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Abstract

Typographic attacks exploit multi-modal systems by injecting text into images,1

leading to targeted misclassifications, malicious content generation and even Vision-2

Language Model jailbreaks. In this work, we analyze how CLIP vision encoders3

behave under typographic attacks, locating specialized attention heads in the latter4

half of the model’s layers that causally extract and transmit typographic information5

to the cls token. Building on these insights, we introduce a method to defend6

CLIP models against typographic attacks by selectively ablating a typographic7

circuit, consisting of attention heads. Without requiring finetuning, our method8

improves performance by up to 19.6% on a typographic variant of ImageNet-100,9

while reducing standard ImageNet-100 accuracy by less than 1%. Notably, our10

training-free approach remains competitive with current state-of-the-art typographic11

defenses that rely on finetuning. To this end, we release a family of dyslexic CLIP12

models which are significantly more robust against typographic attacks. These13

models serve as suitable drop-in replacements for a broad range of safety-critical14

applications, where the risks of text-based manipulation outweigh the utility of text15

recognition.16

1 Introduction17

CLIP models are increasingly adopted as general-purpose vision–language representations, enabling18

applications in zero-shot classification, retrieval, diffusion-based generative models, and large-scale19

vision–language models (VLMs). Their versatility has further driven adoption in safety-relevant20

domains such as healthcare [1, 2, 3], remote sensing [4, 5, 6], and content moderation [7, 8, 9].21

However, despite their widespread use, CLIP models remain vulnerable to typographic attacks:22

inserting text into an image can mislead classification, trigger malicious generations, or even jailbreak23

multi-modal systems (see Fig. 1).24

Existing defenses against typographic attack require gradient-based optimization. While effective to25

some extent, these methods require substantial computational resources and lack interpretability into26

the mechanisms underlying CLIP’s behaivor.27

In this work, we propose a training-free defense that directly targets the circuits responsible for28

typographic vulnerability. By identifying and ablating a set of causal attention heads, we construct29

dyslexic CLIP models that are substantially more robust to typographic attacks. Our method scales30

seamlessly to billion-parameter models, making it applicable to state-of-the-art multi-modal systems.31

Beyond improving robustness this approach also enhances interpretability of CLIP models, enabling32

targeted intervention that are computationally efficient and easily integrated into existing pipelines33

without additional training overhead.34

The contributions of this work are:35
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Figure 1: Defending CLIP against typographic attacks a) Adversarial text in images can dominate
CLIP’s representation and lead to misclassification. b) We construct a circuit of attention heads
responsible for transmitting typographic information. c) By suppresses the typographic circuit, we
defend against typographic attacks without a single gradient step.

• Mechanistic Understanding: We present the Typograhic Attention Score to locate special-36

ized typographic attention heads and demonstrate their causal role in typographic attacks37

within CLIP models through controlled interventions.38

• Training-Free Defense: We introduce a method that utilizes circuit ablation to effectively39

defend against typographic attacks, while maintaining general visual capabilities. Due to its40

training-free nature our method seamlessly scales to billion-parameter models on consumer41

grade hardware.42

• Empirical Validation: We validate our method across a diverse set of zero-shot classifica-43

tion tasks, demonstrating that our approach improves robustness to typographic attacks by44

up to 19.6% on a typographic version of Imagenet-100 while maintaining high accuracy on45

non-typographic benchmarks.46

• Model Release: To facilitate safer deployment, we release a family of dislexic CLIP models47

with reduced typographic sensitivity, suitable for use in safety-critical applications.48

Our approach provides a practical, interpretable, and computationally efficient typographic defense,49

paving the way for safer multimodal systems without the need for fine-tuning or model retraining.50

2 Related work51

CLIP models [10] are pretrained on large-scale image–text datasets such as Laion-5b [7], aligning52

global image features with textual descriptions for strong zero-shot transfer. This reliance on textual53

supervision also makes them vulnerable to typographic attacks.54

Typographic attacks [11] insert written text into an image to maliciously alter a model’s behavior.55

Recent work demonstrates that typographic attacks can degrade model performance, bypass safety56

filters (jailbreaking) and hijack goals in Vision Language Models (VLMs) [12, 13, 14, 15, 16], trigger57

harmful content generation in image-to-image pipelines [17], and cause targeted misclassification in58

object detection and zero-shot classification settings [18, 19, 20, 16, 21].59

While several defenses have been proposed, they rely either on fine-tuning the model [19], learning a60

projection matrix [18], incorporating a learnable text-token called Defense-Prefix [20], or employing61

Sparse Autoencoders [22]. Crucially, none of these approaches offer a training-free method for62

mitigating typographic attacks. In contrast, our work introduces a controllable intervention at63

inference time by directly locating and suppressing the components responsible for typographic64

sensitivity, without requiring additional training or fine-tuning. This makes our approach both65

interpretable and applicable, enabling safer deployment in scenarios prone to typographic attacks.66
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3 Datasets67

To present our method we conduct experiments on two datasets: ImageNet-100-Typo and Unsplash-68

Typo. We use Unsplash-Typo to calculate the Typographic Attention Score, and we utilize ImageNet-69

100-Typo during circuit construction.70

Unsplash-Typo: The Unsplash-Typo dataset consists of 10,000 natural images from Unsplash [23],71

originally containing minimal typographic content. We synthetically introduce typographic content72

at the bottom center of the image. The fixed text position enables efficient attention patterns analysis.73

ImageNet-100-Typo: ImageNet-100 [24] is a commonly used subset of ImageNet [25], consisting74

of 100 classes. We construct Imagenet-100-Typo by assigning each image x with label yimage an75

additional random class label ytypo. Then we overlay the text description of ytypo on a random location76

int the image x, following Azuma et al. [20].77

Furthermore we utilize the datasets RTA-100 [20], Disentangling [18] and PAINT-DS [19] of real78

world typographic attacks to benchmark the effectiveness of our typographic defense. Additionally we79

utilize the Aircraft [26] and Food-101 [27] datasets to benchmark the zero-shot image classification80

performance.81

4 Locating layers of typographic understanding82

Typographic attacks have been shown to be an effective attack vector on CLIP models. To de-83

fend against those attacks we investigate which layers and which components are responsible for84

typographic understanding, using linear probes.85

We train linear probes on the cls token embedding at each layer of the OpenCLIP models of scales86

ViT-B to ViT-Big-G [28, 29], using the ImageNet-100-typo dataset.87

More formally, we train a set of linear probes Pℓ for each layer ℓ, where the probe predicts:88

ŷℓ(x) = w⊤hℓ(x) + b (1)

Here, hℓ(x) ∈ Rd denotes the activation of the model at layer ℓ for an input sample x, w a weight89

vector, and b a bias term. We train two types of probes: Pimage,ℓ, which predicts the object label yimage90

and Ptypo,ℓ, which predicts the typographic label ytypo. We write Acc(P ) to note the accuracy of a91

probe.92

Fig. 2b shows that Acc(Ptypo,ℓ) > 0.99 accuracy for at the final layer for all tested models, indicating93

that CLIP models have significant typographic understanding. Furthermore it shows, that Acc(Ptypo,ℓ)94

is low in early layers, but exhibit a sharp increase in the latter half of the model.95

Fig. 2c shows that Acc(Pimage,ℓ) improves gradually over the layers, which is not the case for96

Acc(Ptypo,ℓ). The object probes show a gradual increase in performance throughout the model depth,97

while the typographic probes display a sharp performance rise around second half of the models98

layers.99

Fig. 2d highlights the effect of the attention and the MLP blocks onto Acc(Pimage,ℓ) and Acc(Ptypo,ℓ).100

Attention layers consistently improve accuracy indicating that they add linearly decodable information101

to the cls token. In contrast, the MLP layers tend to reduce accuracy. We show in App. A, that the102

Intrinsic Dimensionality (ID) of the signal decreases after the MLP blocks, suggesting that the MLP103

compresses or discards information.104

5 Method105

To defend CLIP against typographic attacks we present a framework for detecting typographic circuits.106

Based on the results in Sec. 4 we only consider attention heads for the circuit construction. We define107

a circuit as a subset C ⊆ Ψ, where Ψ denotes the set of attention heads in CLIP108

Ψ = {Hi,ℓ | i ∈ {0, . . . , I}, ℓ ∈ {0, . . . , L}} (2)

with I heads per layer and L layers in total.109
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Figure 2: a) We train two linear probes on all layers of each CLIP model. Pimage,ℓ is used to predict
the text label of each sample while Ptypo,ℓ is trained to predict the typographic class. b) Ptypo,ℓ shows
a consistent pattern across all model sizes: typographic information emerges abruptly in the second
half of the models layers. c) This trend is not true for the object probes Pimage,ℓ. Object specific
information builds gradually over the layers. Each line in the shaded area represents one CLIP model.
d) While attention layers add linearly decodable information to the cls token, MLP layers removes
linearly decodable information.

To defend a modelM against typographic attacks, we conduct circuit-ablation of a typographic110

circuit C. Circuit-ablation modifies only the residual stream of the cls token, leaving all other111

computations intact. Specifically, the residual update of the cls token is given112

hℓ
cls = hℓ−1

cls +

H∑
i=1

Hi,ℓ(x)cls, (3)

whereHi,ℓ(x)cls is the contribution of headHi,ℓ to the cls token. For a circuit C, we define circuit-113

ablation as114

Hi,ℓ(x)cls 7→ 0 for allHi,ℓ ∈ C, (4)

while leaving all spatial contributions unchanged. We useMC to denote a modelM in which C is115

circuit-ablated.116

5.1 Typographic attention score117

Building on Hung et al. [30] we introduce the Typographic Attention Score Ti,ℓ to guide the circuit118

construction.119

Given a head Hi,ℓ and an input x, we write Ai,ℓ(x) ∈ [0, 1]T+1 to denote the attention pattern of120

the cls token, where T is the number of spatial tokens and the additional entry corresponds to the121

cls token. We further define the spatial cls-attention pattern A∗
i,ℓ(x) ∈ [0, 1]T which excludes the122

cls-to-cls entry, such that123

Ai,ℓ(x) =
(
Ai,ℓ(x)cls, A

∗
i,ℓ(x)

)
. (5)

Formally the score is given by:124
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Ti,ℓ =
∑
x∈D

∑
t∈{1,...,T}

1(t)A∗
i,ℓ(x)t

A∗
i,ℓ(x)t

(6)

Where x is a data point, D is the dataset, and 1 is an indicator function so that 1(t) = 1 if the token125

at index t contains typographic content and is zero otherwise.126

5.2 Typographic Circuit Construction127

To defend against typographic attacks without degrading zero-shot classification, we construct a128

typographic circuit C. The circuit is built iteratively while monitoring the accuracy of the circuit-129

ablated modelMC on an image classification benchmark Dimage.130

Our procedure follows two steps: (i) rank all attention heads Hi,ℓ by their typographic score Ti,ℓ;131

(ii) add heads to C in descending order of Ti,ℓ, evaluating accuracy after each addition. Let Acc(M)132

denote accuracy on Dimage. For each candidate head, we compute133

∆Acc = Acc(M)− Acc(MC). (7)

If ∆Acc < ϵ, the head is retained in C; otherwise the head is discarded and the algorithm terminates.134

We refer to the resulting modelMC with the final circuit C as the dyslexic model.135

Algorithm 1 Typographic Circuit Construction
1: Initialize circuit C ← ∅.
2: Rank all headsHi,ℓ by score Ti,ℓ.
3: for headHi,ℓ in descending order of Ti,ℓ do
4: Tentatively addHi,ℓ to C.
5: Compute ∆Acc = Acc(M)− Acc(MC).
6: if ∆Acc ≥ ϵ then
7: RemoveHi,ℓ and break.
8: end if
9: end for

10: Return final circuit C.

6 Experiments136

6.1 Evaluating the typographic attention score137

For each attention headHi,ℓ we extract the attention pattern A∗
i,ℓ(x) over the Unsplash-Typo dataset.138

We use the known spatial bias of Unsplash-Typo to define the indicator mask 1(t) ∈ {0, 1}, where139

1(t) = 1 at the the typography region in the bottom of the image and 1(t) = 0 elsewhere. Given140

Hcls
i,ℓ and 1, we compute the typographic attention score Ti,ℓ ∈ [0, 1]141

Fig. 3 shows ViT-B’s Ti,ℓ on UnsplashTypo. The empirical mean T̄ = (26.9 ± 14.6)% =142
1

I·L
∑

I,L Ti,ℓ is close to the expected value under uniform attention, E[Ti,ℓ]A∗ uniform ≈ 0.214.143

This indicates that most heads do not disproportionately attend to the typographic region of the image.144

However, a small subset of heads show high scores of up to Ti,ℓ ≥ 3× T̄ , revealing a strong spatial145

bias towards typography. Furthermore we observe, that the spike in Acc(Ptypo,ℓ) only occurs after146

layers with high Ti,ℓ heads.147

6.2 Evaluating the typographic circuits148

We construct the circuits C, we choose ϵ = 0.01 by and set Dimage to be a 5% class balanced subset149

of the non typographic Imagenet-100 train split. Tab. 1 shows that the resulting circuits are sparse,150

covering a maximum of 10.2% of the total number of heads in Ψ. Fig. 4 show the accuracy curves of151

Acc(MC) per added head over the a Imagenet-100 and its typographic version Imagenet-100-typo.152
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Figure 3: a) For each head in the model we calculate the Typographic Attention Score Ti,ℓ, utilizing
the spatial bias in the Unsplash-typo dataset. b) Depiction of ViT-B’s Ti,ℓ scores. While most
attention heads do not show any spatial bias in their attention patterns, a few attention heads indicate
Ti,ℓ scores up to ×3 higher than the mean score. Those heads only occur in the second half of the
models layers c) Extracting the maximum Ti,ℓ score of the layer and overlaying these scores with the
linear probes, highlights an interesting correlation. Only after the attention heads with exceptionally
high Ti,ℓ scores were infered by the model the accuracy of Ptypo,ℓ begins to increase significantly.

Table 1: Number of headsHi,ℓ in C per Model

Model Selected Total Percentage (%)
B 6 144 4.2
L 13 288 4.5
H 30 384 7.8
G 27 480 5.6
Big-G 59 576 10.2

6.2.1 Demonstrating causality of typographic circuits153

We observed that attention heads in C, utilized their CLS-to-CLS attention as attention sinks [31],154

which are utilized strongly when no typographic content is present in the image. More information155

on this can be found in App. B.156

To demonstrate causal dependencies in the model’s typographic vulnerability, we manipulate attention157

patterns of the circuit C. Specifically we construct Aα
i,ℓ ∈ [0, 1]w×h+1 as follows158

Aα
i,ℓ = [α,A∗

i,ℓ · (1− α)/∥A∗
i,ℓ∥] (8)

where choose α ∈ {0.0, 0.1, . . . , 0.9, 1.0}, and ensure that the attention pattern sums to 1 via the159

scaling factor (1− α)/∥A∗
i,ℓ∥.160

We measure the effectiveness of the typogrpahic attacks, when manipulating the attention pattern of161

the circuit, by tracing the probabilities labels p(ytext) and p(ytypo) depending on α on the Imagenet-162

100-typo dataset.163

Results: Fig. 5 shows that increasing α causally lowers the typographic attacks effectiveness, while164

decreasing α increases the effectiveness. This demonstrates the causal link: as the circuit heads165

attend stronger to their attention-sink, the typographic attack becomes less effective. Conversely,166

when α is low and the norm of the spatial attention is high p(ytypo) raises, indicating that typographic167

information is being transferred from the spatial to the cls token.168

6.3 Evaluating the dislexic models169

To evaluate our method we construct dyslexic OpenClip model variants: ViT-B, L, H, G, and BigG170

and conduct zero-shot classification experiments. Concretely we first evaluate the effectiveness of171

our defense against typographic attacks and secondly measure the zero-shot object classification172
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Figure 4: Tradeoff between general accuracy and typographic robustness as a function of the number
of ablated heads. Ablations are applied in decreasing order of Ti,ℓ. The dotted vertical line indicates
the point at which further head removal is halted, based on a maximum allowed ∆Acc of ϵ = 0.01.

capabilities on non-typographic datasets. For each model, we record the accuracy difference between173

the original model and dyslexic model.174

Results: Tab. 2 shows that our method consistently improves typographic robustness across a diverse175

set of real world typographic attack datasets, including RTA-100, Disentangling, PAINT as well as176

our synthetic ImageNet-100-Typo dataset. The results in Tab. 2 further demonstrate that our method177

generalizes effectively across a wide range of model sizes, indicating that the existence of specialized178

typographic circuits in large models.179

Tab. 3 confirms that our method does not significantly degrade performance on standard vision180

datasets. In most cases, the change in zero-shot accuracy is within ±1%, with ViT-B even showing181

a slight improvement (+1.59%) on the Aircraft dataset. The strongest performance decline shows182

ViT-G with −1.06% on ImageNet-100, which is close to the maximally allowed drop of ϵ = 1%.183

Table 2: Comparison of dyslexic models performance on datasets of typographic attacks across model
sizes, showing accuracy changes relative to the base model, with improvements (↑) or declines (↓).

Model RTA-100 [20] Disentangling[18] PAINT-DS[19] ImageNet-100-Typo

B 67.70%↑8.50% 88.33%↑32.78% 65.45%↑6.36% 66.50%↑19.60%

L 61.60%↑6.10% 65.00%↑13.89% 69.09%↑9.09% 65.54%↑13.14%

H 67.40%↑11.60% 73.33%↑27.22% 70.91%↑20.00% 72.26%↑18.84%

G 62.30%↑10.00% 57.22%↑5.56% 71.82%↑16.36% 64.64%↑17.28%

Big-G 72.60%↑11.50% 68.33%↑20.00% 71.82%↑21.82% 77.36%↑15.52%
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Figure 5: Controlling typographic understanding by manipulating attention patterns in typographic
attention heads. a) We set the cls tokent attention to a specified value of 1− α, and rescale spatial
token attentions to sum up to α. b) By increasing (or decreasing) α, we can increase (or decrease) the
amount of typographic understanding in images. c) Reducing typographic understanding causes a
probability increase for predicting the true object class in images.

Table 3: Comparison of dyslexic model performance on non-typographic datasets across model sizes,
showing accuracy changes relative to the base model, with improvements (↑) or declines (↓).

Model Aircraft[26] Food-101[27] ImageNet-100 [25]

B 27.48%↑1.59% 86.23%=0.00% 75.26%↑0.50%

L 34.38%↑0.15% 90.67%↑0.06% 79.60%↓0.34%

H 40.35%↓0.15% 92.32%↓0.42% 83.00%↓0.80%

G 44.22%↑0.18% 91.81%↓0.36% 82.70%↓1.06%

Big-G 47.88%↑0.45% 92.96%↓0.08% 84.90%↓0.48%

6.4 Comparing to baselines184

We compare our training-free method to Defense-Prefix (DP) [20], which introduces a learnable185

prefix token for CLIP’s language transformer on OpenCLIP ViT-L without fine-tuning the full ViT.186

Following their setup, we train on the ImageNet-100 training split for 6 epochs with a learning rate of187

0.002, batch size of 64, and hyperparameters γ = 3.0 and η = 1.0.188

Tab. 4 shows that DP achieves stronger performance on most typographic benchmarks. However,189

our method consistently outperforms DP on non-typographic benchmarks, with the exception of190

ImageNet-100. This highlights a key advantage of our approach. Since DP is optimized on ImageNet-191

100-Typo, it yields a modest improvement on the corresponding non-typographic ImageNet-100192

set, but at the cost of reduced performance on other non-typographic datasets. We hypothesize that193

the black-box optimization in DP captures features relevant not only to typographic defense but194

also to ImageNet-100 classification, thereby limiting its generalization. In contrast, our method195

focuses on causal mechanisms of typographic vulnerability, leading to more robust transfer across196

non-typographic benchmarks.197

7 Discussion198

Limitations and future work: Our methods enhances the typographic robustness of the cls token by199

preventing specialized typographic attention heads from writing to it. However, many multimodal200

applications, such as LLaVA and IP adapters [32, 33, 34], leverage not only the cls token but also201

spatial tokens, allowing typographic information to propagate into downstream tasks. This might limit202

the impact of our method on improving robustness in applications, and calls for further investigation203

into its generalizability to VLM setups.204
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Table 4: Performance comparison of our method and Defense-Prefix (DP) on ViT-L across typo-
graphic and non-typographic datasets. For each method we show the accuracy followed by the
derivation from the baseline, (↑) for improvement, (↓) for decline.

Typographic Training Non-Typographic

Method RTA-100 Disentangling PAINT ImageNet-100 Food-101 Aircraft

Baseline 55.50% 51.11% 60.00% 79.94% 90.61% 34.11%
DP 62.20%↑ 6.70% 82.78%↑31.67% 71.82%↑11.82% 81.70%↑ 1.76% 89.83%↓ 0.78% 32.94%↓ 1.17%
Ours 61.60%↑ 6.10% 65.00%↑13.89% 69.09%↑ 9.09% 79.60%↓ 0.34% 90.67%↑ 0.05% 34.38%↑ 0.27%

Misuse Potential: While we aim to enhance the safety of multimodal systems, we acknowledge205

that our insights into CLIP’s behaivor under typographic attacks could be exploited by attackers.206

Specifically, adversarial inputs might be crafted to increase the spatial attention of heads in C, making207

typographic attacks even more effective.208

8 Conclusion209

We present a mechanistic defense against typographic attack in CLIP using an interpretability first210

approach. We reveal that a small number of attention heads located in the later layers of the vision211

encoder are casual for the effectiveness of typographic attacks. By selectively ablating a typographic212

circuit, we are able defend CLIP against typographic attacks without requiring fine-tuning of any213

kind, offering a practical and interpretable method for controlling model behavior. To our knowledge,214

this is the first work to address typographic vulnerabilities in CLIP through causal interventions.215

Our method, demonstrates that fine-grained control over model capabilities is achievable through216

targeted architectural manipulations without retraining, and thus paves the way for more robust and217

modular deployment of multi-modal models. We believe this work motivates a broader shift toward218

mechanistic interpretability as a tool not only for understanding, but for controlling safety relevant219

behaviors in deep transformer models. Finally we release a family of dyslexic CLIP models that are220

significantly more robust against typographic attacks. These models serve as drop-in replacements221

for safety-critical applications where the risks posed by adversarial text manipulation outweigh the222

benefits of typographic understanding.223
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A MLP layers compress information365

In Section 4, we observe that Acc(Pimage,ℓ) and Acc(Ptypo,ℓ) increases after attention layers, but366

consistently drops following MLP blocks.367

Thus we estimate the intrinsic dimensionality (ID) of cls-token representations across layers using368

PCA. From a 5% split of the ImageNet-100-Typo training set, we extract residual stream activations369

for each layer. For each embedding hℓ ∈ Rd, we fit PCA and define ID as the smallest number of370

principal components k such that the cumulative explained variance exceeds 95%:371

ID = min

{
k :

∑k
j=1 λj∑d
j=1 λj

≥ 0.95

}
,

where λj are the PCA eigenvalues. A larger ID indicates higher representational complexity. We372

report ID across layers and token types to analyze how typographic inputs affect the geometry of373

CLIP representations.374

Attention Layers add information to the CLS tokens, while MLPs remove information from it

Attention adds 

information

a) This can be observed in the probe accuracy b) And in intrinsic dimensionality analysis

MLP removes 
information

MLP removes 
information

Trend breaks 
on last layers

Attention adds 

information

Attention Block

MLP Block

Figure 6: Attention layers increase, MLP layers reduce cls token information. (a) Linear probe
accuracy rises after attention blocks and drops after MLPs, indicating improved linear accessibility
followed by compression. (b) Intrinsic dimensionality shows a matching trend, especially in layers
3–7. Exceptions include MLPs at layers 9 and 11 (ID increase) and the attention block at layer 11
(ID drop), suggesting deeper-layer specialization.

Results Figure 6 compares linear probe accuracy (left) and ID (right) across layers of a ViT-B375

model. We observe a consistent pattern: attention layers tend to increase both probe accuracy and376

intrinsic dimensionality, while MLP layers reduce them. This trend is most prominent in the middle377

layers (3–7), suggesting that attention blocks introduce linearly accessible information, whereas378

MLPs compress or remove it.379

This pattern is not consistent throughout the model. The MLPs at layers 9 and 11 exhibit increases in380

ID, deviating from the overall compression trend. Conversely, the attention block at layer 11 causes a381

sharp drop in ID. These exceptions indicate that deeper layers may serve more specialized roles.382

B Attention sinks for typographic attention heads383

We analyze the attention patterns of headH5,6 in ViT-B, which highest Ti,ℓ score in the model. More384

specifically we evaluate its spatial attention norm ∥A∗
5,6∥ on ImageNet-100 and ImageNet-100-Typo.385

As shown in Fig. 7, ∥A∗
5,6∥ is systematically higher on ImageNet-100-Typo than on ImageNet-100.386

While the distribution on typopgrahic images is unimodal, the distribution on the original dataset is387

bimodal. Manual inspection reveals that the high-norm mode in ImageNet-100 contains incidental388

text in, such as watermarks or copyright tags.389
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One possible interpretation of these results is thatH5,6 uses the cls-to-cls attention as an attention390

sink [31], to selectively adjust the impact of this specialized typographic attention head.391

Building on these finding we evaluate H5,6’s capabilities to predict if a sample x originates from392

ImageNet-100 or ImageNet-100-typo. The score ∥A∗
5,6∥ ROC-AUC of 0.887, indicating that this393

attention signal can be used as a robust classifier. In comparison, a linear classifier trained on the394

same task reaches an ROC-AUC of 1.0, but overfits to superficial typographic features specific to395

the ImageNet-100-Typo construction. Many images in the original dataset that contain real-world396

typography are still correctly classified as non-typographic by this probe - supporting the conclusion397

that it does not generalize beyond the synthetic intervention.398

Spatial attention norm is selective  

Images without 

typography

Images with 

typography

Higher spatial attention norm 
on typographic images

Spatial attention norm 
exhibits bimodal distribution 

on normal images

Mode a) Mode b)

Figure 7: Distribution of the spatial attention norm of ViT-B head H5,6 across ImageNet-100
and ImageNet-100-Typo. The norm is consistently higher for typographic images, while the non-
typographic distribution is bimodal. Manual inspection links the higher mode to incidental text,
suggesting that the head selectively activates in response to typography, regardless of its origin.

C Datasets399

For the zero-shot evaluation we tested a variety of datasets, grouped below by purpose.400

RTA-100 [20] consists of 1,000 handcrafted typographic attacks, each written on a Post-it note and401

overlaid onto natural images.402

Disentangling [18] includes 180 typographic attacks, also written on Post-its, designed to probe the403

separation of visual and textual features in multimodal models.404

PAINT-DS [19] comprises 110 Post-it-based typographic attacks and serves to evaluate patch-level405

vulnerabilities in vision-language models.406

Food-101 [27] is a standard image classification dataset containing 101 food categories, each with407

1,000 images.408

FGVC-Aircraft [26] (referred to as Aircraft in our paper) is a fine-grained classification benchmark409

consisting of 10,000 images across 100 aircraft variants.410

ImageNet-100 [24] is a subset of the ImageNet-1k dataset [25], containing 100 object and animal411

classes with approximately 1,000 images per class.412
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D Reproducibility413

All experiments were conducted on a single RTX Titan GPU with 24 GB of VRAM. For the control414

dataset, we use a 5% balanced split of the ImageNet-100 training set, where 5% of samples are415

randomly drawn from each class. This choice approximately matches the size of the validation set416

and reduces computational overhead during evaluation. We set the accuracy degradation threshold417

to ϵ = 0.01. Models were accessed through the OpenCLIP library [28], and all interventions were418

implemented using the Prisma library [29].419

E Relationship between probes and Ti,ℓ scores420

As discussed in Sec. 4, we observe a strong correspondence between layers with elevated Ti,ℓ scores421

and those where the typographic probe Ptypo,ℓ exhibits sharp increases in accuracy. In this section,422

we extend this analysis across all evaluated model sizes to support the trends previously shown for423

ViT-B. Figures 8 through 12 visualize this relationship for each model. To improve readability, we424

transpose the probe accuracy plots: the y-axis denotes the layer index, while the x-axis indicates425

probe accuracy. Adjacent to each plot, we show the full Ti,ℓ scores across attention heads and layers,426

with the y-axis again denoting the layer index and the x-axis representing head indices. These figures427

underpin the alignment between layers that showcase high Ti,ℓ values and layers where typographic428

information becomes linearly accessible in the cls token.429
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Figure 8: ViT-B: cls probe accuracy (left) and full matrix of Ti,ℓ scores (right), across all heads and
layers. Layers with high typographic attention scores tend to coincide with increased probe accuracy.

Figure 9: ViT-L: cls probe accuracy (left) and Ti,ℓ scores (right). A strong layer-wise correlation is
visible between typographic attention and linearly decodable signal.
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Figure 10: ViT-H: cls probe accuracy (left) and Ti,ℓ scores (right). The emergence of typographic
signal remains aligned with elevated attention scores across heads.

Figure 11: ViT-G: cls probe accuracy (left) and Ti,ℓ scores (right). Typographic information flow is
consistently correlated with high-scoring heads.
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Figure 12: ViT-BigG: cls probe accuracy (left) and Ti,ℓ scores (right). Even at billion-parameter
scale, typographic information remains concentrated in specific layers and heads.
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