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Abstract

This paper addresses the prevalent issue of label shift in an online setting with
missing labels, where data distributions change over time and obtaining timely
labels is challenging. While existing methods primarily focus on adjusting or
updating the final layer of a pre-trained classifier, we explore the untapped potential
of enhancing feature representations using unlabeled data at test-time. Our novel
method, Online Label Shift adaptation with Online Feature Updates (OLS-OFU),
leverages self-supervised learning to refine the feature extraction process, thereby
improving the prediction model. By carefully designing the algorithm, theoretically
OLS-OFU maintains the similar online regret convergence to the results in the
literature while taking the improved features into account. Empirically, it achieves
substantial improvements over existing methods, which is as significant as the gains
existing methods have over the baseline (i.e., without distribution shift adaptations).

1 Introduction

The effectiveness of most supervised learning models relies on a key assumption that the training
data and test data share the same distribution. However, this assumption rarely holds in real-world
scenarios, leading to the phenomenon of distribution shift [41, 2]. Previous research has primarily
focused on understanding distribution shifts in offline or batch settings, where a single shift occurs
between the training and test distributions [33, 45, 51, 52, 35]. In contrast, real-world applications
often involve test data arriving in an online fashion, and the distribution shift can continuously evolve
over time. Additionally, there is another challenging issue of missing and delayed feedback labels,
stemming from the online setup, where gathering labels for the streaming data in a timely manner
becomes a challenging task.

To tackle the distribution shift problem, prior work often relies on additional assumptions regarding
the nature of the shift, such as label shift or covariate shift [43]. In this paper, we focus on the common
(generalized) label shift problem in an online setting with missing labels [49] . Specifically, the learner
is given a fixed set of labeled training data D0 ∼ Ptrain in advance and trains a model f0. During test-
time, only a small batch of unlabelled test data St ∼ Ptest

t arrives in an online fashion (t = 1, 2, · · · ).
For the online label shift, we assume the label distribution Ptest

t (y) may change over time t while the
conditional distribution remains the same, i.e. Ptest

t (x|y) = Ptrain(x|y). For example, employing
MRI image classifiers for concussion detection becomes challenging as label shifts emerge from
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Figure 1: Overview of online distribution shift adaptation. We further assume Ptest
t (x|y) =

Ptrain(x|y) for online label shift and assume the existence of an unknown feature mapping h
such that Ptest

t (h(x)|y) = Ptrain(h(x)|y) for online generalized label shift.

seasonal variations in the image distribution. A classifier trained during skiing season may perform
poorly when tested later, given the continuous change in image distribution between skiing and
non-skiing seasons. In contrast to label shift, the generalized label shift relaxes the assumption of an
unchanged conditional distribution on x given y. Instead, it assumes that there exists a transformation
h of the covariate, such that the conditional distribution Ptest

t (h(x)|y) = Ptrain(h(x)|y) stays the
same. Reiterating our example, consider an MRI image classifier that undergoes training and testing
at different clinics, each equipped with MRI machines of varying hardware and software versions.
As a result, the images may display disparities in brightness, resolution, and other characteristics.
However, a feature extractor h exists, capable of mapping these variations to the same point in the
transformed feature space, such that the conditional distribution P(h(x)|y) remains the same. In both
settings, the goal of the learner is to adapt to the (generalized) label shift within the non-stationary
environment, continually adjusting the model’s predictions in real-time.

Existing algorithms for online label shift adaptation (OLS) primarily adopt one of two approaches:
either directly reweighting of the pretrained classifier f0, or re-training only the final linear layer of
f0 — while keeping the feature extractor frozen. Recent work [46, 48, 36, 39] have demonstrated
the potential for improving feature extractors, even during test-time and in the absence of labeled
data. We hypothesize that a similar effect can be harnessed in the context of (generalized) label shift,
leading to the idea of improving feature representation learning during testing. In online label shift,
updating the feature extractor offers two potential advantages. First, it utilizes the additional unlabeled
samples, hence enhancing the sample efficiency of the feature extractor. Second, it enables the feature
extractor to adapt to label shift, which is crucial to the learning process as the optimal feature extractor
may depend on the underlying label distribution. Particularly in generalized label shift scenarios,
where the feature transformation h is often unknown, the integration of extra unlabeled test samples
facilitates the learning of h.

Building upon this insight, this paper introduces the Online Label Shift adaptation with Online Feature
Updates (OLS-OFU) framework, aimed at enhancing feature representation learning in the context
of online label shift adaptation. Specifically, each instantiation of OLS-OFU incorporates a self-
supervised learning method associated with a loss function denoted as lssl for feature representation
learning, and an online label shift adaptation (OLS) algorithm to effectively address distribution shift.
By carefully checking the existing OLS methods and SSL methods, we identify three principles for
algorithm design: maintain the theoretical guarantee, obey the underlying assumption of the existing
OLS methods and fit the required condition of SSL techniques while avoiding heavy additional
computational costs. Within the principles, OLS-OFU is designed as three main steps: at each time
step, OLS-OFU first executes a revised OLS algorithm and then every τ steps, OLS-OFU updates the
feature extractor through self-supervised learning and subsequently refines the final linear layer.

In addition to its ease of implementation and seamless integration with existing OLS algorithms,
OLS-OFU also shows strong theoretical guarantee and empirical performance. Theoretically, we
demonstrate that OLS-OFU effectively reduces the loss of the overall algorithm by leveraging self-
supervised learning (SSL) techniques to enhance the feature extractor, thereby improving predictions
for test samples at each time step t. Empirical evaluations on various datasets, considering both
online label shift and online generalized label shift scenarios, validate the effectiveness of OLS-OFU.
Our OLS-OFU method achieves substantial improvements over existing OLS methods, which is as
significant as the gains existing OLS methods have over the baseline (i.e., without distribution shift
adaptations). This demonstrates that integrating online feature updates is as effective in solving online
distribution shift as the fundamental online label shift method itself. Moreover, the improvement is
consistent on various datasets, all existing OLS methods and the various choices of SSL techniques.
This consistency underscoring its robustness across different scenarios and its generality to incorporate
future OLS methods with more advanced online learning techniques and better SSL techniques.

2



2 Problem Setting & Related Work

We start with some basic notations. Let ∆K−1 be the probability simplex. Let f : X → ∆K−1

denote a classifier. Given an input x from domain X , f(x) outputs a probabilistic prediction over
K classes. For example, f can be the output from the softmax operation after any neural network.
If we reweight a model output from f by a vector p ∈ RK , we refer to this model as g(·; f, p) with
g denotes the method of reweighting. For any two vectors p and q, p/q denotes the element-wise
division.

Online distribution shift adaptation. The effectiveness of any machine learning model f relies on a
common assumption that the train data D0 and test data Dtest are sampled from the same distribution,
i.e., Ptrain = Ptest. However, this assumption is often violated in practice, which leads to distribution
shift. This can be caused by various factors, such as data collection bias and changes in the data
generation process. Moreover, once a well-trained model f0 is deployed in the real world, it moves
into the testing phase, which is composed of a sequence of periods or time steps. The test distribution
at time step t, Ptest

t , from which test data xt is sampled, may vary over time. One example is that an
MRI image classifier might be trained on MRI images collected during skiing season (which may
have a high frequency of head concussions) but tested afterward (when the frequency of concussion
is lower). The test stage can last several months until the next classifier is trained. During this test
period, the distribution of MRI images may undergo continuous changes, transitioning between
non-skiing and skiing seasons.

As the test-time distribution changes over time, the challenge lies in how to adjust the model
continuously from ft−1 to ft in an online fashion to adapt to the current distribution Ptest

t . We call
this problem online distribution shift adaptation and illustrate it in Figure 1. Given a total of T steps
in the online test stage, we define the average loss for any online algorithm A through the loss of the
sequence of models ft, t ∈ [T ] that are produced from A, i.e.,

L(A;Ptest
1 , · · · ,Ptest

T ) =
1

T

T∑
t=1

ℓ(ft;Ptest
t ), (1)

where ℓ(f ;P) = E(x,y)∼Pℓsup(f(x), y) and ℓsup is the loss function, for example, 0-1 loss or
cross-entropy loss for classification tasks.

In this paper, we consider the challenging scenario where at each time step t, only a small batch of
unlabeled samples St = {x1

t , · · · , xB
t } is received. We formalize the algorithm A as: ∀t ∈ [T ],

ft := A ({S1, · · · , St−1}, {f1, · · · , ft−1}, D0, D
′
0) . (2)

In contrast to the classical online learning setup, this scenario presents a significant challenge as
classical online learning literature usually relies on having access to either full or partial knowledge
of the loss at each time step, i.e., ℓsup(f(xt), yt). In this setting, however, only a batch of unlabeled
samples is provided at each time step and this lack of access to label information and loss values
presents a significant challenge in accurately estimating the true loss defined in Equation 1.

Online label shift (OLS) adaptation. Online label shift assumes the marginal distribution of the
label Ptest

t (y) changes over time, while the conditional distribution keeps invariant:

∀t ∈ [T ],Ptest
t (x|y) = Ptrain(x|y).

This assumption is most typical when the label y is the causal variable and the feature x is the
observation [43]. The aforementioned example of concussion detection from MRI images fits this
scenario, where the presence or absence of a concussion (label) causes the observed MRI image
features. Most previous methods tackle this problem through a non-trivial reduction to the classical
online learning problem. Consequently, most of the online label shift algorithms [49, 7, 6] study the
theoretical guarantee of the algorithm via the convergence of the regret function, which could be
either static regret or dynamic regret. In previous studies, the hypothesis class F of the prediction
function f is typically chosen in one of two ways:

1. F is defined as a family of post-hoc reweightings of f0, with the parameter space comprising
reweight vectors. Examples within this category include ROGD [49], FTH [49], and FLHFTL [6].

2. F is defined as a family of functions that share the same parameters in f0 except the last linear
layer, such as UOGD [7] and ATLAS [7].
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Notice that the existing OLS methods don’t update the feature extractor at the online test stage, but
focus on how to leverage advanced online learning techniques to update the remaining part of the
model under certain theoretical guarantees. Our method will be orthogonal to them: it will focus on
how to leverage the self-supervised learning techniques to update the feature extractor and, therefore,
can improve each of them. Our empirical results in fact show that the improvement from the feature
extractor update is as significant as the improvement from online learning techniques.

Online generalized label shift adaptation. In the context of MRI image classification, where head
MRI images serve as the feature x, variations in software or hardware across different clinics’ MRI
machines can introduce discrepancies in image characteristics like brightness, contrast, and resolution.
In such scenarios, the conditional probability distribution P(x|y) is no longer invariant. However,
when a feature extractor h is robust enough, it can map images into a feature space where the images
from different machines have the same distributions P(h(x)|y) in the transformed feature space.
The concept of generalized label shift, as introduced in Tachet des Combes et al. [47], formalizes
this by postulating the existence of an unknown function h, such that P(h(x)|y) remains invariant.
The primary challenge in this context is to find the underlying transformation h. Building upon this,
online generalized label shift assumes that there exists an unknown function h such that

∀t ∈ [T ],Ptest
t (h(x)|y) = Ptrain(h(x)|y).

Thus, to apply the OLS methods for this more general problem, it is important to learn a proper
feature extractor as this underlying function h.

Motivations of deploying self-supervised feature updates. As we reviewed above, OLS methods in
the literature don’t update the pretrained feature extractor in the online stage. However, the pretrained
feature extractor in f0 can be suboptimal for the online test stage in online (generalized) label shift
adaptation, because of the three potential reasons:

1. The amount of pretrained data doesn’t achieve the learning capacity of the feature extractor
structure, i.e. learning with more data can improve the feature extractor.

2. The optimal feature extractors can be different for two different distributions. In our problem, the
distribution shifts overtime and the optimal feature extractor can be dynamic too.

3. Particularly in online generalized label shift adaptation, the domain of the data can be dramatically
changed between train and test, and the pretrained feature extractor could have unpredictable
performance for the test data.

Fortunately, in online (generalized) label shift adaptation problem, the learner receives many unlabeled
test samples S1 ∪ · · · ∪ St−1 before the prediction for time step t. On the other hand, self-supervised
learning is very powerful for representation learning [18, 32, 30, 16, 37, 9, 23, 20, 24] and domain
adaptation [46, 48, 36, 39]. In this paper, we will introduce how to deploy these self-supervised
learning techniques to the existing OLS methods such that we can still enjoy the theoretical guarantees
from online learning techniques and, more importantly, take the advantage of self-supervised learning
to achieve better empirical performance.

3 Method

In this paper, we introduce a novel online label shift adaptation algorithm OLS-OFU, that leverages
self-supervised learning (SSL) to improve representation learning and can be seamlessly integrated
with any existing online label shift (OLS) method. By carefully designing how to place the SSL
techniques, our algorithm maintains a similar theoretical guarantee from the existing OLS methods,
obeys the underlying assumption in existing OLS methods that is important for the effectiveness, and
fits the required condition of the SSL techniques while avoiding heavy additional time cost. Through
the derived theoretical results, we further understand how the online learning techniques and SSL
techniques contribute together to reduce the test loss in the online label shift adaptation problem.
Lastly, we demonstrate how the SSL techniques help with the more challenging problem online
generalized label shift adaptation.

3.1 Three Principles of Algorithm Design.

To combine the step of feature extractor update with any OLS method, the most straightforward
thought is to directly insert this step right before or after the step of original OLS in each time step;
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see the summarization of the online process in Figure 1. Starting from this thought, there are three
remaining questions before finalizing the algorithm: Q1: Inserting this step before or after the original
OLS step, which option is better? Q2: Besides this feature extractor update step, are any other steps
also necessary? Q3: How frequently (in terms of time step t) should we update the feature extractor?
We are going to introduce three principles when designing our algorithm, which helps answer the
three questions and together lead to our final design.

Principle 1: maintain the theoretical guarantee. One main advantage of existing OLS methods is
that they have theoretical guarantees for the performance of any unknown label shifts in the online
test stage. We would like to keep this advantage after deploying the feature extractor update step. By
carefully checking the theoretical analysis of the existing OLS methods, we find that when we deploy
the feature extractor update into ROGD, UOGD, or ATLAS, if we would like to update the feature
extractor by the unlabeled test samples including St, it is necessary to execute this update after the
step of these OLS methods at time t to maintain the similar theoretical guarantee. This is because
the main idea of ROGD, UOGD, and ATLAS is to construct an unbiased estimator for the gradient
∇f ℓ(ft;P) using a batch of samples St ∼ Ptest

t . The estimator has the form of∑
y∈Y

st[y] · ∇fE(x,y)∼Ptrainℓsup(ft(x), y), (3)

where st is an unbiased estimator for the label marginal distribution qt and it depends on samples St

as constructed. If the feature extractor update according to St happened before the step of ROGD,
UOGD or ATLAS, ft would not be independent of st in Equation 3 and this can break their main
idea, as illustrated in the following proposition.
Proposition 1. If ft is not independent of the samples St, the gradient estimator in Equation 3 is not
guaranteed to be an unbiased estimator of the gradient ∇f ℓ(ft;P).

Thus, to maintain a similar theoretical guarantee after updating the feature extractor by the online test
samples, we should insert the feature update involving St after the step of original ROGD, UOGD or
ATLAS, and this answers Q1. In the experiment, we will validate the necessity of this design.

Principle 2: obey the underlying assumption of the existing OLS methods. We find that the
existing OLS methods ROGD, FTH, and FLHFTL opt for the hypothesis f to be a post-hoc reweight
of the pre-trained model f0. The underlying assumption behind this design is that f0 is a good
approximation of Ptrain(y|x). Within this assumption, because Ptest(y|x) is a post-hoc reweight of
Ptrain(y|x) in the case of label shift [34, 49], reweighting such f0 can approach Ptest(y|x). Therefore,
after updating the feature extractor, we expect that the base model, which is to be reweighted, still
approximates the training distribution Ptrain(y|x). This can be done by re-training the linear layer
under the training data after the feature extractor update, and this answers Q2.

Principle 3: fit the required condition of the SSL techniques while avoiding heavy additional
computational costs. Given a set of unlabeled samples S, we denote the loss of an SSL technique
for a model f as ℓssl(S; f) and the update to this model would be in the form of gradient descent:
θfeat → θfeat − η · ∇θfeatℓssl(S; f), where η is the learning rate. We notice that the batch size |S|
cannot be very small. Otherwise, the update can be too noisy due to the data variance or some types
of SSL whose benefit replies on large batch sizes, such as contrastive learning [9, 23], would lose
this benefit. However, online (generalized) label shift problem assumes we only have a small batch
of unlabeled samples St at time t; the batch size is set as 1 or 10 in the experiment of literature.
Therefore, for the effectiveness of SSL techniques, instead of updating the feature extractor at each
time step by St, we opt to accumulate the sample batch Sτc ∪ · · · ∪ Sτ(c+1) and update the feature
extractor once every τ time steps, and we call it batch accumulation.

Besides the help of effectiveness, batch accumulation also helps with time efficiency. The existing
OLS methods only involve the updates for the small reweighting vector or the linear layer and the
time cost is low. However, updating the feature extractor and re-training the linear layer on the full
training set, which are introduced in Principle 2, are much computationally heavier. For example,
when we evaluated the methods in the experiment with ResNet18 on CIFAR10 dataset, one step of
FLHFTL only took 0.069 second, while one step of FLHFTL together with feature extractor update
and linear layer re-training took 17.1 seconds, which is 247 times. After applying batch accumulation
and we select τ = 100, the additional time costs will be reduced by (τ − 1)/τ = 99%.

Batch accumulation answers Q3 – we should update the feature extractor every τ steps for effective-
ness and time efficiency. We will study how batch accumulation helps in the experiments.
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Algorithm 1 Online label shift adaptation with online feature updates (OLS-OFU).
Require: An online label shift adaptation algorithm OLS, a self-supervised learning loss ℓssl. A
pre-trained model f0 and initialize f1 = f ′′

1 := f0.
for t = 1, · · · , T do

Input at time t: Samples S1 ∪ · · · ∪ St, models {f1, · · · , ft}, train set D0, validation set D′
0.

1. Run the revised version of OLS, that is, OLS-R, and get f ′
t+1.

If t%τ ̸= 0, ft+1 := f ′
t+1, f ′′

t+1 := f ′′
t Else, go to the next step 2-3.

2. Update the feature extractor θfeatt in f ′
t+1 by Equation 4. Replace θfeatt in f ′

t+1 by θfeatt+1 .
3. Re-train the last linear layer by Equation 5, calibrate the model and get f ′′

t+1.
Output at time t: For the reweighting OLS methods, denote the latest reweighting vector from
Step 1 is pt+1 and we define ft+1 := g(·; f ′′

t+1, pt+1); else, we define ft+1 := f ′
t+1.

end for

3.2 Online Label Shift Adaptation with Online Feature Updates

We have discussed three principles and now we can finalize our algorithm Online Label Shift
adaptation with Online Feature Updates (OLS-OFU; Algorithm 1), which requires a self-supervised
learning loss ℓssl and one of existing OLS methods in the literature, which either reweights the offline
pre-trained model f0 or updates the last linear layer. In the training stage, we train f0 by minimizing
the supervised and self-supervised loss together defined on train data. In the test stage, OLS-OFU
comprises three steps at each time step t: (1) running the refined version of OLS, which we refer to
as OLS-R, (2) updating the feature extractor, and (3) re-training the last linear layer. As suggested by
Principle 3 in Section 3.1, steps (2-3) only run every τ steps. We illustrate the details of these three
steps are elaborated below.

(1) Running the Revised OLS. At the beginning of the time t, we use f ′′
t to denote the model within

the latest feature extractor and the re-trained linear model (using data {S0, · · · , St−1}). The high
level idea of our framework centers on substituting the pre-trained model f0 used in existing OLS
methods with our updated model f ′′

t , which we call OLS-R. To provide an overview, we examine
common OLS methods (FLHFTL, FTH, ROGD, UOGD, and ATLAS) and identify two primary use
cases of f0. Firstly, all OLS methods rely on an unbiased estimator st of the label distribution qt
and f0 is a part of the estimator. Secondly, the hypothesis f is some weights of reweighting the f0
output or only the last linear layer in f0 is updated. We illustrate all revised OLS methods formally in
Appendix C. We use f ′

t+1 to denote the model after running the OLS-R.

(2) Updating the Feature Extractor. As guided by Principle 1 in Section 3.1, the step of updating
the feature extractor should be after the Revised-OLS module (step (1)) for theoretical guarantees. We
now introduce how to utilize the SSL loss ℓssl to update the feature extractor based on the accumulated
batch of unlabeled test data Sτc∪· · ·∪Sτ(c+1) at timestep t = τ(c+1). Specifically, let θfeatt denote
the parameters of the feature extractor in f ′

t+1. The update of θfeatt+1 is given by:

θfeatt+1 := θfeatt − η · ∇θfeatℓssl(Sτc ∪ · · · ∪ Sτ(c+1); f
′
t+1). (4)

Then we update the feature extractor in f ′
t+1 with θfeatt+1 .

(3) Re-training Last Linear Layer. Principle 2 in Section 3.1 suggests this step of re-training the
last linear layer on the training distribution. The re-training starts from random initialization while
the feature extractor remains frozen. The training objective of θlineart+1 is to minimize the average
cross-entropy loss over train data D0. We denote the model with the frozen feature extractor θfeatt+1 as
f(·|θfeatt+1, θ

linear). The objective for re-training the last linear layer can be written as follows:

θlineart+1 := arg min
θlinear

∑
(x,y)∈D0

ℓce

(
f(x|θfeatt+1, θ

linear), y

)
. (5)

We calibrate the model f(·|θfeatt+1, θ
linear
t+1 ) by temperature calibration [21] using the validation set D′

0
and denote the model after calibration as f ′′

t+1.

Output at time t. Finally, we define ft+1 for the next time step prediction. For the reweighting
OLS methods (ROGD, FTH, FLHFTL), denote the latest reweighting vector from Step 1 as pt+1 and
define ft+1 := g(·; f ′′

t+1, pt+1). For those which optimize the last linear layer (UOGD, ATLAS), we
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define ft+1 := f ′
t+1 – as stated in Principle 2 in Section 3.2, the f ′′

t including retrained last linear
layer serves specially for the reweighting OLS method.

The requirement of the training data. Notice that in step (3), we need the training data to retrain
the linear classifier, which potentially brings the additional cost of memory and computation in the
test time. As discussed in Principle 2 and lines 248-252, retraining the last linear layer is designed
only for three previous OLS methods (ROGD, FTH, FLHFTL); our algorithm for two other OLS
methods (UOGD and ATLAS) in the literature are independent of this step. As for ROGD, FTH, or
FLHFTL, we interestingly find that OLS-OFU without this re-training step, which means that we
update the feature extractor but reuse the pretrained linear classifier, still has a certain advantage over
the original OLS methods – although more stored training data results in the more significant benefit
of OLS-OFU. This suggests that in practice, if we reduce the amount of stored training data due to
the memory or computational constraint, OLS-OFU is still effective.

3.3 Performance Guarantee for Online Label Shift Adaptation

One main advantage of the original OLS methods is that they exhibit theoretical guarantees in terms
of regret convergence for online label shift settings. Next, we will show how OLS-OFU demonstrates
analogous theoretical guarantees with the incorporation of additional online feature updates. Due to
limited space, we illustrate the theoretical results pertaining to FLHFTL-OFU here, and present the
results for ROGD-OFU, FTH-OFU, UOGD-OFU, and ATLAS-OFU in Appendix D.
Theorem 1. [Regret convergence for FLHFTL-OFU] Suppose we choose the OLS-R to be FLHFTL-
R (Algorithm 6) from Baby et al. [6]. Let fflhftl−ofu

t be the output at time step t− 1 from Algorithm 1,
that is g(·; f ′′

t ,
q̃t
q0
). Under Assumptions 1 and 2 in Baby et al. [6], FLHFTL-OFU has the guarantee:

E

[
1

T

T∑
t=1

ℓ(fflhftl−ofu
t ;Ptest

t )

]
≤ E

[
1

T

T∑
t=1

ℓ(g(·; f ′′
t ,

qt
q0

);Ptest
t )

]
+O

(
K1/6V

1/3
T

T 1/3
+

K√
T

)
,

(6)

where VT :=
∑T

t=1 ∥qt − qt−1∥1, K is the number of classes, and the expectation is taken w.r.t.
randomness in the revealed co-variates. This result is attained without prior knowledge of VT .

How do online feature updates contribute to the bound? We observe that the upper bound of
the test loss has two terms. The first term is the loss of the model within the up-to-date feature
extractor when the knowledge of label distribution qt is known. Any improvement from SSL could
be reflected in this first term. The second term is to quantify the loss gap between the knowledge of
label distribution qt and the estimation of the label distribution by the online learning technique.

When do online feature updates improve the guarantee from FLHFTL to FLHFTL-OFU? If we
do not make any update to the feature extractor (i.e. f ′′

t = f0,∀t), the upper bound in Equation 6
would be naturally reduced to the theoretical guarantee of FLHFTL [6]. Moreover, in the following
event of f ′′

t (t ∈ [T ]):

E

[
1

T

T∑
t=1

ℓ(g(·; f ′′
t ,

qt
q0

);Ptest
t )

]
<

1

T

T∑
t=1

ℓ(g(·; f0,
qt
q0

);Ptest
t ), (7)

our theorem will guarantee that the loss of FLHFTL-OFU converges to a smaller value than the one
of the original FLHFTL, resulting in a better upper bound. We substantiate this improvement through
empirical evaluation in Section 4.

3.4 Online Feature Updates Improve Online Generalized Label Shift Adaptation

The generalized label shift is harder because the feature map h is unknown and naively applying OLS
methods might raise the challenge due to the violation of the label shift assumption. Fortunately,
existing research in test-time training (TTT) [46, 48, 36, 39] demonstrates that feature updates driven
by SSL align the source and target domains in feature space. When the source and target domains
achieve perfect alignment, such feature extractor effectively serves as the feature map h as assumed
in generalized label shift. Therefore, the sequence of feature extractors in f1, · · · , fT generated
by Algorithm 1 progressively approximates the underlying h. This suggests that, compared to the
original OLS, OLS-OFU experiences a milder violation of the label shift assumption within the
feature space and is expected to have better performance in online generalized label shift settings.
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(a) Results on CIFAR-10 for three SSL methods in OLS-OFU (Sinusoidal shift)

(b) Results on three more datasets (rotation degree prediction, Sinusoidal shift)

(c) Results on three types of corruptions in CIFAR-10C (rotation degree prediction, Sinusoidal shift)
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Entropy Minimization

Figure 2: Evaluation of OLS and OLS-OFU.
FTFWH FTH ROGD ATLAS UOGD FLH-FTL

OLS 11.9% / 0.441 12.04% / 0.705 13.65% / 0.937 12.18% / 43.2 11.54% / 297 12.02% / 1.15

OLS-OFU (τ = 1) 11.3% / 283 11.2% / 286 13.9% / 385 11.6% / 47 11.4% / 319 11.2% / 285
OLS-OFU (τ = 10) 9.93% / 28.8 10.2% / 29.6 13.1% / 41.9 11.6% / 45.1 10.5% / 306 9.93% / 29.9
OLS-OFU (τ = 50) 8.15% / 6.47 8.89% / 6.91 12% / 9.49 11.3% / 44.8 9.27% / 303 8.27% / 7.08
OLS-OFU (τ = 100) 7.33% / 3.57 8% / 3.85 10.8% / 5.29 10.1% / 44.2 8.35% / 303 7.45% / 4.15
OLS-OFU (τ = 500) 11.6% / 1.27 11.7% / 1.53 13.5% / 2.09 12.1% / 43.6 11.3% / 298 11.7% / 1.94

Table 1: Average error/time (minutes) of 6 original OLS methods versus OLS-OFU with various
frequency τ in batch accumulation. The SSL in OLS-OFU is the rotation degree prediction.

4 Experiment

In this section, we initiate OLS-OFU with three popular SSL techniques and empirically evaluate
how OLS-OFU improves the original OLS methods on both online label shift and online generalized
label shift on various datasets and shift patterns3.

4.1 Experiment Set-up

Dataset and Label Shift Settings. For online label shift, we evaluate the efficacy of our algorithm on
CIFAR-10 [29], STL10 [12], CINIC [13], and EuroSAT [25]. For each dataset, we split the original
train set into the offline train (i.e., D0) and validation sets (i.e., D′

0) following a ratio of 4 : 1. At the
online test stage, unlabeled batches are sampled from the test set. For online generalized label shift,
the offline train and validation sets are the CIFAR-10 images. The test unlabeled batches are drawn
from CIFAR-10C [26], a benchmark with the same objects as CIFAR-10 but with various types of
corruption. We experiment with three types of corruptions with CIFAR-10C: Gaussian noise, Fog,

3Code is released at https://github.com/dattasiddhartha/online-feature-updates-olsofu
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FTFWH FTH ROGD ATLAS UOGD FLHFTL

OLS-OFU(τ = 1) 11.3% 11.2% 13.9% 11.6% 11.4% 11.2%
OLS-OFU-difforder(τ = 1) 12.33% 12.12% 14.35% 12.10% 11.91% 12.08%

OLS-OFU(τ = 100) 7.23% 7.91% 10.81% 10.12% 8.33% 7.53%
OLS-OFU-difforder(τ = 100) 8.02% 8.63% 11.19% 10.55% 8.80% 8.29%

Table 2: Ablation study on the order between OLS and the feature update step in OLS-OFU.

and Pixelate. We follow Bai et al. [7] and Baby et al. [6] to simulate the online label distribution
shift with two shift patterns: Sinusoidal shift and Bernoulli shift. We experiment with T = 1000 and
batch size B = 10 at each time step, following Baby et al. [6]. See more details of dataset set-up and
online shift patterns in Appendix E.1.

Evaluation Metric. We report the average error during test, i.e., 1
TB

∑T
t=1

∑
xt∈St

1 (ft(xt) ̸= yt),
where (xt, yt) ∼ Ptest

t , to approximate 1
T

∑T
t=1 ℓ(ft;Ptest

t ) for the evaluation efficiency.

Self-supervised learning methods in OLS-OFU. In the experiment, we narrow our focus on three
particular SSL techniques in the evaluation for classification tasks: rotation degree prediction [16, 46],
entropy minimization [18, 48] and MoCo [23, 10, 11]. It is important to note that this concept extends
beyond these three SSL techniques, and the incorporation of more advanced SSL techniques to further
elevate the performance. Appendix E.1 gives more details of these SSL techniques.

Set-ups of OLS methods, OLS-OFU and baselines. We perform an extensive evaluation of 6 OLS
methods in the literature: FTFWH, FTH, ROGD, UOGD, ATLAS, and FLHFTL by following the
implementation in Baby et al. [6]. We report the performance of our method OLS-OFU (Algorithm 1)
applied on top of each OLS and 3 SSL methods introduced above. The frequency parameter τ is
fixed as 100 for most experiments unless we particularly mention it. Additionally, by following the
setup in [49, 6], we report one baseline score Base, which uses the fixed pre-trained model f0 to
predict the labels at all time steps.

4.2 Results

Main Results: comparison between OLS-OFU and OLS under online (generalized) label shift.
Figure 2(a) shows the performance comparison between OLS-OFU, implemented with three SSL
methods, and their corresponding OLS counterparts on CIFAR-10 under the scenario of classical
online label shift. Figure 2(b) shows the results on three more datasets with SSL technique in
OLS-OFU being rotation degree prediction. Figure 2(c) shows the results on CIFAR-10C datasets
for evaluating methods on online generalized label shift. The online shift pattern in Figure 2 is the
sinusoidal shift and similar results on the Bernoulli shift are in Appendix E.2. We have two main
observations from the results. First, we find our OLS-OFU method achieves substantial improvements
over existing OLS methods, which is as significant as to the gains existing OLS methods have over
the baseline (i.e., without distribution shift adaptations). This demonstrates that integrating online
feature updates is as effective in solving online distribution shifts as the fundamental online label
shift method itself. Second, the improvement is consistent across all six original OLS methods and
three SSL techniques on all datasets, which further demonstrates our OLS-OFU is general enough to
incorporate future OLS methods and more advanced SSL techniques as well.

Validating Principle 1: ablation study on the order between OLS and the feature update step
in OLS-OFU. We compare OLS-OFU with its other variant named OLS-OFU-difforder where we
update SSL first and run OLS later (which violates Principle 1). We compare these two algorithms
across all previous 6 OLS methods and two choices of batch accumulation τ = 1 and τ = 100. The
dataset is CIFAR-10, the SSL is rotation degree prediction and the shift pattern is the sinusoidal
shift. We report the average error every τ time step when the feature extractor is updated, so the
order matters. From Table 2, we can observe that benefiting from Principle 1, the error OLS-OFU is
consistently lower than OLS-OFU-difforder. This means that Principle 1 indeed is not only necessary
for the correctness of theoretical guarantee but also plays an important role in practice.

Validating Principle 3: ablation study on frequency τ in batch accumulation in OLS-OFU. In
section 3.1, we introduce the batch accumulation to flavor the effectiveness of the SSL and reduce
the additional time cost of OLS-OFU compared with the original OLS methods. In Table 1, we
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% Stored Training Data 100% 80% 60% 40% 20% 10% 5% 0% OLS only

FTH-OFU 8% 8.18% 8.68% 9.49% 9.54% 9.67% 9.81% 10.24% 12.04%
ROGD-OFU 10.8% 10.93% 11.84% 12.50% 12.63% 12.82% 12.94% 13.50% 13.65%

FLHFTL-OFU 7.45% 7.62% 8.04% 8.91% 9.51% 10.11% 10.34% 10.43% 12.02%
FTFWH-OFU 7.33% 7.48% 7.92% 8.40% 8.91% 9.86% 10.03% 10.41% 11.9%

Table 3: The effectiveness of OLS-OFU versus the percentage of stored training data in step (3).

evaluate OLS-OFU on CIFAR-10 with various τ while initiating OLS-OFU with rotation degree
prediction and compare the average error and time with OLS. We have these observations across
all OLS (columns): 1. OLS-OFU with all τ outperforms OLS; 2. The average error of OLS-OFU
decreases from τ = 1 (w/o batch accumulation) to τ = 100 and starts to increase after and this is
because the effectiveness of SSL benefits from τ > 1 while larger τ means less updates and hence
hurts the long term performance; 3. the additional time cost of OLS-OFU with larger τ is smaller and
τ = 100 gives a great balance of performance and time cost for all OLS (and SSL; the similar tables
for other two SSL are presented in the Appendix E.3). From the results, we recommend τ = 100 as a
good starting point for choosing this parameter.

Ablation study on the amount of stored training data in step (3). We further study how the
amount of training data stored influences the effectiveness of our OLS-OFU when the OLS is
ROGD, FTH, or FLHFTL, which is dependent on step (3). We experiment with the CIFAR-10
dataset and the shift pattern of sinusoidal shift; the SSL is chosen as rotation degree prediction.
The percentage of stored training data (out of the whole training set of size 10,000) is varied in
{100%, 80%, 60%, 40%, 20%, 10%, 5%, 0%}; 0% means that we still update the feature extractor
but reuse the pretrained linear classifier. The results are reported in Table 3. We can observe that with
less stored training data for retraining the last linear layer, the error of OLS-OFU would increase
gradually. However, an important finding is that even with 0% stored training data, the error of
OLS-OFU is still lower than the OLS without feature extractor updates. This can actually explained
by the original test-time training papers [46, 48, 36, 39], where they only update the feature extractor
without refining the last linear layer and still have substantial benefit. The results suggest that a large
amount of stored training data is not necessary for the effectiveness of OLS-OFU, while more stored
data can bring more benefits.
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Figure 3: Empirical validation of Equation 7. Clean
denotes the experiment on CIFAR-10, and others denote
the corruption type. They are paired with two online
shift patterns: Sinusoidal and Bernoulli.

Empirical validation of Equation 7. In
Section 3.3, we argued that when the in-
equality in Equation 7 holds, the loss of
FLHFTL-OFU exhibits a tighter upper
bound compared to FLHFTL. Figure 3
presents the RHS (corresponds to OLS)
and LHS (corresponds to OLS-OFU with
SSL loss as rotation degree prediction) of
Equation 7. We perform the study over
eight different settings and vary the domain
shift and online shift patterns. It is evident
that OLS-OFU yields improvements on the
baseline of the regret as shown in Equa-
tion 7. Appendix E.4 validates this inequality for other SSL.

5 Conclusion and Future Work

We focus on online (generalized) label shift adaptation and present a novel framework OLS-OFU,
which harnesses the power of self-supervised learning to enhance feature representations dynamically
during testing, leading to improved predictive models and better test time performance.

Discussion and future work. One promising direction is to extend the idea of this paper to online
covariate shift, for example, the algorithm in Zhang et al. [53] freezes the feature extractor and
only updates the linear layer. Another possible direction is to consider a more realistic domain shift
scenario within the generalized label shift setting — domain shift types may vary over time or be
even more challenging, such as shifting from cartoon images to realistic images.

10



Acknowledgments and Disclosure of Funding

RW and KQW are supported by grants from LinkedIn, DARPA Geometries of Learning, and the
National Science Foundation NSF (1934714). RW is also supported by grants from the National
Science Foundation NSF (CIF-2402817, CNS-1804829), SaTC-2241100, CCF-2217058, ARO-
MURI (W911NF2110317), and ONR under N00014-24-1-2304. YW and DB are partially supported
by NSF Award #2134214.

References
[1] A. Alexandari, A. Kundaje, and A. Shrikumar. Maximum likelihood with bias-corrected

calibration is hard-to-beat at label shift adaptation. In International Conference on Machine
Learning, pages 222–232. PMLR, 2020.

[2] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané. Concrete problems
in ai safety. arXiv preprint arXiv:1606.06565, 2016.

[3] E. Arazo, D. Ortego, P. Albert, N. E. O’Connor, and K. McGuinness. Pseudo-labeling and
confirmation bias in deep semi-supervised learning. In 2020 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2020.

[4] K. Azizzadenesheli, A. Liu, F. Yang, and A. Anandkumar. Regularized learning for domain
adaptation under label shifts. In International Conference on Learning Representations, 2019.

[5] D. Baby and Y.-X. Wang. Optimal dynamic regret in proper online learning with strongly
convex losses and beyond. In International Conference on Artificial Intelligence and Statistics,
pages 1805–1845. PMLR, 2022.

[6] D. Baby, S. Garg, T.-C. Yen, S. Balakrishnan, Z. C. Lipton, and Y.-X. Wang. Online label
shift: Optimal dynamic regret meets practical algorithms. To appear at Advances in Neural
Information Processing Systems, 2023.

[7] Y. Bai, Y.-J. Zhang, P. Zhao, M. Sugiyama, and Z.-H. Zhou. Adapting to online label shift with
provable guarantees. Advances in Neural Information Processing Systems, 35:29960–29974,
2022.

[8] O. Besbes, Y. Gur, and A. Zeevi. Non-stationary stochastic optimization. Operations research,
63(5):1227–1244, 2015.

[9] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning
of visual representations. In International conference on machine learning, pages 1597–1607.
PMLR, 2020.

[10] X. Chen, H. Fan, R. Girshick, and K. He. Improved baselines with momentum contrastive
learning. arXiv preprint arXiv:2003.04297, 2020.

[11] X. Chen, S. Xie, and K. He. An empirical study of training self-supervised vision
transformers. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV),
pages 9620–9629, Los Alamitos, CA, USA, oct 2021. IEEE Computer Society. doi:
10.1109/ICCV48922.2021.00950. URL https://doi.ieeecomputersociety.org/10.
1109/ICCV48922.2021.00950.

[12] A. Coates, A. Ng, and H. Lee. An Analysis of Single Layer Networks in Unsupervised
Feature Learning. In AISTATS, 2011. https://cs.stanford.edu/~acoates/papers/
coatesleeng_aistats_2011.pdf.

[13] L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J. Storkey. Cinic-10 is not imagenet or
cifar-10, 2018.

[14] S. Garg, Y. Wu, S. Balakrishnan, and Z. C. Lipton. A unified view of label shift estimation.
arXiv preprint arXiv:2003.07554, 2020.

[15] S. Garg, N. Erickson, J. Sharpnack, A. Smola, S. Balakrishnan, and Z. Lipton. Rlsbench:
Domain adaptation under relaxed label shift. In International Conference on Machine Learning
(ICML), 2023.

[16] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised representation learning by predicting
image rotations. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=S1v4N2l0-.

11

https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00950
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00950
https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf
https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf
https://openreview.net/forum?id=S1v4N2l0-
https://openreview.net/forum?id=S1v4N2l0-


[17] Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In L. Saul,
Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems, volume 17.
MIT Press, 2004. URL https://proceedings.neurips.cc/paper_files/paper/2004/
file/96f2b50b5d3613adf9c27049b2a888c7-Paper.pdf.

[18] Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. Advances in
neural information processing systems, 17, 2004.

[19] A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and B. Schölkopf. Covariate
shift by kernel mean matching. Dataset shift in machine learning, 3(4):5, 2009.

[20] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch,
B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, et al. Bootstrap your own latent-a new ap-
proach to self-supervised learning. Advances in neural information processing systems, 33:
21271–21284, 2020.

[21] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural networks. In
International conference on machine learning, pages 1321–1330. PMLR, 2017.

[22] E. Hazan and C. Seshadhri. Adaptive algorithms for online decision problems. In Electronic
colloquium on computational complexity (ECCC), volume 14, 2007.

[23] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual
representation learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9729–9738, 2020.

[24] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 16000–16009, 2022.

[25] P. Helber, B. Bischke, A. Dengel, and D. Borth. Eurosat: A novel dataset and deep learning
benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 12(7):2217–2226, 2019. doi: 10.1109/JSTARS.2019.
2918242.

[26] D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[27] J. Hoffman, T. Darrell, and K. Saenko. Continuous manifold based adaptation for evolving
visual domains. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 867–874, 2014.

[28] J. Huang, A. Gretton, K. Borgwardt, B. Schölkopf, and A. Smola. Correcting sample selection
bias by unlabeled data. In Advances in neural information processing systems, volume 19, pages
601–608. Citeseer, 2006.

[29] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[30] S. Laine and T. Aila. Temporal ensembling for semi-supervised learning. arXiv preprint
arXiv:1610.02242, 2016.

[31] D.-H. Lee. Pseudo-label: The simple and efficient semi-supervised learning method for deep
neural networks. ICML 2013 Workshop: Challenges in Representation Learning, 2013.

[32] D.-H. Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks. In Workshop on challenges in representation learning, ICML, volume 3,
page 896. Atlanta, 2013.

[33] Y. Lin, Y. Lee, and G. Wahba. Support vector machines for classification in nonstandard
situations. Machine learning, 46(1):191–202, 2002.

[34] Z. Lipton, Y.-X. Wang, and A. Smola. Detecting and correcting for label shift with black box
predictors. In International Conference on Machine Learning, 2018.

[35] Z. Lipton, Y.-X. Wang, and A. Smola. Detecting and correcting for label shift with black box
predictors. In International conference on machine learning, pages 3122–3130. PMLR, 2018.

[36] Y. Liu, P. Kothari, B. Van Delft, B. Bellot-Gurlet, T. Mordan, and A. Alahi. Ttt++: When does
self-supervised test-time training fail or thrive? Advances in Neural Information Processing
Systems, 34:21808–21820, 2021.

12

https://proceedings.neurips.cc/paper_files/paper/2004/file/96f2b50b5d3613adf9c27049b2a888c7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2004/file/96f2b50b5d3613adf9c27049b2a888c7-Paper.pdf


[37] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii. Virtual adversarial training: a regularization
method for supervised and semi-supervised learning. IEEE transactions on pattern analysis
and machine intelligence, 41(8):1979–1993, 2018.

[38] R. T. Mullapudi, S. Chen, K. Zhang, D. Ramanan, and K. Fatahalian. Online model distillation
for efficient video inference. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3573–3582, 2019.

[39] S. Niu, J. Wu, Y. Zhang, Y. Chen, S. Zheng, P. Zhao, and M. Tan. Efficient test-time model
adaptation without forgetting. In International conference on machine learning, pages 16888–
16905. PMLR, 2022.

[40] Y.-Y. Qian, Y. Bai, Z.-Y. Zhang, P. Zhao, and Z.-H. Zhou. Handling new class in online label
shift. In 2023 IEEE International Conference on Data Mining (ICDM), pages 1283–1288. IEEE,
2023.

[41] J. Quiñonero-Candela, M. Sugiyama, N. D. Lawrence, and A. Schwaighofer. Dataset shift in
machine learning. Mit Press, 2009.

[42] M. Saerens, P. Latinne, and C. Decaestecker. Adjusting the outputs of a classifier to new a priori
probabilities: a simple procedure. Neural Computation, 14(1):21–41, 2002.

[43] B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K. Zhang, and J. Mooij. On causal and
anticausal learning. arXiv preprint arXiv:1206.6471, 2012.

[44] S. Shalev-Shwartz. 2012.
[45] H. Shimodaira. Improving predictive inference under covariate shift by weighting the log-

likelihood function. Journal of statistical planning and inference, 90(2):227–244, 2000.
[46] Y. Sun, X. Wang, Z. Liu, J. Miller, A. Efros, and M. Hardt. Test-time training with self-

supervision for generalization under distribution shifts. In International conference on machine
learning, pages 9229–9248. PMLR, 2020.

[47] R. Tachet des Combes, H. Zhao, Y.-X. Wang, and G. J. Gordon. Domain adaptation with
conditional distribution matching and generalized label shift. Advances in Neural Information
Processing Systems, 33:19276–19289, 2020.

[48] D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell. Tent: Fully test-time adaptation
by entropy minimization. arXiv preprint arXiv:2006.10726, 2020.

[49] R. Wu, C. Guo, Y. Su, and K. Q. Weinberger. Online adaptation to label distribution shift.
Advances in Neural Information Processing Systems, 34:11340–11351, 2021.

[50] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le. Self-training with noisy student improves imagenet
classification. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 10684–10695, 2020. doi: 10.1109/CVPR42600.2020.01070.

[51] B. Zadrozny. Learning and evaluating classifiers under sample selection bias. In Proceedings of
the Twenty-First International Conference on Machine Learning, page 114, 2004.

[52] K. Zhang, B. Schölkopf, K. Muandet, and Z. Wang. Domain adaptation under target and
conditional shift. In International Conference on Machine Learning, pages 819–827. PMLR,
2013.

[53] Y.-J. Zhang, Z.-Y. Zhang, P. Zhao, and M. Sugiyama. Adapting to continuous covariate shift via
online density ratio estimation. arXiv preprint arXiv:2302.02552, 2023.

[54] P. Zhao, Y.-J. Zhang, L. Zhang, and Z.-H. Zhou. Adaptivity and non-stationarity: Problem-
dependent dynamic regret for online convex optimization. Journal of Machine Learning
Research, 25(98):1 – 52, 2024.

13



A Further Related Work

Offline distribution shift and domain shift. Offline label shift and covariate shift have been studied
for many years. Some early work [42, 33] assumes the knowledge of how the distribution is shifted.
Later work [45, 51, 28, 19, 35, 1, 4, 14] relaxes this assumption and estimates this knowledge from
unlabeled test data. A recent work by [15] considers a relaxed version of offline label shift problem
where the class-conditionals can change between train and test domains in a restrictive way. Extending
their results to the case of relaxed online version of generalized label shift is an interesting future
direction.

Online distribution shift with provable guarantees. There has been several work modeling online
distribution shift as the classic online learning problem [49, 7, 6, 53], which leverage the classical
online learning algorithms [44, 8, 5] to bound the static or dynamic regret. Qian et al. [40] focuses
on a special setting in online label shift, where there can be new classes occurring in the test stage.
They handle the new class by unsupervised estimating the portion of unseen data. However, none
of them updates the feature extractor in a deep learning model but only the last linear layer or the
post-hoc linear reweighting vectors. Our proposed method OLS-OFU utilizes the deep learning SSL
to improve the feature extractor, which brings better performance.

Domain shift adaptation within online streaming data. When we consider the most authentic
online learning setup where the learner only receives the unlabeled samples, the most representative
idea is test-time training [46, 48, 36, 39], which utilizes a (deep learning) self-supervised loss to
online update the model. However, it focuses on how to adapt to a fixed domain shifted distribution
from online streaming data and is not designed for how to adapt to continuous distribution changes
during the test stage, while our algorithm concentrates the later problem. Besides test-time training,
Hoffman et al. [27] and [38] study the online domain shift for specific visual applications.

B Proof of Proposition 1

The proof of Proposition 1. We first write the derivation that
∑

y∈Y st[y] ·
∇fEx∼Ptrain(·|y)ℓsup(ft(x), y) is an unbiased estimator of ∇f ℓ(ft;P) when ft is indepen-

Algorithm 2 Revised ROGD for online feature updates ROGD-R. See the original version in Equation
7 and Equation 8 in [49].

Require: Learning rate η.
for t = 1, · · · , T do

Input at time t: Samples S1 ∪ · · · ∪ St, models {f1, · · · , ft}, and intermediate model
{f ′′

1 , · · · , f ′′
t } from step 3 in Algorithm 1, the validation set D′

0, the training label marginal
q0 := Ptrain(y).
1. Compute the unbiased estimator for label marginal distribution:

st =
1

|St|
∑

xt∈St
C−1

f ′′
t ,D′

0
f ′′
t (xt). ▷ In the original ROGD, it is f0 rather than f ′′

t .
2. Grab the weight pt from ft.
3. Update pt+1 := Proj∆K−1

[
pt − η · Jp(pt)⊤st

]
,

where Jp,f ′′
t
(pt) =

∂
∂p (1− diag(Cf ′′

t ,D0,p))|p=pt
, and let ft+1 be a reweighting version of

f ′′
t by the weight

(
pt+1[k]
q0[k]

: k = 1, · · ·K
)

▷ In the original ROGD, it is f0 rather than f ′′
t .

Output at time t: f ′
t+1.

end for
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dent of St.

ESt

∑
y∈Y

st[y] · ∇fEx∼Ptrain(·|y)ℓsup(ft(x), y)

 =
∑
y∈Y

ESt

[
st[y] · ∇fEx∼Ptrain(·|y)ℓsup(ft(x), y)

]
=
∑
y∈Y

ESt [st[y]] · ∇fEx∼Ptrain(·|y)ℓsup(ft(x), y)

=
∑
y∈Y

qt[y] · ∇fEx∼Ptrain(·|y)ℓsup(ft(x), y)

=
∑
y∈Y

qt[y] · ∇fEx∼Ptest
t (·|y)ℓsup(ft(x), y)

= ∇f ℓ(ft;P).

The third equality is as how st is constructed. The fourth equality holds by the label shift assumption.
We can check the second equality: if ft is dependent of St, the correctness of the second equality is
not guaranteed and so is the overall unbiased property derivation.

C The Revision for Previous Online Label Shift Adaptation Algorithms

The revised algorithms to be used in the main algorithm OLS-OFU (Algorithm 1) are FTH-R
(Algorithm 3), UOGD-R (Algorithm 4), ROGD-R (Algorithm 2), ATLAS-R (Algorithm 5), FLHFTL-
R (Algorithm 6).

D Theorems for OLS and Proofs

In this section, we present the theoretical results of FLHFTL-OFU, ROGD-OFU, FTH-OFU, UOGD-
OFU, ATLAS-OFU and their proofs. The proofs are mostly the same as the proofs for the original
algorithms with small adjustments. As our results are not straight corollaries for the original theorems,
we write the full proofs here for the completeness.

D.1 Theorem for FLHFTL-OFU

Before proving Theorem 2 (in Section 3.3 ) we recall the assumption from Baby et al. [6] for
convenience. We refer the reader to Baby et al. [6] for justifications and further details of the
assumptions.
Assumption 1. Assume access to the true label marginals q0 ∈ ∆K of the offline train data and
the true confusion matrix C ∈ RK×K . Further the minimum singular value σmin(C) = Ω(1) is
bounded away from zero.

Algorithm 3 Revised FTH for online feature updates (FTH-R). See the original version in Equation 9
in [49].

for t = 1, · · · , T do
Input at time t: Samples S1 ∪ · · · ∪ St, models {f1, · · · , ft}, and intermediate model
{f ′′

1 , · · · , f ′′
t } from step 3 in Algorithm 1, the validation set D′

0, the train label marginal
q0 := Ptrain(y).
1. Compute the unbiased estimator for label marginal distribution:

st =
1

|St|
∑

xt∈St
C−1

ft,D′
0
f ′′
t (xt). ▷ In the original FTL, it is f0 rather than f ′′

t .

2. Compute pt+1 = 1
t

∑t
τ=1 sτ

3. Let ft+1 be a reweighting version of f ′′
t by

the weight
(

pt+1[k]
q0[k]

: k = 1, · · ·K
)

▷ In the original FTL, it is f0 rather than f ′′
t .

Output at time t: f ′
t+1.

end for
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Algorithm 4 Revised UOGD for online feature updates (UOGD-R). See the original version in
Equation 9 in [7].

Require: The learning rate η.
for t = 1, · · · , T do

Input at time t: Samples S1 ∪ · · · ∪ St, models {f1, · · · , ft}, and intermediate model
{f ′′

1 , · · · , f ′′
t } from step 3 in Algorithm 1, the validation set D′

0, the train label marginal
q0 := Ptrain(y).
1. Compute the unbiased estimator for label marginal distribution:

st =
1

|St|
∑

xt∈St
C−1

f ′′
t ,D′

0
f ′′
t (xt). ▷ In the original UOGD, it is f0 rather than f ′′

t .
2. Grab the weight wt from the last linear layer of ft.
3. Update wt+1 := wt − η · ∂

∂wJw(wt)
⊤st, where Jw(wt) =

∂
∂w (R̂1

t (w), · · · , R̂K
t (w))|w=wt

,
R̂k

t (w) =
1

|Dk
0 |
∑

(x,y)∈Dk
0
ℓce(f(x|θfeatt , θlinear = w), y), Dk

0 denotes the set of data with

label k in D0. ▷ In the original UOGD, it is θfeat0 rather than θfeatt .
4. Let ft+1 be f(·|θfeatt , wt+1).
Output at time t: f ′

t+1.
end for

Algorithm 5 Revised ATLAS for online feature updates (ATLAS-R). See the original version in
Equation 9 in [7].

Require: The learning rate pool H with size N; Meta learning rate ε; ∀i ∈ [N ], p1,i = 1/N and
w1,i = θlinearf0

.
for t = 1, · · · , T do

Input at time t: Samples S1 ∪ · · · ∪ St, models {f1, · · · , ft}, and intermediate model
{f ′′

1 , · · · , f ′′
t } from step 3 in Algorithm 1, the validation set D′

0, the train label marginal
q0 := Ptrain(y).
1. Compute the unbiased estimator for label marginal distribution:

st =
1

|St|
∑

xt∈St
C−1

ft,D′
0
f ′′
t (xt). ▷ In the original ATLAS, it is f0 rather than f ′′

t .

for i ∈ [N ] do
2. Update wt+1,i := wt,i − ηi · ∂

∂wJw(wt,i)
⊤st, where

Jw(wt,i) =
∂
∂w (R̂1

t (w), · · · , R̂K
t (w))|w=wt,i

,
R̂k

t (w) =
1

|Dk
0 |
∑

(x,y)∈Dk
0
ℓce(f(x|θfeatt , w), y), Dk

0 denotes the set of data

with label k in D0. ▷ In the original ATLAS, it is θfeat0 rather than θfeatt .
end for
3. Update weight pt+1 according to ppt,i

∝ exp(−ε
∑t−1

τ=1 R̂τ (wτ,i))

3. Compute wt+1 =
∑N

i=1 pt+1,iwt+1,i. Let ft+1 be f(·|θfeatt , wt+1).
Output at time t: f ′

t+1.
end for

Algorithm 6 Revised FLHFTL for online feature updates (FLHFTL-R); See the original version in
[6].

Require: Online regression oracle ALG.
for t = 1, · · · , T do

Input at time t: Samples S1∪· · ·∪St, models {f1, · · · , ft}, intermediate models {f ′′
1 , · · · , f ′′

t },
the validation set D′

0, the train label marginal q0 := Ptrain(y).
1. Compute the unbiased estimator for label marginal distribution: st =
1

|St|
∑

xt∈St
C−1

f ′′
t ,D′

0
f ′′
t (xt) ▷ In the original FLHFTL, it is f0 rather than f ′′

t .

2. Compute q̃t+1 := ALG(s1, · · · , st)
3. Let f ′

t+1 be a reweighting version of f ′′
t by the weight

(
q̃t+1[k]
q0[k]

: k = 1, · · ·K
)

▷ In the

original FLHFTL, it is f0 rather than f ′′
t .

Output at time t: f ′
t+1.

end for
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Assumption 2 (Lipschitzness of loss functions). Let D be a compact and convex domain. Let rt
be any probabilistic classifier. Assume that Lt(p) := E [ℓ(g(·; rt, p/q0)|xt] is G Lipschitz with
p ∈ D ⊆ ∆K , i.e, Lt(p1)−Lt(p2) ≤ G∥p1 − p2∥2 for any p1, p2 ∈ D. The constant G need not be
known ahead of time.

Theorem 2. [Regret convergence for FLHFTL-OFU] Suppose we choose the OLS-R to be FLHFTL-
R (Algorithm 6) from Baby et al. [6]. Let fflhftl−ofu

t be the output at time step t− 1 from Algorithm 1,
that is g(·; f ′′

t ,
q̃t
q0
). Let σ be the smallest among the the minimum singular values of invertible

confusion matrices {Cf ′′
1 ,D′

0
, · · ·Cf ′′

T ,D′
0
}. Then under Assumptions 1 and 2 in Baby et al. [6],

FLHFTL-OFU has the guarantee below:

E

[
1

T

T∑
t=1

ℓ(fflhftl−ofu
t ;Ptest

t )

]
≤ E

[
1

T

T∑
t=1

ℓ(g(·; f ′′
t ,

qt
q0

);Ptest
t )

]
+O

(
K1/6V

1/3
T

σ2/3T 1/3
+

K

σ
√
T

)
,

(8)

where VT :=
∑T

t=1 ∥qt − qt−1∥1, K is the number of classes, and the expectation is taken w.r.t.
randomness in the revealed co-variates. This result is attained without prior knowledge of VT .

Proof: The proof follows the similar idea in the original online regression algorithm FLHFTL [22]
and its variants for solving online label shift problem in Baby et al. [6].

The algorithm in Baby et al. [6] requires that the estimate st in Line 1 of Algorithm 6 is unbiased
estimate of the label marginal qt. Since f ′′

t in Algorithm 6 is independent of the sample St, and
since we are working under the standard label shift assumption, due to Lipton et al. [35] we have that
C−1

f ′′
t ,D′

0
· 1
|St|

∑
xt∈St

f ′′
t (xt) forms an unbiased estimate of Ex∼P test

t
[f ′′

t (x)]. Further, from Lipton
et al. [35], the reciprocal of standard deviation of this estimate is bounded below by minimum of the
singular values of confusion matrices {Cf ′′

1 ,D′
0
, · · ·Cf ′′

T ,D′
0
}.

Let q̃t be the estimate of the label marginal maintained by FLHFTL. By Lipschitzness, we have that

E[ℓ(fflhftl−ofu
t ;Ptest

t )− ℓ(g(·; f ′′
t , p/q0)] = E[Lt(q̃t)]− E[Lt(qt)] (9)

≤ G · E[∥q̃t − qt∥2], (10)

where the last line is via Assumption 2.

T∑
t=1

E[ℓ(fflhftl−ofu
t ;Ptest

t )− ℓ(g(·; f ′′
t , p/q0)] ≤

T∑
t=1

G · E[∥q̃t − qt∥2] (11)

≤
T∑

t=1

G
√

E∥q̃t − qt∥22 (12)

≤ G

√√√√T

T∑
t=1

E[∥q̃t − qt∥22] (13)

= Õ

(
K1/6T 2/3V

1/3
T (1/σ

2/3
min(C)) +

√
KT/σmin(C)

)
,

(14)

where the second line is due to Jensen’s inequality, third line by Cauchy-Schwartz and last line by
Proposition 16 in Baby et al. [6]. This finishes the proof.

D.2 Theorem for ROGD-OFU

We state the assumptions first for the later theorems. These assumptions are similar to Assumption
1-3 in [49].
Assumption 3. ∀P ∈ {Ptrain,Ptest

1 , · · · ,Ptest
T }, diag(Cf,P) is differentiable with respect to f .
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Assumption 4. ∀t ∈ [T ], ℓ(g(·; f ′′
t , p/q0);Ptest

t ) is convex in p, where f ′′
t is defined in Algorithm 1.

Assumption 5. supp∈∆K−1,i∈[K],t∈[T ] ∥∇pℓ(g(·; f ′′
t , p/q0);Ptest

t )∥2 is finite and bounded by L.

Theorem 3 (Regret convergence for ROGD-OFU). If we run Algorithm 1 with ROGD-R (Algorithm 2)

and η =
√

2
T

1
L , under Assumption 3, 4, 5, ROGD-OFU satisfies the guarantee

E

[
1

T

T∑
t=1

ℓ(fogd−ofu
t ;Ptest

t )

]
− min

p∈∆K

E

[
1

T

T∑
t=1

ℓ(g(·; f ′′
t , p/q0);Ptest

t )

]
≤
√

2

T
L. (15)

E

[
1

T

T∑
t=1

ℓ(fogd
t ;Qt)

]
− min

p∈∆K

E

[
1

T

T∑
t=1

ℓ(g(·; p, f0, q0);Qt)

]
≤
√

2

T
L. (16)

Proof: The proof follows the similar idea in the original online leanring algorithm online gradient
descent (OGD) [44] and the ROGD in Wu et al. [49]. For any fixed p,

ℓ(f rogd−ofu
t ;Ptest

t )− ℓ(g(·; f ′′
t , p/q0);Ptest

t ) = ℓ(g(·; f ′′
t , pt/q0);Ptest

t )− ℓ(g(·; f ′′
t , p/q0);Ptest

t )

≤ (pt − p) · ∇pℓ(g(·; f ′′
t , pt/q0);Ptest

t )

= (pt − p) · Jp,f ′′
t
(pt)

⊤ESt
[st|S1, · · · , St−1]

= ESt
[(pt − p) · Jp,f ′′

t
(pt)

⊤st|S1, · · · , St−1],

where the last inequality holds by the fact that (pt−p) ·Jp,f ′′
t
(pt)

⊤ is independent of {S1, · · · , St−1}.
To bound (pt − p) · Jp,f ′′

t
(pt)

⊤st,

∥pt+1 − p∥22 = ∥Prof∆K−1(pt − η · Jp,f ′′
t
(pt)

⊤st)− p∥22
≤ ∥pt − η · Jp,f ′′

t
(pt)

⊤st − p∥22
= ∥pt − p∥22 + η2∥Jp,f ′′

t
(pt)

⊤st∥22 − 2η(pt − p) · (Jp,f ′′
t
(pt)

⊤st).

This implies

(pt − p) · (Jp,f ′′
t
(pt)

⊤st) ≤
1

2η
(∥pt − p∥22 − ∥pt+1 − p∥22) +

η

2
∥Jp,f ′′

t
(pt)

⊤st∥22
Thus

ES1,··· ,ST

[
1

T

T∑
t=1

ℓ(f rogd−ofu
t ;Ptest

t )− 1

T

T∑
t=1

ℓ(g(·; f ′′
t , p/q0);Ptest

t )

]

≤ ES1,··· ,ST

[
1

T

T∑
t=1

1

2η
(∥pt − p∥22 − ∥pt+1 − p∥22) +

η

2
∥Jp,f ′′

t
(pt)

⊤st∥22

]

≤ 1

2ηT
∥p1 − p∥22 +

η

2T

T∑
t=1

ES1,··· ,St [∥Jp,f ′′
t
(pt)

⊤st∥22]

≤ 1

ηT
+

ηL2

2
=

√
2

T
L.

This bound holds for any p. Thus,

ES1,··· ,ST

[
1

T

T∑
t=1

ℓ(f rogd−ofu
t ;Ptest

t )

]
− min

p∈∆K−1
ES1,··· ,ST

[
1

T

T∑
t=1

ℓ(g(·; f ′′
t , p/q0);Ptest

t )

]
≤
√

2

T
L.

D.3 Theorem for FTH-OFU

We begin with two assumptions.
Assumption 6. For any Ptest s.t. Ptest(x|y) = Ptrain(x|y), denote qt := (Ptest

t (y = k) : k ∈ [K])
and then

∥qt − arg min
p∈∆K−1

ℓ(g(·; f ′′
t , p/q0);Ptest)∥ ≤ δ.
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Assumption 7. ∀Ptest s.t. Ptest(x|y) = Ptrain(x|y), supp ∥∇pℓ(g(·; f ′′
t , p/q0);Ptest)∥ ≤ L

Theorem 4 (Regret convergence for FTH-OFU). If we run Algorithm 1 with FTH-R (Algorithm 3)
and assume σ is no larger than the minimum singular value of invertible confusion matrices
{Cf ′′

1 ,D′
0
, · · ·Cf ′′

T ,D′
0
}, under Assumption 6 and 7 with δ = 0, FTH-OFU satisfies the guarantee that

with probability at least 1− 2KT−7 over samples S1 ∪ · · · ∪ ST ,

1

T

T∑
t=1

ℓ(f fth−ofu
t ;Ptest

t )− min
p∈∆K

1

T

T∑
t=1

ℓ(g(·; f ′′
t , p/q0);Ptest

t ) ≤ O

(
log T

T
+

1

σ

√
K log T

T

)
,

(17)
where K is the number of classes.

Proof: The proof follows the similar idea in the original online leanring algorithm FTL [44] and the
FTH in Wu et al. [49]. Denote qt := (Ptest

t (y = k) : k ∈ [K]). By the Hoeffding and union bound,
we have

P

(
∀t ≤ T, ∥pt+1 −

1

t

t∑
τ=1

qτ∥ ≤
√
Kεt

)
≥ 1−

T∑
t=1

2M exp
(
−2ε2t t/σ

2
)
.

This implies that with probability at least 1−∑T
t=1 2M exp

(
−2ε2t t/σ

2
)
, ∀p,

T∑
t=1

ℓ(pt;Ptest
t )−

T∑
t=1

ℓ(g(·; f ′′
t , p/q0);Ptest

t )

≤
T∑

t=1

ℓ(g(·; f ′′
t ,

1

t

t∑
τ=1

qτ/q0);Ptest
t )−

T∑
t=1

ℓ(g(·; f ′′
t , p/q0);Ptest

t ) + L
√
M ·

T∑
t=1

εt

≤
T∑

t=1

ℓ(g(·; f ′′
t ,

1

t− 1

t−1∑
τ=1

qτ/q0);Ptest
t )−

T∑
t=1

ℓ(g(·; f ′′
t ,

1

t

t∑
τ=1

qτ/q0);Ptest
t ) + L

√
M ·

T∑
t=1

εt

≤
T∑

t=1

L

∥∥∥∥∥ 1

t− 1

t−1∑
τ=1

qτ − 1

t

t∑
τ=1

qτ

∥∥∥∥∥+ L
√
M ·

T∑
t=1

εt

≤
T∑

t=1

L

t

∥∥∥∥∥ 1

t− 1

t−1∑
τ=1

qτ − qt

∥∥∥∥∥+ L
√
M ·

T∑
t=1

εt

≤
T∑

t=1

2L

t
+ L

√
M ·

T∑
t=1

εt.

If we take εt = 2σ
√

lnT
T , the above is equivalent to: with probability at least 1− 2KT−7

1

T

T∑
t=1

ℓ(pt;Ptest
t )−min

p

1

T

T∑
t=1

ℓ(g(·; f ′′
t , p/q0);Ptest

t ) ≤ 2L
lnT

T
+ 4Lσ

√
K lnT

T

D.4 Theorems for UOGD-OFU and ATLAS-OFU

Theorem 5. [Regret convergence for UOGD-OFU] Let f(·; θfeatf ′′
t

, w) denote a network with the same
feature extractor as that of f ′′

t and a last linear layer with weight w. Let fuogd−ofu = f(·; θfeatf ′′
t

, wt),
where wt is the weight maintained at round t by Algorithm 4. If we run Algorithm 1 with UOGD in
[7] and let step size be η, then under the same assumptions as Lemma 1 in [7], UOGD-OFU satisfies
that

E

[
1

T

T∑
t=1

ℓ(fuogd−ofu;Ptest
t )− 1

T

T∑
t=1

min
w∈W

ℓ(f(·; θfeatf ′′
t

, w);Ptest
t )

]
≤ O

(
Kη

σ2
+

1

ηT
+

√
VT,ℓ

Tη

)
,

(18)
where VT,ℓ :=

∑T
t=2 supw∈W |ℓ(f(·; θfeatf ′′

t
, w);Ptest

t )− ℓ(f(·; θfeatf ′′
t−1

, w);Ptest
t−1)|, σ denotes the min-

imum singular value of the invertible confusion matrices {Cf ′′
1 ,D′

0
, · · ·Cf ′′

T ,D′
0
} and K is the number

of classes and the expectation is taken with respect to randomness in the revealed co-variates.
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Proof Sketch: Recall that ℓ(f(·; θfeatf ′′
t

, w);Ptest
t ) := E(x,y)∼Ptest

t
ℓce

(
f(x|θfeatf ′′

t
, w), y

)
.

This guarantee follows from the arguments in Bai et al. [7] from two basic facts below:

1. The risk ℓ(f(·; θfeatf ′′
t

, w);Ptest
t ) is convex in w over a convex and compact domain W .

2. It is possible to form unbiased estimates Ĝt(w) ∈ RK such that E[Ĝt(w)|S1:t−1] =

E((x,y)∼Ptest
t )∇wℓce

(
f(x|θfeatf ′′

t
, w), y

)
.

Hence we proceed to verify these two facts in our setup. Fact 1 is true because the cross-entropy
loss is convex in any subset of the simplex and the last linear layer weights only defines an affine
transformation which preserves convexity.

For fact 2, note that the f ′′
t only uses the data until round t− 1. So by the same arguments in Bai et al.

[7], using the BBSE estimator defined from the classifier f ′′
t , the unbiased estimate of risk gradient

can be defined.

Let wt be the weight of the last layer maintained by UOGD at round t. Let u1:T be any sequence in
W . Consequently we have for any round,

ℓ(fuogd−ofu;Ptest
t )− ℓ(f(·; θfeatf ′′

t
, ut)) = ℓ(f(·; θfeatf ′′

t
, wt)− ℓ(f(·; θfeatf ′′

t
, ut)) (19)

≤ ⟨∇wℓ(f(·; θfeatf ′′
t

, wt), wt − ut⟩ (20)

= ⟨E[Ĝt(wt)|S1:t−1], wt − ut⟩. (21)

Rest of the proof is identical to Bai et al. [7].

Theorem 5 for UOGD-OLS shows a bound that depends on the learning rate and one can set up the
learning carefully to get the optimal rate. However, this learning rate requires the prior information
of VT , which is typically unknown during the learning process. ATLAS-OLS overcomes this issue by
applying the same online ensembling framework [54] as the original ATLAS. Without knowing this
prior information, ATLAS-OLS is able to achieve the same rate of upper bound too, which is stated
in the following theorem.

Theorem 6 (Regret convergence for ATLAS-OFU). Let f(·; θfeatf ′′
t

, w) denote a network with the same
feature extractor as that of f ′′

t and a last linear layer with weight w. Let fatlas−ofu = f(·; θfeatf ′′
t

, wt),
where wt is the weight maintained at round t by Algorithm 5. If we run Algorithm 1 with ATLAS in
[7] and set up the step size pool H = {ηi = O

(
σ√
KT

)
·2i−1|i ∈ [N ]} (N = 1+ ⌈ 1

2 log2(1+2T )⌉),
then under the same assumptions as Lemma 1 in [7], ATLAS-OFU satisfies that

E

[
1

T

T∑
t=1

ℓ(fatlas−ofu;Ptest
t )− 1

T

T∑
t=1

min
w∈W

ℓ(f(·; θfeatf ′′
t+1

, w);Ptest
t )

]
≤ O

((
K1/3

σ2/3
+ 1

)
V

1/3
T,ℓ

T 1/3
+

√
K

σ2T

)
,

(22)
where VT,ℓ :=

∑T
t=2 supw∈W |ℓ(f(·; θfeatf ′′

t
, w);Ptest

t )− ℓ(f(·; θfeatf ′′
t−1

, w);Ptest
t−1)|, σ denotes the min-

imum singular value of the invertible confusion matrices {Cf ′′
1 ,D′

0
, · · ·Cf ′′

T ,D′
0
} and K is the number

of classes and the expectation is taken with respect to randomness in the revealed co-variates.

The proof is similar to that of Theorem 5, which mainly follows the similar idea in the original online
ensembling framework [54] and ATLAS [7], and hence omitted.

Discussion about the assumption. In the theorems for UOGD and ATLAS, the definition of VT,ℓ

is shift severity from Ptest
t . However, in the theorems for UOGD-OFU and ATLAS-OFU above,

VT,ℓ is shift severity from both Ptest
t and θfeatf ′′

t
, which can be much larger. This might lead to harder

convergence of the regret.
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(a) Results on CIFAR-10 for three SSL methods in OLS-OFU (Bernoulli shift)
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(b) Results on three more datasets (rotation degree prediction, Bernoulli shift)
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(c) Results on three types of corruptions in CIFAR-10C (rotation degree prediction, Bernoulli shift)

Figure 4: Evaluation of OLS and OLS-OFU.

E Additional experiments

E.1 Additional Details of Datasets, Online Shift Patterns, and SSL

Severity of CIFAR-10C in the experiment. For each type of corruption in CIFAR-10C, we select
a mild level of severity in the experiment section. Here we introduce the exact parameters of mild
and high levels of severity for those corruptions. For Gaussian Noise, the severity level is 0.03. For
Fog, the severity level is (0.75,2.5). For Pixelate, the severity level is 0.75.

Details of online shift patterns. Specifically, given two label distribution vectors q and q′, we
simulate the label marginal distributions at time t as a weighted combination of them: qt :=
αtq + (1 − αt)q

′. In Sinusoidal shift, αt = sin iπ
L (periodic length L =

√
T , i = t mod L) while

in Bernoulli shift, αt is a random bit (either 0 or 1), where the bit switches αt = 1 − αt−1 with
probability p = 1 − 1√

T
. In our experiments, we set the initial distribution vector q and q′ with

1
K (1, · · · , 1) and (1, 0, · · · , 0). To sample the batch test data at time t, we first sample a batch of
labels (not revealed to the learner) according to qt. Then given each label we can sample an image
from the test set, and collect this batch of images without labels as St.

Details of self supervised learning techniques. rotation degree prediction involves initially rotating
a given image by a specific degree from the set {0, 90, 180, 270} and the classifier is required to
determine the degree by which the image has been rotated. Entropy minimization utilizes a minimum
entropy regularizer, with the motivation that unlabeled examples are mostly beneficial when classes
have a small overlap. MoCo is a more advanced representation learning technique, using a query and
momentum encoder to learn representations from unlabeled data by maximizing the similarity of
positive pairs and minimizing the similarity of negative pairs.
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FTFWH FTH ROGD ATLAS UOGD FLH-FTL

OLS 11.52% / 0.397 11.56% / 0.395 14.21% / 1.15 12.02% / 42.5 11.65% / 312 11.63% / 1.09

OLS-OFU-BA (τ = 1) 10.5% / 260 10.5% / 264 14.% / 380 12.1% / 44.2 11.6% / 321 10.6% / 287
OLS-OFU-BA (τ = 10) 9.19% / 28.1 9.64% / 28.7 13.2% / 40.9 12% / 43.9 10.6% / 319 9.39% / 28.4
OLS-OFU-BA (τ = 50) 7.54% / 6.16 8.41% / 6.3 12.1% / 9.26 11.7% / 43.8 9.4% / 317 7.82% / 6.88
OLS-OFU-BA (τ = 100) 6.79% / 3.4 7.57% / 3.38 10.9% / 5.21 10.5% / 43.6 8.46% / 314 7.04% / 4.09
OLS-OFU-BA (τ = 500) 11.2% / 1.19 11.3% / 1.18 14.1% / 2.22 11.9% / 42.7 11.4% / 314 11.3% / 1.88

Table 4: Average error / time (minutes) of 6 original OLS methods versus OLS-OFU with various
frequency τ in batch accumulation. The SSL in OLS-OFU is Entropy Minimization.

Their loss functions are as follow. When the SSL loss is rotation degree prediction, it requires another
network fdeg to predict the rotation degree, sharing the same feature extractor θfeat as f0 but with a
different set of downstream layers. Its SSL loss ℓssl(S; f) is defined as

∑
x∈S ℓce(f

deg(R(x, i)), i),
where i is an integer uniformly sampled from [4], and R(x, i) is to rotate x with degree DL[i] from a
list of degrees DL = [0, 90, 180, 270]. Alternatively, if the SSL loss is entropy minimization, ℓssl(S; f)
would be the entropy

∑
x∈S

∑K
k=1 f(x)k log f(x)k. Moreover, the SSL loss of MoCo would be a

contrastive loss (InfoNCE) where the positive example x′ is an augmented version of x and other
samples in the same time step can be the negative examples.

E.2 Additional Results of OLS-OFU and Baselines

Figure 2 has three subfigures, showing the results of OLS-OFU with three SSL on CIFAR-10, the
results on three more datasets for evaluating online label shift, and the results on CIFAR-10C for
evaluating online generalized label shift; the online shift patterns are Sinusoidal shift for all these
figures in Figure 2. We show similar figures in Figure 4 but now the online shift patterns are Bernoulli
shift. We can have the exact same observations from Figure 4: the improvements from original OLS
methods to OLS-OFU are significant and consistent across 6 OLS methods, 3 SSL techniques, 4
datasets with online label shift and 3 datasets with online generalized label shift.

We also evaluate three SSL methods in OLS-OFU on CIFAR-10C with mild severity for two online
shift patterns. In Figure 7, the improvement from OLS to OLS-OFU is very significant but OLS-OFU
cannot outperform OFU.

E.3 Ablation Study on Frequency τ in OLS-OFU for Entropy Minimization and MoCo
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Figure 5: Empirical examination for the holdness of Equa-
tion 7. Clean denotes the experiment on CIFAR-10 and
others denotes the corruption type. They are paired with two
online shift patterns: Sinusoidal and Bernoulli.

Table 1 in the main paper shows the
ablation study on τ when SSL is ro-
tation degree prediction. Here we in-
clude Table 4 and Table 5 for the same
ablation study on τ but the SSL in
OLF-OFU is Entropy Minimization
and MoCoin two tables respectively.
We have same observations as what
we observed from Table 1: 1. OLS-
OFU with all τ outperforms OLS; 2.
The average error of OLS-OFU de-
creases from τ = 1 (w/o batch ac-
cumulation) to τ = 100 and starts
to increase after and this is because
the effectiveness of SSL benefits from
τ > 1 while larger τ means less up-
dates and hence hurts the long term
performance; 3. the additional time
cost of OLS-OFU with larger τ is
smaller and τ = 100 gives a great
balance of performance and time cost.
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FTFWH FTH ROGD ATLAS UOGD FLH-FTL

OLS 6.21% / 0.392 7.03% / 1.05 8.23% / 0.888 7.82% / 42.2 6.97% / 302 6.45% / 0.44

OLS-OFU-BA (τ = 1) 6.76% / 277 8.13% / 280 8.86% / 374 7.57% / 56.3 7.84% / 319 8.55% / 271
OLS-OFU-BA (τ = 10) 5.64% / 28.6 7.08% / 29.7 8.01% / 39.7 7.2% / 44.7 6.87% / 313 7.2% / 28.5
OLS-OFU-BA (τ = 50) 4.52% / 6.18 6.03% / 6.96 7.16% / 8.77 6.84% / 43.7 5.9% / 312 5.86% / 6.09
OLS-OFU-BA (τ = 100) 3.97% / 3.42 5.3% / 4.2 6.3% / 4.91 6.01% / 43.4 5.19% / 308 5.15% / 3.36
OLS-OFU-BA (τ = 500) 5.06% / 2.13 6.32% / 2.86 7.52% / 3.2 7.12% / 43.1 6.23% / 309 6.05% / 2.12

Table 5: Average error / time (minutes) of 6 original OLS methods versus OLS-OFU with various
frequency τ in batch accumulation. The SSL in OLS-OFU is MoCo.

E.4 Empirical Validation of Equation 7

Similar to Figure 3, as shown in Figure 5, it is evident that OLS-OFU with SSL chosen as Entropy
Minimization and MoCo is able to yield improvements on the baseline of the regret as shown in
Equation 7.

E.5 Self-training
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(a) number of online samples: 10 (b) number of online samples: 50
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Figure 6: Results on pseudo-labelling.

Pseudo labelling [31], a common self-training technique, generates pseudo labels for unlabelled data
and uses them to update the model. Though we are not able to use ground-truth labels to compute
feature extractor updates, we can use the model at time t to make predictions with respect to the online
samples at time t, and train on the inputs with their assigned (pseudo) labels. An issue that arises
in self-training is confirmation bias, where the model repeatedly overfits to incorrect pseudo-labels.
As such, different methods can be used to select which samples will be pseudo-labelled and used in
updating the model, e.g. using data augmentation [3], using regularization to induce confident low-
entropy pseudo-labelling [17], using softmax thresholds to filter out noisy low-confidence predictions
[50]. We make use of ensembles to identify noisy low-confidence/entropy pseudo-label predictions,
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though other various alternatives can also be used. In addition to OLS and OLS-OFU, we highlight
the methods under comparison:

• OLS-OFU (ℓsup(·, yground-truth)): Instead of computing pseudo-labels, we make use of the
correct ground-truth labels yground-truth. Recall ℓsup is the supervised learning loss. We update
the feature extractor with the supervised loss w.r.t. ground-truth labels ℓsup(·, yground-truth).

• OLS-OFU (ℓssl + ℓsup(·, yground-truth)): Instead of computing pseudo-labels, we make use
of the correct ground-truth labels yground-truth. Recall ℓssl and ℓsup are the self-supervised
and supervised learning losses respectively. We update the feature extractor with both
the self-supervised loss ℓssl as well as the supervised loss w.r.t. ground-truth labels
ℓsup(·, yground-truth).

• OLS-OFU (ℓssl + ℓsup(·, ypseudo-label(#samples=, #FU-samples=))): Recall ℓssl and ℓsup are the
self-supervised and supervised learning losses respectively. We compute pseudo-labels
ypseudo-label), and update the feature extractor with both the self-supervised loss ℓssl as well
as the supervised loss w.r.t. pseudo-labels ℓsup(·, ypseudo-label).

How to compute pseudo-labels? We now describe the procedure to compute pseudo-labels for
ℓsup(·, ypseudo-label(#samples=, #FU-samples=)). The seed used to train our model is 4242, and we train an
additional 4 models on seeds 4343, 4545, 4646, 4747. With this ensemble of 5 models, we keep
sampling inputs at each online time step until we have #FU-samples samples, or we reach a limit
of #samples samples. We accept an input when the agreement between the ensembles exceeds a
threshold e = 1.0 (i.e. we only accept samples where all 5 ensembles agree on the label of the online
sample). In the default online learning setting, there are only #samples=10, and therefore there may
not be enough accepted samples to perform feature update with, thus we evaluate with a continuous
sampling setup, where we sample #samples=50 (and evaluate on all these samples), but only use the
first 10 samples (#FU-samples=10) to perform the feature extractor update.

Results on pseudo-labelling. We report the results of OLS-OFU with τ = 1 in this section. First,
we find that OLS-OFU (ℓssl + ℓsup(·, yground-truth)) attains the lowest error and is the lower bound
we are attaining towards. Evaluating OLS-OFU (ℓssl + ℓsup(·, ypseudo-label(#samples=10, #FU-samples=10))),
we find that the performance does not outperform OLS-OFU, and is not near OLS-OFU (ℓssl +
ℓsup(·, yground-truth)). If we set the threshold e too high, there may not be enough online samples to
update the feature extractor. If we set the threshold e too low, there may be too many incorrect labels
and we incorrectly update our feature extractor. As such, we would like to sample more inputs at
each online time step such that we can balance this tradeoff. We sample #samples=50 at each online
time step, and update with #FU-samples ≤ 10. For fair comparison, we also show the comparable
methods in both #samples=10, #FU-samples=10 and #samples=50, #FU-samples=50 settings.

With this sampling setup, we find that OLS-OFU (ℓssl + ℓsup(·, ypseudo-label(#samples=50, #FU-samples=10)))
can outperform both OLS-OFU (#samples=10) and OLS-OFU (#samples=50). Though it does not
exceed neither OLS-OFU (ℓssl + ℓsup(·, yground-truth)) for #samples=10 nor #samples=50, it lowers the
gap considerably.
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(a) Sinusoidal Shift, Rotation Degree Prediction
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(b) Bernoulli Shift, Rotation Degree Prediction
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(c) Sinusoidal Shift, Entropy Minimization
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(d) Bernoulli Shift, Entropy Minimization
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(e) Sinusoidal Shift, MoCo
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(f) Bernoulli Shift, MoCo

Figure 7: Results of two online shift patterns on CIFAR-10C and three SSL methods in OLS-OFU.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
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Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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• The answer NA means that the paper has no limitation while the answer No means that
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
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• The authors should discuss the computational efficiency of the proposed algorithms
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We reported a large range of experimental results, though error bars were not
included.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We use A6000 GPU and report time cost evaluation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We use practical examples like MRI machine.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such models/data are used in this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No new assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No such experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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