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Abstract

Typographic attacks exploit multi-modal systems by injecting text into images,
leading to targeted misclassifications, malicious content generation and even Vision-
Language Model jailbreaks. In this work, we analyze how CLIP vision encoders
behave under typographic attacks, locating specialized attention heads in the latter
half of the model’s layers that causally extract and transmit typographic infor-
mation to the cls token. Building on these insights, we introduce Dyslexify – a
method to defend CLIP models against typographic attacks by selectively ablating
a typographic circuit, consisting of attention heads. Without requiring finetuning,
Dyslexify improves performance by up to 22.06% on a typographic variant of
ImageNet-100, while reducing standard ImageNet-100 accuracy by less than 1%,
and demonstrate its utility in a medical foundation model for skin lesion diagnosis.
Notably, our training-free approach remains competitive with current state-of-the-
art typographic defenses that rely on finetuning. To this end, we release a family
of dyslexic CLIP models which are significantly more robust against typographic
attacks. These models serve as suitable drop-in replacements for a broad range of
safety-critical applications, where the risks of text-based manipulation outweigh
the utility of text recognition.

1 Introduction

CLIP models are increasingly adopted as general-purpose vision–language representations, enabling
applications in zero-shot classification, retrieval, diffusion-based generative models, and large-scale
vision–language models (VLMs). Their versatility has further driven adoption in safety-relevant
domains such as healthcare [1, 2, 3], remote sensing [4, 5, 6], and content moderation [7, 8, 9].
However, despite their widespread use, CLIP models remain vulnerable to typographic attacks:
inserting text into an image can mislead classification, trigger malicious generations, or even jailbreak
multi-modal systems (see Fig. 1).

Existing defenses against typographic attacks require gradient-based optimization. While effective to
some extent, these methods require substantial computational resources and lack interpretability into
the mechanisms underlying CLIP’s behavior.
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Figure 1: Defending CLIP against typographic attacks with Dyslexify a) Adversarial text in images
can dominate CLIP’s representation and lead to misclassification. b) We construct a circuit of attention
heads responsible for transmitting typographic information. c) By suppresses the typographic circuit,
we defend against typographic attacks without a single gradient step.

In this work, we introduce Dyslexify a training-free defense that directly targets model circuits
responsible for the vulnerability to typographic attacks. By identifying and ablating a set of attention
heads with demonstrable causal effects, we construct dyslexic CLIP models that are substantially
more robust to typographic attacks. Our method scales seamlessly to billion-parameter models,
making it applicable to state-of-the-art multi-modal systems. Beyond improving robustness, our
approach also enhances interpretability of CLIP models, enabling targeted intervention that are
computationally efficient and easily integrated into existing pipelines without additional training
overhead.

The contributions of this work are:

• Mechanistic Understanding: We present the Typographic Attention Score to locate spe-
cialized typographic attention heads and demonstrate their causal role in typographic attacks
within CLIP models through controlled interventions.

• Training-Free Defense: We introduce a method that utilizes circuit ablation to effectively
defend against typographic attacks, while maintaining general visual capabilities. Due to its
training-free nature, Dyslexify seamlessly scales to billion-parameter models on consumer
grade hardware.

• Empirical Validation: We validate Dyslexify across a diverse set of zero-shot classification
tasks, demonstrating that our approach improves robustness to typographic attacks by up
to 22.06% on a typographic version of Imagenet-100 while maintaining high accuracy on
non-typographic benchmarks.

• Medical Use Case: We show that typographic attacks pose a tangible risk to safety-critical
medical foundation models, and demonstrate that Dyslexify can substantially mitigate this
vulnerability.

• Model Release: To facilitate safer deployment, we release a family of dislexic CLIP models
with reduced typographic sensitivity, suitable for use in safety-critical applications.

Our approach provides a practical, interpretable, and computationally efficient typographic defense,
paving the way for safer multimodal systems without the need for fine-tuning or model retraining.
Code is available at https://github.com/lowlorenz/dyslexify.

2 Related work

CLIP models [10] are pretrained on large-scale image–text datasets such as Laion-5b [7], aligning
global image features with textual descriptions for strong zero-shot transfer. This reliance on textual
supervision also makes them vulnerable to typographic attacks.

Typographic attacks [11] insert written text into an image to maliciously alter a model’s behavior.
Recent work demonstrates that typographic attacks can degrade model performance, bypass safety
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filters (jailbreaking) and hijack goals in Vision Language Models (VLMs) [12, 13, 14, 15, 16], trigger
harmful content generation in image-to-image pipelines [17], and cause targeted misclassification in
object detection and zero-shot classification settings [18, 19, 20, 16, 21].

Several defenses have been proposed, they rely either on fine-tuning the model [19], learning a
projection matrix [18], incorporating a learnable text-token called Defense-Prefix [20], or employing
Sparse Autoencoders [22]. Crucially, none of these approaches offer a training-free method for
mitigating typographic attacks. In contrast, our work introduces a controllable intervention at
inference time by directly locating and suppressing the components responsible for typographic
sensitivity, without requiring additional training or fine-tuning. This makes our approach both
interpretable and applicable, enabling safer deployment in scenarios prone to typographic attacks.

3 Motivation: locating layers of typographic understanding

To better understand CLIP’s vulnerability to typographic attacks and to motivate our method, we
begin by investigating which layers and components are responsible for typographic understanding
using linear probes.

Typographic datasets: We further construct typographic attack datasets from standard image classi-
fication datasets D = {(xi, yi)}ni=1 by assigning each input example xi an additional typographic
label zi ̸= yi different from the original label yi, and overlaying a corresponding textual description
of zi onto the original image xi at a random location as shown in Fig. 2a. We denote these modified
datasets with the suffix “-typo”. More information on the datasets is provided Appendix E.

Extending the ImageNet-100 dataset into the ImageNet-100-typo dataset, we can evaluate typographic
understanding by training linear probes on the cls token embedding at each layer of OpenCLIP
models, ranging in scale from ViT-B to ViT-bigG [23].

Formally, for a layer ℓ we define a linear probe Pℓ

ŷℓ(x) = w⊤hℓ(x) + b , (1)

where hℓ(x) ∈ Rd denotes the activation of the model at layer ℓ for an input sample x, and w and b
are the probe’s weight vector and bias term, respectively. We train two types of probes: Pimg,ℓ, which
predicts the object label y and Ptypo,ℓ, which predicts the typographic label z. The accuracy of a
probe P is denoted by Acc(P ).

Fig. 2b shows that Acc(Ptypo,ℓ) > 0.99 at the final layer for all tested models, indicating that CLIP
models can distinguish the typographic classes. Furthermore it shows, that Acc(Ptypo,ℓ) is low in
early layers, but exhibit a sharp increase in the latter half of the model.

Fig. 2c shows that Acc(Pimg,ℓ) improves gradually over the layers, which is not the case for
Acc(Ptypo,ℓ). The object probes show a gradual increase in performance throughout the model
depth, while the typographic probes display a sharp performance rise around second half of the
models layers.

Fig. 2d highlights the effect of the attention and the MLP blocks onto Acc(Pimg,ℓ) and Acc(Ptypo,ℓ).
Attention layers consistently improve accuracy indicating that they add linearly decodable information
to the cls token. In contrast, the MLP layers tend to reduce accuracy. We show in Appendix A, that
the Intrinsic Dimensionality (ID) of the signal decreases after the MLP blocks, suggesting that the
MLP compresses or discards information.

4 Dyslexify: a defense against typographic attacks

To defend CLIP against typographic attacks we present Dyslexify: a framework for detecting and
suppressing typographic circuits. Based on the finding in Section 3 that attention heads are responsible
for adding typographic information, we only consider attention heads for the circuit construction. We
define a circuit as a subset C ⊆ Ψ, where Ψ denotes the set of attention heads in CLIP

Ψ = {Hi,ℓ | i ∈ {0, . . . , I}, ℓ ∈ {0, . . . , L}} (2)

with I heads per layer and L layers in total.
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Figure 2: Investigating where typographic understanding emerges in CLIP. a) We train two linear
probes on all layers of CLIP models. Probe Pimg,ℓ is used to predict the text label of each sample
while Ptypo,ℓ is trained to predict the typographic class. b) Ptypo,ℓ shows a consistent pattern across
all model sizes: typographic information emerges abruptly in the second half of the models layers. c)
This trend is not true for the object probes Pimg,ℓ. Object specific information builds gradually over
the layers. Each line in the shaded area represents one CLIP model. d) While attention layers seem
to add linearly decodable information to the cls token, MLP layers remove or obscure information.

To robustify a modelM against typographic attacks, we conduct circuit-ablation of a typographic
circuit C. Circuit-ablation modifies here only the residual stream of the cls token, leaving all other
computations intact. Specifically, the residual update of the cls token is given by

hℓ
cls = hℓ−1

cls +

H∑
i=1

Hi,ℓ(x)cls, (3)

where Hi,ℓ(x)cls is the contribution of head Hi,ℓ to the cls token. The ablation of a typographic
circuit C is defined as

Hi,ℓ(x)cls 7→ 0 for allHi,ℓ ∈ C, (4)
while leaving all spatial contributions unchanged. We useMC to denote a modelM in which circuit
C is ablated.

4.1 Typographic attention score

Building on Hung et. al [24] we introduce the Typographic Attention Score Ti,ℓ to guide the circuit
construction. Intuitively the score measures the amount of spatial attention a headHi,ℓ dedicates to
typographic content.

Given a head Hi,ℓ and an input x, we write Ai,ℓ(x) ∈ [0, 1]T+1 to denote the cls tokens attention
pattern, where T is the number of spatial tokens and the additional entry corresponds to the cls token.
We further define the spatial cls-attention pattern A∗

i,ℓ(x) ∈ [0, 1]T which excludes the cls-to-cls
entry, such that

Ai,ℓ(x) =
(
Ai,ℓ(x)cls, A

∗
i,ℓ(x)

)
. (5)
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Formally the score is given by:

Ti,ℓ =
∑
x∈D

∑
t∈{1,...,T}

1(t)A∗
i,ℓ(x)t

A∗
i,ℓ(x)t

(6)

Where x is a data point, D is the dataset, and 1 is an indicator function so that 1(t) = 1 if the input
patch associated with the token at index t corresponds to typographic content and is zero otherwise.

4.2 Typographic circuit construction

To defend against typographic attacks without degrading zero-shot classification, Dyslexify constructs
a typographic circuit C. The circuit is built iteratively while monitoring the accuracy of the circuit-
ablated model MC on a non-typographic benchmark Dimg and a typographic benchmark Dtypo,
ensuring that the accuracy on Dimg never decreases by more than a threshold ϵ ∈ R.

Our procedure consists of two steps: (i) rank all attention headsHi,ℓ by their typographic score Ti,ℓ;
(ii) add heads to C in descending order of Ti,ℓ, evaluating accuracy after each addition.

Let Acc(M, D) denote the accuracy of modelM on dataset D. For each candidate head H, we
compute

∆Accimg = Acc(M, Dimg)− Acc(MC∪H, Dimg), (7)
∆Acctypo = Acc(MC∪H, Dtypo)− Acc(MC , Dtypo), (8)

where ∆Accimg measures the accuracy drop on Dimg relative to the base model, and ∆Acctypo
measures the incremental gain on Dtypo from adding headH to the current circuit C.

If ∆Acctypo ≤ 0, the headH is skipped, as it does not improve robustness to typographic attacks. If
the head is not skipped and ∆Accimg < ϵ, the head is added to C; otherwise, the algorithm terminates.
In addition, if more than k ∈ N heads are skipped consecutively, the algorithm also terminates.

We refer to the final modelMC , equipped with the constructed circuit C, as the dyslexic model.

Algorithm 1 Dyslexify
1: Initialize circuit C ← ∅, skip counter s← 0.
2: Set hyperparameters: tolerance ϵ, max skips k.
3: Rank headsHi,ℓ by score Ti,ℓ.
4: for headHi,ℓ in descending order of Ti,ℓ do
5: Compute ∆Accimg, ∆Acctypo.
6: if ∆Acctypo ≤ 0 then
7: s← s+ 1;
8: if s ≥ k then break; end if
9: continue;

10: end if
11: if ∆Accimg ≥ ϵ then break; end if
12: AddHi,ℓ to C; s← 0.
13: end for
14: Return final circuit C.

5 Experiments

5.1 Evaluating the typographic attention score

We construct localized typographic dataset consisting of 10,000 natural images from Unsplash1,
originally containing minimal typographic content. To efficiently analyze the attention patterns, we
synthetically introduce typographic content at the bottom center of the image, responding to the
lowest two token rows in the spatial grid.

1https://huggingface.co/datasets/wtcherr/unsplash
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Figure 3: Analysis of the Typographic Attention Score. a) For each head in the model we calculate the
Typographic Attention Score Ti,ℓ, utilizing the spatial bias in the Unsplash-typo dataset. b) Depiction
of ViT-B’s Ti,ℓ scores. While most attention heads do not show any spatial bias in their attention
patterns, a few attention heads indicate significantly elevated scores, exceeding Ti,ℓ ≥ µ(T )+2σ(T ).
Those heads only occur in the second half of the models layers c) Overlaying the linear probes with
significantly elevated Ti.ℓ scores , highlights an interesting correlation. Only after the attention heads
with exceptionally high Ti,ℓ scores are passed the model the accuracy of Ptypo,ℓ begins to increase
rapidly.

For each attention headHi,ℓ we extract the attention pattern A∗
i,ℓ(x) over this localized dataset. We

use the known spatial bias to define the indicator mask 1(t) ∈ {0, 1}, where 1(t) = 1 at the the
typographic region and 1(t) = 0 elsewhere.

Fig. 3 shows the resulting Typographic Attention Scores Ti,ℓ for ViT-B. A small subset of heads
shows high scores of up to Ti,ℓ ≥ µ(T ) + 2σ(T ), revealing a strong spatial bias towards typography.
Furthermore we observe, that the spike in Acc(Ptypo,ℓ) only occurs after layers with high Ti,ℓ heads.
More results can be found in Appendix G.

5.2 Evaluating the typographic circuits

To construct the circuits C, we set the tolerance to ϵ = 0.01, set the maximum number of consecutive
skips to k = 10, use the ImageNet-100 training split as Dimg, and ImageNet-100-typo as Dtypo.
Table 5 shows that the resulting circuits are sparse, covering at most 10.1% of Ψ.

Fig. 4 plots Acc(MC , Dimg) and Acc(MC , Dtypo) as heads are added. Dyslexify, improves accuracy
on ImageNet-100-typo’s train set by more than 20% across all evaluated models, while limiting the
drop in ImageNet-100 accuracy to below 1%. More results can be found in Fig. 9.
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Figure 4: Tradeoff between general accuracy and typographic robustness as a function of the number
of ablated heads. Ablations are applied in decreasing order of Ti,ℓ.
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Increasing α raises attention to spatial tokens, amplifying typographic understanding. c) Decreasing
α increases typographic robustness, increasing the probability of predicting the true object class.

5.2.1 Demonstrating causality of typographic circuits

We observe that attention heads in C utilize their cls self-attention as attention sinks [25] depending
on the presence of typography in the image. Further details are provided in Appendix B. Building on
those findings we showcase the casual nature of these attention heads in this section.

To demonstrate the causal role of these heads in typographic vulnerability, we manipulate their
attention patterns. Specifically, we construct

Aα
i,ℓ =

[
α, A∗

i,ℓ · (1− α)/∥A∗
i,ℓ∥

]
, (9)

where α ∈ {0.0, 0.1, . . . , 0.9, 1.0}. The scaling factor (1 − α)/∥A∗
i,ℓ∥ ensures that the attention

distribution remains normalized.

We then evaluate the effectiveness of typographic attacks under these manipulations by tracing the
predicted label probabilities p(ytext) and p(ytypo) as a function of α on the ImageNet-100-typo dataset.

Results: Fig. 5 shows that increasing α causally reduces the effectiveness of typographic attacks,
while decreasing α amplifies it. This provides direct causal evidence: as circuit heads allocate more
weight to the cls sink, the attack signal is suppressed; conversely, when α is low and spatial attention
dominates, p(ytypo) increases, indicating that typographic information is transferred from spatial
tokens into the cls representation.

5.3 Evaluating the dislexic models

To evaluate Dyslexify we construct dyslexic OpenClip model variants: ViT-B, L, H, G, and BigG
and conduct zero-shot classification experiments. Concretely we first evaluate the effectiveness of
our defense against typographic attacks and secondly measure the zero-shot object classification
capabilities on non-typographic datasets. For each model, we record the accuracy difference between
the original model and dyslexic model. A detailed description of the datasets is given in Appendix E.

Results: Table 1 shows that Dyslexify yields consistent robustness improvements across both real-
world typographic attack datasets and synthetic benchmarks. The observed gains are substantial – up
to +31% accuracy – and occur across all evaluated datasets, suggesting that the identified typographic
circuits capture generalizable failure modes rather than dataset-specific artifacts.

Table 2 further demonstrates that Dyslexify preserves performance on standard vision datasets. In
nearly all cases, deviations remain within ±1% of the base model, the only exception being ViT-L
showing the largest decline (−1.74%) on Aircraft and (−1.17%) on Food-101, which is close to the
tolerance bound ϵ = 1%. This indicates that Dyslexify achieves a favorable robustness–accuracy
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trade-off: substantial robustness gains are obtained while standard zero-shot performance is essentially
maintained.

Table 1: Comparison of dyslexic model performance on datasets of typographic attacks across model
sizes, showing accuracy changes relative to the base model, with improvements (↑) or declines (↓). IN
denotes ImageNet, and the suffix -T indicates the corresponding typographic version of the dataset.

Real Typographic Synthetic Typographic

Model RTA-100 Disentangling Paint IN-100-T Food-101-T Aircraft-T

B 68.30↑12.00 85.00↑31.11 72.73↑14.55 66.84↑19.90 78.27↑22.64 16.23↑5.91

L 71.00↑16.60 60.56↑10.00 76.36↑14.55 72.22↑20.32 82.15↑26.55 23.34↑9.51

H 68.30↑15.20 72.22↑26.67 70.91↑21.82 75.34↑21.26 83.01↑28.68 29.40↑8.07

G 62.00↑12.00 67.22↑9.44 71.82↑16.36 68.76↑22.06 73.05↑20.21 27.69↑3.45

Big-G 72.90↑11.90 68.33↑20.00 69.09↑21.82 78.64↑16.74 84.69↑25.98 41.61↑16.29

Table 2: Comparison of dyslexic model performance on non-typographic datasets across model sizes,
showing accuracy changes relative to the base model, with improvements (↑) or declines (↓).

Not Typographic

Model Aircraft Food-101 ImageNet-100

B 27.72↓0.12 84.97↓0.99 75.00↑0.64

L 34.62↓1.74 89.31↓1.17 79.52↓0.24

H 43.98↑0.12 92.29↓0.24 83.40↓0.34

G 44.07↓0.30 91.47↓0.70 82.58↓0.66

Big-G 50.47↓0.39 92.55↓0.42 84.72↓0.34

5.4 Comparing to baselines

We compare Dyslexify to Defense-Prefix (DP) [20], which introduces a learnable prefix token for
CLIP’s language transformer on OpenCLIP ViT-L without fine-tuning the full ViT. Following their
setup, we train the DP on the ImageNet-100-typo training split with a learning rate of 0.002, batch
size of 64, and hyperparameters γ = 3.0 and η = 1.0 for 6 epochs.

Table 3 shows that Dyslexify outperforms DP on two out of three typographic benchmarks, while
DP retains slightly higher performance on two out of three non-typographic benchmarks. Notably,
DP yields a modest accuracy improvement on the corresponding non-typographic ImageNet-100,
likely caused by the choice of ImageNet-100-typo as the training set for DP. We hypothesize that
the black-box optimization in DP captures features relevant not only to typographic defense but
also to ImageNet-100 classification, thereby limiting its generalization. In contrast, our method
focuses on key mechanisms relevant to typographic attacks, leading to more robust transfer across
non-typographic benchmarks.

Table 3: Performance comparison of Dyslexify and Defense-Prefix (DP) on ViT-L across typographic
and non-typographic datasets. For each method we show the accuracy followed by the deviation from
the baseline, (↑) for improvement, (↓) for decline.

Real Typographic Training Non-Typographic

Method RTA-100 Disentangling PAINT ImageNet-100 Food-101 Aircraft

Baseline 54.40 50.56 61.81 79.76 90.48 36.36
DP 62.20↑ 7.80 82.78↑32.20 71.82↑10.01 81.70↑1.94 89.83↓0.65 32.94↓3.42

Dyslexify 71.00↑16.60 60.56↑10.00 76.36↑14.55 79.52↓0.24 89.31↓1.17 34.62↓1.74

5.5 Defending Against Typographic Attacks in Melanoma Detection

Safety-critical domains such as medicine are particularly vulnerable, as AI decisions may impact
human lives. Therefore, we investigate whether typographic attacks transfer to this setting and
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Figure 6: Typographic attacks in melanoma detection. (a) Adding adversarial text may cause CLIP to
misdiagnose a malignant lesion as benign. (b) Applying Dyslexify mitigates these failures, increasing
robustness to typographic attacks and even improving accuracy in several non-attacked cases.

whether our defense remains effective. Specifically, we analyze WhyLesionCLIP, a foundation model
for skin lesion classification [1], i.e., melanoma detection, based on OpenClip-ViT-L.

We utilize the same setting as in Section 5.1 retrieving the typographic attention scores, but deviate
from Section 5.2 in that we construct C by setting ISIC2019 as Dimg and ISIC2019-Typo as Dtypo.

The results in Fig. 6 and in Table 4 reveal two key insights: (i) Typographic attacks reduce the zero-
shot accuracy of melanoma detection by up to 22% and (ii) Dyslexify proves effective in defending
a medical foundation model from a relevant attack vector. Not only does Dyslexify increase the
accuracy under typographic attack by up to 19.3%, but it also increases the base models accuracy in
three out of the four datasets. An additional medical use-case is analyzed in Appendix D.

6 Conclusion

We present a mechanistic defense against typographic attack in CLIP using an interpretability-first
approach. We reveal that a small number of attention heads located in the later layers of the vision
encoder are responsible for the effectiveness of typographic attacks. By selectively ablating a
typographic circuit, Dyslexify is able to defend CLIP against typographic attacks without requiring
fine-tuning steps, offering a practical and interpretable method for controlling model behavior. To our
knowledge, this is the first work to address typographic attacks in CLIP through causal interventions.
Dyslexify demonstrates that fine-grained control over model capabilities is achievable through
targeted architectural manipulations without retraining, and thus paves the way for more robust and
modular deployment of multimodal models. Beyond standard benchmarks, we further show that
typographic attacks constitute a realistic threat vector in the medical domain, where they can mislead
safety-critical models, and that Dyslexify substantially mitigates this vulnerability. We believe this
work motivates a broader shift toward mechanistic interpretability as a tool not only for understanding,
but for controlling safety-relevant behaviors in deep transformer models. Finally, we release a family
of dyslexic CLIP models that are significantly more robust against typographic attacks. These models
serve as drop-in replacements for safety-critical applications where the risks posed by adversarial
text manipulation outweigh the benefits of typographic understanding.

Limitations and future work: Dyslexify enhances the typographic robustness of the cls token by
preventing specialized typographic attention heads from writing to it. However, many multimodal
applications, such as LLaVA and IP adapters [26, 27, 28], leverage not only the cls token but
also spatial tokens, allowing typographic information to propagate into downstream tasks. This
might limits the impact of Dyslexify on improving robustness in applications, and calls for further
investigation into its generalizability to VLM setups.

Furthermore is it standard practice to evaluate adversarial defenses against adaptive attacks [29], i.e.,
attacks that are explicitly optimized to circumvent the defense mechanism. In our case, however, such
an evaluation is not feasible: typographic attacks are inherently non-differentiable, which prevents
constructing adaptive variants that directly optimize against Dyslexify.
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Misuse Potential: While we aim to enhance the safety of multimodal systems, we acknowledge
that our insights into CLIP’s behaivor under typographic attacks could be exploited by attackers.
Specifically, adversarial inputs might be crafted to increase the spatial attention of heads in C, making
typographic attacks even more effective.

Ethics Statement: We note that our study does not involve human subjects or sensitive personal
data. While insights into typographic attacks may inform adversarial strategies, our primary aim is to
strengthen robustness and safety of multimodal models.

Reproducibility Statement: We have taken efforts to make our results reproducible. Our code is
open-sourced. All results and the majority of plots in the paper can be reproduced with the released
code.
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A MLP layers compress information

In Section 3, we observe that Acc(Pimg,ℓ) and Acc(Ptypo,ℓ) increases after attention layers, but
consistently drops following MLP blocks. Thus we estimate the intrinsic dimensionality (ID) of
cls-token representations across layers using PCA. From a 5% split of the ImageNet-100-Typo
training set, we extract residual stream activations for each layer. For each embedding hℓ ∈ Rd, we
fit PCA and define ID as the smallest number of principal components k such that the cumulative
explained variance exceeds 95%:

ID = min

{
k :

∑k
j=1 λj∑d
j=1 λj

≥ 0.95

}
,

where λj are the PCA eigenvalues. A larger ID indicates higher representational complexity. We
report ID across layers and token types to analyze how typographic inputs affect the geometry of
CLIP representations.

Attention Layers add information to the CLS tokens, while MLPs remove information from it

Attention adds 

information

a) This can be observed in the probe accuracy b) And in intrinsic dimensionality analysis

MLP removes 
information

MLP removes 
information

Trend breaks 
on last layers

Attention adds 

information

Attention Block

MLP Block

Figure 7: Attention layers increase, MLP layers reduce cls token information. (a) Linear probe
accuracy rises after attention blocks and drops after MLPs, indicating improved linear accessibility
followed by compression. (b) Intrinsic dimensionality shows a matching trend, especially in layers
3–7. Exceptions include MLPs at layers 9 and 11 (ID increase) and the attention block at layer 11
(ID drop), suggesting deeper-layer specialization.

Results Fig. 7 compares linear probe accuracy (left) and ID (right) across layers of a ViT-B model.
We observe a consistent pattern: attention layers tend to increase both probe accuracy and intrinsic
dimensionality, while MLP layers reduce them. This trend is most prominent in the middle layers
(3–7), suggesting that attention blocks introduce linearly accessible information, whereas MLPs
compress or remove it.
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This pattern is not consistent throughout the model. The MLPs at layers 9 and 11 exhibit increases in
ID, deviating from the overall compression trend. Conversely, the attention block at layer 11 causes a
sharp drop in ID. These exceptions indicate that deeper layers may serve more specialized roles.

B Attention sinks for typographic attention heads

We analyze the attention patterns of head 5 in layer 6 (H5,6) in ViT-B, which has the highest Ti,ℓ

score in the model. More specifically we evaluate its spatial attention norm ∥A∗
5,6∥ on ImageNet-100

and ImageNet-100-Typo.

As shown in Fig. 8, ∥A∗
5,6∥ is systematically higher on ImageNet-100-Typo than on ImageNet-100.

While the distribution on typopgrahic images is unimodal, the distribution on the original dataset is
bimodal. Manual inspection reveals that the high-norm mode in ImageNet-100 contains incidental
text in, such as watermarks or copyright tags.

One possible interpretation of these results is thatH5,6 uses the cls-to-cls attention as an attention
sink [25], to selectively adjust the impact of this specialized typographic attention head.

Building on these finding we evaluate H5,6’s capabilities to predict if a sample x originates from
ImageNet-100 or ImageNet-100-typo. The score ∥A∗

5,6∥ ROC-AUC of 0.887, indicating that this
attention signal can be used as a robust classifier. In comparison, a linear classifier trained on the
same task reaches an ROC-AUC of 1.0, but overfits to superficial typographic features specific to
the ImageNet-100-Typo construction. Many images in the original dataset that contain real-world
typography are still correctly classified as non-typographic by this probe - supporting the conclusion
that it does not generalize beyond the synthetic intervention.

Spatial attention norm is selective  

Images without 

typography

Images with 

typography

Higher spatial attention norm 
on typographic images

Spatial attention norm 
exhibits bimodal distribution 

on normal images

Mode a) Mode b)

Figure 8: Distribution of the spatial attention norm of ViT-B head H5,6 across ImageNet-100
and ImageNet-100-Typo. The norm is consistently higher for typographic images, while the non-
typographic distribution is bimodal. Manual inspection links the higher mode to incidental text,
suggesting that the head selectively activates in response to typography, regardless of its origin.
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C Ablation curves
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Figure 9: Tradeoff between general accuracy and typographic robustness as a function of the number
of ablated heads. Ablations are applied in decreasing order of Ti,ℓ.

D Further details on medical application

We evaluated Dyslexify in the safety-critical context of melanoma detection, using WhyLesionCLIP
based on OpenCLIP ViT-L as the underlying foundation model. To construct typographic attack
datasets, we introduced textual labels into ISIC2019, HAM10k, and BCN20k, resulting in paired
typographic variants. The typographic circuit was selected using the same procedure as in Section 5.2,
with tolerance ϵ = 0.01 and maximum skips k = 10.

Table 4 reports detailed results. We find that typographic attacks reduce zero-shot accuracy by
up to 22.1%, while Dyslexify recovers up to 19.3% accuracy, and even improves performance on
non-attacked datasets in some cases. These results confirm that typographic attacks pose a realistic
failure mode for medical AI systems.

Fig. 10 further illustrates that typographic probes perform more strongly in WhyXrayCLIP than
in WhyLesionCLIP, which may be explained by frequent typographic artifacts (e.g., “R” markers)
in X-ray training data. This suggests that the degree of vulnerability depends on the presence of
typographic features in the training distribution.

Table 4: Comparison of dyslexic model performance on WhylesionCLIP dataset, showing accuracy
changes relative to the base model, with improvements (↑) or declines (↓). The suffix -T indicates the
corresponding typographic version of the dataset.

Not Typographic Synthetic Typographic

Model ISIC2019 Melanoma BCN20k HAM10k ISIC2019-T Melanoma-T BCN20k-T HAM10k-T

Base 77.80 84.10 31.99 35.66 55.19 62.10 19.65 19.48
Ours 77.47 ↓0.33 84.40 ↑0.30 32.49 ↑0.50 40.20 ↑4.54 70.92 ↑15.73 81.40 ↑19.30 26.46 ↑6.81 24.42 ↑4.94
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a) Typographic probes perform more strongly in the lesion model than in the xray model

b) Typographic artifacts in training data (e.g., R-markers) may explain robustness

Figure 10: (a) Linear probes on CLS embeddings show that typographic probes perform less well in
WhyLesionCLIP compared to WhyXrayCLIP, indicating weaker encoding of typographic features
in the lesion model. (b) Examples of typographic artifacts (e.g., “R” markers) commonly found in
X-ray training data, which may influence probe performance.

E Datasets

For the zero-shot evaluation we tested a variety of datasets, grouped below by purpose.

RTA-100 [20] consists of 1,000 handcrafted typographic attacks, each written on a Post-it note and
overlaid onto natural images.

Disentangling [18] includes 180 typographic attacks, also written on Post-its, designed to probe the
separation of visual and textual features in multimodal models.

PAINT-DS [19] comprises 110 Post-it-based typographic attacks and serves to evaluate patch-level
vulnerabilities in vision-language models.

Food-101 [49] is a standard image classification dataset containing 101 food categories, each with
1,000 images.

FGVC-Aircraft [50] (referred to as Aircraft in our paper) is a fine-grained classification benchmark
consisting of 10,000 images across 100 aircraft variants.

ImageNet-1002 is a subset of the ImageNet-1k dataset [41], containing 100 object and animal classes
with 1,000 images per class.

ISIC20193 contains 25,331 images available for the classification of dermoscopic images among
nine different diagnostic [54, 53, 52]. In this paper we evaluate the binary classification task into the
classes "Benign" and "Malignant".

HAM10k [54] includes 10,015 dermatoscopic images labeled into seven diagnostic categories:
Actinic Keratoses, Basal Cell Carcinoma, Benign Keratosis-like Lesions, Dermatofibroma, Melanoma,
Melanocytic Nevi, and Vascular Lesions.

BCN20k [53] comprises 19,424 dermatoscopic images collected at the Hospital Clínic de Barcelona,
annotated into eight categories: Actinic Keratoses, Basal Cell Carcinoma, Benign Keratosis-like
Lesions, Dermatofibroma, Melanocytic Nevi, Melanoma, Squamous Cell Carcinoma, and Vascular
Lesions.

For the generation of the -typo dataset we used the following fonts: Times New Roman, Georgia,
Arial.

2https://www.kaggle.com/datasets/ambityga/imagenet100
3https://www.kaggle.com/datasets/salviohexia/isic-2019-skin-lesion-images-for-classification
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F Circuit size

Table 5: Number of selected and total headsHi,ℓ in circuit C per model

Model Selected Total Percentage (%)

B 8 144 5.6
L 29 288 10.1
H 24 384 6.2
G 29 480 6.0
Big-G 26 576 4.5

G Relationship between probes and Ti,ℓ scores

As discussed in Section 3, we observe a strong correspondence between layers with elevated Ti,ℓ

scores and those where the typographic probe Ptypo,ℓ exhibits sharp increases in accuracy. In this
section, we extend this analysis across all evaluated model sizes to support the trends previously
shown for ViT-B. Fig. 11 to Fig. 15 visualize this relationship for each model. To improve readability,
we transpose the probe accuracy plots: the y-axis denotes the layer index, while the x-axis indicates
probe accuracy.
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Figure 11: ViT-B typographic attention scores Ti,ℓ (top), thresholded and compared with linear
probe accuracies (bottom). Layers with higher typographic attention scores align with increased
probe accuracy, highlighting a correspondence between attention patterns and typographic feature
decodability.
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Figure 12: ViT-L typographic attention scores Ti,ℓ (top), thresholded and compared with linear
probe accuracies (bottom). Layers with higher typographic attention scores align with increased
probe accuracy, highlighting a correspondence between attention patterns and typographic feature
decodability.
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Figure 13: ViT-H typographic attention scores Ti,ℓ (top), thresholded and compared with linear
probe accuracies (bottom). Layers with higher typographic attention scores align with increased
probe accuracy, highlighting a correspondence between attention patterns and typographic feature
decodability.
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Figure 14: ViT-G typographic attention scores Ti,ℓ (top), thresholded and compared with linear
probe accuracies (bottom). Layers with higher typographic attention scores align with increased
probe accuracy, highlighting a correspondence between attention patterns and typographic feature
decodability.
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Figure 15: ViT-BigG typographic attention scores Ti,ℓ (top), thresholded and compared with linear
probe accuracies (bottom). Layers with higher typographic attention scores align with increased
probe accuracy, highlighting a correspondence between attention patterns and typographic feature
decodability.
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