexibility in modeling various formats, including image-text, text-image,
text-video, video-text, and pure formats like video, image, or text. Our method is compatible with
these prior works, making it an interesting future direction to combine continuous embeddings as
input with discrete tokens and a long-context autoregressive model.

6 CONCLUSION

In conclusion, this paper tackles the critical challenge of enabling long-context understanding in
sequence models, which is vital for developing generally intelligent systems capable of processing
large temporal sequences. By exploring the development of 1M context language and video-language
models, the work sets new benchmarks in language retrieval and long video understanding. We
outline approaches to data curation and progressive context extension, accompanied by an efficient
open-source implementation for scalable training on long sequences. Moreover, we open-source a
family of 7B parameter models capable of handling over 1M tokens in text and video.

Limitations. While this work successfully develop a large large context of over 1M text and video
tokens, and demonstrate promising results in processing hour-long videos and long documents, there
are still some limitations that need to be addressed:

• Improved tokenization and embedding. This work uses a vanilla image tokenizer for images and
frame-by-frame tokenization for videos. Future work could explore video tokenization that takes
time redundancy into account, as well as including continuous embeddings as input to enrich image
understanding.

• Limited scale. Our models use more tokens per parameter than Chinchilla’s recommendation, but
being much smaller than current large language models (100B+ parameters), our findings may
not directly apply to them. Extrapolating to larger scales should be done cautiously, as different
scaling behaviors could emerge at those larger sizes.
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A FURTHER DETAILS

Model Flops Utilization. We trained our models using TPUv4-1024, which is approximately
equivalent to 450 A100s, with a batch size of 8M using FSDP (Facebook, 2023) and Blockwis-
eRingAttention (Liu et al., 2024) for large contexts. Figure 8 shows the model FLOPS utilization
(MFU) for each training stage. Blue color bars show language training and orange color bars show
vision-language training. Our training achieves good MFUs even for very large context sizes.

Figure 8 High MFU training across sequence lengths. Model flops utilization (MFU) of each
training stage for LWM-Text (top), and LWM / LWM-Chat (bottom)

Training Loss Curves. Figure 9 and Figure 10 show the training loss curves for each stage of training
the language and vision-language models respectively.

Figure 9 Training progress over multiple days for LWM-Text. Train loss curve for each training
stage for LWM-Text models.

Training Hyperparameters. See Appendix ??

Scaling Inference. We additionally scale our inference code to support million-length sequences by
implementing RingAttention for decoding. Inference for such long sequences requires a minimum
of v4-128 with a TPU mesh sharding of 32 tensor parallelism, and 4 sequence parallelism (ring
dimension). We perform inference in pure single precision, where additional improvements can be
made through techniques in scalability such as quantization.
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Figure 10 Training progress over multiple days for LWM. Train loss curve for
each training stage for LWM and LWM-Chat models. Note that losses consist of a combination of
losses of different modalities, and may not be directly comparable across stages. The sharp peak in
the middle of 1K training is due to newly incporating EOF and EOV tokens into the vision codebook.

Table 6 LWM-Text Training Stages

32K 128K 256K 512K 1M
Parameters 7B 7B 7B 7B 7B
Sequence Length 215 217 218 219 220

RoPE θ 1M 10M 10M 25M 50M
Tokens per Batch 4M 4M 4M 4M 4M
Total Tokens 4.8B 12B 12B 3B 1.8B
Wall Clock 8h 45h 83h 47h 58h
Compute (TPU) v4-512 v4-512 v4-512 v4-512 v4-512
Doc Length 10K-100K 100K-200K 200K-500K 500K-1M 1M+

Table 7 LWM-Text-Chat Training Details

128K 256K 512K 1M
Parameters 7B 7B 7B 7B
Sequence Length 217 218 219 220

RoPE θ 10M 10M 25M 50M
Tokens per Batch 4M 4M 4M 4M
Total Tokens 1.2B 1.2B 1.2B 1.2B
Wall Clock 6h 10h 20h 40h
Compute (TPU) v4-512 v4-512 v4-512 v4-512

Table 8 LWM and LWM-Chat Training Stages

1K 8K Chat-32K Chat-128K Chat-1M
Parameters 7B 7B 7B 7B 7B
Sequence Length 210 213 215 217 220

RoPE θ 50M 50M 50M 50M 50M
Tokens per Batch 8M 8M 8M 8M 8M
Total Tokens 363B 107B 10B 3.5B 0.4B
Wall Clock 83h 32h 10h 6h 8h
Compute (TPU) v4-1024 v4-1024 v4-1024 v4-1024 v4-1024
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B ABLATION STUDIES

B.1 MASKED SEQUENCE PACKING

As mentioned in Section 4.2, correctly masking the attentions and re-weighting losses is crucial for
some aspects of downstream tasks, particularly image understanding. Table 9 shows a comparison
of our model with and without packing corrections. Naively packing shows large degradation in
accuracy across image understanding tasks. We hypothesize naive packing degrades performance
due to down-weighting text token answers which are shorter, which is an important aspect for good
image understanding benchmark performance.

Table 9 Ablation study comparing standard independent packing and our masked sequence packing
mechanisms across three tasks. Results show that masked sequence packing significantly improves
performance across all tasks.

VQAv2 SQA POPE
Standard independent packing 48.3 34.8 62.5
Masked sequence packing (Ours) 55.8 47.7 75.2

B.2 MIXING SYNTHETIC AND CHAT DATA

We additionally evaluate the our model on MT-Bench (Zheng et al., 2023) to test its conversation
ability. Table 10 shows the MT-Bench scores of for each of our models. Table 11 illustrates the
relationship between the mix of chat and fact retrieval tasks and the performance on MT-Bench score
and Needle Retrieval accuracy. As the proportion of chat increases and fact retrieval decreases, the
MT-Bench score improves, indicating better chat performance measured by MT-Bench. Conversely,
Needle Retrieval accuracy decreases, suggesting a trade-off where increasing chat interaction capa-
bilities may reduce the system’s precision in retrieving specific information or ’needles’ from input
context. Across different context sizes, we found that the model supporting longer input sequences
encounters a slight decrease in MT-Bench score. We hypothesize that this is because we chose to
train with fewer examples on longer sequence training and can be improved by simply training on
more data. In addition, this trade-off may be resolved by acquiring higher quality long-context chat
data that is closer to the chat distribution of the UltraChat dataset.

Table 10 Results on MT-Bench across different
context sizes. Despite less training on longer se-
quence lengths, they show only a slight decrease
in conversational ability.

Model MT-Bench

LWM-Text-Chat-128k 4.62
LWM-Text-Chat-256k 5
LWM-Text-Chat-512k 4.83
LWM-Text-Chat-1M 4.19

Table 11 Relationship between the mix of chat
and fact retrieval tasks and the performance on
MT-Bench score and Needle Retrieval accuracy.

Chat / QA Mix MT-Bench Needle Acc

0% / 100% 2.42 100%
40% / 60% 4.14 100%
70% / 30% 4.62 96%
90% / 10% 5.1 55%
100% / 0% 5.8 31%
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C MORE SINGLE-NEEDLE RETRIEVAL RESULTS

Figure 11 Needle retrieval task using the LWM-Text-Chat-1M model. The model demonstrates
near-perfect retrieval accuracy across various positions within the 1M context window, as reflected by
consistently high scores at different depth percentages and context lengths.

Figure 12 Single needle retrieval accuracy for the LWM-Text-Chat-256K model. The model
achieves near-perfect retrieval performance across various positions in the 256K context window, as
shown by consistently high scores across all depth percentages and context lengths.

Figure 13 Single needle retrieval accuracy for the LWM-Text-Chat-512K model. The model
demonstrates near-perfect retrieval performance across different positions within the 512K context
window, as indicated by consistently high scores at varying depth percentages and context lengths.
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D DETAILS OF THE MULTI-NEEDLE EVALUATIONS

We built on top of the original Needle in a Haystack problem (see Section 3.3.2 for details), which
was to retrieve a single magic number randomly inserted into some long context. In this case, magic
numbers are associated with random cities (“The magic number for San Francisco is 2521233” →
“What is the magic number for San Francisco?”). We extend the task by introducing two variables N
and R, where N is the number of needles (magic numbers + different cities) randomly inserted into
the context, and R is the random subset of magic numbers asked to retrieve (“What are the magic
numbers for San Francisco, . . . , and Bangkok?”). Correctness is computed by extracting out the
numbers retrieved for each cities and checked with string matching.

E MORE IMAGE UNDERSTANDING EXAMPLES

User: If you were a photographer looking to capture this 
location’s essence, what time of day and weather 
conditions would you choose? Describe the reasons 
behind your choice.

Assistant: I would choose the time of day to be during 
sunset. The image features a wooden dock extending into 
a calm lake, which is a perfect setting for a serene and 
picturesque scene. The sunset casts a warm, golden light 
on the lake, enhancing the tranquility of the scene. 
Additionally, the weather conditions appear to be cool and 
cloudy, which complements the natural beauty of the lake 
and the wooden dock. The combination of these elements 
creates a visually appealing and calming atmosphere, 
which would make it an ideal time to capture the moment.

Assistant: In this creative twist on a 
classic work of art, the woman’s face is 
transformed into a dog’s face, creating a 
visually striking and unexpected 
representation. The artwork could be 
seen as a commentary on the limitations 
of human understanding, as well as the 
potential for deeper connection and 
understanding between humans and 
animals.

User: Describe how this creative twist on 
a classic work of art might be interpreted 
differently by various audiences. 

Figure 14 Question answering based on image input using LWM. The assistant provides detailed
responses to questions about capturing the essence of a serene lakeside scene and interpreting a
creative twist on a classic artwork featuring a dog.
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F MORE VIDEO UNDERSTANDING EXAMPLES

…

00:00:00 00:59:59

User: How many lemons were in the person’s car?

GPT-4V: Sorry, I can’t help with identifying or making 
assumptions about the content in these images.
Gemini Pro Vision: I am not able to count the number of lemons 
in the person’s car because I cannot see any lemons in the 
video.
Video-LLaVA: The video does not provide an exact number of 
lemons in the persons’ car.

LWM (Ours): There are three lemons in the person’s car.

Figure 15 LWM demonstrates video understanding over a 1-hour video. The figure shows a
comparison of different AI systems responding to a question about the number of lemons in a
person’s car. While GPT-4V, Gemini Pro Vision, and Video-LLAVA fail to provide a correct response,
LWM accurately identifies that there are three lemons in the car.

…

00:00:00 01:02:50

User: What animal was standing on a piano?

GPT-4V: I’m sorry, I cannot provide assistance with these 
requests.

Gemini Pro Vision: There is no piano in the video.

Video-LLaVA: A dog was standing on a piano in the video.

LWM (Ours): The animal standing on a piano was a cat.

Figure 16 LWM demonstrates video understanding over a 1-hour video. The figure compares AI
systems’ responses to the question ’What animal was standing on a piano?’ While GPT-4V, Gemini
Pro Vision, and Video-LLAVA provide incorrect or incomplete answers, LWM correctly identifies
that the animal standing on the piano was a cat.
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00:11 00:54 01:37 02:20 03:03 03:46

User: What is the video about?

Assistant: The video is about a man who talks to the camera 
and shows a tree with apples on it. He then proceeds to pick 

apples and puts them into a bow.

(a) The assistant answers questions about a 4-minute video of a man talks to the camera and
shows a tree of apples.

00:23 01:52 03:22 04:51 06:20 07:50

User: Who is the person in the video 
likely to be?

Assistant: The person in the video is likely to be a politician 
or representative from the White House.

User: Where is the video happening?

Assistant: The video is taking place in the Oval Office of the 
White House, where President Joe Biden is speaking to the 

press

(b) The assistant answers a question regarding a 8-minute video of president speaking to the
press in the Oval Office.

00:00 00:06 00:15 00:20 00:27 00:34

User: Provide a comprehensive 
description of the video

Assistant: In the video, a giraffe is seen running towards a 
high dive in a pool. As the giraffe reaches the dive, it jumps 

into the water, causing a solace. The giraffe then swims 
towards the surface of the pool, creating a small solace as 
it hits the water. The giraffe’s movements are graceful and 

elegant, showcasing its agility and grace.

User: What is unusual about this 
video?

Assistant: The video is unusual because it 
shows a giraffe diving into a pool.

(c) The assistant answers a question about a 30-second video of a giraffe.

Figure 17 Answering questions about videos using LWM. The assistant responds to various user
questions regarding different types of videos, ranging from a video about a man picking apples to a
press briefing in the White House, and even a humorous video of a giraffe diving into a pool.
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User: What is the video about?

Assistant: The video is about a man who is changing a tire on 
a car. He demonstrates how to change a tire by using a jack 

and a spare tire

00:32 01:23 02:14 03:06 03:57 04:49

(a) The assistant answers a question about a 5-minute video of a man changing a car tire. The
process involves using a jack and a spare tire.

00:06 00:28 00:51 01:14 01:37 02:00

User: What is the video about?

Assistant: In the video, a person is riding a dirt bike on a dirt 
trail. The trail is surrounded by trees and there are other 

people riding bikes in the background. The person is wearing 
a helmet and is riding at a high speed

User: What’s the color of the 
person’s gloves?

Assistant: The person is wearing red gloves

(b) The assistant provides answers based on a 2-minute video of a person riding a dirt bike
along a forest trail. The rider wears a helmet and red gloves, traveling at high speed.

Figure 18 The system (LWM) successfully answers questions about video content.

G DETAILS OF QUALITATIVE VIDEO UNDERSTANDING EVALUATION

For qualitative evaluation of our videos, we source various videos from YouTube that cover a range
of topics, such as ego-centric camera, how to videos, interviews, and animations. We evaluate all
videos at 1FPS, and sample uniformly a max number of frames for videos that are longer than what
our video can support at 1 FPS. Videos are additionally resized and center cropped to 256 × 256
resolution before inputting into the model.
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H MORE IMAGE GENERATION EXAMPLES

A black dog A blue colored pizza A cube made of denim A glass of wine

A yellow and black bus 
cruising through a rainforest

Oil painting of a couple in 
formal attire caught in the 

rain without umbrellas

A couch in a cozy living 
room

A carrot to the left of 
broccoli

Fisheye lens of a turtle 
in a forest

A blue colored dog Stained glass windows 
depicting hamburgers and 

french fries

A pink car

A cube made of brick An elephant under the 
sea

A yellow book and red 
vase

A city skyline at night

Figure 19 Images generation using LWM, showcasing various scenes and objects.
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I MORE VIDEO GENERATION EXAMPLES

A bustling street in London with red telephones booths and Big Ben in the background

Fireworks exploding in the sky

Camera pans left to right on mango slices sitting on a table

Slow motion flower petals falling on the ground

A boat sailing on a stormy ocean

A burning campfire in a forest

Waves crashing against the shore

A ball thrown in the air

Figure 20 Video sequences generated using LWM, showing various scenes.
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J TRAINING HYPERPARAMETERS

Table 12 LWM-Text Training Stages

32K 128K 256K 512K 1M
Parameters 7B 7B 7B 7B 7B
Initialize From LLaMA-2 7B Text-32K Text-128K Text-256K Text-512K
Precision float32 float32 float32 float32 float32
Sequence Length 215 217 218 219 220

RoPE θ 1M 10M 10M 25M 50M
Tokens per Batch 4M 4M 4M 4M 4M
Total Tokens 4.8B 12B 12B 3B 1.8B
Total Steps 1200 3000 3000 720 450
LR Schedule Constant Constant Constant Constant Constant
LR Warmup Steps 100 200 200 50 25
LR 4× 10−5 4× 10−5 4× 10−5 4× 10−5 4× 10−5

Compute (TPU) v4-512 v4-512 v4-512 v4-512 v4-512
Mesh Sharding 1,-1,4,1 1,-1,8,1 1,-1,16,1 1,-1,16,2 1,-1,16,4

Table 13 LWM-Text-Chat Training Details

128K 256K 512K 1M
Parameters 7B 7B 7B 7B
Initialize From Text-128K Text-256K Text-512K Text-1M
Precision float32 float32 float32 float32
Sequence Length 217 218 219 220

RoPE θ 10M 10M 25M 50M
Tokens per Batch 4M 4M 4M 4M
Total Tokens 1.2B 1.2B 1.2B 1.2B
Total Steps 300 300 300 300
LR Schedule Constant Constant Constant Constant
LR Warmup Steps 25 25 25 25
LR 4× 10−5 4× 10−5 4× 10−5 4× 10−5

Compute (TPU) v4-512 v4-512 v4-512 v4-512
Mesh Sharding 1,-1,4,1 1,-1,8,1 1,-1,16,1 1,-1,16,2

Table 14 LWM / LWM-Chat Training Stages

1K 8K 32K 128K 1M
Parameters 7B 7B 7B 7B 7B
Initialize From Text-1M 1K 8K 32K 128K
Precision float32 float32 float32 float32 float32
Sequence Length 210 213 215 217 220

RoPE θ 50M 50M 50M 50M 50M
Tokens per Batch 8M 8M 8M 8M 8M
Total Tokens 363B 107B 10B 3.5B 0.4B
Total Steps 45000 14000 1200 450 50
LR Schedule Cosine Cosine Cosine Cosine Cosine
LR Warmup Steps 1000 500 100 50 5
Max LR 6× 10−4 6× 10−4 8× 10−5 8× 10−5 8× 10−5

Min LR 6× 10−5 6× 10−5 8× 10−5 8× 10−5 8× 10−5

Compute (TPU) v4-1024 v4-1024 v4-1024 v4-1024 v4-1024
Mesh Sharding 1,-1,1,1 1,-1,1,1 1.-1.4,1 1.-1.8,1 1,-1,16,4
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